kern_synch.c revision 100209
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39 * $FreeBSD: head/sys/kern/kern_synch.c 100209 2002-07-17 02:23:44Z gallatin $
40 */
41
42#include "opt_ddb.h"
43#include "opt_ktrace.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/signalvar.h>
55#include <sys/smp.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysproto.h>
59#include <sys/vmmeter.h>
60#ifdef DDB
61#include <ddb/ddb.h>
62#endif
63#ifdef KTRACE
64#include <sys/uio.h>
65#include <sys/ktrace.h>
66#endif
67
68#include <machine/cpu.h>
69
70static void sched_setup(void *dummy);
71SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
72
73int	hogticks;
74int	lbolt;
75int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
76
77static struct callout loadav_callout;
78static struct callout schedcpu_callout;
79static struct callout roundrobin_callout;
80
81struct loadavg averunnable =
82	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
83/*
84 * Constants for averages over 1, 5, and 15 minutes
85 * when sampling at 5 second intervals.
86 */
87static fixpt_t cexp[3] = {
88	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
89	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
90	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
91};
92
93static void	endtsleep(void *);
94static void	loadav(void *arg);
95static void	roundrobin(void *arg);
96static void	schedcpu(void *arg);
97
98static int
99sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
100{
101	int error, new_val;
102
103	new_val = sched_quantum * tick;
104	error = sysctl_handle_int(oidp, &new_val, 0, req);
105        if (error != 0 || req->newptr == NULL)
106		return (error);
107	if (new_val < tick)
108		return (EINVAL);
109	sched_quantum = new_val / tick;
110	hogticks = 2 * sched_quantum;
111	return (0);
112}
113
114SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
115	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
116	"Roundrobin scheduling quantum in microseconds");
117
118/*
119 * Arrange to reschedule if necessary, taking the priorities and
120 * schedulers into account.
121 */
122void
123maybe_resched(struct thread *td)
124{
125
126	mtx_assert(&sched_lock, MA_OWNED);
127	if (td->td_priority < curthread->td_priority)
128		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
129}
130
131int
132roundrobin_interval(void)
133{
134	return (sched_quantum);
135}
136
137/*
138 * Force switch among equal priority processes every 100ms.
139 * We don't actually need to force a context switch of the current process.
140 * The act of firing the event triggers a context switch to softclock() and
141 * then switching back out again which is equivalent to a preemption, thus
142 * no further work is needed on the local CPU.
143 */
144/* ARGSUSED */
145static void
146roundrobin(arg)
147	void *arg;
148{
149
150#ifdef SMP
151	mtx_lock_spin(&sched_lock);
152	forward_roundrobin();
153	mtx_unlock_spin(&sched_lock);
154#endif
155
156	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
157}
158
159/*
160 * Constants for digital decay and forget:
161 *	90% of (p_estcpu) usage in 5 * loadav time
162 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
163 *          Note that, as ps(1) mentions, this can let percentages
164 *          total over 100% (I've seen 137.9% for 3 processes).
165 *
166 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
167 *
168 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
169 * That is, the system wants to compute a value of decay such
170 * that the following for loop:
171 * 	for (i = 0; i < (5 * loadavg); i++)
172 * 		p_estcpu *= decay;
173 * will compute
174 * 	p_estcpu *= 0.1;
175 * for all values of loadavg:
176 *
177 * Mathematically this loop can be expressed by saying:
178 * 	decay ** (5 * loadavg) ~= .1
179 *
180 * The system computes decay as:
181 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
182 *
183 * We wish to prove that the system's computation of decay
184 * will always fulfill the equation:
185 * 	decay ** (5 * loadavg) ~= .1
186 *
187 * If we compute b as:
188 * 	b = 2 * loadavg
189 * then
190 * 	decay = b / (b + 1)
191 *
192 * We now need to prove two things:
193 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
194 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
195 *
196 * Facts:
197 *         For x close to zero, exp(x) =~ 1 + x, since
198 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
199 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
200 *         For x close to zero, ln(1+x) =~ x, since
201 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
202 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
203 *         ln(.1) =~ -2.30
204 *
205 * Proof of (1):
206 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
207 *	solving for factor,
208 *      ln(factor) =~ (-2.30/5*loadav), or
209 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
210 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
211 *
212 * Proof of (2):
213 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
214 *	solving for power,
215 *      power*ln(b/(b+1)) =~ -2.30, or
216 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
217 *
218 * Actual power values for the implemented algorithm are as follows:
219 *      loadav: 1       2       3       4
220 *      power:  5.68    10.32   14.94   19.55
221 */
222
223/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
224#define	loadfactor(loadav)	(2 * (loadav))
225#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
226
227/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
228static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
229SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
230
231/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
232static int	fscale __unused = FSCALE;
233SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
234
235/*
236 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
237 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
238 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
239 *
240 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
241 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
242 *
243 * If you don't want to bother with the faster/more-accurate formula, you
244 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
245 * (more general) method of calculating the %age of CPU used by a process.
246 */
247#define	CCPU_SHIFT	11
248
249/*
250 * Recompute process priorities, every hz ticks.
251 * MP-safe, called without the Giant mutex.
252 */
253/* ARGSUSED */
254static void
255schedcpu(arg)
256	void *arg;
257{
258	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
259	struct thread *td;
260	struct proc *p;
261	struct kse *ke;
262	struct ksegrp *kg;
263	int realstathz;
264	int awake;
265
266	realstathz = stathz ? stathz : hz;
267	sx_slock(&allproc_lock);
268	FOREACH_PROC_IN_SYSTEM(p) {
269		mtx_lock_spin(&sched_lock);
270		p->p_swtime++;
271		FOREACH_KSEGRP_IN_PROC(p, kg) {
272			awake = 0;
273			FOREACH_KSE_IN_GROUP(kg, ke) {
274				/*
275				 * Increment time in/out of memory and sleep
276				 * time (if sleeping).  We ignore overflow;
277				 * with 16-bit int's (remember them?)
278				 * overflow takes 45 days.
279				 */
280				/* XXXKSE **WRONG***/
281				/*
282				 * the kse slptimes are not touched in wakeup
283				 * because the thread may not HAVE a KSE
284				 */
285				if ((ke->ke_state == KES_ONRUNQ) ||
286				    ((ke->ke_state == KES_THREAD) &&
287				    (ke->ke_thread->td_state == TDS_RUNNING))) {
288					ke->ke_slptime++;
289				} else {
290					ke->ke_slptime = 0;
291					awake = 1;
292				}
293
294				/*
295				 * pctcpu is only for ps?
296				 * Do it per kse.. and add them up at the end?
297				 * XXXKSE
298				 */
299				ke->ke_pctcpu = (ke->ke_pctcpu * ccpu) >> FSHIFT;
300				/*
301				 * If the kse has been idle the entire second,
302				 * stop recalculating its priority until
303				 * it wakes up.
304				 */
305				if (ke->ke_slptime > 1) {
306					continue;
307				}
308
309#if	(FSHIFT >= CCPU_SHIFT)
310				ke->ke_pctcpu += (realstathz == 100) ?
311				    ((fixpt_t) ke->ke_cpticks) <<
312				    (FSHIFT - CCPU_SHIFT) :
313				    100 * (((fixpt_t) ke->ke_cpticks) <<
314				    (FSHIFT - CCPU_SHIFT)) / realstathz;
315#else
316				ke->ke_pctcpu += ((FSCALE - ccpu) *
317				    (ke->ke_cpticks * FSCALE / realstathz)) >>
318				    FSHIFT;
319#endif
320				ke->ke_cpticks = 0;
321			} /* end of kse loop */
322			if (awake == 0) {
323				kg->kg_slptime++;
324			} else {
325				kg->kg_slptime = 0;
326			}
327			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
328		      	resetpriority(kg);
329			FOREACH_THREAD_IN_GROUP(kg, td) {
330				int changedqueue;
331				if (td->td_priority >= PUSER) {
332					/*
333					 * Only change the priority
334					 * of threads that are still at their
335					 * user priority.
336					 * XXXKSE This is problematic
337					 * as we may need to re-order
338					 * the threads on the KSEG list.
339					 */
340					changedqueue =
341					    ((td->td_priority / RQ_PPQ) !=
342					     (kg->kg_user_pri / RQ_PPQ));
343
344					td->td_priority = kg->kg_user_pri;
345					if (changedqueue &&
346					    td->td_state == TDS_RUNQ) {
347						/* this could be optimised */
348						remrunqueue(td);
349						td->td_priority =
350						    kg->kg_user_pri;
351						setrunqueue(td);
352					} else {
353						td->td_priority = kg->kg_user_pri;
354					}
355				}
356			}
357		} /* end of ksegrp loop */
358		mtx_unlock_spin(&sched_lock);
359	} /* end of process loop */
360	sx_sunlock(&allproc_lock);
361	wakeup(&lbolt);
362	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
363}
364
365/*
366 * Recalculate the priority of a process after it has slept for a while.
367 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
368 * least six times the loadfactor will decay p_estcpu to zero.
369 */
370void
371updatepri(td)
372	register struct thread *td;
373{
374	register struct ksegrp *kg;
375	register unsigned int newcpu;
376	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
377
378	if (td == NULL)
379		return;
380	kg = td->td_ksegrp;
381	newcpu = kg->kg_estcpu;
382	if (kg->kg_slptime > 5 * loadfac)
383		kg->kg_estcpu = 0;
384	else {
385		kg->kg_slptime--;	/* the first time was done in schedcpu */
386		while (newcpu && --kg->kg_slptime)
387			newcpu = decay_cpu(loadfac, newcpu);
388		kg->kg_estcpu = newcpu;
389	}
390	resetpriority(td->td_ksegrp);
391}
392
393/*
394 * We're only looking at 7 bits of the address; everything is
395 * aligned to 4, lots of things are aligned to greater powers
396 * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
397 */
398#define TABLESIZE	128
399static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
400#define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
401
402void
403sleepinit(void)
404{
405	int i;
406
407	sched_quantum = hz/10;
408	hogticks = 2 * sched_quantum;
409	for (i = 0; i < TABLESIZE; i++)
410		TAILQ_INIT(&slpque[i]);
411}
412
413/*
414 * General sleep call.  Suspends the current process until a wakeup is
415 * performed on the specified identifier.  The process will then be made
416 * runnable with the specified priority.  Sleeps at most timo/hz seconds
417 * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
418 * before and after sleeping, else signals are not checked.  Returns 0 if
419 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
420 * signal needs to be delivered, ERESTART is returned if the current system
421 * call should be restarted if possible, and EINTR is returned if the system
422 * call should be interrupted by the signal (return EINTR).
423 *
424 * The mutex argument is exited before the caller is suspended, and
425 * entered before msleep returns.  If priority includes the PDROP
426 * flag the mutex is not entered before returning.
427 */
428
429int
430msleep(ident, mtx, priority, wmesg, timo)
431	void *ident;
432	struct mtx *mtx;
433	int priority, timo;
434	const char *wmesg;
435{
436	struct thread *td = curthread;
437	struct proc *p = td->td_proc;
438	int sig, catch = priority & PCATCH;
439	int rval = 0;
440	WITNESS_SAVE_DECL(mtx);
441
442#ifdef KTRACE
443	if (KTRPOINT(td, KTR_CSW))
444		ktrcsw(1, 0);
445#endif
446	WITNESS_SLEEP(0, &mtx->mtx_object);
447	KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
448	    ("sleeping without a mutex"));
449	/*
450	 * If we are capable of async syscalls and there isn't already
451	 * another one ready to return, start a new thread
452	 * and queue it as ready to run. Note that there is danger here
453	 * because we need to make sure that we don't sleep allocating
454	 * the thread (recursion here might be bad).
455	 * Hence the TDF_INMSLEEP flag.
456	 */
457	if (p->p_flag & P_KSES) {
458		/* Just don't bother if we are exiting
459				and not the exiting thread. */
460		if ((p->p_flag & P_WEXIT) && catch && p->p_singlethread != td)
461			return (EINTR);
462		if (td->td_mailbox && (!(td->td_flags & TDF_INMSLEEP))) {
463			/*
464			 * If we have no queued work to do, then
465			 * upcall to the UTS to see if it has more to do.
466			 * We don't need to upcall now, just make it and
467			 * queue it.
468			 */
469			mtx_lock_spin(&sched_lock);
470			if (TAILQ_FIRST(&td->td_ksegrp->kg_runq) == NULL) {
471				/* Don't recurse here! */
472				td->td_flags |= TDF_INMSLEEP;
473				thread_schedule_upcall(td, td->td_kse);
474				td->td_flags &= ~TDF_INMSLEEP;
475			}
476			mtx_unlock_spin(&sched_lock);
477		}
478	}
479	mtx_lock_spin(&sched_lock);
480	if (cold ) {
481		/*
482		 * During autoconfiguration, just give interrupts
483		 * a chance, then just return.
484		 * Don't run any other procs or panic below,
485		 * in case this is the idle process and already asleep.
486		 */
487		if (mtx != NULL && priority & PDROP)
488			mtx_unlock(mtx);
489		mtx_unlock_spin(&sched_lock);
490		return (0);
491	}
492
493	DROP_GIANT();
494
495	if (mtx != NULL) {
496		mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
497		WITNESS_SAVE(&mtx->mtx_object, mtx);
498		mtx_unlock(mtx);
499		if (priority & PDROP)
500			mtx = NULL;
501	}
502
503	KASSERT(p != NULL, ("msleep1"));
504	KASSERT(ident != NULL && td->td_state == TDS_RUNNING, ("msleep"));
505
506	td->td_wchan = ident;
507	td->td_wmesg = wmesg;
508	td->td_kse->ke_slptime = 0;	/* XXXKSE */
509	td->td_ksegrp->kg_slptime = 0;
510	td->td_priority = priority & PRIMASK;
511	CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
512	    td, p->p_pid, p->p_comm, wmesg, ident);
513	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
514	if (timo)
515		callout_reset(&td->td_slpcallout, timo, endtsleep, td);
516	/*
517	 * We put ourselves on the sleep queue and start our timeout
518	 * before calling thread_suspend_check, as we could stop there, and
519	 * a wakeup or a SIGCONT (or both) could occur while we were stopped.
520	 * without resuming us, thus we must be ready for sleep
521	 * when cursig is called.  If the wakeup happens while we're
522	 * stopped, td->td_wchan will be 0 upon return from cursig.
523	 */
524	if (catch) {
525		CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
526		    p->p_pid, p->p_comm);
527		td->td_flags |= TDF_SINTR;
528		mtx_unlock_spin(&sched_lock);
529		PROC_LOCK(p);
530		sig = cursig(td);
531		if (sig == 0) {
532			if (thread_suspend_check(1)) {
533				sig = SIGSTOP;
534			}
535		}
536		mtx_lock_spin(&sched_lock);
537		PROC_UNLOCK(p);
538		if (sig != 0) {
539			if (td->td_wchan != NULL)
540				unsleep(td);
541		} else if (td->td_wchan == NULL)
542			catch = 0;
543	} else {
544		sig = 0;
545	}
546	if (td->td_wchan != NULL) {
547		p->p_stats->p_ru.ru_nvcsw++;
548		td->td_state = TDS_SLP;
549		mi_switch();
550	}
551	CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
552	    p->p_comm);
553	KASSERT(td->td_state == TDS_RUNNING, ("running but not TDS_RUNNING"));
554	td->td_flags &= ~TDF_SINTR;
555	if (td->td_flags & TDF_TIMEOUT) {
556		td->td_flags &= ~TDF_TIMEOUT;
557		if (sig == 0)
558			rval = EWOULDBLOCK;
559	} else if (td->td_flags & TDF_TIMOFAIL) {
560		td->td_flags &= ~TDF_TIMOFAIL;
561	} else if (timo && callout_stop(&td->td_slpcallout) == 0) {
562		/*
563		 * This isn't supposed to be pretty.  If we are here, then
564		 * the endtsleep() callout is currently executing on another
565		 * CPU and is either spinning on the sched_lock or will be
566		 * soon.  If we don't synchronize here, there is a chance
567		 * that this process may msleep() again before the callout
568		 * has a chance to run and the callout may end up waking up
569		 * the wrong msleep().  Yuck.
570		 */
571		td->td_flags |= TDF_TIMEOUT;
572		td->td_state = TDS_SLP;
573		p->p_stats->p_ru.ru_nivcsw++;
574		mi_switch();
575	}
576	mtx_unlock_spin(&sched_lock);
577
578	if (rval == 0 && catch) {
579		PROC_LOCK(p);
580		/* XXX: shouldn't we always be calling cursig() */
581		if (sig != 0 || (sig = cursig(td))) {
582			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
583				rval = EINTR;
584			else
585				rval = ERESTART;
586		}
587		PROC_UNLOCK(p);
588	}
589#ifdef KTRACE
590	if (KTRPOINT(td, KTR_CSW))
591		ktrcsw(0, 0);
592#endif
593	PICKUP_GIANT();
594	if (mtx != NULL) {
595		mtx_lock(mtx);
596		WITNESS_RESTORE(&mtx->mtx_object, mtx);
597	}
598	return (rval);
599}
600
601/*
602 * Implement timeout for msleep()
603 *
604 * If process hasn't been awakened (wchan non-zero),
605 * set timeout flag and undo the sleep.  If proc
606 * is stopped, just unsleep so it will remain stopped.
607 * MP-safe, called without the Giant mutex.
608 */
609static void
610endtsleep(arg)
611	void *arg;
612{
613	register struct thread *td = arg;
614
615	CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)", td, td->td_proc->p_pid,
616	    td->td_proc->p_comm);
617	mtx_lock_spin(&sched_lock);
618	/*
619	 * This is the other half of the synchronization with msleep()
620	 * described above.  If the PS_TIMEOUT flag is set, we lost the
621	 * race and just need to put the process back on the runqueue.
622	 */
623	if ((td->td_flags & TDF_TIMEOUT) != 0) {
624		td->td_flags &= ~TDF_TIMEOUT;
625		setrunqueue(td);
626	} else if (td->td_wchan != NULL) {
627		if (td->td_state == TDS_SLP)  /* XXXKSE */
628			setrunnable(td);
629		else
630			unsleep(td);
631		td->td_flags |= TDF_TIMEOUT;
632	} else {
633		td->td_flags |= TDF_TIMOFAIL;
634	}
635	mtx_unlock_spin(&sched_lock);
636}
637
638/*
639 * Abort a thread, as if an interrupt had occured.  Only abort
640 * interruptable waits (unfortunatly it isn't only safe to abort others).
641 * This is about identical to cv_abort().
642 * Think about merging them?
643 * Also, whatever the signal code does...
644 */
645void
646abortsleep(struct thread *td)
647{
648
649	mtx_lock_spin(&sched_lock);
650	/*
651	 * If the TDF_TIMEOUT flag is set, just leave. A
652	 * timeout is scheduled anyhow.
653	 */
654	if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
655		if (td->td_wchan != NULL) {
656			if (td->td_state == TDS_SLP) {  /* XXXKSE */
657				setrunnable(td);
658			} else {
659				/*
660				 * Probably in a suspended state..
661				 * um.. dunno XXXKSE
662				 */
663				unsleep(td);
664			}
665		}
666	}
667	mtx_unlock_spin(&sched_lock);
668}
669
670/*
671 * Remove a process from its wait queue
672 */
673void
674unsleep(struct thread *td)
675{
676
677	mtx_lock_spin(&sched_lock);
678	if (td->td_wchan != NULL) {
679		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
680		td->td_wchan = NULL;
681	}
682	mtx_unlock_spin(&sched_lock);
683}
684
685/*
686 * Make all processes sleeping on the specified identifier runnable.
687 */
688void
689wakeup(ident)
690	register void *ident;
691{
692	register struct slpquehead *qp;
693	register struct thread *td;
694	struct thread *ntd;
695	struct proc *p;
696
697	mtx_lock_spin(&sched_lock);
698	qp = &slpque[LOOKUP(ident)];
699restart:
700	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
701		ntd = TAILQ_NEXT(td, td_slpq);
702		p = td->td_proc;
703		if (td->td_wchan == ident) {
704			TAILQ_REMOVE(qp, td, td_slpq);
705			td->td_wchan = NULL;
706			if (td->td_state == TDS_SLP) {
707				/* OPTIMIZED EXPANSION OF setrunnable(p); */
708				CTR3(KTR_PROC, "wakeup: thread %p (pid %d, %s)",
709				    td, p->p_pid, p->p_comm);
710				if (td->td_ksegrp->kg_slptime > 1)
711					updatepri(td);
712				td->td_ksegrp->kg_slptime = 0;
713				if (p->p_sflag & PS_INMEM) {
714					setrunqueue(td);
715					maybe_resched(td);
716				} else {
717/* XXXKSE Wrong! */			td->td_state = TDS_RUNQ;
718					p->p_sflag |= PS_SWAPINREQ;
719					wakeup(&proc0);
720				}
721				/* END INLINE EXPANSION */
722			}
723			goto restart;
724		}
725	}
726	mtx_unlock_spin(&sched_lock);
727}
728
729/*
730 * Make a process sleeping on the specified identifier runnable.
731 * May wake more than one process if a target process is currently
732 * swapped out.
733 */
734void
735wakeup_one(ident)
736	register void *ident;
737{
738	register struct slpquehead *qp;
739	register struct thread *td;
740	register struct proc *p;
741	struct thread *ntd;
742
743	mtx_lock_spin(&sched_lock);
744	qp = &slpque[LOOKUP(ident)];
745restart:
746	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
747		ntd = TAILQ_NEXT(td, td_slpq);
748		p = td->td_proc;
749		if (td->td_wchan == ident) {
750			TAILQ_REMOVE(qp, td, td_slpq);
751			td->td_wchan = NULL;
752			if (td->td_state == TDS_SLP) {
753				/* OPTIMIZED EXPANSION OF setrunnable(p); */
754				CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
755				    td, p->p_pid, p->p_comm);
756				if (td->td_ksegrp->kg_slptime > 1)
757					updatepri(td);
758				td->td_ksegrp->kg_slptime = 0;
759				if (p->p_sflag & PS_INMEM) {
760					setrunqueue(td);
761					maybe_resched(td);
762					break;
763				} else {
764/* XXXKSE Wrong */			td->td_state = TDS_RUNQ;
765					p->p_sflag |= PS_SWAPINREQ;
766					wakeup(&proc0);
767				}
768				/* END INLINE EXPANSION */
769				goto restart;
770			}
771		}
772	}
773	mtx_unlock_spin(&sched_lock);
774}
775
776/*
777 * The machine independent parts of mi_switch().
778 */
779void
780mi_switch()
781{
782	struct bintime new_switchtime;
783	struct thread *td = curthread;	/* XXX */
784	struct proc *p = td->td_proc;	/* XXX */
785	struct kse *ke = td->td_kse;
786#if 0
787	register struct rlimit *rlim;
788#endif
789	u_int sched_nest;
790
791	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
792	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));
793#ifdef INVARIANTS
794	if (td->td_state != TDS_MTX &&
795	    td->td_state != TDS_RUNQ &&
796	    td->td_state != TDS_RUNNING)
797		mtx_assert(&Giant, MA_NOTOWNED);
798#endif
799
800	/*
801	 * Compute the amount of time during which the current
802	 * process was running, and add that to its total so far.
803	 */
804	binuptime(&new_switchtime);
805	bintime_add(&p->p_runtime, &new_switchtime);
806	bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
807
808#ifdef DDB
809	/*
810	 * Don't perform context switches from the debugger.
811	 */
812	if (db_active) {
813		mtx_unlock_spin(&sched_lock);
814		db_error("Context switches not allowed in the debugger.");
815	}
816#endif
817
818#if 0
819	/*
820	 * Check if the process exceeds its cpu resource allocation.
821	 * If over max, kill it.
822	 *
823	 * XXX drop sched_lock, pickup Giant
824	 */
825	if (p->p_state != PRS_ZOMBIE &&
826	    p->p_limit->p_cpulimit != RLIM_INFINITY &&
827	    p->p_runtime > p->p_limit->p_cpulimit) {
828		rlim = &p->p_rlimit[RLIMIT_CPU];
829		if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
830			mtx_unlock_spin(&sched_lock);
831			PROC_LOCK(p);
832			killproc(p, "exceeded maximum CPU limit");
833			mtx_lock_spin(&sched_lock);
834			PROC_UNLOCK(p);
835		} else {
836			mtx_unlock_spin(&sched_lock);
837			PROC_LOCK(p);
838			psignal(p, SIGXCPU);
839			mtx_lock_spin(&sched_lock);
840			PROC_UNLOCK(p);
841			if (rlim->rlim_cur < rlim->rlim_max) {
842				/* XXX: we should make a private copy */
843				rlim->rlim_cur += 5;
844			}
845		}
846	}
847#endif
848
849	/*
850	 * Pick a new current process and record its start time.
851	 */
852	cnt.v_swtch++;
853	PCPU_SET(switchtime, new_switchtime);
854	CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
855	    p->p_comm);
856	sched_nest = sched_lock.mtx_recurse;
857	td->td_lastcpu = ke->ke_oncpu;
858	ke->ke_oncpu = NOCPU;
859	ke->ke_flags &= ~KEF_NEEDRESCHED;
860	/*
861	 * At the last moment: if this KSE is not on the run queue,
862	 * it needs to be freed correctly and the thread treated accordingly.
863	 */
864	if ((td->td_state == TDS_RUNNING) &&
865	    ((ke->ke_flags & KEF_IDLEKSE) == 0)) {
866		/* Put us back on the run queue (kse and all). */
867		setrunqueue(td);
868	} else if ((td->td_flags & TDF_UNBOUND) &&
869	    (td->td_state != TDS_RUNQ)) { /* in case of old code */
870		/*
871		 * We will not be on the run queue.
872		 * Someone else can use the KSE if they need it.
873		 */
874		td->td_kse = NULL;
875		kse_reassign(ke);
876	}
877	cpu_switch();
878	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
879	sched_lock.mtx_recurse = sched_nest;
880	sched_lock.mtx_lock = (uintptr_t)td;
881	CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
882	    p->p_comm);
883	if (PCPU_GET(switchtime.sec) == 0)
884		binuptime(PCPU_PTR(switchtime));
885	PCPU_SET(switchticks, ticks);
886
887	/*
888	 * Call the switchin function while still holding the scheduler lock
889	 * (used by the idlezero code and the general page-zeroing code)
890	 */
891	if (td->td_switchin)
892		td->td_switchin();
893}
894
895/*
896 * Change process state to be runnable,
897 * placing it on the run queue if it is in memory,
898 * and awakening the swapper if it isn't in memory.
899 */
900void
901setrunnable(struct thread *td)
902{
903	struct proc *p = td->td_proc;
904
905	mtx_assert(&sched_lock, MA_OWNED);
906	switch (p->p_state) {
907	case PRS_ZOMBIE:
908		panic("setrunnable(1)");
909	default:
910		break;
911	}
912	switch (td->td_state) {
913	case 0:
914	case TDS_RUNNING:
915	case TDS_IWAIT:
916	default:
917		printf("state is %d", td->td_state);
918		panic("setrunnable(2)");
919	case TDS_SUSPENDED:
920		thread_unsuspend(p);
921		break;
922	case TDS_SLP:			/* e.g. when sending signals */
923		if (td->td_flags & TDF_CVWAITQ)
924			cv_waitq_remove(td);
925		else
926			unsleep(td);
927	case TDS_UNQUEUED:  /* being put back onto the queue */
928	case TDS_NEW:	/* not yet had time to suspend */
929	case TDS_RUNQ:	/* not yet had time to suspend */
930		break;
931	}
932	if (td->td_ksegrp->kg_slptime > 1)
933		updatepri(td);
934	td->td_ksegrp->kg_slptime = 0;
935	if ((p->p_sflag & PS_INMEM) == 0) {
936		td->td_state = TDS_RUNQ; /* XXXKSE not a good idea */
937		p->p_sflag |= PS_SWAPINREQ;
938		wakeup(&proc0);
939	} else {
940		if (td->td_state != TDS_RUNQ)
941			setrunqueue(td); /* XXXKSE */
942		maybe_resched(td);
943	}
944}
945
946/*
947 * Compute the priority of a process when running in user mode.
948 * Arrange to reschedule if the resulting priority is better
949 * than that of the current process.
950 */
951void
952resetpriority(kg)
953	register struct ksegrp *kg;
954{
955	register unsigned int newpriority;
956	struct thread *td;
957
958	mtx_lock_spin(&sched_lock);
959	if (kg->kg_pri_class == PRI_TIMESHARE) {
960		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
961		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
962		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
963		    PRI_MAX_TIMESHARE);
964		kg->kg_user_pri = newpriority;
965	}
966	FOREACH_THREAD_IN_GROUP(kg, td) {
967		maybe_resched(td);			/* XXXKSE silly */
968	}
969	mtx_unlock_spin(&sched_lock);
970}
971
972/*
973 * Compute a tenex style load average of a quantity on
974 * 1, 5 and 15 minute intervals.
975 * XXXKSE   Needs complete rewrite when correct info is available.
976 * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
977 */
978static void
979loadav(void *arg)
980{
981	int i, nrun;
982	struct loadavg *avg;
983	struct proc *p;
984	struct thread *td;
985
986	avg = &averunnable;
987	sx_slock(&allproc_lock);
988	nrun = 0;
989	FOREACH_PROC_IN_SYSTEM(p) {
990		FOREACH_THREAD_IN_PROC(p, td) {
991			switch (td->td_state) {
992			case TDS_RUNQ:
993			case TDS_RUNNING:
994				if ((p->p_flag & P_NOLOAD) != 0)
995					goto nextproc;
996				nrun++; /* XXXKSE */
997			default:
998				break;
999			}
1000nextproc:
1001			continue;
1002		}
1003	}
1004	sx_sunlock(&allproc_lock);
1005	for (i = 0; i < 3; i++)
1006		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1007		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1008
1009	/*
1010	 * Schedule the next update to occur after 5 seconds, but add a
1011	 * random variation to avoid synchronisation with processes that
1012	 * run at regular intervals.
1013	 */
1014	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
1015	    loadav, NULL);
1016}
1017
1018/* ARGSUSED */
1019static void
1020sched_setup(dummy)
1021	void *dummy;
1022{
1023
1024	callout_init(&schedcpu_callout, 1);
1025	callout_init(&roundrobin_callout, 0);
1026	callout_init(&loadav_callout, 0);
1027
1028	/* Kick off timeout driven events by calling first time. */
1029	roundrobin(NULL);
1030	schedcpu(NULL);
1031	loadav(NULL);
1032}
1033
1034/*
1035 * We adjust the priority of the current process.  The priority of
1036 * a process gets worse as it accumulates CPU time.  The cpu usage
1037 * estimator (p_estcpu) is increased here.  resetpriority() will
1038 * compute a different priority each time p_estcpu increases by
1039 * INVERSE_ESTCPU_WEIGHT
1040 * (until MAXPRI is reached).  The cpu usage estimator ramps up
1041 * quite quickly when the process is running (linearly), and decays
1042 * away exponentially, at a rate which is proportionally slower when
1043 * the system is busy.  The basic principle is that the system will
1044 * 90% forget that the process used a lot of CPU time in 5 * loadav
1045 * seconds.  This causes the system to favor processes which haven't
1046 * run much recently, and to round-robin among other processes.
1047 */
1048void
1049schedclock(td)
1050	struct thread *td;
1051{
1052	struct kse *ke;
1053	struct ksegrp *kg;
1054
1055	KASSERT((td != NULL), ("schedlock: null thread pointer"));
1056	ke = td->td_kse;
1057	kg = td->td_ksegrp;
1058	ke->ke_cpticks++;
1059	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
1060	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
1061		resetpriority(kg);
1062		if (td->td_priority >= PUSER)
1063			td->td_priority = kg->kg_user_pri;
1064	}
1065}
1066
1067/*
1068 * General purpose yield system call
1069 */
1070int
1071yield(struct thread *td, struct yield_args *uap)
1072{
1073	struct ksegrp *kg = td->td_ksegrp;
1074
1075	mtx_assert(&Giant, MA_NOTOWNED);
1076	mtx_lock_spin(&sched_lock);
1077	td->td_priority = PRI_MAX_TIMESHARE;
1078	kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
1079	mi_switch();
1080	mtx_unlock_spin(&sched_lock);
1081	td->td_retval[0] = 0;
1082
1083	return (0);
1084}
1085
1086