kern_synch.c revision 100884
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 100884 2002-07-29 18:33:32Z julian $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/*
281				 * The kse slptimes are not touched in wakeup
282				 * because the thread may not HAVE a KSE.
283				 */
284				if ((ke->ke_state == KES_ONRUNQ) ||
285				    ((ke->ke_state == KES_THREAD) &&
286				    (ke->ke_thread->td_state == TDS_RUNNING))) {
287					ke->ke_slptime = 0;
288					awake = 1;
289				} else {
290					/* XXXKSE
291					 * This is probably a pointless
292					 * statistic in a KSE world.
293					 */
294					ke->ke_slptime++;
295				}
296
297				/*
298				 * pctcpu is only for ps?
299				 * Do it per kse.. and add them up at the end?
300				 * XXXKSE
301				 */
302				ke->ke_pctcpu
303				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
304				/*
305				 * If the kse has been idle the entire second,
306				 * stop recalculating its priority until
307				 * it wakes up.
308				 */
309				if (ke->ke_slptime > 1) {
310					continue;
311				}
312
313#if	(FSHIFT >= CCPU_SHIFT)
314				ke->ke_pctcpu += (realstathz == 100) ?
315				    ((fixpt_t) ke->ke_cpticks) <<
316				    (FSHIFT - CCPU_SHIFT) :
317				    100 * (((fixpt_t) ke->ke_cpticks) <<
318				    (FSHIFT - CCPU_SHIFT)) / realstathz;
319#else
320				ke->ke_pctcpu += ((FSCALE - ccpu) *
321				    (ke->ke_cpticks * FSCALE / realstathz)) >>
322				    FSHIFT;
323#endif
324				ke->ke_cpticks = 0;
325			} /* end of kse loop */
326			/*
327			 * If there are ANY running threads in this KSEGRP,
328			 * then don't count it as sleeping.
329			 */
330			if (awake == 0) {
331				kg->kg_slptime++;
332			} else {
333				kg->kg_slptime = 0;
334			}
335			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
336		      	resetpriority(kg);
337			FOREACH_THREAD_IN_GROUP(kg, td) {
338				int changedqueue;
339				if (td->td_priority >= PUSER) {
340					/*
341					 * Only change the priority
342					 * of threads that are still at their
343					 * user priority.
344					 * XXXKSE This is problematic
345					 * as we may need to re-order
346					 * the threads on the KSEG list.
347					 */
348					changedqueue =
349					    ((td->td_priority / RQ_PPQ) !=
350					     (kg->kg_user_pri / RQ_PPQ));
351
352					td->td_priority = kg->kg_user_pri;
353					if (changedqueue &&
354					    td->td_state == TDS_RUNQ) {
355						/* this could be optimised */
356						remrunqueue(td);
357						td->td_priority =
358						    kg->kg_user_pri;
359						setrunqueue(td);
360					} else {
361						td->td_priority = kg->kg_user_pri;
362					}
363				}
364			}
365		} /* end of ksegrp loop */
366		mtx_unlock_spin(&sched_lock);
367	} /* end of process loop */
368	sx_sunlock(&allproc_lock);
369	wakeup(&lbolt);
370	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
371}
372
373/*
374 * Recalculate the priority of a process after it has slept for a while.
375 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
376 * least six times the loadfactor will decay p_estcpu to zero.
377 */
378void
379updatepri(td)
380	register struct thread *td;
381{
382	register struct ksegrp *kg;
383	register unsigned int newcpu;
384	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
385
386	if (td == NULL)
387		return;
388	kg = td->td_ksegrp;
389	newcpu = kg->kg_estcpu;
390	if (kg->kg_slptime > 5 * loadfac)
391		kg->kg_estcpu = 0;
392	else {
393		kg->kg_slptime--;	/* the first time was done in schedcpu */
394		while (newcpu && --kg->kg_slptime)
395			newcpu = decay_cpu(loadfac, newcpu);
396		kg->kg_estcpu = newcpu;
397	}
398	resetpriority(td->td_ksegrp);
399}
400
401/*
402 * We're only looking at 7 bits of the address; everything is
403 * aligned to 4, lots of things are aligned to greater powers
404 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
405 */
406#define TABLESIZE	128
407static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
408#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
409
410void
411sleepinit(void)
412{
413	int i;
414
415	sched_quantum = hz/10;
416	hogticks = 2 * sched_quantum;
417	for (i = 0; i < TABLESIZE; i++)
418		TAILQ_INIT(&slpque[i]);
419}
420
421/*
422 * General sleep call.  Suspends the current process until a wakeup is
423 * performed on the specified identifier.  The process will then be made
424 * runnable with the specified priority.  Sleeps at most timo/hz seconds
425 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
426 * before and after sleeping, else signals are not checked.  Returns 0 if
427 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
428 * signal needs to be delivered, ERESTART is returned if the current system
429 * call should be restarted if possible, and EINTR is returned if the system
430 * call should be interrupted by the signal (return EINTR).
431 *
432 * The mutex argument is exited before the caller is suspended, and
433 * entered before msleep returns.  If priority includes the PDROP
434 * flag the mutex is not entered before returning.
435 */
436
437int
438msleep(ident, mtx, priority, wmesg, timo)
439	void *ident;
440	struct mtx *mtx;
441	int priority, timo;
442	const char *wmesg;
443{
444	struct thread *td = curthread;
445	struct proc *p = td->td_proc;
446	int sig, catch = priority & PCATCH;
447	int rval = 0;
448	WITNESS_SAVE_DECL(mtx);
449
450#ifdef KTRACE
451	if (KTRPOINT(td, KTR_CSW))
452		ktrcsw(1, 0);
453#endif
454	WITNESS_SLEEP(0, &mtx->mtx_object);
455	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
456	    ("sleeping without a mutex"));
457	/*
458	 * If we are capable of async syscalls and there isn't already
459	 * another one ready to return, start a new thread
460	 * and queue it as ready to run. Note that there is danger here
461	 * because we need to make sure that we don't sleep allocating
462	 * the thread (recursion here might be bad).
463	 * Hence the TDF_INMSLEEP flag.
464	 */
465	if (p->p_flag & P_KSES) {
466		/* Just don't bother if we are exiting
467				and not the exiting thread. */
468		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
469			return (EINTR);
470		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
471			/*
472			 * If we have no queued work to do, then
473			 * upcall to the UTS to see if it has more to do.
474			 * We don't need to upcall now, just make it and
475			 * queue it.
476			 */
477			mtx_lock_spin(&sched_lock);
478			if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
479				/* Don't recurse here! */
480				td->td_flags |= TDF_INMSLEEP;
481				thread_schedule_upcall(td, td->td_kse);
482				td->td_flags &= ~TDF_INMSLEEP;
483			}
484			mtx_unlock_spin(&sched_lock);
485		}
486	}
487	mtx_lock_spin(&sched_lock);
488	if (cold ) {
489		/*
490		 * During autoconfiguration, just give interrupts
491		 * a chance, then just return.
492		 * Don't run any other procs or panic below,
493		 * in case this is the idle process and already asleep.
494		 */
495		if (mtx != NULL && priority & PDROP)
496			mtx_unlock(mtx);
497		mtx_unlock_spin(&sched_lock);
498		return (0);
499	}
500
501	DROP_GIANT();
502
503	if (mtx != NULL) {
504		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
505		WITNESS_SAVE(&mtx->mtx_object, mtx);
506		mtx_unlock(mtx);
507		if (priority & PDROP)
508			mtx = NULL;
509	}
510
511	KASSERT(p != NULL, ("msleep1"));
512	KASSERT(ident != NULL && td->td_state == TDS_RUNNING, ("msleep"));
513
514	td->td_wchan = ident;
515	td->td_wmesg = wmesg;
516	td->td_kse->ke_slptime = 0;	/* XXXKSE */
517	td->td_ksegrp->kg_slptime = 0;
518	td->td_priority = priority & PRIMASK;
519	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
520	    td, p->p_pid, p->p_comm, wmesg, ident);
521	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
522	if (timo)
523		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
524	/*
525	 * We put ourselves on the sleep queue and start our timeout
526	 * before calling thread_suspend_check, as we could stop there, and
527	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
528	 * without resuming us, thus we must be ready for sleep
529	 * when cursig is called.  If the wakeup happens while we're
530	 * stopped, td->td_wchan will be 0 upon return from cursig.
531	 */
532	if (catch) {
533		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
534		    p->p_pid, p->p_comm);
535		td->td_flags |= TDF_SINTR;
536		mtx_unlock_spin(&sched_lock);
537		PROC_LOCK(p);
538		sig = cursig(td);
539		if (sig == 0 && thread_suspend_check(1))
540			sig = SIGSTOP;
541		mtx_lock_spin(&sched_lock);
542		PROC_UNLOCK(p);
543		if (sig != 0) {
544			if (td->td_wchan != NULL)
545				unsleep(td);
546		} else if (td->td_wchan == NULL)
547			catch = 0;
548	} else
549		sig = 0;
550	if (td->td_wchan != NULL) {
551		p->p_stats->p_ru.ru_nvcsw++;
552		td->td_state = TDS_SLP;
553		mi_switch();
554	}
555	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
556	    p->p_comm);
557	KASSERT(td->td_state == TDS_RUNNING, ("running but not TDS_RUNNING"));
558	td->td_flags &= ~TDF_SINTR;
559	if (td->td_flags & TDF_TIMEOUT) {
560		td->td_flags &= ~TDF_TIMEOUT;
561		if (sig == 0)
562			rval = EWOULDBLOCK;
563	} else if (td->td_flags & TDF_TIMOFAIL) {
564		td->td_flags &= ~TDF_TIMOFAIL;
565	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
566		/*
567		 * This isn't supposed to be pretty.  If we are here, then
568		 * the endtsleep() callout is currently executing on another
569		 * CPU and is either spinning on the sched_lock or will be
570		 * soon.  If we don't synchronize here, there is a chance
571		 * that this process may msleep() again before the callout
572		 * has a chance to run and the callout may end up waking up
573		 * the wrong msleep().  Yuck.
574		 */
575		td->td_flags |= TDF_TIMEOUT;
576		td->td_state = TDS_SLP;
577		p->p_stats->p_ru.ru_nivcsw++;
578		mi_switch();
579	}
580	mtx_unlock_spin(&sched_lock);
581
582	if (rval == 0 && catch) {
583		PROC_LOCK(p);
584		/* XXX: shouldn't we always be calling cursig() */
585		if (sig != 0 || (sig = cursig(td))) {
586			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
587				rval = EINTR;
588			else
589				rval = ERESTART;
590		}
591		PROC_UNLOCK(p);
592	}
593#ifdef KTRACE
594	if (KTRPOINT(td, KTR_CSW))
595		ktrcsw(0, 0);
596#endif
597	PICKUP_GIANT();
598	if (mtx != NULL) {
599		mtx_lock(mtx);
600		WITNESS_RESTORE(&mtx->mtx_object, mtx);
601	}
602	return (rval);
603}
604
605/*
606 * Implement timeout for msleep()
607 *
608 * If process hasn't been awakened (wchan non-zero),
609 * set timeout flag and undo the sleep.  If proc
610 * is stopped, just unsleep so it will remain stopped.
611 * MP-safe, called without the Giant mutex.
612 */
613static void
614endtsleep(arg)
615	void *arg;
616{
617	register struct thread *td = arg;
618
619	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
620	    td->td_proc->p_comm);
621	mtx_lock_spin(&sched_lock);
622	/*
623	 * This is the other half of the synchronization with msleep()
624	 * described above.  If the PS_TIMEOUT flag is set, we lost the
625	 * race and just need to put the process back on the runqueue.
626	 */
627	if ((td->td_flags & TDF_TIMEOUT) != 0) {
628		td->td_flags &= ~TDF_TIMEOUT;
629		setrunqueue(td);
630	} else if (td->td_wchan != NULL) {
631		if (td->td_state == TDS_SLP)  /* XXXKSE */
632			setrunnable(td);
633		else
634			unsleep(td);
635		td->td_flags |= TDF_TIMEOUT;
636	} else {
637		td->td_flags |= TDF_TIMOFAIL;
638	}
639	mtx_unlock_spin(&sched_lock);
640}
641
642/*
643 * Abort a thread, as if an interrupt had occured.  Only abort
644 * interruptable waits (unfortunatly it isn't only safe to abort others).
645 * This is about identical to cv_abort().
646 * Think about merging them?
647 * Also, whatever the signal code does...
648 */
649void
650abortsleep(struct thread *td)
651{
652
653	mtx_lock_spin(&sched_lock);
654	/*
655	 * If the TDF_TIMEOUT flag is set, just leave. A
656	 * timeout is scheduled anyhow.
657	 */
658	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
659		if (td->td_wchan != NULL) {
660			if (td->td_state == TDS_SLP) {  /* XXXKSE */
661				setrunnable(td);
662			} else {
663				/*
664				 * Probably in a suspended state..
665				 * um.. dunno XXXKSE
666				 */
667				unsleep(td);
668			}
669		}
670	}
671	mtx_unlock_spin(&sched_lock);
672}
673
674/*
675 * Remove a process from its wait queue
676 */
677void
678unsleep(struct thread *td)
679{
680
681	mtx_lock_spin(&sched_lock);
682	if (td->td_wchan != NULL) {
683		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
684		td->td_wchan = NULL;
685	}
686	mtx_unlock_spin(&sched_lock);
687}
688
689/*
690 * Make all processes sleeping on the specified identifier runnable.
691 */
692void
693wakeup(ident)
694	register void *ident;
695{
696	register struct slpquehead *qp;
697	register struct thread *td;
698	struct thread *ntd;
699	struct proc *p;
700
701	mtx_lock_spin(&sched_lock);
702	qp = &slpque[LOOKUP(ident)];
703restart:
704	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
705		ntd = TAILQ_NEXT(td, td_slpq);
706		p = td->td_proc;
707		if (td->td_wchan == ident) {
708			TAILQ_REMOVE(qp, td, td_slpq);
709			td->td_wchan = NULL;
710			if (td->td_state == TDS_SLP) {
711				/* OPTIMIZED EXPANSION OF setrunnable(p); */
712				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
713				    td, p->p_pid, p->p_comm);
714				if (td->td_ksegrp->kg_slptime > 1)
715					updatepri(td);
716				td->td_ksegrp->kg_slptime = 0;
717				if (p->p_sflag & PS_INMEM) {
718					setrunqueue(td);
719					maybe_resched(td);
720				} else {
721					td->td_state = TDS_SWAPPED;
722					p->p_sflag |= PS_SWAPINREQ;
723					wakeup(&proc0);
724				}
725				/* END INLINE EXPANSION */
726			}
727			goto restart;
728		}
729	}
730	mtx_unlock_spin(&sched_lock);
731}
732
733/*
734 * Make a process sleeping on the specified identifier runnable.
735 * May wake more than one process if a target process is currently
736 * swapped out.
737 */
738void
739wakeup_one(ident)
740	register void *ident;
741{
742	register struct slpquehead *qp;
743	register struct thread *td;
744	register struct proc *p;
745	struct thread *ntd;
746
747	mtx_lock_spin(&sched_lock);
748	qp = &slpque[LOOKUP(ident)];
749restart:
750	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
751		ntd = TAILQ_NEXT(td, td_slpq);
752		p = td->td_proc;
753		if (td->td_wchan == ident) {
754			TAILQ_REMOVE(qp, td, td_slpq);
755			td->td_wchan = NULL;
756			if (td->td_state == TDS_SLP) {
757				/* OPTIMIZED EXPANSION OF setrunnable(p); */
758				CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
759				    td, p->p_pid, p->p_comm);
760				if (td->td_ksegrp->kg_slptime > 1)
761					updatepri(td);
762				td->td_ksegrp->kg_slptime = 0;
763				if (p->p_sflag & PS_INMEM) {
764					setrunqueue(td);
765					maybe_resched(td);
766					break;
767				} else {
768					td->td_state = TDS_SWAPPED;
769					p->p_sflag |= PS_SWAPINREQ;
770					wakeup(&proc0);
771				}
772				/* END INLINE EXPANSION */
773				goto restart;
774			}
775		}
776	}
777	mtx_unlock_spin(&sched_lock);
778}
779
780/*
781 * The machine independent parts of mi_switch().
782 */
783void
784mi_switch()
785{
786	struct bintime new_switchtime;
787	struct thread *td = curthread;	/* XXX */
788	struct proc *p = td->td_proc;	/* XXX */
789	struct kse *ke = td->td_kse;
790#if 0
791	register struct rlimit *rlim;
792#endif
793	u_int sched_nest;
794
795	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
796	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
797#ifdef INVARIANTS
798	if (td->td_state != TDS_MTX &&
799	    td->td_state != TDS_RUNQ &&
800	    td->td_state != TDS_RUNNING)
801		mtx_assert(&Giant, MA_NOTOWNED);
802#endif
803	KASSERT(td->td_critnest == 1,
804	    ("mi_switch: switch in a critical section"));
805
806	/*
807	 * Compute the amount of time during which the current
808	 * process was running, and add that to its total so far.
809	 */
810	binuptime(&new_switchtime);
811	bintime_add(&p->p_runtime, &new_switchtime);
812	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
813
814#ifdef DDB
815	/*
816	 * Don't perform context switches from the debugger.
817	 */
818	if (db_active) {
819		mtx_unlock_spin(&sched_lock);
820		db_error("Context switches not allowed in the debugger.");
821	}
822#endif
823
824#if 0
825	/*
826	 * Check if the process exceeds its cpu resource allocation.
827	 * If over max, kill it.
828	 *
829	 * XXX drop sched_lock, pickup Giant
830	 */
831	if (p->p_state != PRS_ZOMBIE &&
832	    p->p_limit->p_cpulimit != RLIM_INFINITY &&
833	    p->p_runtime > p->p_limit->p_cpulimit) {
834		rlim = &p->p_rlimit[RLIMIT_CPU];
835		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
836			mtx_unlock_spin(&sched_lock);
837			PROC_LOCK(p);
838			killproc(p, "exceeded maximum CPU limit");
839			mtx_lock_spin(&sched_lock);
840			PROC_UNLOCK(p);
841		} else {
842			mtx_unlock_spin(&sched_lock);
843			PROC_LOCK(p);
844			psignal(p, SIGXCPU);
845			mtx_lock_spin(&sched_lock);
846			PROC_UNLOCK(p);
847			if (rlim->rlim_cur < rlim->rlim_max) {
848				/* XXX: we should make a private copy */
849				rlim->rlim_cur += 5;
850			}
851		}
852	}
853#endif
854
855	/*
856	 * Pick a new current process and record its start time.
857	 */
858	cnt.v_swtch++;
859	PCPU_SET(switchtime, new_switchtime);
860	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
861	    p->p_comm);
862	sched_nest = sched_lock.mtx_recurse;
863	td->td_lastcpu = ke->ke_oncpu;
864	ke->ke_oncpu = NOCPU;
865	ke->ke_flags &= ~KEF_NEEDRESCHED;
866	/*
867	 * At the last moment: if this KSE is not on the run queue,
868	 * it needs to be freed correctly and the thread treated accordingly.
869	 */
870	if ((td->td_state == TDS_RUNNING) &&
871	    ((ke->ke_flags & KEF_IDLEKSE) == 0)) {
872		/* Put us back on the run queue (kse and all). */
873		setrunqueue(td);
874	} else if ((td->td_flags & TDF_UNBOUND) &&
875	    (td->td_state != TDS_RUNQ)) { /* in case of old code */
876		/*
877		 * We will not be on the run queue.
878		 * Someone else can use the KSE if they need it.
879		 */
880		td->td_kse = NULL;
881		kse_reassign(ke);
882	}
883	cpu_switch();
884	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
885	sched_lock.mtx_recurse = sched_nest;
886	sched_lock.mtx_lock = (uintptr_t)td;
887	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
888	    p->p_comm);
889	if (PCPU_GET(switchtime.sec) == 0)
890		binuptime(PCPU_PTR(switchtime));
891	PCPU_SET(switchticks, ticks);
892
893	/*
894	 * Call the switchin function while still holding the scheduler lock
895	 * (used by the idlezero code and the general page-zeroing code)
896	 */
897	if (td->td_switchin)
898		td->td_switchin();
899}
900
901/*
902 * Change process state to be runnable,
903 * placing it on the run queue if it is in memory,
904 * and awakening the swapper if it isn't in memory.
905 */
906void
907setrunnable(struct thread *td)
908{
909	struct proc *p = td->td_proc;
910
911	mtx_assert(&sched_lock, MA_OWNED);
912	switch (p->p_state) {
913	case PRS_ZOMBIE:
914		panic("setrunnable(1)");
915	default:
916		break;
917	}
918	switch (td->td_state) {
919	case 0:
920	case TDS_RUNNING:
921	case TDS_IWAIT:
922	case TDS_SWAPPED:
923	default:
924		printf("state is %d", td->td_state);
925		panic("setrunnable(2)");
926	case TDS_SUSPENDED:
927		thread_unsuspend(p);
928		break;
929	case TDS_SLP:			/* e.g. when sending signals */
930		if (td->td_flags & TDF_CVWAITQ)
931			cv_waitq_remove(td);
932		else
933			unsleep(td);
934	case TDS_UNQUEUED:  /* being put back onto the queue */
935	case TDS_NEW:	/* not yet had time to suspend */
936	case TDS_RUNQ:	/* not yet had time to suspend */
937		break;
938	}
939	if (td->td_ksegrp->kg_slptime > 1)
940		updatepri(td);
941	td->td_ksegrp->kg_slptime = 0;
942	if ((p->p_sflag & PS_INMEM) == 0) {
943		td->td_state = TDS_SWAPPED;
944		p->p_sflag |= PS_SWAPINREQ;
945		wakeup(&proc0);
946	} else {
947		if (td->td_state != TDS_RUNQ)
948			setrunqueue(td); /* XXXKSE */
949		maybe_resched(td);
950	}
951}
952
953/*
954 * Compute the priority of a process when running in user mode.
955 * Arrange to reschedule if the resulting priority is better
956 * than that of the current process.
957 */
958void
959resetpriority(kg)
960	register struct ksegrp *kg;
961{
962	register unsigned int newpriority;
963	struct thread *td;
964
965	mtx_lock_spin(&sched_lock);
966	if (kg->kg_pri_class == PRI_TIMESHARE) {
967		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
968		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
969		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
970		    PRI_MAX_TIMESHARE);
971		kg->kg_user_pri = newpriority;
972	}
973	FOREACH_THREAD_IN_GROUP(kg, td) {
974		maybe_resched(td);			/* XXXKSE silly */
975	}
976	mtx_unlock_spin(&sched_lock);
977}
978
979/*
980 * Compute a tenex style load average of a quantity on
981 * 1, 5 and 15 minute intervals.
982 * XXXKSE   Needs complete rewrite when correct info is available.
983 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
984 */
985static void
986loadav(void *arg)
987{
988	int i, nrun;
989	struct loadavg *avg;
990	struct proc *p;
991	struct thread *td;
992
993	avg = &averunnable;
994	sx_slock(&allproc_lock);
995	nrun = 0;
996	FOREACH_PROC_IN_SYSTEM(p) {
997		FOREACH_THREAD_IN_PROC(p, td) {
998			switch (td->td_state) {
999			case TDS_RUNQ:
1000			case TDS_RUNNING:
1001				if ((p->p_flag & P_NOLOAD) != 0)
1002					goto nextproc;
1003				nrun++; /* XXXKSE */
1004			default:
1005				break;
1006			}
1007nextproc:
1008			continue;
1009		}
1010	}
1011	sx_sunlock(&allproc_lock);
1012	for (i = 0; i < 3; i++)
1013		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1014		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1015
1016	/*
1017	 * Schedule the next update to occur after 5 seconds, but add a
1018	 * random variation to avoid synchronisation with processes that
1019	 * run at regular intervals.
1020	 */
1021	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
1022	    loadav, NULL);
1023}
1024
1025/* ARGSUSED */
1026static void
1027sched_setup(dummy)
1028	void *dummy;
1029{
1030
1031	callout_init(&schedcpu_callout, 1);
1032	callout_init(&roundrobin_callout, 0);
1033	callout_init(&loadav_callout, 0);
1034
1035	/* Kick off timeout driven events by calling first time. */
1036	roundrobin(NULL);
1037	schedcpu(NULL);
1038	loadav(NULL);
1039}
1040
1041/*
1042 * We adjust the priority of the current process.  The priority of
1043 * a process gets worse as it accumulates CPU time.  The cpu usage
1044 * estimator (p_estcpu) is increased here.  resetpriority() will
1045 * compute a different priority each time p_estcpu increases by
1046 * INVERSE_ESTCPU_WEIGHT
1047 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1048 * quite quickly when the process is running (linearly), and decays
1049 * away exponentially, at a rate which is proportionally slower when
1050 * the system is busy.  The basic principle is that the system will
1051 * 90% forget that the process used a lot of CPU time in 5 * loadav
1052 * seconds.  This causes the system to favor processes which haven't
1053 * run much recently, and to round-robin among other processes.
1054 */
1055void
1056schedclock(td)
1057	struct thread *td;
1058{
1059	struct kse *ke;
1060	struct ksegrp *kg;
1061
1062	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1063	ke = td->td_kse;
1064	kg = td->td_ksegrp;
1065	ke->ke_cpticks++;
1066	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1067	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1068		resetpriority(kg);
1069		if (td->td_priority >= PUSER)
1070			td->td_priority = kg->kg_user_pri;
1071	}
1072}
1073
1074/*
1075 * General purpose yield system call
1076 */
1077int
1078yield(struct thread *td, struct yield_args *uap)
1079{
1080	struct ksegrp *kg = td->td_ksegrp;
1081
1082	mtx_assert(&Giant, MA_NOTOWNED);
1083	mtx_lock_spin(&sched_lock);
1084	td->td_priority = PRI_MAX_TIMESHARE;
1085	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1086	mi_switch();
1087	mtx_unlock_spin(&sched_lock);
1088	td->td_retval[0] = 0;
1089
1090	return (0);
1091}
1092
1093