kern_synch.c revision 104157
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 104157 2002-09-29 23:04:34Z julian $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/*
281				 * The kse slptimes are not touched in wakeup
282				 * because the thread may not HAVE a KSE.
283				 */
284				if (ke->ke_state == KES_ONRUNQ) {
285					awake = 1;
286					ke->ke_flags &= ~KEF_DIDRUN;
287				} else if ((ke->ke_state == KES_THREAD) &&
288				    (TD_IS_RUNNING(ke->ke_thread))) {
289					awake = 1;
290					/* Do not clear KEF_DIDRUN */
291				} else if (ke->ke_flags & KEF_DIDRUN) {
292					awake = 1;
293					ke->ke_flags &= ~KEF_DIDRUN;
294				}
295
296				/*
297				 * pctcpu is only for ps?
298				 * Do it per kse.. and add them up at the end?
299				 * XXXKSE
300				 */
301				ke->ke_pctcpu
302				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
303				/*
304				 * If the kse has been idle the entire second,
305				 * stop recalculating its priority until
306				 * it wakes up.
307				 */
308				if (ke->ke_cpticks == 0)
309					continue;
310#if	(FSHIFT >= CCPU_SHIFT)
311				ke->ke_pctcpu += (realstathz == 100) ?
312				    ((fixpt_t) ke->ke_cpticks) <<
313				    (FSHIFT - CCPU_SHIFT) :
314				    100 * (((fixpt_t) ke->ke_cpticks) <<
315				    (FSHIFT - CCPU_SHIFT)) / realstathz;
316#else
317				ke->ke_pctcpu += ((FSCALE - ccpu) *
318				    (ke->ke_cpticks * FSCALE / realstathz)) >>
319				    FSHIFT;
320#endif
321				ke->ke_cpticks = 0;
322			} /* end of kse loop */
323			/*
324			 * If there are ANY running threads in this KSEGRP,
325			 * then don't count it as sleeping.
326			 */
327			if (awake) {
328				if (kg->kg_slptime > 1) {
329					/*
330					 * In an ideal world, this should not
331					 * happen, because whoever woke us
332					 * up from the long sleep should have
333					 * unwound the slptime and reset our
334					 * priority before we run at the stale
335					 * priority.  Should KASSERT at some
336					 * point when all the cases are fixed.
337					 */
338					updatepri(kg);
339				}
340				kg->kg_slptime = 0;
341			} else {
342				kg->kg_slptime++;
343			}
344			if (kg->kg_slptime > 1)
345				continue;
346			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
347		      	resetpriority(kg);
348			FOREACH_THREAD_IN_GROUP(kg, td) {
349				int changedqueue;
350				if (td->td_priority >= PUSER) {
351					/*
352					 * Only change the priority
353					 * of threads that are still at their
354					 * user priority.
355					 * XXXKSE This is problematic
356					 * as we may need to re-order
357					 * the threads on the KSEG list.
358					 */
359					changedqueue =
360					    ((td->td_priority / RQ_PPQ) !=
361					     (kg->kg_user_pri / RQ_PPQ));
362
363					td->td_priority = kg->kg_user_pri;
364					if (changedqueue && TD_ON_RUNQ(td)) {
365						/* this could be optimised */
366						remrunqueue(td);
367						td->td_priority =
368						    kg->kg_user_pri;
369						setrunqueue(td);
370					} else {
371						td->td_priority = kg->kg_user_pri;
372					}
373				}
374			}
375		} /* end of ksegrp loop */
376		mtx_unlock_spin(&sched_lock);
377	} /* end of process loop */
378	sx_sunlock(&allproc_lock);
379	wakeup(&lbolt);
380	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
381}
382
383/*
384 * Recalculate the priority of a process after it has slept for a while.
385 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
386 * least six times the loadfactor will decay p_estcpu to zero.
387 */
388void
389updatepri(struct ksegrp *kg)
390{
391	register unsigned int newcpu;
392	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
393
394	newcpu = kg->kg_estcpu;
395	if (kg->kg_slptime > 5 * loadfac)
396		kg->kg_estcpu = 0;
397	else {
398		kg->kg_slptime--;	/* the first time was done in schedcpu */
399		while (newcpu && --kg->kg_slptime)
400			newcpu = decay_cpu(loadfac, newcpu);
401		kg->kg_estcpu = newcpu;
402	}
403	resetpriority(kg);
404}
405
406/*
407 * We're only looking at 7 bits of the address; everything is
408 * aligned to 4, lots of things are aligned to greater powers
409 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
410 */
411#define TABLESIZE	128
412static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
413#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
414
415void
416sleepinit(void)
417{
418	int i;
419
420	sched_quantum = hz/10;
421	hogticks = 2 * sched_quantum;
422	for (i = 0; i < TABLESIZE; i++)
423		TAILQ_INIT(&slpque[i]);
424}
425
426/*
427 * General sleep call.  Suspends the current process until a wakeup is
428 * performed on the specified identifier.  The process will then be made
429 * runnable with the specified priority.  Sleeps at most timo/hz seconds
430 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
431 * before and after sleeping, else signals are not checked.  Returns 0 if
432 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
433 * signal needs to be delivered, ERESTART is returned if the current system
434 * call should be restarted if possible, and EINTR is returned if the system
435 * call should be interrupted by the signal (return EINTR).
436 *
437 * The mutex argument is exited before the caller is suspended, and
438 * entered before msleep returns.  If priority includes the PDROP
439 * flag the mutex is not entered before returning.
440 */
441
442int
443msleep(ident, mtx, priority, wmesg, timo)
444	void *ident;
445	struct mtx *mtx;
446	int priority, timo;
447	const char *wmesg;
448{
449	struct thread *td = curthread;
450	struct proc *p = td->td_proc;
451	int sig, catch = priority & PCATCH;
452	int rval = 0;
453	WITNESS_SAVE_DECL(mtx);
454
455#ifdef KTRACE
456	if (KTRPOINT(td, KTR_CSW))
457		ktrcsw(1, 0);
458#endif
459	WITNESS_SLEEP(0, &mtx->mtx_object);
460	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
461	    ("sleeping without a mutex"));
462	/*
463	 * If we are capable of async syscalls and there isn't already
464	 * another one ready to return, start a new thread
465	 * and queue it as ready to run. Note that there is danger here
466	 * because we need to make sure that we don't sleep allocating
467	 * the thread (recursion here might be bad).
468	 * Hence the TDF_INMSLEEP flag.
469	 */
470	if (p->p_flag & P_KSES) {
471		/* Just don't bother if we are exiting
472				and not the exiting thread. */
473		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
474			return (EINTR);
475		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
476			/*
477			 * If we have no queued work to do, then
478			 * upcall to the UTS to see if it has more to do.
479			 * We don't need to upcall now, just make it and
480			 * queue it.
481			 */
482			mtx_lock_spin(&sched_lock);
483			if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
484				/* Don't recurse here! */
485				td->td_flags |= TDF_INMSLEEP;
486				thread_schedule_upcall(td, td->td_kse);
487				td->td_flags &= ~TDF_INMSLEEP;
488			}
489			mtx_unlock_spin(&sched_lock);
490		}
491	}
492	mtx_lock_spin(&sched_lock);
493	if (cold ) {
494		/*
495		 * During autoconfiguration, just give interrupts
496		 * a chance, then just return.
497		 * Don't run any other procs or panic below,
498		 * in case this is the idle process and already asleep.
499		 */
500		if (mtx != NULL && priority & PDROP)
501			mtx_unlock(mtx);
502		mtx_unlock_spin(&sched_lock);
503		return (0);
504	}
505
506	DROP_GIANT();
507
508	if (mtx != NULL) {
509		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
510		WITNESS_SAVE(&mtx->mtx_object, mtx);
511		mtx_unlock(mtx);
512		if (priority & PDROP)
513			mtx = NULL;
514	}
515
516	KASSERT(p != NULL, ("msleep1"));
517	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
518
519	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
520	    td, p->p_pid, p->p_comm, wmesg, ident);
521
522	td->td_wchan = ident;
523	td->td_wmesg = wmesg;
524	td->td_ksegrp->kg_slptime = 0;
525	td->td_priority = priority & PRIMASK;
526	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
527	TD_SET_ON_SLEEPQ(td);
528	if (timo)
529		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
530	/*
531	 * We put ourselves on the sleep queue and start our timeout
532	 * before calling thread_suspend_check, as we could stop there, and
533	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
534	 * without resuming us, thus we must be ready for sleep
535	 * when cursig is called.  If the wakeup happens while we're
536	 * stopped, td->td_wchan will be 0 upon return from cursig.
537	 */
538	if (catch) {
539		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
540		    p->p_pid, p->p_comm);
541		td->td_flags |= TDF_SINTR;
542		mtx_unlock_spin(&sched_lock);
543		PROC_LOCK(p);
544		sig = cursig(td);
545		if (sig == 0 && thread_suspend_check(1))
546			sig = SIGSTOP;
547		mtx_lock_spin(&sched_lock);
548		PROC_UNLOCK(p);
549		if (sig != 0) {
550			if (TD_ON_SLEEPQ(td))
551				unsleep(td);
552		} else if (!TD_ON_SLEEPQ(td))
553			catch = 0;
554	} else
555		sig = 0;
556	if (TD_ON_SLEEPQ(td)) {
557		p->p_stats->p_ru.ru_nvcsw++;
558		TD_SET_SLEEPING(td);
559		mi_switch();
560	}
561	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
562	    p->p_comm);
563	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
564	td->td_flags &= ~TDF_SINTR;
565	if (td->td_flags & TDF_TIMEOUT) {
566		td->td_flags &= ~TDF_TIMEOUT;
567		if (sig == 0)
568			rval = EWOULDBLOCK;
569	} else if (td->td_flags & TDF_TIMOFAIL) {
570		td->td_flags &= ~TDF_TIMOFAIL;
571	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
572		/*
573		 * This isn't supposed to be pretty.  If we are here, then
574		 * the endtsleep() callout is currently executing on another
575		 * CPU and is either spinning on the sched_lock or will be
576		 * soon.  If we don't synchronize here, there is a chance
577		 * that this process may msleep() again before the callout
578		 * has a chance to run and the callout may end up waking up
579		 * the wrong msleep().  Yuck.
580		 */
581		TD_SET_SLEEPING(td);
582		p->p_stats->p_ru.ru_nivcsw++;
583		mi_switch();
584		td->td_flags &= ~TDF_TIMOFAIL;
585	}
586	mtx_unlock_spin(&sched_lock);
587
588	if (rval == 0 && catch) {
589		PROC_LOCK(p);
590		/* XXX: shouldn't we always be calling cursig() */
591		if (sig != 0 || (sig = cursig(td))) {
592			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
593				rval = EINTR;
594			else
595				rval = ERESTART;
596		}
597		PROC_UNLOCK(p);
598	}
599#ifdef KTRACE
600	if (KTRPOINT(td, KTR_CSW))
601		ktrcsw(0, 0);
602#endif
603	PICKUP_GIANT();
604	if (mtx != NULL) {
605		mtx_lock(mtx);
606		WITNESS_RESTORE(&mtx->mtx_object, mtx);
607	}
608	return (rval);
609}
610
611/*
612 * Implement timeout for msleep()
613 *
614 * If process hasn't been awakened (wchan non-zero),
615 * set timeout flag and undo the sleep.  If proc
616 * is stopped, just unsleep so it will remain stopped.
617 * MP-safe, called without the Giant mutex.
618 */
619static void
620endtsleep(arg)
621	void *arg;
622{
623	register struct thread *td = arg;
624
625	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
626	    td, td->td_proc->p_pid, td->td_proc->p_comm);
627	mtx_lock_spin(&sched_lock);
628	/*
629	 * This is the other half of the synchronization with msleep()
630	 * described above.  If the TDS_TIMEOUT flag is set, we lost the
631	 * race and just need to put the process back on the runqueue.
632	 */
633	if (TD_ON_SLEEPQ(td)) {
634		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
635		TD_CLR_ON_SLEEPQ(td);
636		td->td_flags |= TDF_TIMEOUT;
637	} else {
638		td->td_flags |= TDF_TIMOFAIL;
639	}
640	TD_CLR_SLEEPING(td);
641	setrunnable(td);
642	mtx_unlock_spin(&sched_lock);
643}
644
645/*
646 * Abort a thread, as if an interrupt had occured.  Only abort
647 * interruptable waits (unfortunatly it isn't only safe to abort others).
648 * This is about identical to cv_abort().
649 * Think about merging them?
650 * Also, whatever the signal code does...
651 */
652void
653abortsleep(struct thread *td)
654{
655
656	mtx_assert(&sched_lock, MA_OWNED);
657	/*
658	 * If the TDF_TIMEOUT flag is set, just leave. A
659	 * timeout is scheduled anyhow.
660	 */
661	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
662		if (TD_ON_SLEEPQ(td)) {
663			unsleep(td);
664			TD_CLR_SLEEPING(td);
665			setrunnable(td);
666		}
667	}
668}
669
670/*
671 * Remove a process from its wait queue
672 */
673void
674unsleep(struct thread *td)
675{
676
677	mtx_lock_spin(&sched_lock);
678	if (TD_ON_SLEEPQ(td)) {
679		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
680		TD_CLR_ON_SLEEPQ(td);
681	}
682	mtx_unlock_spin(&sched_lock);
683}
684
685/*
686 * Make all processes sleeping on the specified identifier runnable.
687 */
688void
689wakeup(ident)
690	register void *ident;
691{
692	register struct slpquehead *qp;
693	register struct thread *td;
694	struct thread *ntd;
695	struct proc *p;
696
697	mtx_lock_spin(&sched_lock);
698	qp = &slpque[LOOKUP(ident)];
699restart:
700	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
701		ntd = TAILQ_NEXT(td, td_slpq);
702		if (td->td_wchan == ident) {
703			unsleep(td);
704			TD_CLR_SLEEPING(td);
705			setrunnable(td);
706			p = td->td_proc;
707			CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
708			    td, p->p_pid, p->p_comm);
709			goto restart;
710		}
711	}
712	mtx_unlock_spin(&sched_lock);
713}
714
715/*
716 * Make a process sleeping on the specified identifier runnable.
717 * May wake more than one process if a target process is currently
718 * swapped out.
719 */
720void
721wakeup_one(ident)
722	register void *ident;
723{
724	register struct slpquehead *qp;
725	register struct thread *td;
726	register struct proc *p;
727	struct thread *ntd;
728
729	mtx_lock_spin(&sched_lock);
730	qp = &slpque[LOOKUP(ident)];
731	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
732		ntd = TAILQ_NEXT(td, td_slpq);
733		if (td->td_wchan == ident) {
734			unsleep(td);
735			TD_CLR_SLEEPING(td);
736			setrunnable(td);
737			p = td->td_proc;
738			CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
739			    td, p->p_pid, p->p_comm);
740			break;
741		}
742	}
743	mtx_unlock_spin(&sched_lock);
744}
745
746/*
747 * The machine independent parts of mi_switch().
748 */
749void
750mi_switch(void)
751{
752	struct bintime new_switchtime;
753	struct thread *td = curthread;	/* XXX */
754	struct proc *p = td->td_proc;	/* XXX */
755	struct kse *ke = td->td_kse;
756#if 0
757	register struct rlimit *rlim;
758#endif
759	u_int sched_nest;
760
761	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
762	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
763	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
764#ifdef INVARIANTS
765	if (!TD_ON_MUTEX(td) &&
766	    !TD_ON_RUNQ(td) &&
767	    !TD_IS_RUNNING(td))
768		mtx_assert(&Giant, MA_NOTOWNED);
769#endif
770	KASSERT(td->td_critnest == 1,
771	    ("mi_switch: switch in a critical section"));
772
773	/*
774	 * Compute the amount of time during which the current
775	 * process was running, and add that to its total so far.
776	 */
777	binuptime(&new_switchtime);
778	bintime_add(&p->p_runtime, &new_switchtime);
779	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
780
781#ifdef DDB
782	/*
783	 * Don't perform context switches from the debugger.
784	 */
785	if (db_active) {
786		mtx_unlock_spin(&sched_lock);
787		db_error("Context switches not allowed in the debugger.");
788	}
789#endif
790
791#if 0
792	/*
793	 * Check if the process exceeds its cpu resource allocation.
794	 * If over max, kill it.
795	 *
796	 * XXX drop sched_lock, pickup Giant
797	 */
798	if (p->p_state != PRS_ZOMBIE &&
799	    p->p_limit->p_cpulimit != RLIM_INFINITY &&
800	    p->p_runtime > p->p_limit->p_cpulimit) {
801		rlim = &p->p_rlimit[RLIMIT_CPU];
802		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
803			mtx_unlock_spin(&sched_lock);
804			PROC_LOCK(p);
805			killproc(p, "exceeded maximum CPU limit");
806			mtx_lock_spin(&sched_lock);
807			PROC_UNLOCK(p);
808		} else {
809			mtx_unlock_spin(&sched_lock);
810			PROC_LOCK(p);
811			psignal(p, SIGXCPU);
812			mtx_lock_spin(&sched_lock);
813			PROC_UNLOCK(p);
814			if (rlim->rlim_cur < rlim->rlim_max) {
815				/* XXX: we should make a private copy */
816				rlim->rlim_cur += 5;
817			}
818		}
819	}
820#endif
821
822	/*
823	 * Finish up stats for outgoing thread.
824	 */
825	cnt.v_swtch++;
826	PCPU_SET(switchtime, new_switchtime);
827	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
828	    p->p_comm);
829	sched_nest = sched_lock.mtx_recurse;
830	td->td_lastcpu = ke->ke_oncpu;
831	ke->ke_oncpu = NOCPU;
832	ke->ke_flags &= ~KEF_NEEDRESCHED;
833	/*
834	 * At the last moment, if this thread is still marked RUNNING,
835	 * then put it back on the run queue as it has not been suspended
836	 * or stopped or any thing else similar.
837	 */
838	if (TD_IS_RUNNING(td)) {
839		KASSERT(((ke->ke_flags & KEF_IDLEKSE) == 0),
840		    ("Idle thread in mi_switch with wrong state"));
841		/* Put us back on the run queue (kse and all). */
842		setrunqueue(td);
843	} else if (td->td_flags & TDF_UNBOUND) {
844		/*
845		 * We will not be on the run queue. So we must be
846		 * sleeping or similar. If it's available,
847		 * someone else can use the KSE if they need it.
848		 * XXXKSE KSE loaning will change this.
849		 */
850		td->td_kse = NULL;
851		kse_reassign(ke);
852	} else if (p->p_flag & P_KSES) {
853		KASSERT(((ke->ke_bound == NULL) || (ke->ke_bound == td)),
854			("mi_switch: bad bound state"));
855		ke->ke_bound = td;
856		kse_reassign(ke);
857	}
858
859	cpu_switch();		/* SHAZAM!!*/
860
861	/*
862	 * Start setting up stats etc. for the incoming thread.
863	 * Similar code in fork_exit() is returned to by cpu_switch()
864	 * in the case of a new thread/process.
865	 */
866	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
867	sched_lock.mtx_recurse = sched_nest;
868	sched_lock.mtx_lock = (uintptr_t)td;
869	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
870	    p->p_comm);
871	if (PCPU_GET(switchtime.sec) == 0)
872		binuptime(PCPU_PTR(switchtime));
873	PCPU_SET(switchticks, ticks);
874
875	/*
876	 * Call the switchin function while still holding the scheduler lock
877	 * (used by the idlezero code and the general page-zeroing code)
878	 */
879	if (td->td_switchin)
880		td->td_switchin();
881}
882
883/*
884 * Change process state to be runnable,
885 * placing it on the run queue if it is in memory,
886 * and awakening the swapper if it isn't in memory.
887 */
888void
889setrunnable(struct thread *td)
890{
891	struct proc *p = td->td_proc;
892	struct ksegrp *kg;
893
894	mtx_assert(&sched_lock, MA_OWNED);
895	switch (p->p_state) {
896	case PRS_ZOMBIE:
897		panic("setrunnable(1)");
898	default:
899		break;
900	}
901	switch (td->td_state) {
902	case TDS_RUNNING:
903	case TDS_RUNQ:
904		return;
905	case TDS_INHIBITED:
906		/*
907		 * If we are only inhibited because we are swapped out
908		 * then arange to swap in this process. Otherwise just return.
909		 */
910		if (td->td_inhibitors != TDI_SWAPPED)
911			return;
912	case TDS_CAN_RUN:
913		break;
914	default:
915		printf("state is 0x%x", td->td_state);
916		panic("setrunnable(2)");
917	}
918	if ((p->p_sflag & PS_INMEM) == 0) {
919		if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
920			p->p_sflag |= PS_SWAPINREQ;
921			wakeup(&proc0);
922		}
923	} else {
924		kg = td->td_ksegrp;
925		if (kg->kg_slptime > 1)
926			updatepri(kg);
927		kg->kg_slptime = 0;
928		setrunqueue(td);
929		maybe_resched(td);
930	}
931}
932
933/*
934 * Compute the priority of a process when running in user mode.
935 * Arrange to reschedule if the resulting priority is better
936 * than that of the current process.
937 */
938void
939resetpriority(kg)
940	register struct ksegrp *kg;
941{
942	register unsigned int newpriority;
943	struct thread *td;
944
945	mtx_lock_spin(&sched_lock);
946	if (kg->kg_pri_class == PRI_TIMESHARE) {
947		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
948		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
949		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
950		    PRI_MAX_TIMESHARE);
951		kg->kg_user_pri = newpriority;
952	}
953	FOREACH_THREAD_IN_GROUP(kg, td) {
954		maybe_resched(td);			/* XXXKSE silly */
955	}
956	mtx_unlock_spin(&sched_lock);
957}
958
959/*
960 * Compute a tenex style load average of a quantity on
961 * 1, 5 and 15 minute intervals.
962 * XXXKSE   Needs complete rewrite when correct info is available.
963 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
964 */
965static void
966loadav(void *arg)
967{
968	int i, nrun;
969	struct loadavg *avg;
970	struct proc *p;
971	struct thread *td;
972
973	avg = &averunnable;
974	sx_slock(&allproc_lock);
975	nrun = 0;
976	FOREACH_PROC_IN_SYSTEM(p) {
977		FOREACH_THREAD_IN_PROC(p, td) {
978			switch (td->td_state) {
979			case TDS_RUNQ:
980			case TDS_RUNNING:
981				if ((p->p_flag & P_NOLOAD) != 0)
982					goto nextproc;
983				nrun++; /* XXXKSE */
984			default:
985				break;
986			}
987nextproc:
988			continue;
989		}
990	}
991	sx_sunlock(&allproc_lock);
992	for (i = 0; i < 3; i++)
993		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
994		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
995
996	/*
997	 * Schedule the next update to occur after 5 seconds, but add a
998	 * random variation to avoid synchronisation with processes that
999	 * run at regular intervals.
1000	 */
1001	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
1002	    loadav, NULL);
1003}
1004
1005/* ARGSUSED */
1006static void
1007sched_setup(dummy)
1008	void *dummy;
1009{
1010
1011	callout_init(&schedcpu_callout, 1);
1012	callout_init(&roundrobin_callout, 0);
1013	callout_init(&loadav_callout, 0);
1014
1015	/* Kick off timeout driven events by calling first time. */
1016	roundrobin(NULL);
1017	schedcpu(NULL);
1018	loadav(NULL);
1019}
1020
1021/*
1022 * We adjust the priority of the current process.  The priority of
1023 * a process gets worse as it accumulates CPU time.  The cpu usage
1024 * estimator (p_estcpu) is increased here.  resetpriority() will
1025 * compute a different priority each time p_estcpu increases by
1026 * INVERSE_ESTCPU_WEIGHT
1027 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1028 * quite quickly when the process is running (linearly), and decays
1029 * away exponentially, at a rate which is proportionally slower when
1030 * the system is busy.  The basic principle is that the system will
1031 * 90% forget that the process used a lot of CPU time in 5 * loadav
1032 * seconds.  This causes the system to favor processes which haven't
1033 * run much recently, and to round-robin among other processes.
1034 */
1035void
1036schedclock(td)
1037	struct thread *td;
1038{
1039	struct kse *ke;
1040	struct ksegrp *kg;
1041
1042	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1043	ke = td->td_kse;
1044	kg = td->td_ksegrp;
1045	ke->ke_cpticks++;
1046	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1047	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1048		resetpriority(kg);
1049		if (td->td_priority >= PUSER)
1050			td->td_priority = kg->kg_user_pri;
1051	}
1052}
1053
1054/*
1055 * General purpose yield system call
1056 */
1057int
1058yield(struct thread *td, struct yield_args *uap)
1059{
1060	struct ksegrp *kg = td->td_ksegrp;
1061
1062	mtx_assert(&Giant, MA_NOTOWNED);
1063	mtx_lock_spin(&sched_lock);
1064	td->td_priority = PRI_MAX_TIMESHARE;
1065	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1066	mi_switch();
1067	mtx_unlock_spin(&sched_lock);
1068	td->td_retval[0] = 0;
1069
1070	return (0);
1071}
1072
1073