kern_synch.c revision 100262
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 100262 2002-07-17 19:20:48Z julian $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/*
281				 * The kse slptimes are not touched in wakeup
282				 * because the thread may not HAVE a KSE.
283				 */
284				if ((ke->ke_state == KES_ONRUNQ) ||
285				    ((ke->ke_state == KES_THREAD) &&
286				    (ke->ke_thread->td_state == TDS_RUNNING))) {
287					ke->ke_slptime = 0;
288					awake = 1;
289				} else {
290					/* XXXKSE
291					 * This is probably a pointless
292					 * statistic in a KSE world.
293					 */
294					ke->ke_slptime++;
295				}
296
297				/*
298				 * pctcpu is only for ps?
299				 * Do it per kse.. and add them up at the end?
300				 * XXXKSE
301				 */
302				ke->ke_pctcpu
303				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
304				/*
305				 * If the kse has been idle the entire second,
306				 * stop recalculating its priority until
307				 * it wakes up.
308				 */
309				if (ke->ke_slptime > 1) {
310					continue;
311				}
312
313#if	(FSHIFT >= CCPU_SHIFT)
314				ke->ke_pctcpu += (realstathz == 100) ?
315				    ((fixpt_t) ke->ke_cpticks) <<
316				    (FSHIFT - CCPU_SHIFT) :
317				    100 * (((fixpt_t) ke->ke_cpticks) <<
318				    (FSHIFT - CCPU_SHIFT)) / realstathz;
319#else
320				ke->ke_pctcpu += ((FSCALE - ccpu) *
321				    (ke->ke_cpticks * FSCALE / realstathz)) >>
322				    FSHIFT;
323#endif
324				ke->ke_cpticks = 0;
325			} /* end of kse loop */
326			/*
327			 * If there are ANY running threads in this KSEGRP,
328			 * then don't count it as sleeping.
329			 */
330			if (awake == 0) {
331				kg->kg_slptime++;
332			} else {
333				kg->kg_slptime = 0;
334			}
335			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
336		      	resetpriority(kg);
337			FOREACH_THREAD_IN_GROUP(kg, td) {
338				int changedqueue;
339				if (td->td_priority >= PUSER) {
340					/*
341					 * Only change the priority
342					 * of threads that are still at their
343					 * user priority.
344					 * XXXKSE This is problematic
345					 * as we may need to re-order
346					 * the threads on the KSEG list.
347					 */
348					changedqueue =
349					    ((td->td_priority / RQ_PPQ) !=
350					     (kg->kg_user_pri / RQ_PPQ));
351
352					td->td_priority = kg->kg_user_pri;
353					if (changedqueue &&
354					    td->td_state == TDS_RUNQ) {
355						/* this could be optimised */
356						remrunqueue(td);
357						td->td_priority =
358						    kg->kg_user_pri;
359						setrunqueue(td);
360					} else {
361						td->td_priority = kg->kg_user_pri;
362					}
363				}
364			}
365		} /* end of ksegrp loop */
366		mtx_unlock_spin(&sched_lock);
367	} /* end of process loop */
368	sx_sunlock(&allproc_lock);
369	wakeup(&lbolt);
370	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
371}
372
373/*
374 * Recalculate the priority of a process after it has slept for a while.
375 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
376 * least six times the loadfactor will decay p_estcpu to zero.
377 */
378void
379updatepri(td)
380	register struct thread *td;
381{
382	register struct ksegrp *kg;
383	register unsigned int newcpu;
384	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
385
386	if (td == NULL)
387		return;
388	kg = td->td_ksegrp;
389	newcpu = kg->kg_estcpu;
390	if (kg->kg_slptime > 5 * loadfac)
391		kg->kg_estcpu = 0;
392	else {
393		kg->kg_slptime--;	/* the first time was done in schedcpu */
394		while (newcpu && --kg->kg_slptime)
395			newcpu = decay_cpu(loadfac, newcpu);
396		kg->kg_estcpu = newcpu;
397	}
398	resetpriority(td->td_ksegrp);
399}
400
401/*
402 * We're only looking at 7 bits of the address; everything is
403 * aligned to 4, lots of things are aligned to greater powers
404 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
405 */
406#define TABLESIZE	128
407static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
408#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
409
410void
411sleepinit(void)
412{
413	int i;
414
415	sched_quantum = hz/10;
416	hogticks = 2 * sched_quantum;
417	for (i = 0; i < TABLESIZE; i++)
418		TAILQ_INIT(&slpque[i]);
419}
420
421/*
422 * General sleep call.  Suspends the current process until a wakeup is
423 * performed on the specified identifier.  The process will then be made
424 * runnable with the specified priority.  Sleeps at most timo/hz seconds
425 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
426 * before and after sleeping, else signals are not checked.  Returns 0 if
427 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
428 * signal needs to be delivered, ERESTART is returned if the current system
429 * call should be restarted if possible, and EINTR is returned if the system
430 * call should be interrupted by the signal (return EINTR).
431 *
432 * The mutex argument is exited before the caller is suspended, and
433 * entered before msleep returns.  If priority includes the PDROP
434 * flag the mutex is not entered before returning.
435 */
436
437int
438msleep(ident, mtx, priority, wmesg, timo)
439	void *ident;
440	struct mtx *mtx;
441	int priority, timo;
442	const char *wmesg;
443{
444	struct thread *td = curthread;
445	struct proc *p = td->td_proc;
446	int sig, catch = priority & PCATCH;
447	int rval = 0;
448	WITNESS_SAVE_DECL(mtx);
449
450#ifdef KTRACE
451	if (KTRPOINT(td, KTR_CSW))
452		ktrcsw(1, 0);
453#endif
454	WITNESS_SLEEP(0, &mtx->mtx_object);
455	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
456	    ("sleeping without a mutex"));
457	/*
458	 * If we are capable of async syscalls and there isn't already
459	 * another one ready to return, start a new thread
460	 * and queue it as ready to run. Note that there is danger here
461	 * because we need to make sure that we don't sleep allocating
462	 * the thread (recursion here might be bad).
463	 * Hence the TDF_INMSLEEP flag.
464	 */
465	if (p->p_flag & P_KSES) {
466		/* Just don't bother if we are exiting
467				and not the exiting thread. */
468		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
469			return (EINTR);
470		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
471			/*
472			 * If we have no queued work to do, then
473			 * upcall to the UTS to see if it has more to do.
474			 * We don't need to upcall now, just make it and
475			 * queue it.
476			 */
477			mtx_lock_spin(&sched_lock);
478			if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
479				/* Don't recurse here! */
480				td->td_flags |= TDF_INMSLEEP;
481				thread_schedule_upcall(td, td->td_kse);
482				td->td_flags &= ~TDF_INMSLEEP;
483			}
484			mtx_unlock_spin(&sched_lock);
485		}
486	}
487	mtx_lock_spin(&sched_lock);
488	if (cold ) {
489		/*
490		 * During autoconfiguration, just give interrupts
491		 * a chance, then just return.
492		 * Don't run any other procs or panic below,
493		 * in case this is the idle process and already asleep.
494		 */
495		if (mtx != NULL && priority & PDROP)
496			mtx_unlock(mtx);
497		mtx_unlock_spin(&sched_lock);
498		return (0);
499	}
500
501	DROP_GIANT();
502
503	if (mtx != NULL) {
504		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
505		WITNESS_SAVE(&mtx->mtx_object, mtx);
506		mtx_unlock(mtx);
507		if (priority & PDROP)
508			mtx = NULL;
509	}
510
511	KASSERT(p != NULL, ("msleep1"));
512	KASSERT(ident != NULL && td->td_state == TDS_RUNNING, ("msleep"));
513
514	td->td_wchan = ident;
515	td->td_wmesg = wmesg;
516	td->td_kse->ke_slptime = 0;	/* XXXKSE */
517	td->td_ksegrp->kg_slptime = 0;
518	td->td_priority = priority & PRIMASK;
519	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
520	    td, p->p_pid, p->p_comm, wmesg, ident);
521	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
522	if (timo)
523		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
524	/*
525	 * We put ourselves on the sleep queue and start our timeout
526	 * before calling thread_suspend_check, as we could stop there, and
527	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
528	 * without resuming us, thus we must be ready for sleep
529	 * when cursig is called.  If the wakeup happens while we're
530	 * stopped, td->td_wchan will be 0 upon return from cursig.
531	 */
532	if (catch) {
533		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
534		    p->p_pid, p->p_comm);
535		td->td_flags |= TDF_SINTR;
536		mtx_unlock_spin(&sched_lock);
537		PROC_LOCK(p);
538		sig = cursig(td);
539		if (sig == 0) {
540			if (thread_suspend_check(1)) {
541				sig = SIGSTOP;
542			}
543		}
544		mtx_lock_spin(&sched_lock);
545		PROC_UNLOCK(p);
546		if (sig != 0) {
547			if (td->td_wchan != NULL)
548				unsleep(td);
549		} else if (td->td_wchan == NULL)
550			catch = 0;
551	} else {
552		sig = 0;
553	}
554	if (td->td_wchan != NULL) {
555		p->p_stats->p_ru.ru_nvcsw++;
556		td->td_state = TDS_SLP;
557		mi_switch();
558	}
559	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
560	    p->p_comm);
561	KASSERT(td->td_state == TDS_RUNNING, ("running but not TDS_RUNNING"));
562	td->td_flags &= ~TDF_SINTR;
563	if (td->td_flags & TDF_TIMEOUT) {
564		td->td_flags &= ~TDF_TIMEOUT;
565		if (sig == 0)
566			rval = EWOULDBLOCK;
567	} else if (td->td_flags & TDF_TIMOFAIL) {
568		td->td_flags &= ~TDF_TIMOFAIL;
569	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
570		/*
571		 * This isn't supposed to be pretty.  If we are here, then
572		 * the endtsleep() callout is currently executing on another
573		 * CPU and is either spinning on the sched_lock or will be
574		 * soon.  If we don't synchronize here, there is a chance
575		 * that this process may msleep() again before the callout
576		 * has a chance to run and the callout may end up waking up
577		 * the wrong msleep().  Yuck.
578		 */
579		td->td_flags |= TDF_TIMEOUT;
580		td->td_state = TDS_SLP;
581		p->p_stats->p_ru.ru_nivcsw++;
582		mi_switch();
583	}
584	mtx_unlock_spin(&sched_lock);
585
586	if (rval == 0 && catch) {
587		PROC_LOCK(p);
588		/* XXX: shouldn't we always be calling cursig() */
589		if (sig != 0 || (sig = cursig(td))) {
590			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
591				rval = EINTR;
592			else
593				rval = ERESTART;
594		}
595		PROC_UNLOCK(p);
596	}
597#ifdef KTRACE
598	if (KTRPOINT(td, KTR_CSW))
599		ktrcsw(0, 0);
600#endif
601	PICKUP_GIANT();
602	if (mtx != NULL) {
603		mtx_lock(mtx);
604		WITNESS_RESTORE(&mtx->mtx_object, mtx);
605	}
606	return (rval);
607}
608
609/*
610 * Implement timeout for msleep()
611 *
612 * If process hasn't been awakened (wchan non-zero),
613 * set timeout flag and undo the sleep.  If proc
614 * is stopped, just unsleep so it will remain stopped.
615 * MP-safe, called without the Giant mutex.
616 */
617static void
618endtsleep(arg)
619	void *arg;
620{
621	register struct thread *td = arg;
622
623	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
624	    td->td_proc->p_comm);
625	mtx_lock_spin(&sched_lock);
626	/*
627	 * This is the other half of the synchronization with msleep()
628	 * described above.  If the PS_TIMEOUT flag is set, we lost the
629	 * race and just need to put the process back on the runqueue.
630	 */
631	if ((td->td_flags & TDF_TIMEOUT) != 0) {
632		td->td_flags &= ~TDF_TIMEOUT;
633		setrunqueue(td);
634	} else if (td->td_wchan != NULL) {
635		if (td->td_state == TDS_SLP)  /* XXXKSE */
636			setrunnable(td);
637		else
638			unsleep(td);
639		td->td_flags |= TDF_TIMEOUT;
640	} else {
641		td->td_flags |= TDF_TIMOFAIL;
642	}
643	mtx_unlock_spin(&sched_lock);
644}
645
646/*
647 * Abort a thread, as if an interrupt had occured.  Only abort
648 * interruptable waits (unfortunatly it isn't only safe to abort others).
649 * This is about identical to cv_abort().
650 * Think about merging them?
651 * Also, whatever the signal code does...
652 */
653void
654abortsleep(struct thread *td)
655{
656
657	mtx_lock_spin(&sched_lock);
658	/*
659	 * If the TDF_TIMEOUT flag is set, just leave. A
660	 * timeout is scheduled anyhow.
661	 */
662	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
663		if (td->td_wchan != NULL) {
664			if (td->td_state == TDS_SLP) {  /* XXXKSE */
665				setrunnable(td);
666			} else {
667				/*
668				 * Probably in a suspended state..
669				 * um.. dunno XXXKSE
670				 */
671				unsleep(td);
672			}
673		}
674	}
675	mtx_unlock_spin(&sched_lock);
676}
677
678/*
679 * Remove a process from its wait queue
680 */
681void
682unsleep(struct thread *td)
683{
684
685	mtx_lock_spin(&sched_lock);
686	if (td->td_wchan != NULL) {
687		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
688		td->td_wchan = NULL;
689	}
690	mtx_unlock_spin(&sched_lock);
691}
692
693/*
694 * Make all processes sleeping on the specified identifier runnable.
695 */
696void
697wakeup(ident)
698	register void *ident;
699{
700	register struct slpquehead *qp;
701	register struct thread *td;
702	struct thread *ntd;
703	struct proc *p;
704
705	mtx_lock_spin(&sched_lock);
706	qp = &slpque[LOOKUP(ident)];
707restart:
708	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
709		ntd = TAILQ_NEXT(td, td_slpq);
710		p = td->td_proc;
711		if (td->td_wchan == ident) {
712			TAILQ_REMOVE(qp, td, td_slpq);
713			td->td_wchan = NULL;
714			if (td->td_state == TDS_SLP) {
715				/* OPTIMIZED EXPANSION OF setrunnable(p); */
716				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
717				    td, p->p_pid, p->p_comm);
718				if (td->td_ksegrp->kg_slptime > 1)
719					updatepri(td);
720				td->td_ksegrp->kg_slptime = 0;
721				if (p->p_sflag & PS_INMEM) {
722					setrunqueue(td);
723					maybe_resched(td);
724				} else {
725/* XXXKSE Wrong! */			td->td_state = TDS_RUNQ;
726					p->p_sflag |= PS_SWAPINREQ;
727					wakeup(&proc0);
728				}
729				/* END INLINE EXPANSION */
730			}
731			goto restart;
732		}
733	}
734	mtx_unlock_spin(&sched_lock);
735}
736
737/*
738 * Make a process sleeping on the specified identifier runnable.
739 * May wake more than one process if a target process is currently
740 * swapped out.
741 */
742void
743wakeup_one(ident)
744	register void *ident;
745{
746	register struct slpquehead *qp;
747	register struct thread *td;
748	register struct proc *p;
749	struct thread *ntd;
750
751	mtx_lock_spin(&sched_lock);
752	qp = &slpque[LOOKUP(ident)];
753restart:
754	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
755		ntd = TAILQ_NEXT(td, td_slpq);
756		p = td->td_proc;
757		if (td->td_wchan == ident) {
758			TAILQ_REMOVE(qp, td, td_slpq);
759			td->td_wchan = NULL;
760			if (td->td_state == TDS_SLP) {
761				/* OPTIMIZED EXPANSION OF setrunnable(p); */
762				CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
763				    td, p->p_pid, p->p_comm);
764				if (td->td_ksegrp->kg_slptime > 1)
765					updatepri(td);
766				td->td_ksegrp->kg_slptime = 0;
767				if (p->p_sflag & PS_INMEM) {
768					setrunqueue(td);
769					maybe_resched(td);
770					break;
771				} else {
772/* XXXKSE Wrong */			td->td_state = TDS_RUNQ;
773					p->p_sflag |= PS_SWAPINREQ;
774					wakeup(&proc0);
775				}
776				/* END INLINE EXPANSION */
777				goto restart;
778			}
779		}
780	}
781	mtx_unlock_spin(&sched_lock);
782}
783
784/*
785 * The machine independent parts of mi_switch().
786 */
787void
788mi_switch()
789{
790	struct bintime new_switchtime;
791	struct thread *td = curthread;	/* XXX */
792	struct proc *p = td->td_proc;	/* XXX */
793	struct kse *ke = td->td_kse;
794#if 0
795	register struct rlimit *rlim;
796#endif
797	u_int sched_nest;
798
799	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
800	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
801#ifdef INVARIANTS
802	if (td->td_state != TDS_MTX &&
803	    td->td_state != TDS_RUNQ &&
804	    td->td_state != TDS_RUNNING)
805		mtx_assert(&Giant, MA_NOTOWNED);
806#endif
807	KASSERT(td->td_critnest == 1,
808	    ("mi_switch: switch in a critical section"));
809
810	/*
811	 * Compute the amount of time during which the current
812	 * process was running, and add that to its total so far.
813	 */
814	binuptime(&new_switchtime);
815	bintime_add(&p->p_runtime, &new_switchtime);
816	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
817
818#ifdef DDB
819	/*
820	 * Don't perform context switches from the debugger.
821	 */
822	if (db_active) {
823		mtx_unlock_spin(&sched_lock);
824		db_error("Context switches not allowed in the debugger.");
825	}
826#endif
827
828#if 0
829	/*
830	 * Check if the process exceeds its cpu resource allocation.
831	 * If over max, kill it.
832	 *
833	 * XXX drop sched_lock, pickup Giant
834	 */
835	if (p->p_state != PRS_ZOMBIE &&
836	    p->p_limit->p_cpulimit != RLIM_INFINITY &&
837	    p->p_runtime > p->p_limit->p_cpulimit) {
838		rlim = &p->p_rlimit[RLIMIT_CPU];
839		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
840			mtx_unlock_spin(&sched_lock);
841			PROC_LOCK(p);
842			killproc(p, "exceeded maximum CPU limit");
843			mtx_lock_spin(&sched_lock);
844			PROC_UNLOCK(p);
845		} else {
846			mtx_unlock_spin(&sched_lock);
847			PROC_LOCK(p);
848			psignal(p, SIGXCPU);
849			mtx_lock_spin(&sched_lock);
850			PROC_UNLOCK(p);
851			if (rlim->rlim_cur < rlim->rlim_max) {
852				/* XXX: we should make a private copy */
853				rlim->rlim_cur += 5;
854			}
855		}
856	}
857#endif
858
859	/*
860	 * Pick a new current process and record its start time.
861	 */
862	cnt.v_swtch++;
863	PCPU_SET(switchtime, new_switchtime);
864	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
865	    p->p_comm);
866	sched_nest = sched_lock.mtx_recurse;
867	td->td_lastcpu = ke->ke_oncpu;
868	ke->ke_oncpu = NOCPU;
869	ke->ke_flags &= ~KEF_NEEDRESCHED;
870	/*
871	 * At the last moment: if this KSE is not on the run queue,
872	 * it needs to be freed correctly and the thread treated accordingly.
873	 */
874	if ((td->td_state == TDS_RUNNING) &&
875	    ((ke->ke_flags & KEF_IDLEKSE) == 0)) {
876		/* Put us back on the run queue (kse and all). */
877		setrunqueue(td);
878	} else if ((td->td_flags & TDF_UNBOUND) &&
879	    (td->td_state != TDS_RUNQ)) { /* in case of old code */
880		/*
881		 * We will not be on the run queue.
882		 * Someone else can use the KSE if they need it.
883		 */
884		td->td_kse = NULL;
885		kse_reassign(ke);
886	}
887	cpu_switch();
888	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
889	sched_lock.mtx_recurse = sched_nest;
890	sched_lock.mtx_lock = (uintptr_t)td;
891	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
892	    p->p_comm);
893	if (PCPU_GET(switchtime.sec) == 0)
894		binuptime(PCPU_PTR(switchtime));
895	PCPU_SET(switchticks, ticks);
896
897	/*
898	 * Call the switchin function while still holding the scheduler lock
899	 * (used by the idlezero code and the general page-zeroing code)
900	 */
901	if (td->td_switchin)
902		td->td_switchin();
903}
904
905/*
906 * Change process state to be runnable,
907 * placing it on the run queue if it is in memory,
908 * and awakening the swapper if it isn't in memory.
909 */
910void
911setrunnable(struct thread *td)
912{
913	struct proc *p = td->td_proc;
914
915	mtx_assert(&sched_lock, MA_OWNED);
916	switch (p->p_state) {
917	case PRS_ZOMBIE:
918		panic("setrunnable(1)");
919	default:
920		break;
921	}
922	switch (td->td_state) {
923	case 0:
924	case TDS_RUNNING:
925	case TDS_IWAIT:
926	default:
927		printf("state is %d", td->td_state);
928		panic("setrunnable(2)");
929	case TDS_SUSPENDED:
930		thread_unsuspend(p);
931		break;
932	case TDS_SLP:			/* e.g. when sending signals */
933		if (td->td_flags & TDF_CVWAITQ)
934			cv_waitq_remove(td);
935		else
936			unsleep(td);
937	case TDS_UNQUEUED:  /* being put back onto the queue */
938	case TDS_NEW:	/* not yet had time to suspend */
939	case TDS_RUNQ:	/* not yet had time to suspend */
940		break;
941	}
942	if (td->td_ksegrp->kg_slptime > 1)
943		updatepri(td);
944	td->td_ksegrp->kg_slptime = 0;
945	if ((p->p_sflag & PS_INMEM) == 0) {
946		td->td_state = TDS_RUNQ; /* XXXKSE not a good idea */
947		p->p_sflag |= PS_SWAPINREQ;
948		wakeup(&proc0);
949	} else {
950		if (td->td_state != TDS_RUNQ)
951			setrunqueue(td); /* XXXKSE */
952		maybe_resched(td);
953	}
954}
955
956/*
957 * Compute the priority of a process when running in user mode.
958 * Arrange to reschedule if the resulting priority is better
959 * than that of the current process.
960 */
961void
962resetpriority(kg)
963	register struct ksegrp *kg;
964{
965	register unsigned int newpriority;
966	struct thread *td;
967
968	mtx_lock_spin(&sched_lock);
969	if (kg->kg_pri_class == PRI_TIMESHARE) {
970		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
971		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
972		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
973		    PRI_MAX_TIMESHARE);
974		kg->kg_user_pri = newpriority;
975	}
976	FOREACH_THREAD_IN_GROUP(kg, td) {
977		maybe_resched(td);			/* XXXKSE silly */
978	}
979	mtx_unlock_spin(&sched_lock);
980}
981
982/*
983 * Compute a tenex style load average of a quantity on
984 * 1, 5 and 15 minute intervals.
985 * XXXKSE   Needs complete rewrite when correct info is available.
986 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
987 */
988static void
989loadav(void *arg)
990{
991	int i, nrun;
992	struct loadavg *avg;
993	struct proc *p;
994	struct thread *td;
995
996	avg = &averunnable;
997	sx_slock(&allproc_lock);
998	nrun = 0;
999	FOREACH_PROC_IN_SYSTEM(p) {
1000		FOREACH_THREAD_IN_PROC(p, td) {
1001			switch (td->td_state) {
1002			case TDS_RUNQ:
1003			case TDS_RUNNING:
1004				if ((p->p_flag & P_NOLOAD) != 0)
1005					goto nextproc;
1006				nrun++; /* XXXKSE */
1007			default:
1008				break;
1009			}
1010nextproc:
1011			continue;
1012		}
1013	}
1014	sx_sunlock(&allproc_lock);
1015	for (i = 0; i < 3; i++)
1016		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1017		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1018
1019	/*
1020	 * Schedule the next update to occur after 5 seconds, but add a
1021	 * random variation to avoid synchronisation with processes that
1022	 * run at regular intervals.
1023	 */
1024	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
1025	    loadav, NULL);
1026}
1027
1028/* ARGSUSED */
1029static void
1030sched_setup(dummy)
1031	void *dummy;
1032{
1033
1034	callout_init(&schedcpu_callout, 1);
1035	callout_init(&roundrobin_callout, 0);
1036	callout_init(&loadav_callout, 0);
1037
1038	/* Kick off timeout driven events by calling first time. */
1039	roundrobin(NULL);
1040	schedcpu(NULL);
1041	loadav(NULL);
1042}
1043
1044/*
1045 * We adjust the priority of the current process.  The priority of
1046 * a process gets worse as it accumulates CPU time.  The cpu usage
1047 * estimator (p_estcpu) is increased here.  resetpriority() will
1048 * compute a different priority each time p_estcpu increases by
1049 * INVERSE_ESTCPU_WEIGHT
1050 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1051 * quite quickly when the process is running (linearly), and decays
1052 * away exponentially, at a rate which is proportionally slower when
1053 * the system is busy.  The basic principle is that the system will
1054 * 90% forget that the process used a lot of CPU time in 5 * loadav
1055 * seconds.  This causes the system to favor processes which haven't
1056 * run much recently, and to round-robin among other processes.
1057 */
1058void
1059schedclock(td)
1060	struct thread *td;
1061{
1062	struct kse *ke;
1063	struct ksegrp *kg;
1064
1065	KASSERT((td != NULL), ("schedclock: null thread pointer"));
1066	ke = td->td_kse;
1067	kg = td->td_ksegrp;
1068	ke->ke_cpticks++;
1069	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1070	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1071		resetpriority(kg);
1072		if (td->td_priority >= PUSER)
1073			td->td_priority = kg->kg_user_pri;
1074	}
1075}
1076
1077/*
1078 * General purpose yield system call
1079 */
1080int
1081yield(struct thread *td, struct yield_args *uap)
1082{
1083	struct ksegrp *kg = td->td_ksegrp;
1084
1085	mtx_assert(&Giant, MA_NOTOWNED);
1086	mtx_lock_spin(&sched_lock);
1087	td->td_priority = PRI_MAX_TIMESHARE;
1088	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1089	mi_switch();
1090	mtx_unlock_spin(&sched_lock);
1091	td->td_retval[0] = 0;
1092
1093	return (0);
1094}
1095
1096