kern_synch.c revision 104719
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 104719 2002-10-09 17:17:24Z jhb $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/*
281				 * The kse slptimes are not touched in wakeup
282				 * because the thread may not HAVE a KSE.
283				 */
284				if (ke->ke_state == KES_ONRUNQ) {
285					awake = 1;
286					ke->ke_flags &= ~KEF_DIDRUN;
287				} else if ((ke->ke_state == KES_THREAD) &&
288				    (TD_IS_RUNNING(ke->ke_thread))) {
289					awake = 1;
290					/* Do not clear KEF_DIDRUN */
291				} else if (ke->ke_flags & KEF_DIDRUN) {
292					awake = 1;
293					ke->ke_flags &= ~KEF_DIDRUN;
294				}
295
296				/*
297				 * pctcpu is only for ps?
298				 * Do it per kse.. and add them up at the end?
299				 * XXXKSE
300				 */
301				ke->ke_pctcpu
302				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
303				/*
304				 * If the kse has been idle the entire second,
305				 * stop recalculating its priority until
306				 * it wakes up.
307				 */
308				if (ke->ke_cpticks == 0)
309					continue;
310#if	(FSHIFT >= CCPU_SHIFT)
311				ke->ke_pctcpu += (realstathz == 100) ?
312				    ((fixpt_t) ke->ke_cpticks) <<
313				    (FSHIFT - CCPU_SHIFT) :
314				    100 * (((fixpt_t) ke->ke_cpticks) <<
315				    (FSHIFT - CCPU_SHIFT)) / realstathz;
316#else
317				ke->ke_pctcpu += ((FSCALE - ccpu) *
318				    (ke->ke_cpticks * FSCALE / realstathz)) >>
319				    FSHIFT;
320#endif
321				ke->ke_cpticks = 0;
322			} /* end of kse loop */
323			/*
324			 * If there are ANY running threads in this KSEGRP,
325			 * then don't count it as sleeping.
326			 */
327			if (awake) {
328				if (kg->kg_slptime > 1) {
329					/*
330					 * In an ideal world, this should not
331					 * happen, because whoever woke us
332					 * up from the long sleep should have
333					 * unwound the slptime and reset our
334					 * priority before we run at the stale
335					 * priority.  Should KASSERT at some
336					 * point when all the cases are fixed.
337					 */
338					updatepri(kg);
339				}
340				kg->kg_slptime = 0;
341			} else {
342				kg->kg_slptime++;
343			}
344			if (kg->kg_slptime > 1)
345				continue;
346			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
347		      	resetpriority(kg);
348			FOREACH_THREAD_IN_GROUP(kg, td) {
349				int changedqueue;
350				if (td->td_priority >= PUSER) {
351					/*
352					 * Only change the priority
353					 * of threads that are still at their
354					 * user priority.
355					 * XXXKSE This is problematic
356					 * as we may need to re-order
357					 * the threads on the KSEG list.
358					 */
359					changedqueue =
360					    ((td->td_priority / RQ_PPQ) !=
361					     (kg->kg_user_pri / RQ_PPQ));
362
363					td->td_priority = kg->kg_user_pri;
364					if (changedqueue && TD_ON_RUNQ(td)) {
365						/* this could be optimised */
366						remrunqueue(td);
367						td->td_priority =
368						    kg->kg_user_pri;
369						setrunqueue(td);
370					} else {
371						td->td_priority = kg->kg_user_pri;
372					}
373				}
374			}
375		} /* end of ksegrp loop */
376		mtx_unlock_spin(&sched_lock);
377	} /* end of process loop */
378	sx_sunlock(&allproc_lock);
379	wakeup(&lbolt);
380	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
381}
382
383/*
384 * Recalculate the priority of a process after it has slept for a while.
385 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
386 * least six times the loadfactor will decay p_estcpu to zero.
387 */
388void
389updatepri(struct ksegrp *kg)
390{
391	register unsigned int newcpu;
392	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
393
394	newcpu = kg->kg_estcpu;
395	if (kg->kg_slptime > 5 * loadfac)
396		kg->kg_estcpu = 0;
397	else {
398		kg->kg_slptime--;	/* the first time was done in schedcpu */
399		while (newcpu && --kg->kg_slptime)
400			newcpu = decay_cpu(loadfac, newcpu);
401		kg->kg_estcpu = newcpu;
402	}
403	resetpriority(kg);
404}
405
406/*
407 * We're only looking at 7 bits of the address; everything is
408 * aligned to 4, lots of things are aligned to greater powers
409 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
410 */
411#define TABLESIZE	128
412static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
413#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
414
415void
416sleepinit(void)
417{
418	int i;
419
420	sched_quantum = hz/10;
421	hogticks = 2 * sched_quantum;
422	for (i = 0; i < TABLESIZE; i++)
423		TAILQ_INIT(&slpque[i]);
424}
425
426/*
427 * General sleep call.  Suspends the current process until a wakeup is
428 * performed on the specified identifier.  The process will then be made
429 * runnable with the specified priority.  Sleeps at most timo/hz seconds
430 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
431 * before and after sleeping, else signals are not checked.  Returns 0 if
432 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
433 * signal needs to be delivered, ERESTART is returned if the current system
434 * call should be restarted if possible, and EINTR is returned if the system
435 * call should be interrupted by the signal (return EINTR).
436 *
437 * The mutex argument is exited before the caller is suspended, and
438 * entered before msleep returns.  If priority includes the PDROP
439 * flag the mutex is not entered before returning.
440 */
441
442int
443msleep(ident, mtx, priority, wmesg, timo)
444	void *ident;
445	struct mtx *mtx;
446	int priority, timo;
447	const char *wmesg;
448{
449	struct thread *td = curthread;
450	struct proc *p = td->td_proc;
451	int sig, catch = priority & PCATCH;
452	int rval = 0;
453	WITNESS_SAVE_DECL(mtx);
454
455#ifdef KTRACE
456	if (KTRPOINT(td, KTR_CSW))
457		ktrcsw(1, 0);
458#endif
459	WITNESS_SLEEP(0, &mtx->mtx_object);
460	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
461	    ("sleeping without a mutex"));
462	/*
463	 * If we are capable of async syscalls and there isn't already
464	 * another one ready to return, start a new thread
465	 * and queue it as ready to run. Note that there is danger here
466	 * because we need to make sure that we don't sleep allocating
467	 * the thread (recursion here might be bad).
468	 * Hence the TDF_INMSLEEP flag.
469	 */
470	if (p->p_flag & P_KSES) {
471		/* Just don't bother if we are exiting
472				and not the exiting thread. */
473		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
474			return (EINTR);
475		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
476			/*
477			 * Arrange for an upcall to be readied.
478			 * it will not actually happen until all
479			 * pending in-kernel work for this KSEGRP
480			 * has been done.
481			 */
482			mtx_lock_spin(&sched_lock);
483			/* Don't recurse here! */
484			td->td_flags |= TDF_INMSLEEP;
485			thread_schedule_upcall(td, td->td_kse);
486			td->td_flags &= ~TDF_INMSLEEP;
487			mtx_unlock_spin(&sched_lock);
488		}
489	}
490	mtx_lock_spin(&sched_lock);
491	if (cold ) {
492		/*
493		 * During autoconfiguration, just give interrupts
494		 * a chance, then just return.
495		 * Don't run any other procs or panic below,
496		 * in case this is the idle process and already asleep.
497		 */
498		if (mtx != NULL && priority & PDROP)
499			mtx_unlock(mtx);
500		mtx_unlock_spin(&sched_lock);
501		return (0);
502	}
503
504	DROP_GIANT();
505
506	if (mtx != NULL) {
507		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
508		WITNESS_SAVE(&mtx->mtx_object, mtx);
509		mtx_unlock(mtx);
510		if (priority & PDROP)
511			mtx = NULL;
512	}
513
514	KASSERT(p != NULL, ("msleep1"));
515	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
516
517	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
518	    td, p->p_pid, p->p_comm, wmesg, ident);
519
520	td->td_wchan = ident;
521	td->td_wmesg = wmesg;
522	td->td_ksegrp->kg_slptime = 0;
523	td->td_priority = priority & PRIMASK;
524	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
525	TD_SET_ON_SLEEPQ(td);
526	if (timo)
527		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
528	/*
529	 * We put ourselves on the sleep queue and start our timeout
530	 * before calling thread_suspend_check, as we could stop there, and
531	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
532	 * without resuming us, thus we must be ready for sleep
533	 * when cursig is called.  If the wakeup happens while we're
534	 * stopped, td->td_wchan will be 0 upon return from cursig.
535	 */
536	if (catch) {
537		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
538		    p->p_pid, p->p_comm);
539		td->td_flags |= TDF_SINTR;
540		mtx_unlock_spin(&sched_lock);
541		PROC_LOCK(p);
542		sig = cursig(td);
543		if (sig == 0 && thread_suspend_check(1))
544			sig = SIGSTOP;
545		mtx_lock_spin(&sched_lock);
546		PROC_UNLOCK(p);
547		if (sig != 0) {
548			if (TD_ON_SLEEPQ(td))
549				unsleep(td);
550		} else if (!TD_ON_SLEEPQ(td))
551			catch = 0;
552	} else
553		sig = 0;
554	if (TD_ON_SLEEPQ(td)) {
555		p->p_stats->p_ru.ru_nvcsw++;
556		TD_SET_SLEEPING(td);
557		mi_switch();
558	}
559	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
560	    p->p_comm);
561	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
562	td->td_flags &= ~TDF_SINTR;
563	if (td->td_flags & TDF_TIMEOUT) {
564		td->td_flags &= ~TDF_TIMEOUT;
565		if (sig == 0)
566			rval = EWOULDBLOCK;
567	} else if (td->td_flags & TDF_TIMOFAIL) {
568		td->td_flags &= ~TDF_TIMOFAIL;
569	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
570		/*
571		 * This isn't supposed to be pretty.  If we are here, then
572		 * the endtsleep() callout is currently executing on another
573		 * CPU and is either spinning on the sched_lock or will be
574		 * soon.  If we don't synchronize here, there is a chance
575		 * that this process may msleep() again before the callout
576		 * has a chance to run and the callout may end up waking up
577		 * the wrong msleep().  Yuck.
578		 */
579		TD_SET_SLEEPING(td);
580		p->p_stats->p_ru.ru_nivcsw++;
581		mi_switch();
582		td->td_flags &= ~TDF_TIMOFAIL;
583	}
584	mtx_unlock_spin(&sched_lock);
585
586	if (rval == 0 && catch) {
587		PROC_LOCK(p);
588		/* XXX: shouldn't we always be calling cursig() */
589		if (sig != 0 || (sig = cursig(td))) {
590			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
591				rval = EINTR;
592			else
593				rval = ERESTART;
594		}
595		PROC_UNLOCK(p);
596	}
597#ifdef KTRACE
598	if (KTRPOINT(td, KTR_CSW))
599		ktrcsw(0, 0);
600#endif
601	PICKUP_GIANT();
602	if (mtx != NULL) {
603		mtx_lock(mtx);
604		WITNESS_RESTORE(&mtx->mtx_object, mtx);
605	}
606	return (rval);
607}
608
609/*
610 * Implement timeout for msleep()
611 *
612 * If process hasn't been awakened (wchan non-zero),
613 * set timeout flag and undo the sleep.  If proc
614 * is stopped, just unsleep so it will remain stopped.
615 * MP-safe, called without the Giant mutex.
616 */
617static void
618endtsleep(arg)
619	void *arg;
620{
621	register struct thread *td = arg;
622
623	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
624	    td, td->td_proc->p_pid, td->td_proc->p_comm);
625	mtx_lock_spin(&sched_lock);
626	/*
627	 * This is the other half of the synchronization with msleep()
628	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
629	 * race and just need to put the process back on the runqueue.
630	 */
631	if (TD_ON_SLEEPQ(td)) {
632		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
633		TD_CLR_ON_SLEEPQ(td);
634		td->td_flags |= TDF_TIMEOUT;
635	} else {
636		td->td_flags |= TDF_TIMOFAIL;
637	}
638	TD_CLR_SLEEPING(td);
639	setrunnable(td);
640	mtx_unlock_spin(&sched_lock);
641}
642
643/*
644 * Abort a thread, as if an interrupt had occured.  Only abort
645 * interruptable waits (unfortunatly it isn't only safe to abort others).
646 * This is about identical to cv_abort().
647 * Think about merging them?
648 * Also, whatever the signal code does...
649 */
650void
651abortsleep(struct thread *td)
652{
653
654	mtx_assert(&sched_lock, MA_OWNED);
655	/*
656	 * If the TDF_TIMEOUT flag is set, just leave. A
657	 * timeout is scheduled anyhow.
658	 */
659	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
660		if (TD_ON_SLEEPQ(td)) {
661			unsleep(td);
662			TD_CLR_SLEEPING(td);
663			setrunnable(td);
664		}
665	}
666}
667
668/*
669 * Remove a process from its wait queue
670 */
671void
672unsleep(struct thread *td)
673{
674
675	mtx_lock_spin(&sched_lock);
676	if (TD_ON_SLEEPQ(td)) {
677		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
678		TD_CLR_ON_SLEEPQ(td);
679	}
680	mtx_unlock_spin(&sched_lock);
681}
682
683/*
684 * Make all processes sleeping on the specified identifier runnable.
685 */
686void
687wakeup(ident)
688	register void *ident;
689{
690	register struct slpquehead *qp;
691	register struct thread *td;
692	struct thread *ntd;
693	struct proc *p;
694
695	mtx_lock_spin(&sched_lock);
696	qp = &slpque[LOOKUP(ident)];
697restart:
698	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
699		ntd = TAILQ_NEXT(td, td_slpq);
700		if (td->td_wchan == ident) {
701			unsleep(td);
702			TD_CLR_SLEEPING(td);
703			setrunnable(td);
704			p = td->td_proc;
705			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
706			    td, p->p_pid, p->p_comm);
707			goto restart;
708		}
709	}
710	mtx_unlock_spin(&sched_lock);
711}
712
713/*
714 * Make a process sleeping on the specified identifier runnable.
715 * May wake more than one process if a target process is currently
716 * swapped out.
717 */
718void
719wakeup_one(ident)
720	register void *ident;
721{
722	register struct slpquehead *qp;
723	register struct thread *td;
724	register struct proc *p;
725	struct thread *ntd;
726
727	mtx_lock_spin(&sched_lock);
728	qp = &slpque[LOOKUP(ident)];
729	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
730		ntd = TAILQ_NEXT(td, td_slpq);
731		if (td->td_wchan == ident) {
732			unsleep(td);
733			TD_CLR_SLEEPING(td);
734			setrunnable(td);
735			p = td->td_proc;
736			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
737			    td, p->p_pid, p->p_comm);
738			break;
739		}
740	}
741	mtx_unlock_spin(&sched_lock);
742}
743
744/*
745 * The machine independent parts of mi_switch().
746 */
747void
748mi_switch(void)
749{
750	struct bintime new_switchtime;
751	struct thread *td = curthread;	/* XXX */
752	struct proc *p = td->td_proc;	/* XXX */
753	struct kse *ke = td->td_kse;
754	u_int sched_nest;
755
756	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
757	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
758	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
759#ifdef INVARIANTS
760	if (!TD_ON_LOCK(td) &&
761	    !TD_ON_RUNQ(td) &&
762	    !TD_IS_RUNNING(td))
763		mtx_assert(&Giant, MA_NOTOWNED);
764#endif
765	KASSERT(td->td_critnest == 1,
766	    ("mi_switch: switch in a critical section"));
767
768	/*
769	 * Compute the amount of time during which the current
770	 * process was running, and add that to its total so far.
771	 */
772	binuptime(&new_switchtime);
773	bintime_add(&p->p_runtime, &new_switchtime);
774	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
775
776#ifdef DDB
777	/*
778	 * Don't perform context switches from the debugger.
779	 */
780	if (db_active) {
781		mtx_unlock_spin(&sched_lock);
782		db_error("Context switches not allowed in the debugger.");
783	}
784#endif
785
786	/*
787	 * Check if the process exceeds its cpu resource allocation.  If
788	 * over max, arrange to kill the process in ast().
789	 */
790	if (p->p_cpulimit != RLIM_INFINITY &&
791	    p->p_runtime.sec > p->p_cpulimit) {
792		p->p_sflag |= PS_XCPU;
793		ke->ke_flags |= KEF_ASTPENDING;
794	}
795
796	/*
797	 * Finish up stats for outgoing thread.
798	 */
799	cnt.v_swtch++;
800	PCPU_SET(switchtime, new_switchtime);
801	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
802	    p->p_comm);
803	sched_nest = sched_lock.mtx_recurse;
804	td->td_lastcpu = ke->ke_oncpu;
805	ke->ke_oncpu = NOCPU;
806	ke->ke_flags &= ~KEF_NEEDRESCHED;
807	/*
808	 * At the last moment, if this thread is still marked RUNNING,
809	 * then put it back on the run queue as it has not been suspended
810	 * or stopped or any thing else similar.
811	 */
812	if (TD_IS_RUNNING(td)) {
813		/* Put us back on the run queue (kse and all). */
814		setrunqueue(td);
815	} else if (p->p_flag & P_KSES) {
816		/*
817		 * We will not be on the run queue. So we must be
818		 * sleeping or similar. As it's available,
819		 * someone else can use the KSE if they need it.
820		 * (If bound LOANING can still occur).
821		 */
822		kse_reassign(ke);
823	}
824
825	cpu_switch();		/* SHAZAM!!*/
826
827	/*
828	 * Start setting up stats etc. for the incoming thread.
829	 * Similar code in fork_exit() is returned to by cpu_switch()
830	 * in the case of a new thread/process.
831	 */
832	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
833	sched_lock.mtx_recurse = sched_nest;
834	sched_lock.mtx_lock = (uintptr_t)td;
835	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
836	    p->p_comm);
837	if (PCPU_GET(switchtime.sec) == 0)
838		binuptime(PCPU_PTR(switchtime));
839	PCPU_SET(switchticks, ticks);
840
841	/*
842	 * Call the switchin function while still holding the scheduler lock
843	 * (used by the idlezero code and the general page-zeroing code)
844	 */
845	if (td->td_switchin)
846		td->td_switchin();
847}
848
849/*
850 * Change process state to be runnable,
851 * placing it on the run queue if it is in memory,
852 * and awakening the swapper if it isn't in memory.
853 */
854void
855setrunnable(struct thread *td)
856{
857	struct proc *p = td->td_proc;
858	struct ksegrp *kg;
859
860	mtx_assert(&sched_lock, MA_OWNED);
861	switch (p->p_state) {
862	case PRS_ZOMBIE:
863		panic("setrunnable(1)");
864	default:
865		break;
866	}
867	switch (td->td_state) {
868	case TDS_RUNNING:
869	case TDS_RUNQ:
870		return;
871	case TDS_INHIBITED:
872		/*
873		 * If we are only inhibited because we are swapped out
874		 * then arange to swap in this process. Otherwise just return.
875		 */
876		if (td->td_inhibitors != TDI_SWAPPED)
877			return;
878	case TDS_CAN_RUN:
879		break;
880	default:
881		printf("state is 0x%x", td->td_state);
882		panic("setrunnable(2)");
883	}
884	if ((p->p_sflag & PS_INMEM) == 0) {
885		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
886			p->p_sflag |= PS_SWAPINREQ;
887			wakeup(&proc0);
888		}
889	} else {
890		kg = td->td_ksegrp;
891		if (kg->kg_slptime > 1)
892			updatepri(kg);
893		kg->kg_slptime = 0;
894		setrunqueue(td);
895		maybe_resched(td);
896	}
897}
898
899/*
900 * Compute the priority of a process when running in user mode.
901 * Arrange to reschedule if the resulting priority is better
902 * than that of the current process.
903 */
904void
905resetpriority(kg)
906	register struct ksegrp *kg;
907{
908	register unsigned int newpriority;
909	struct thread *td;
910
911	mtx_lock_spin(&sched_lock);
912	if (kg->kg_pri_class == PRI_TIMESHARE) {
913		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
914		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
915		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
916		    PRI_MAX_TIMESHARE);
917		kg->kg_user_pri = newpriority;
918	}
919	FOREACH_THREAD_IN_GROUP(kg, td) {
920		maybe_resched(td);			/* XXXKSE silly */
921	}
922	mtx_unlock_spin(&sched_lock);
923}
924
925/*
926 * Compute a tenex style load average of a quantity on
927 * 1, 5 and 15 minute intervals.
928 * XXXKSE   Needs complete rewrite when correct info is available.
929 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
930 */
931static void
932loadav(void *arg)
933{
934	int i, nrun;
935	struct loadavg *avg;
936	struct proc *p;
937	struct thread *td;
938
939	avg = &averunnable;
940	sx_slock(&allproc_lock);
941	nrun = 0;
942	FOREACH_PROC_IN_SYSTEM(p) {
943		FOREACH_THREAD_IN_PROC(p, td) {
944			switch (td->td_state) {
945			case TDS_RUNQ:
946			case TDS_RUNNING:
947				if ((p->p_flag & P_NOLOAD) != 0)
948					goto nextproc;
949				nrun++; /* XXXKSE */
950			default:
951				break;
952			}
953nextproc:
954			continue;
955		}
956	}
957	sx_sunlock(&allproc_lock);
958	for (i = 0; i < 3; i++)
959		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
960		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
961
962	/*
963	 * Schedule the next update to occur after 5 seconds, but add a
964	 * random variation to avoid synchronisation with processes that
965	 * run at regular intervals.
966	 */
967	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
968	    loadav, NULL);
969}
970
971/* ARGSUSED */
972static void
973sched_setup(dummy)
974	void *dummy;
975{
976
977	callout_init(&schedcpu_callout, 1);
978	callout_init(&roundrobin_callout, 0);
979	callout_init(&loadav_callout, 0);
980
981	/* Kick off timeout driven events by calling first time. */
982	roundrobin(NULL);
983	schedcpu(NULL);
984	loadav(NULL);
985}
986
987/*
988 * We adjust the priority of the current process.  The priority of
989 * a process gets worse as it accumulates CPU time.  The cpu usage
990 * estimator (p_estcpu) is increased here.  resetpriority() will
991 * compute a different priority each time p_estcpu increases by
992 * INVERSE_ESTCPU_WEIGHT
993 * (until MAXPRI is reached).  The cpu usage estimator ramps up
994 * quite quickly when the process is running (linearly), and decays
995 * away exponentially, at a rate which is proportionally slower when
996 * the system is busy.  The basic principle is that the system will
997 * 90% forget that the process used a lot of CPU time in 5 * loadav
998 * seconds.  This causes the system to favor processes which haven't
999 * run much recently, and to round-robin among other processes.
1000 */
1001void
1002schedclock(td)
1003	struct thread *td;
1004{
1005	struct kse *ke;
1006	struct ksegrp *kg;
1007
1008	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1009	ke = td->td_kse;
1010	kg = td->td_ksegrp;
1011	ke->ke_cpticks++;
1012	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1013	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1014		resetpriority(kg);
1015		if (td->td_priority >= PUSER)
1016			td->td_priority = kg->kg_user_pri;
1017	}
1018}
1019
1020/*
1021 * General purpose yield system call
1022 */
1023int
1024yield(struct thread *td, struct yield_args *uap)
1025{
1026	struct ksegrp *kg = td->td_ksegrp;
1027
1028	mtx_assert(&Giant, MA_NOTOWNED);
1029	mtx_lock_spin(&sched_lock);
1030	td->td_priority = PRI_MAX_TIMESHARE;
1031	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1032	mi_switch();
1033	mtx_unlock_spin(&sched_lock);
1034	td->td_retval[0] = 0;
1035
1036	return (0);
1037}
1038
1039