kern_proc.c revision 232181
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_proc.c 232181 2012-02-26 14:25:48Z trociny $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/sbuf.h>
59#include <sys/sysent.h>
60#include <sys/sched.h>
61#include <sys/smp.h>
62#include <sys/stack.h>
63#include <sys/stat.h>
64#include <sys/sysctl.h>
65#include <sys/filedesc.h>
66#include <sys/tty.h>
67#include <sys/signalvar.h>
68#include <sys/sdt.h>
69#include <sys/sx.h>
70#include <sys/user.h>
71#include <sys/jail.h>
72#include <sys/vnode.h>
73#include <sys/eventhandler.h>
74
75#ifdef DDB
76#include <ddb/ddb.h>
77#endif
78
79#include <vm/vm.h>
80#include <vm/vm_extern.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/uma.h>
86
87#ifdef COMPAT_FREEBSD32
88#include <compat/freebsd32/freebsd32.h>
89#include <compat/freebsd32/freebsd32_util.h>
90#endif
91
92SDT_PROVIDER_DEFINE(proc);
93SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
94SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
95SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
96SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
97SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
98SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
99SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
100SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
101SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
102SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
103SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
104SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
105SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
106SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
107SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
108SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
109SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
110SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
111SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
112SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
113SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
114SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
115SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
116SDT_PROBE_DEFINE(proc, kernel, init, return, return);
117SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
118SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
119SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
120
121MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
122MALLOC_DEFINE(M_SESSION, "session", "session header");
123static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
124MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
125
126static void doenterpgrp(struct proc *, struct pgrp *);
127static void orphanpg(struct pgrp *pg);
128static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
129static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
130static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
131    int preferthread);
132static void pgadjustjobc(struct pgrp *pgrp, int entering);
133static void pgdelete(struct pgrp *);
134static int proc_ctor(void *mem, int size, void *arg, int flags);
135static void proc_dtor(void *mem, int size, void *arg);
136static int proc_init(void *mem, int size, int flags);
137static void proc_fini(void *mem, int size);
138static void pargs_free(struct pargs *pa);
139
140/*
141 * Other process lists
142 */
143struct pidhashhead *pidhashtbl;
144u_long pidhash;
145struct pgrphashhead *pgrphashtbl;
146u_long pgrphash;
147struct proclist allproc;
148struct proclist zombproc;
149struct sx allproc_lock;
150struct sx proctree_lock;
151struct mtx ppeers_lock;
152uma_zone_t proc_zone;
153
154int kstack_pages = KSTACK_PAGES;
155SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156    "Kernel stack size in pages");
157
158CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
159#ifdef COMPAT_FREEBSD32
160CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
161#endif
162
163/*
164 * Initialize global process hashing structures.
165 */
166void
167procinit()
168{
169
170	sx_init(&allproc_lock, "allproc");
171	sx_init(&proctree_lock, "proctree");
172	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
173	LIST_INIT(&allproc);
174	LIST_INIT(&zombproc);
175	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
176	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
177	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
178	    proc_ctor, proc_dtor, proc_init, proc_fini,
179	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
180	uihashinit();
181}
182
183/*
184 * Prepare a proc for use.
185 */
186static int
187proc_ctor(void *mem, int size, void *arg, int flags)
188{
189	struct proc *p;
190
191	p = (struct proc *)mem;
192	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
193	EVENTHANDLER_INVOKE(process_ctor, p);
194	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
195	return (0);
196}
197
198/*
199 * Reclaim a proc after use.
200 */
201static void
202proc_dtor(void *mem, int size, void *arg)
203{
204	struct proc *p;
205	struct thread *td;
206
207	/* INVARIANTS checks go here */
208	p = (struct proc *)mem;
209	td = FIRST_THREAD_IN_PROC(p);
210	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
211	if (td != NULL) {
212#ifdef INVARIANTS
213		KASSERT((p->p_numthreads == 1),
214		    ("bad number of threads in exiting process"));
215		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
216#endif
217		/* Free all OSD associated to this thread. */
218		osd_thread_exit(td);
219	}
220	EVENTHANDLER_INVOKE(process_dtor, p);
221	if (p->p_ksi != NULL)
222		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
223	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
224}
225
226/*
227 * Initialize type-stable parts of a proc (when newly created).
228 */
229static int
230proc_init(void *mem, int size, int flags)
231{
232	struct proc *p;
233
234	p = (struct proc *)mem;
235	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
236	p->p_sched = (struct p_sched *)&p[1];
237	bzero(&p->p_mtx, sizeof(struct mtx));
238	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
239	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
240	cv_init(&p->p_pwait, "ppwait");
241	cv_init(&p->p_dbgwait, "dbgwait");
242	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
243	EVENTHANDLER_INVOKE(process_init, p);
244	p->p_stats = pstats_alloc();
245	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
246	return (0);
247}
248
249/*
250 * UMA should ensure that this function is never called.
251 * Freeing a proc structure would violate type stability.
252 */
253static void
254proc_fini(void *mem, int size)
255{
256#ifdef notnow
257	struct proc *p;
258
259	p = (struct proc *)mem;
260	EVENTHANDLER_INVOKE(process_fini, p);
261	pstats_free(p->p_stats);
262	thread_free(FIRST_THREAD_IN_PROC(p));
263	mtx_destroy(&p->p_mtx);
264	if (p->p_ksi != NULL)
265		ksiginfo_free(p->p_ksi);
266#else
267	panic("proc reclaimed");
268#endif
269}
270
271/*
272 * Is p an inferior of the current process?
273 */
274int
275inferior(p)
276	register struct proc *p;
277{
278
279	sx_assert(&proctree_lock, SX_LOCKED);
280	for (; p != curproc; p = p->p_pptr)
281		if (p->p_pid == 0)
282			return (0);
283	return (1);
284}
285
286/*
287 * Locate a process by number; return only "live" processes -- i.e., neither
288 * zombies nor newly born but incompletely initialized processes.  By not
289 * returning processes in the PRS_NEW state, we allow callers to avoid
290 * testing for that condition to avoid dereferencing p_ucred, et al.
291 */
292struct proc *
293pfind(pid)
294	register pid_t pid;
295{
296	register struct proc *p;
297
298	sx_slock(&allproc_lock);
299	LIST_FOREACH(p, PIDHASH(pid), p_hash)
300		if (p->p_pid == pid) {
301			PROC_LOCK(p);
302			if (p->p_state == PRS_NEW) {
303				PROC_UNLOCK(p);
304				p = NULL;
305			}
306			break;
307		}
308	sx_sunlock(&allproc_lock);
309	return (p);
310}
311
312/*
313 * Locate a process group by number.
314 * The caller must hold proctree_lock.
315 */
316struct pgrp *
317pgfind(pgid)
318	register pid_t pgid;
319{
320	register struct pgrp *pgrp;
321
322	sx_assert(&proctree_lock, SX_LOCKED);
323
324	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
325		if (pgrp->pg_id == pgid) {
326			PGRP_LOCK(pgrp);
327			return (pgrp);
328		}
329	}
330	return (NULL);
331}
332
333/*
334 * Locate process and do additional manipulations, depending on flags.
335 */
336int
337pget(pid_t pid, int flags, struct proc **pp)
338{
339	struct proc *p;
340	int error;
341
342	p = pfind(pid);
343	if (p == NULL)
344		return (ESRCH);
345	if ((flags & PGET_CANSEE) != 0) {
346		error = p_cansee(curthread, p);
347		if (error != 0)
348			goto errout;
349	}
350	if ((flags & PGET_CANDEBUG) != 0) {
351		error = p_candebug(curthread, p);
352		if (error != 0)
353			goto errout;
354	}
355	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
356		error = EPERM;
357		goto errout;
358	}
359	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
360		error = ESRCH;
361		goto errout;
362	}
363	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
364		/*
365		 * XXXRW: Not clear ESRCH is the right error during proc
366		 * execve().
367		 */
368		error = ESRCH;
369		goto errout;
370	}
371	if ((flags & PGET_HOLD) != 0) {
372		_PHOLD(p);
373		PROC_UNLOCK(p);
374	}
375	*pp = p;
376	return (0);
377errout:
378	PROC_UNLOCK(p);
379	return (error);
380}
381
382/*
383 * Create a new process group.
384 * pgid must be equal to the pid of p.
385 * Begin a new session if required.
386 */
387int
388enterpgrp(p, pgid, pgrp, sess)
389	register struct proc *p;
390	pid_t pgid;
391	struct pgrp *pgrp;
392	struct session *sess;
393{
394	struct pgrp *pgrp2;
395
396	sx_assert(&proctree_lock, SX_XLOCKED);
397
398	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
399	KASSERT(p->p_pid == pgid,
400	    ("enterpgrp: new pgrp and pid != pgid"));
401
402	pgrp2 = pgfind(pgid);
403
404	KASSERT(pgrp2 == NULL,
405	    ("enterpgrp: pgrp with pgid exists"));
406	KASSERT(!SESS_LEADER(p),
407	    ("enterpgrp: session leader attempted setpgrp"));
408
409	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
410
411	if (sess != NULL) {
412		/*
413		 * new session
414		 */
415		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
416		PROC_LOCK(p);
417		p->p_flag &= ~P_CONTROLT;
418		PROC_UNLOCK(p);
419		PGRP_LOCK(pgrp);
420		sess->s_leader = p;
421		sess->s_sid = p->p_pid;
422		refcount_init(&sess->s_count, 1);
423		sess->s_ttyvp = NULL;
424		sess->s_ttydp = NULL;
425		sess->s_ttyp = NULL;
426		bcopy(p->p_session->s_login, sess->s_login,
427			    sizeof(sess->s_login));
428		pgrp->pg_session = sess;
429		KASSERT(p == curproc,
430		    ("enterpgrp: mksession and p != curproc"));
431	} else {
432		pgrp->pg_session = p->p_session;
433		sess_hold(pgrp->pg_session);
434		PGRP_LOCK(pgrp);
435	}
436	pgrp->pg_id = pgid;
437	LIST_INIT(&pgrp->pg_members);
438
439	/*
440	 * As we have an exclusive lock of proctree_lock,
441	 * this should not deadlock.
442	 */
443	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
444	pgrp->pg_jobc = 0;
445	SLIST_INIT(&pgrp->pg_sigiolst);
446	PGRP_UNLOCK(pgrp);
447
448	doenterpgrp(p, pgrp);
449
450	return (0);
451}
452
453/*
454 * Move p to an existing process group
455 */
456int
457enterthispgrp(p, pgrp)
458	register struct proc *p;
459	struct pgrp *pgrp;
460{
461
462	sx_assert(&proctree_lock, SX_XLOCKED);
463	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
464	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
465	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
466	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
467	KASSERT(pgrp->pg_session == p->p_session,
468		("%s: pgrp's session %p, p->p_session %p.\n",
469		__func__,
470		pgrp->pg_session,
471		p->p_session));
472	KASSERT(pgrp != p->p_pgrp,
473		("%s: p belongs to pgrp.", __func__));
474
475	doenterpgrp(p, pgrp);
476
477	return (0);
478}
479
480/*
481 * Move p to a process group
482 */
483static void
484doenterpgrp(p, pgrp)
485	struct proc *p;
486	struct pgrp *pgrp;
487{
488	struct pgrp *savepgrp;
489
490	sx_assert(&proctree_lock, SX_XLOCKED);
491	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
492	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
493	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
494	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
495
496	savepgrp = p->p_pgrp;
497
498	/*
499	 * Adjust eligibility of affected pgrps to participate in job control.
500	 * Increment eligibility counts before decrementing, otherwise we
501	 * could reach 0 spuriously during the first call.
502	 */
503	fixjobc(p, pgrp, 1);
504	fixjobc(p, p->p_pgrp, 0);
505
506	PGRP_LOCK(pgrp);
507	PGRP_LOCK(savepgrp);
508	PROC_LOCK(p);
509	LIST_REMOVE(p, p_pglist);
510	p->p_pgrp = pgrp;
511	PROC_UNLOCK(p);
512	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
513	PGRP_UNLOCK(savepgrp);
514	PGRP_UNLOCK(pgrp);
515	if (LIST_EMPTY(&savepgrp->pg_members))
516		pgdelete(savepgrp);
517}
518
519/*
520 * remove process from process group
521 */
522int
523leavepgrp(p)
524	register struct proc *p;
525{
526	struct pgrp *savepgrp;
527
528	sx_assert(&proctree_lock, SX_XLOCKED);
529	savepgrp = p->p_pgrp;
530	PGRP_LOCK(savepgrp);
531	PROC_LOCK(p);
532	LIST_REMOVE(p, p_pglist);
533	p->p_pgrp = NULL;
534	PROC_UNLOCK(p);
535	PGRP_UNLOCK(savepgrp);
536	if (LIST_EMPTY(&savepgrp->pg_members))
537		pgdelete(savepgrp);
538	return (0);
539}
540
541/*
542 * delete a process group
543 */
544static void
545pgdelete(pgrp)
546	register struct pgrp *pgrp;
547{
548	struct session *savesess;
549	struct tty *tp;
550
551	sx_assert(&proctree_lock, SX_XLOCKED);
552	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
553	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
554
555	/*
556	 * Reset any sigio structures pointing to us as a result of
557	 * F_SETOWN with our pgid.
558	 */
559	funsetownlst(&pgrp->pg_sigiolst);
560
561	PGRP_LOCK(pgrp);
562	tp = pgrp->pg_session->s_ttyp;
563	LIST_REMOVE(pgrp, pg_hash);
564	savesess = pgrp->pg_session;
565	PGRP_UNLOCK(pgrp);
566
567	/* Remove the reference to the pgrp before deallocating it. */
568	if (tp != NULL) {
569		tty_lock(tp);
570		tty_rel_pgrp(tp, pgrp);
571	}
572
573	mtx_destroy(&pgrp->pg_mtx);
574	free(pgrp, M_PGRP);
575	sess_release(savesess);
576}
577
578static void
579pgadjustjobc(pgrp, entering)
580	struct pgrp *pgrp;
581	int entering;
582{
583
584	PGRP_LOCK(pgrp);
585	if (entering)
586		pgrp->pg_jobc++;
587	else {
588		--pgrp->pg_jobc;
589		if (pgrp->pg_jobc == 0)
590			orphanpg(pgrp);
591	}
592	PGRP_UNLOCK(pgrp);
593}
594
595/*
596 * Adjust pgrp jobc counters when specified process changes process group.
597 * We count the number of processes in each process group that "qualify"
598 * the group for terminal job control (those with a parent in a different
599 * process group of the same session).  If that count reaches zero, the
600 * process group becomes orphaned.  Check both the specified process'
601 * process group and that of its children.
602 * entering == 0 => p is leaving specified group.
603 * entering == 1 => p is entering specified group.
604 */
605void
606fixjobc(p, pgrp, entering)
607	register struct proc *p;
608	register struct pgrp *pgrp;
609	int entering;
610{
611	register struct pgrp *hispgrp;
612	register struct session *mysession;
613
614	sx_assert(&proctree_lock, SX_LOCKED);
615	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
616	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
617	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
618
619	/*
620	 * Check p's parent to see whether p qualifies its own process
621	 * group; if so, adjust count for p's process group.
622	 */
623	mysession = pgrp->pg_session;
624	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
625	    hispgrp->pg_session == mysession)
626		pgadjustjobc(pgrp, entering);
627
628	/*
629	 * Check this process' children to see whether they qualify
630	 * their process groups; if so, adjust counts for children's
631	 * process groups.
632	 */
633	LIST_FOREACH(p, &p->p_children, p_sibling) {
634		hispgrp = p->p_pgrp;
635		if (hispgrp == pgrp ||
636		    hispgrp->pg_session != mysession)
637			continue;
638		PROC_LOCK(p);
639		if (p->p_state == PRS_ZOMBIE) {
640			PROC_UNLOCK(p);
641			continue;
642		}
643		PROC_UNLOCK(p);
644		pgadjustjobc(hispgrp, entering);
645	}
646}
647
648/*
649 * A process group has become orphaned;
650 * if there are any stopped processes in the group,
651 * hang-up all process in that group.
652 */
653static void
654orphanpg(pg)
655	struct pgrp *pg;
656{
657	register struct proc *p;
658
659	PGRP_LOCK_ASSERT(pg, MA_OWNED);
660
661	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
662		PROC_LOCK(p);
663		if (P_SHOULDSTOP(p)) {
664			PROC_UNLOCK(p);
665			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
666				PROC_LOCK(p);
667				kern_psignal(p, SIGHUP);
668				kern_psignal(p, SIGCONT);
669				PROC_UNLOCK(p);
670			}
671			return;
672		}
673		PROC_UNLOCK(p);
674	}
675}
676
677void
678sess_hold(struct session *s)
679{
680
681	refcount_acquire(&s->s_count);
682}
683
684void
685sess_release(struct session *s)
686{
687
688	if (refcount_release(&s->s_count)) {
689		if (s->s_ttyp != NULL) {
690			tty_lock(s->s_ttyp);
691			tty_rel_sess(s->s_ttyp, s);
692		}
693		mtx_destroy(&s->s_mtx);
694		free(s, M_SESSION);
695	}
696}
697
698#include "opt_ddb.h"
699#ifdef DDB
700#include <ddb/ddb.h>
701
702DB_SHOW_COMMAND(pgrpdump, pgrpdump)
703{
704	register struct pgrp *pgrp;
705	register struct proc *p;
706	register int i;
707
708	for (i = 0; i <= pgrphash; i++) {
709		if (!LIST_EMPTY(&pgrphashtbl[i])) {
710			printf("\tindx %d\n", i);
711			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
712				printf(
713			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
714				    (void *)pgrp, (long)pgrp->pg_id,
715				    (void *)pgrp->pg_session,
716				    pgrp->pg_session->s_count,
717				    (void *)LIST_FIRST(&pgrp->pg_members));
718				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
719					printf("\t\tpid %ld addr %p pgrp %p\n",
720					    (long)p->p_pid, (void *)p,
721					    (void *)p->p_pgrp);
722				}
723			}
724		}
725	}
726}
727#endif /* DDB */
728
729/*
730 * Calculate the kinfo_proc members which contain process-wide
731 * informations.
732 * Must be called with the target process locked.
733 */
734static void
735fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
736{
737	struct thread *td;
738
739	PROC_LOCK_ASSERT(p, MA_OWNED);
740
741	kp->ki_estcpu = 0;
742	kp->ki_pctcpu = 0;
743	FOREACH_THREAD_IN_PROC(p, td) {
744		thread_lock(td);
745		kp->ki_pctcpu += sched_pctcpu(td);
746		kp->ki_estcpu += td->td_estcpu;
747		thread_unlock(td);
748	}
749}
750
751/*
752 * Clear kinfo_proc and fill in any information that is common
753 * to all threads in the process.
754 * Must be called with the target process locked.
755 */
756static void
757fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
758{
759	struct thread *td0;
760	struct tty *tp;
761	struct session *sp;
762	struct ucred *cred;
763	struct sigacts *ps;
764
765	PROC_LOCK_ASSERT(p, MA_OWNED);
766	bzero(kp, sizeof(*kp));
767
768	kp->ki_structsize = sizeof(*kp);
769	kp->ki_paddr = p;
770	kp->ki_addr =/* p->p_addr; */0; /* XXX */
771	kp->ki_args = p->p_args;
772	kp->ki_textvp = p->p_textvp;
773#ifdef KTRACE
774	kp->ki_tracep = p->p_tracevp;
775	kp->ki_traceflag = p->p_traceflag;
776#endif
777	kp->ki_fd = p->p_fd;
778	kp->ki_vmspace = p->p_vmspace;
779	kp->ki_flag = p->p_flag;
780	cred = p->p_ucred;
781	if (cred) {
782		kp->ki_uid = cred->cr_uid;
783		kp->ki_ruid = cred->cr_ruid;
784		kp->ki_svuid = cred->cr_svuid;
785		kp->ki_cr_flags = 0;
786		if (cred->cr_flags & CRED_FLAG_CAPMODE)
787			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
788		/* XXX bde doesn't like KI_NGROUPS */
789		if (cred->cr_ngroups > KI_NGROUPS) {
790			kp->ki_ngroups = KI_NGROUPS;
791			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
792		} else
793			kp->ki_ngroups = cred->cr_ngroups;
794		bcopy(cred->cr_groups, kp->ki_groups,
795		    kp->ki_ngroups * sizeof(gid_t));
796		kp->ki_rgid = cred->cr_rgid;
797		kp->ki_svgid = cred->cr_svgid;
798		/* If jailed(cred), emulate the old P_JAILED flag. */
799		if (jailed(cred)) {
800			kp->ki_flag |= P_JAILED;
801			/* If inside the jail, use 0 as a jail ID. */
802			if (cred->cr_prison != curthread->td_ucred->cr_prison)
803				kp->ki_jid = cred->cr_prison->pr_id;
804		}
805		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
806		    sizeof(kp->ki_loginclass));
807	}
808	ps = p->p_sigacts;
809	if (ps) {
810		mtx_lock(&ps->ps_mtx);
811		kp->ki_sigignore = ps->ps_sigignore;
812		kp->ki_sigcatch = ps->ps_sigcatch;
813		mtx_unlock(&ps->ps_mtx);
814	}
815	if (p->p_state != PRS_NEW &&
816	    p->p_state != PRS_ZOMBIE &&
817	    p->p_vmspace != NULL) {
818		struct vmspace *vm = p->p_vmspace;
819
820		kp->ki_size = vm->vm_map.size;
821		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
822		FOREACH_THREAD_IN_PROC(p, td0) {
823			if (!TD_IS_SWAPPED(td0))
824				kp->ki_rssize += td0->td_kstack_pages;
825		}
826		kp->ki_swrss = vm->vm_swrss;
827		kp->ki_tsize = vm->vm_tsize;
828		kp->ki_dsize = vm->vm_dsize;
829		kp->ki_ssize = vm->vm_ssize;
830	} else if (p->p_state == PRS_ZOMBIE)
831		kp->ki_stat = SZOMB;
832	if (kp->ki_flag & P_INMEM)
833		kp->ki_sflag = PS_INMEM;
834	else
835		kp->ki_sflag = 0;
836	/* Calculate legacy swtime as seconds since 'swtick'. */
837	kp->ki_swtime = (ticks - p->p_swtick) / hz;
838	kp->ki_pid = p->p_pid;
839	kp->ki_nice = p->p_nice;
840	kp->ki_start = p->p_stats->p_start;
841	timevaladd(&kp->ki_start, &boottime);
842	PROC_SLOCK(p);
843	rufetch(p, &kp->ki_rusage);
844	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
845	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
846	PROC_SUNLOCK(p);
847	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
848	/* Some callers want child times in a single value. */
849	kp->ki_childtime = kp->ki_childstime;
850	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
851
852	tp = NULL;
853	if (p->p_pgrp) {
854		kp->ki_pgid = p->p_pgrp->pg_id;
855		kp->ki_jobc = p->p_pgrp->pg_jobc;
856		sp = p->p_pgrp->pg_session;
857
858		if (sp != NULL) {
859			kp->ki_sid = sp->s_sid;
860			SESS_LOCK(sp);
861			strlcpy(kp->ki_login, sp->s_login,
862			    sizeof(kp->ki_login));
863			if (sp->s_ttyvp)
864				kp->ki_kiflag |= KI_CTTY;
865			if (SESS_LEADER(p))
866				kp->ki_kiflag |= KI_SLEADER;
867			/* XXX proctree_lock */
868			tp = sp->s_ttyp;
869			SESS_UNLOCK(sp);
870		}
871	}
872	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
873		kp->ki_tdev = tty_udev(tp);
874		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
875		if (tp->t_session)
876			kp->ki_tsid = tp->t_session->s_sid;
877	} else
878		kp->ki_tdev = NODEV;
879	if (p->p_comm[0] != '\0')
880		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
881	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
882	    p->p_sysent->sv_name[0] != '\0')
883		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
884	kp->ki_siglist = p->p_siglist;
885	kp->ki_xstat = p->p_xstat;
886	kp->ki_acflag = p->p_acflag;
887	kp->ki_lock = p->p_lock;
888	if (p->p_pptr)
889		kp->ki_ppid = p->p_pptr->p_pid;
890}
891
892/*
893 * Fill in information that is thread specific.  Must be called with
894 * target process locked.  If 'preferthread' is set, overwrite certain
895 * process-related fields that are maintained for both threads and
896 * processes.
897 */
898static void
899fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
900{
901	struct proc *p;
902
903	p = td->td_proc;
904	kp->ki_tdaddr = td;
905	PROC_LOCK_ASSERT(p, MA_OWNED);
906
907	if (preferthread)
908		PROC_SLOCK(p);
909	thread_lock(td);
910	if (td->td_wmesg != NULL)
911		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
912	else
913		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
914	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
915	if (TD_ON_LOCK(td)) {
916		kp->ki_kiflag |= KI_LOCKBLOCK;
917		strlcpy(kp->ki_lockname, td->td_lockname,
918		    sizeof(kp->ki_lockname));
919	} else {
920		kp->ki_kiflag &= ~KI_LOCKBLOCK;
921		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
922	}
923
924	if (p->p_state == PRS_NORMAL) { /* approximate. */
925		if (TD_ON_RUNQ(td) ||
926		    TD_CAN_RUN(td) ||
927		    TD_IS_RUNNING(td)) {
928			kp->ki_stat = SRUN;
929		} else if (P_SHOULDSTOP(p)) {
930			kp->ki_stat = SSTOP;
931		} else if (TD_IS_SLEEPING(td)) {
932			kp->ki_stat = SSLEEP;
933		} else if (TD_ON_LOCK(td)) {
934			kp->ki_stat = SLOCK;
935		} else {
936			kp->ki_stat = SWAIT;
937		}
938	} else if (p->p_state == PRS_ZOMBIE) {
939		kp->ki_stat = SZOMB;
940	} else {
941		kp->ki_stat = SIDL;
942	}
943
944	/* Things in the thread */
945	kp->ki_wchan = td->td_wchan;
946	kp->ki_pri.pri_level = td->td_priority;
947	kp->ki_pri.pri_native = td->td_base_pri;
948	kp->ki_lastcpu = td->td_lastcpu;
949	kp->ki_oncpu = td->td_oncpu;
950	kp->ki_tdflags = td->td_flags;
951	kp->ki_tid = td->td_tid;
952	kp->ki_numthreads = p->p_numthreads;
953	kp->ki_pcb = td->td_pcb;
954	kp->ki_kstack = (void *)td->td_kstack;
955	kp->ki_slptime = (ticks - td->td_slptick) / hz;
956	kp->ki_pri.pri_class = td->td_pri_class;
957	kp->ki_pri.pri_user = td->td_user_pri;
958
959	if (preferthread) {
960		rufetchtd(td, &kp->ki_rusage);
961		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
962		kp->ki_pctcpu = sched_pctcpu(td);
963		kp->ki_estcpu = td->td_estcpu;
964	}
965
966	/* We can't get this anymore but ps etc never used it anyway. */
967	kp->ki_rqindex = 0;
968
969	if (preferthread)
970		kp->ki_siglist = td->td_siglist;
971	kp->ki_sigmask = td->td_sigmask;
972	thread_unlock(td);
973	if (preferthread)
974		PROC_SUNLOCK(p);
975}
976
977/*
978 * Fill in a kinfo_proc structure for the specified process.
979 * Must be called with the target process locked.
980 */
981void
982fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
983{
984
985	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
986
987	fill_kinfo_proc_only(p, kp);
988	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
989	fill_kinfo_aggregate(p, kp);
990}
991
992struct pstats *
993pstats_alloc(void)
994{
995
996	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
997}
998
999/*
1000 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1001 */
1002void
1003pstats_fork(struct pstats *src, struct pstats *dst)
1004{
1005
1006	bzero(&dst->pstat_startzero,
1007	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1008	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1009	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1010}
1011
1012void
1013pstats_free(struct pstats *ps)
1014{
1015
1016	free(ps, M_SUBPROC);
1017}
1018
1019/*
1020 * Locate a zombie process by number
1021 */
1022struct proc *
1023zpfind(pid_t pid)
1024{
1025	struct proc *p;
1026
1027	sx_slock(&allproc_lock);
1028	LIST_FOREACH(p, &zombproc, p_list)
1029		if (p->p_pid == pid) {
1030			PROC_LOCK(p);
1031			break;
1032		}
1033	sx_sunlock(&allproc_lock);
1034	return (p);
1035}
1036
1037#define KERN_PROC_ZOMBMASK	0x3
1038#define KERN_PROC_NOTHREADS	0x4
1039
1040#ifdef COMPAT_FREEBSD32
1041
1042/*
1043 * This function is typically used to copy out the kernel address, so
1044 * it can be replaced by assignment of zero.
1045 */
1046static inline uint32_t
1047ptr32_trim(void *ptr)
1048{
1049	uintptr_t uptr;
1050
1051	uptr = (uintptr_t)ptr;
1052	return ((uptr > UINT_MAX) ? 0 : uptr);
1053}
1054
1055#define PTRTRIM_CP(src,dst,fld) \
1056	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1057
1058static void
1059freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1060{
1061	int i;
1062
1063	bzero(ki32, sizeof(struct kinfo_proc32));
1064	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1065	CP(*ki, *ki32, ki_layout);
1066	PTRTRIM_CP(*ki, *ki32, ki_args);
1067	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1068	PTRTRIM_CP(*ki, *ki32, ki_addr);
1069	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1070	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1071	PTRTRIM_CP(*ki, *ki32, ki_fd);
1072	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1073	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1074	CP(*ki, *ki32, ki_pid);
1075	CP(*ki, *ki32, ki_ppid);
1076	CP(*ki, *ki32, ki_pgid);
1077	CP(*ki, *ki32, ki_tpgid);
1078	CP(*ki, *ki32, ki_sid);
1079	CP(*ki, *ki32, ki_tsid);
1080	CP(*ki, *ki32, ki_jobc);
1081	CP(*ki, *ki32, ki_tdev);
1082	CP(*ki, *ki32, ki_siglist);
1083	CP(*ki, *ki32, ki_sigmask);
1084	CP(*ki, *ki32, ki_sigignore);
1085	CP(*ki, *ki32, ki_sigcatch);
1086	CP(*ki, *ki32, ki_uid);
1087	CP(*ki, *ki32, ki_ruid);
1088	CP(*ki, *ki32, ki_svuid);
1089	CP(*ki, *ki32, ki_rgid);
1090	CP(*ki, *ki32, ki_svgid);
1091	CP(*ki, *ki32, ki_ngroups);
1092	for (i = 0; i < KI_NGROUPS; i++)
1093		CP(*ki, *ki32, ki_groups[i]);
1094	CP(*ki, *ki32, ki_size);
1095	CP(*ki, *ki32, ki_rssize);
1096	CP(*ki, *ki32, ki_swrss);
1097	CP(*ki, *ki32, ki_tsize);
1098	CP(*ki, *ki32, ki_dsize);
1099	CP(*ki, *ki32, ki_ssize);
1100	CP(*ki, *ki32, ki_xstat);
1101	CP(*ki, *ki32, ki_acflag);
1102	CP(*ki, *ki32, ki_pctcpu);
1103	CP(*ki, *ki32, ki_estcpu);
1104	CP(*ki, *ki32, ki_slptime);
1105	CP(*ki, *ki32, ki_swtime);
1106	CP(*ki, *ki32, ki_runtime);
1107	TV_CP(*ki, *ki32, ki_start);
1108	TV_CP(*ki, *ki32, ki_childtime);
1109	CP(*ki, *ki32, ki_flag);
1110	CP(*ki, *ki32, ki_kiflag);
1111	CP(*ki, *ki32, ki_traceflag);
1112	CP(*ki, *ki32, ki_stat);
1113	CP(*ki, *ki32, ki_nice);
1114	CP(*ki, *ki32, ki_lock);
1115	CP(*ki, *ki32, ki_rqindex);
1116	CP(*ki, *ki32, ki_oncpu);
1117	CP(*ki, *ki32, ki_lastcpu);
1118	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1119	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1120	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1121	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1122	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1123	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1124	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1125	CP(*ki, *ki32, ki_cr_flags);
1126	CP(*ki, *ki32, ki_jid);
1127	CP(*ki, *ki32, ki_numthreads);
1128	CP(*ki, *ki32, ki_tid);
1129	CP(*ki, *ki32, ki_pri);
1130	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1131	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1132	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1133	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1134	PTRTRIM_CP(*ki, *ki32, ki_udata);
1135	CP(*ki, *ki32, ki_sflag);
1136	CP(*ki, *ki32, ki_tdflags);
1137}
1138
1139static int
1140sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1141{
1142	struct kinfo_proc32 ki32;
1143	int error;
1144
1145	if (req->flags & SCTL_MASK32) {
1146		freebsd32_kinfo_proc_out(ki, &ki32);
1147		error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1148	} else
1149		error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1150	return (error);
1151}
1152#else
1153static int
1154sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1155{
1156
1157	return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1158}
1159#endif
1160
1161/*
1162 * Must be called with the process locked and will return with it unlocked.
1163 */
1164static int
1165sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1166{
1167	struct thread *td;
1168	struct kinfo_proc kinfo_proc;
1169	int error = 0;
1170	struct proc *np;
1171	pid_t pid = p->p_pid;
1172
1173	PROC_LOCK_ASSERT(p, MA_OWNED);
1174	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1175
1176	fill_kinfo_proc(p, &kinfo_proc);
1177	if (flags & KERN_PROC_NOTHREADS)
1178		error = sysctl_out_proc_copyout(&kinfo_proc, req);
1179	else {
1180		FOREACH_THREAD_IN_PROC(p, td) {
1181			fill_kinfo_thread(td, &kinfo_proc, 1);
1182			error = sysctl_out_proc_copyout(&kinfo_proc, req);
1183			if (error)
1184				break;
1185		}
1186	}
1187	PROC_UNLOCK(p);
1188	if (error)
1189		return (error);
1190	if (flags & KERN_PROC_ZOMBMASK)
1191		np = zpfind(pid);
1192	else {
1193		if (pid == 0)
1194			return (0);
1195		np = pfind(pid);
1196	}
1197	if (np == NULL)
1198		return (ESRCH);
1199	if (np != p) {
1200		PROC_UNLOCK(np);
1201		return (ESRCH);
1202	}
1203	PROC_UNLOCK(np);
1204	return (0);
1205}
1206
1207static int
1208sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1209{
1210	int *name = (int *)arg1;
1211	u_int namelen = arg2;
1212	struct proc *p;
1213	int flags, doingzomb, oid_number;
1214	int error = 0;
1215
1216	oid_number = oidp->oid_number;
1217	if (oid_number != KERN_PROC_ALL &&
1218	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1219		flags = KERN_PROC_NOTHREADS;
1220	else {
1221		flags = 0;
1222		oid_number &= ~KERN_PROC_INC_THREAD;
1223	}
1224	if (oid_number == KERN_PROC_PID) {
1225		if (namelen != 1)
1226			return (EINVAL);
1227		error = sysctl_wire_old_buffer(req, 0);
1228		if (error)
1229			return (error);
1230		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1231		if (error != 0)
1232			return (error);
1233		error = sysctl_out_proc(p, req, flags);
1234		return (error);
1235	}
1236
1237	switch (oid_number) {
1238	case KERN_PROC_ALL:
1239		if (namelen != 0)
1240			return (EINVAL);
1241		break;
1242	case KERN_PROC_PROC:
1243		if (namelen != 0 && namelen != 1)
1244			return (EINVAL);
1245		break;
1246	default:
1247		if (namelen != 1)
1248			return (EINVAL);
1249		break;
1250	}
1251
1252	if (!req->oldptr) {
1253		/* overestimate by 5 procs */
1254		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1255		if (error)
1256			return (error);
1257	}
1258	error = sysctl_wire_old_buffer(req, 0);
1259	if (error != 0)
1260		return (error);
1261	sx_slock(&allproc_lock);
1262	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1263		if (!doingzomb)
1264			p = LIST_FIRST(&allproc);
1265		else
1266			p = LIST_FIRST(&zombproc);
1267		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1268			/*
1269			 * Skip embryonic processes.
1270			 */
1271			PROC_LOCK(p);
1272			if (p->p_state == PRS_NEW) {
1273				PROC_UNLOCK(p);
1274				continue;
1275			}
1276			KASSERT(p->p_ucred != NULL,
1277			    ("process credential is NULL for non-NEW proc"));
1278			/*
1279			 * Show a user only appropriate processes.
1280			 */
1281			if (p_cansee(curthread, p)) {
1282				PROC_UNLOCK(p);
1283				continue;
1284			}
1285			/*
1286			 * TODO - make more efficient (see notes below).
1287			 * do by session.
1288			 */
1289			switch (oid_number) {
1290
1291			case KERN_PROC_GID:
1292				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1293					PROC_UNLOCK(p);
1294					continue;
1295				}
1296				break;
1297
1298			case KERN_PROC_PGRP:
1299				/* could do this by traversing pgrp */
1300				if (p->p_pgrp == NULL ||
1301				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1302					PROC_UNLOCK(p);
1303					continue;
1304				}
1305				break;
1306
1307			case KERN_PROC_RGID:
1308				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1309					PROC_UNLOCK(p);
1310					continue;
1311				}
1312				break;
1313
1314			case KERN_PROC_SESSION:
1315				if (p->p_session == NULL ||
1316				    p->p_session->s_sid != (pid_t)name[0]) {
1317					PROC_UNLOCK(p);
1318					continue;
1319				}
1320				break;
1321
1322			case KERN_PROC_TTY:
1323				if ((p->p_flag & P_CONTROLT) == 0 ||
1324				    p->p_session == NULL) {
1325					PROC_UNLOCK(p);
1326					continue;
1327				}
1328				/* XXX proctree_lock */
1329				SESS_LOCK(p->p_session);
1330				if (p->p_session->s_ttyp == NULL ||
1331				    tty_udev(p->p_session->s_ttyp) !=
1332				    (dev_t)name[0]) {
1333					SESS_UNLOCK(p->p_session);
1334					PROC_UNLOCK(p);
1335					continue;
1336				}
1337				SESS_UNLOCK(p->p_session);
1338				break;
1339
1340			case KERN_PROC_UID:
1341				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1342					PROC_UNLOCK(p);
1343					continue;
1344				}
1345				break;
1346
1347			case KERN_PROC_RUID:
1348				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1349					PROC_UNLOCK(p);
1350					continue;
1351				}
1352				break;
1353
1354			case KERN_PROC_PROC:
1355				break;
1356
1357			default:
1358				break;
1359
1360			}
1361
1362			error = sysctl_out_proc(p, req, flags | doingzomb);
1363			if (error) {
1364				sx_sunlock(&allproc_lock);
1365				return (error);
1366			}
1367		}
1368	}
1369	sx_sunlock(&allproc_lock);
1370	return (0);
1371}
1372
1373struct pargs *
1374pargs_alloc(int len)
1375{
1376	struct pargs *pa;
1377
1378	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1379		M_WAITOK);
1380	refcount_init(&pa->ar_ref, 1);
1381	pa->ar_length = len;
1382	return (pa);
1383}
1384
1385static void
1386pargs_free(struct pargs *pa)
1387{
1388
1389	free(pa, M_PARGS);
1390}
1391
1392void
1393pargs_hold(struct pargs *pa)
1394{
1395
1396	if (pa == NULL)
1397		return;
1398	refcount_acquire(&pa->ar_ref);
1399}
1400
1401void
1402pargs_drop(struct pargs *pa)
1403{
1404
1405	if (pa == NULL)
1406		return;
1407	if (refcount_release(&pa->ar_ref))
1408		pargs_free(pa);
1409}
1410
1411static int
1412proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1413    size_t len)
1414{
1415	struct iovec iov;
1416	struct uio uio;
1417
1418	iov.iov_base = (caddr_t)buf;
1419	iov.iov_len = len;
1420	uio.uio_iov = &iov;
1421	uio.uio_iovcnt = 1;
1422	uio.uio_offset = offset;
1423	uio.uio_resid = (ssize_t)len;
1424	uio.uio_segflg = UIO_SYSSPACE;
1425	uio.uio_rw = UIO_READ;
1426	uio.uio_td = td;
1427
1428	return (proc_rwmem(p, &uio));
1429}
1430
1431static int
1432proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1433    size_t len)
1434{
1435	size_t i;
1436	int error;
1437
1438	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1439	/*
1440	 * Reading the chunk may validly return EFAULT if the string is shorter
1441	 * than the chunk and is aligned at the end of the page, assuming the
1442	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1443	 * one byte read loop.
1444	 */
1445	if (error == EFAULT) {
1446		for (i = 0; i < len; i++, buf++, sptr++) {
1447			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1448			if (error != 0)
1449				return (error);
1450			if (*buf == '\0')
1451				break;
1452		}
1453		error = 0;
1454	}
1455	return (error);
1456}
1457
1458#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1459
1460enum proc_vector_type {
1461	PROC_ARG,
1462	PROC_ENV,
1463	PROC_AUX,
1464};
1465
1466#ifdef COMPAT_FREEBSD32
1467static int
1468get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1469    size_t *vsizep, enum proc_vector_type type)
1470{
1471	struct freebsd32_ps_strings pss;
1472	Elf32_Auxinfo aux;
1473	vm_offset_t vptr, ptr;
1474	uint32_t *proc_vector32;
1475	char **proc_vector;
1476	size_t vsize, size;
1477	int i, error;
1478
1479	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1480	    &pss, sizeof(pss));
1481	if (error != 0)
1482		return (error);
1483	switch (type) {
1484	case PROC_ARG:
1485		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1486		vsize = pss.ps_nargvstr;
1487		if (vsize > ARG_MAX)
1488			return (ENOEXEC);
1489		size = vsize * sizeof(int32_t);
1490		break;
1491	case PROC_ENV:
1492		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1493		vsize = pss.ps_nenvstr;
1494		if (vsize > ARG_MAX)
1495			return (ENOEXEC);
1496		size = vsize * sizeof(int32_t);
1497		break;
1498	case PROC_AUX:
1499		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1500		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1501		if (vptr % 4 != 0)
1502			return (ENOEXEC);
1503		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1504			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1505			if (error != 0)
1506				return (error);
1507			if (aux.a_type == AT_NULL)
1508				break;
1509			ptr += sizeof(aux);
1510		}
1511		if (aux.a_type != AT_NULL)
1512			return (ENOEXEC);
1513		vsize = i + 1;
1514		size = vsize * sizeof(aux);
1515		break;
1516	default:
1517		KASSERT(0, ("Wrong proc vector type: %d", type));
1518		return (EINVAL);
1519	}
1520	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1521	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1522	if (error != 0)
1523		goto done;
1524	if (type == PROC_AUX) {
1525		*proc_vectorp = (char **)proc_vector32;
1526		*vsizep = vsize;
1527		return (0);
1528	}
1529	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1530	for (i = 0; i < (int)vsize; i++)
1531		proc_vector[i] = PTRIN(proc_vector32[i]);
1532	*proc_vectorp = proc_vector;
1533	*vsizep = vsize;
1534done:
1535	free(proc_vector32, M_TEMP);
1536	return (error);
1537}
1538#endif
1539
1540static int
1541get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1542    size_t *vsizep, enum proc_vector_type type)
1543{
1544	struct ps_strings pss;
1545	Elf_Auxinfo aux;
1546	vm_offset_t vptr, ptr;
1547	char **proc_vector;
1548	size_t vsize, size;
1549	int error, i;
1550
1551#ifdef COMPAT_FREEBSD32
1552	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1553		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1554#endif
1555	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1556	    &pss, sizeof(pss));
1557	if (error != 0)
1558		return (error);
1559	switch (type) {
1560	case PROC_ARG:
1561		vptr = (vm_offset_t)pss.ps_argvstr;
1562		vsize = pss.ps_nargvstr;
1563		if (vsize > ARG_MAX)
1564			return (ENOEXEC);
1565		size = vsize * sizeof(char *);
1566		break;
1567	case PROC_ENV:
1568		vptr = (vm_offset_t)pss.ps_envstr;
1569		vsize = pss.ps_nenvstr;
1570		if (vsize > ARG_MAX)
1571			return (ENOEXEC);
1572		size = vsize * sizeof(char *);
1573		break;
1574	case PROC_AUX:
1575		/*
1576		 * The aux array is just above env array on the stack. Check
1577		 * that the address is naturally aligned.
1578		 */
1579		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1580		    * sizeof(char *);
1581#if __ELF_WORD_SIZE == 64
1582		if (vptr % sizeof(uint64_t) != 0)
1583#else
1584		if (vptr % sizeof(uint32_t) != 0)
1585#endif
1586			return (ENOEXEC);
1587		/*
1588		 * We count the array size reading the aux vectors from the
1589		 * stack until AT_NULL vector is returned.  So (to keep the code
1590		 * simple) we read the process stack twice: the first time here
1591		 * to find the size and the second time when copying the vectors
1592		 * to the allocated proc_vector.
1593		 */
1594		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1595			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1596			if (error != 0)
1597				return (error);
1598			if (aux.a_type == AT_NULL)
1599				break;
1600			ptr += sizeof(aux);
1601		}
1602		/*
1603		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1604		 * not reached AT_NULL, it is most likely we are reading wrong
1605		 * data: either the process doesn't have auxv array or data has
1606		 * been modified. Return the error in this case.
1607		 */
1608		if (aux.a_type != AT_NULL)
1609			return (ENOEXEC);
1610		vsize = i + 1;
1611		size = vsize * sizeof(aux);
1612		break;
1613	default:
1614		KASSERT(0, ("Wrong proc vector type: %d", type));
1615		return (EINVAL); /* In case we are built without INVARIANTS. */
1616	}
1617	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1618	if (proc_vector == NULL)
1619		return (ENOMEM);
1620	error = proc_read_mem(td, p, vptr, proc_vector, size);
1621	if (error != 0) {
1622		free(proc_vector, M_TEMP);
1623		return (error);
1624	}
1625	*proc_vectorp = proc_vector;
1626	*vsizep = vsize;
1627
1628	return (0);
1629}
1630
1631#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1632
1633static int
1634get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1635    enum proc_vector_type type)
1636{
1637	size_t done, len, nchr, vsize;
1638	int error, i;
1639	char **proc_vector, *sptr;
1640	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1641
1642	PROC_ASSERT_HELD(p);
1643
1644	/*
1645	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1646	 */
1647	nchr = 2 * (PATH_MAX + ARG_MAX);
1648
1649	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1650	if (error != 0)
1651		return (error);
1652	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1653		/*
1654		 * The program may have scribbled into its argv array, e.g. to
1655		 * remove some arguments.  If that has happened, break out
1656		 * before trying to read from NULL.
1657		 */
1658		if (proc_vector[i] == NULL)
1659			break;
1660		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1661			error = proc_read_string(td, p, sptr, pss_string,
1662			    sizeof(pss_string));
1663			if (error != 0)
1664				goto done;
1665			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1666			if (done + len >= nchr)
1667				len = nchr - done - 1;
1668			sbuf_bcat(sb, pss_string, len);
1669			if (len != GET_PS_STRINGS_CHUNK_SZ)
1670				break;
1671			done += GET_PS_STRINGS_CHUNK_SZ;
1672		}
1673		sbuf_bcat(sb, "", 1);
1674		done += len + 1;
1675	}
1676done:
1677	free(proc_vector, M_TEMP);
1678	return (error);
1679}
1680
1681int
1682proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1683{
1684
1685	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1686}
1687
1688int
1689proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1690{
1691
1692	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1693}
1694
1695/*
1696 * This sysctl allows a process to retrieve the argument list or process
1697 * title for another process without groping around in the address space
1698 * of the other process.  It also allow a process to set its own "process
1699 * title to a string of its own choice.
1700 */
1701static int
1702sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1703{
1704	int *name = (int *)arg1;
1705	u_int namelen = arg2;
1706	struct pargs *newpa, *pa;
1707	struct proc *p;
1708	struct sbuf sb;
1709	int flags, error = 0, error2;
1710
1711	if (namelen != 1)
1712		return (EINVAL);
1713
1714	flags = PGET_CANSEE;
1715	if (req->newptr != NULL)
1716		flags |= PGET_ISCURRENT;
1717	error = pget((pid_t)name[0], flags, &p);
1718	if (error)
1719		return (error);
1720
1721	pa = p->p_args;
1722	if (pa != NULL) {
1723		pargs_hold(pa);
1724		PROC_UNLOCK(p);
1725		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1726		pargs_drop(pa);
1727	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1728		_PHOLD(p);
1729		PROC_UNLOCK(p);
1730		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1731		error = proc_getargv(curthread, p, &sb);
1732		error2 = sbuf_finish(&sb);
1733		PRELE(p);
1734		sbuf_delete(&sb);
1735		if (error == 0 && error2 != 0)
1736			error = error2;
1737	} else {
1738		PROC_UNLOCK(p);
1739	}
1740	if (error != 0 || req->newptr == NULL)
1741		return (error);
1742
1743	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1744		return (ENOMEM);
1745	newpa = pargs_alloc(req->newlen);
1746	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1747	if (error != 0) {
1748		pargs_free(newpa);
1749		return (error);
1750	}
1751	PROC_LOCK(p);
1752	pa = p->p_args;
1753	p->p_args = newpa;
1754	PROC_UNLOCK(p);
1755	pargs_drop(pa);
1756	return (0);
1757}
1758
1759/*
1760 * This sysctl allows a process to retrieve environment of another process.
1761 */
1762static int
1763sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1764{
1765	int *name = (int *)arg1;
1766	u_int namelen = arg2;
1767	struct proc *p;
1768	struct sbuf sb;
1769	int error, error2;
1770
1771	if (namelen != 1)
1772		return (EINVAL);
1773
1774	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1775	if (error != 0)
1776		return (error);
1777	if ((p->p_flag & P_SYSTEM) != 0) {
1778		PRELE(p);
1779		return (0);
1780	}
1781
1782	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1783	error = proc_getenvv(curthread, p, &sb);
1784	error2 = sbuf_finish(&sb);
1785	PRELE(p);
1786	sbuf_delete(&sb);
1787	return (error != 0 ? error : error2);
1788}
1789
1790/*
1791 * This sysctl allows a process to retrieve ELF auxiliary vector of
1792 * another process.
1793 */
1794static int
1795sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1796{
1797	int *name = (int *)arg1;
1798	u_int namelen = arg2;
1799	struct proc *p;
1800	size_t vsize, size;
1801	char **auxv;
1802	int error;
1803
1804	if (namelen != 1)
1805		return (EINVAL);
1806
1807	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1808	if (error != 0)
1809		return (error);
1810	if ((p->p_flag & P_SYSTEM) != 0) {
1811		PRELE(p);
1812		return (0);
1813	}
1814	error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX);
1815	if (error == 0) {
1816#ifdef COMPAT_FREEBSD32
1817		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1818			size = vsize * sizeof(Elf32_Auxinfo);
1819		else
1820#endif
1821		size = vsize * sizeof(Elf_Auxinfo);
1822		PRELE(p);
1823		error = SYSCTL_OUT(req, auxv, size);
1824		free(auxv, M_TEMP);
1825	} else {
1826		PRELE(p);
1827	}
1828	return (error);
1829}
1830
1831/*
1832 * This sysctl allows a process to retrieve the path of the executable for
1833 * itself or another process.
1834 */
1835static int
1836sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1837{
1838	pid_t *pidp = (pid_t *)arg1;
1839	unsigned int arglen = arg2;
1840	struct proc *p;
1841	struct vnode *vp;
1842	char *retbuf, *freebuf;
1843	int error, vfslocked;
1844
1845	if (arglen != 1)
1846		return (EINVAL);
1847	if (*pidp == -1) {	/* -1 means this process */
1848		p = req->td->td_proc;
1849	} else {
1850		error = pget(*pidp, PGET_CANSEE, &p);
1851		if (error != 0)
1852			return (error);
1853	}
1854
1855	vp = p->p_textvp;
1856	if (vp == NULL) {
1857		if (*pidp != -1)
1858			PROC_UNLOCK(p);
1859		return (0);
1860	}
1861	vref(vp);
1862	if (*pidp != -1)
1863		PROC_UNLOCK(p);
1864	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1865	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1866	vrele(vp);
1867	VFS_UNLOCK_GIANT(vfslocked);
1868	if (error)
1869		return (error);
1870	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1871	free(freebuf, M_TEMP);
1872	return (error);
1873}
1874
1875static int
1876sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1877{
1878	struct proc *p;
1879	char *sv_name;
1880	int *name;
1881	int namelen;
1882	int error;
1883
1884	namelen = arg2;
1885	if (namelen != 1)
1886		return (EINVAL);
1887
1888	name = (int *)arg1;
1889	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1890	if (error != 0)
1891		return (error);
1892	sv_name = p->p_sysent->sv_name;
1893	PROC_UNLOCK(p);
1894	return (sysctl_handle_string(oidp, sv_name, 0, req));
1895}
1896
1897#ifdef KINFO_OVMENTRY_SIZE
1898CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1899#endif
1900
1901#ifdef COMPAT_FREEBSD7
1902static int
1903sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1904{
1905	vm_map_entry_t entry, tmp_entry;
1906	unsigned int last_timestamp;
1907	char *fullpath, *freepath;
1908	struct kinfo_ovmentry *kve;
1909	struct vattr va;
1910	struct ucred *cred;
1911	int error, *name;
1912	struct vnode *vp;
1913	struct proc *p;
1914	vm_map_t map;
1915	struct vmspace *vm;
1916
1917	name = (int *)arg1;
1918	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1919	if (error != 0)
1920		return (error);
1921	vm = vmspace_acquire_ref(p);
1922	if (vm == NULL) {
1923		PRELE(p);
1924		return (ESRCH);
1925	}
1926	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1927
1928	map = &vm->vm_map;
1929	vm_map_lock_read(map);
1930	for (entry = map->header.next; entry != &map->header;
1931	    entry = entry->next) {
1932		vm_object_t obj, tobj, lobj;
1933		vm_offset_t addr;
1934		int vfslocked;
1935
1936		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1937			continue;
1938
1939		bzero(kve, sizeof(*kve));
1940		kve->kve_structsize = sizeof(*kve);
1941
1942		kve->kve_private_resident = 0;
1943		obj = entry->object.vm_object;
1944		if (obj != NULL) {
1945			VM_OBJECT_LOCK(obj);
1946			if (obj->shadow_count == 1)
1947				kve->kve_private_resident =
1948				    obj->resident_page_count;
1949		}
1950		kve->kve_resident = 0;
1951		addr = entry->start;
1952		while (addr < entry->end) {
1953			if (pmap_extract(map->pmap, addr))
1954				kve->kve_resident++;
1955			addr += PAGE_SIZE;
1956		}
1957
1958		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1959			if (tobj != obj)
1960				VM_OBJECT_LOCK(tobj);
1961			if (lobj != obj)
1962				VM_OBJECT_UNLOCK(lobj);
1963			lobj = tobj;
1964		}
1965
1966		kve->kve_start = (void*)entry->start;
1967		kve->kve_end = (void*)entry->end;
1968		kve->kve_offset = (off_t)entry->offset;
1969
1970		if (entry->protection & VM_PROT_READ)
1971			kve->kve_protection |= KVME_PROT_READ;
1972		if (entry->protection & VM_PROT_WRITE)
1973			kve->kve_protection |= KVME_PROT_WRITE;
1974		if (entry->protection & VM_PROT_EXECUTE)
1975			kve->kve_protection |= KVME_PROT_EXEC;
1976
1977		if (entry->eflags & MAP_ENTRY_COW)
1978			kve->kve_flags |= KVME_FLAG_COW;
1979		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1980			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1981		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1982			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1983
1984		last_timestamp = map->timestamp;
1985		vm_map_unlock_read(map);
1986
1987		kve->kve_fileid = 0;
1988		kve->kve_fsid = 0;
1989		freepath = NULL;
1990		fullpath = "";
1991		if (lobj) {
1992			vp = NULL;
1993			switch (lobj->type) {
1994			case OBJT_DEFAULT:
1995				kve->kve_type = KVME_TYPE_DEFAULT;
1996				break;
1997			case OBJT_VNODE:
1998				kve->kve_type = KVME_TYPE_VNODE;
1999				vp = lobj->handle;
2000				vref(vp);
2001				break;
2002			case OBJT_SWAP:
2003				kve->kve_type = KVME_TYPE_SWAP;
2004				break;
2005			case OBJT_DEVICE:
2006				kve->kve_type = KVME_TYPE_DEVICE;
2007				break;
2008			case OBJT_PHYS:
2009				kve->kve_type = KVME_TYPE_PHYS;
2010				break;
2011			case OBJT_DEAD:
2012				kve->kve_type = KVME_TYPE_DEAD;
2013				break;
2014			case OBJT_SG:
2015				kve->kve_type = KVME_TYPE_SG;
2016				break;
2017			default:
2018				kve->kve_type = KVME_TYPE_UNKNOWN;
2019				break;
2020			}
2021			if (lobj != obj)
2022				VM_OBJECT_UNLOCK(lobj);
2023
2024			kve->kve_ref_count = obj->ref_count;
2025			kve->kve_shadow_count = obj->shadow_count;
2026			VM_OBJECT_UNLOCK(obj);
2027			if (vp != NULL) {
2028				vn_fullpath(curthread, vp, &fullpath,
2029				    &freepath);
2030				cred = curthread->td_ucred;
2031				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
2032				vn_lock(vp, LK_SHARED | LK_RETRY);
2033				if (VOP_GETATTR(vp, &va, cred) == 0) {
2034					kve->kve_fileid = va.va_fileid;
2035					kve->kve_fsid = va.va_fsid;
2036				}
2037				vput(vp);
2038				VFS_UNLOCK_GIANT(vfslocked);
2039			}
2040		} else {
2041			kve->kve_type = KVME_TYPE_NONE;
2042			kve->kve_ref_count = 0;
2043			kve->kve_shadow_count = 0;
2044		}
2045
2046		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2047		if (freepath != NULL)
2048			free(freepath, M_TEMP);
2049
2050		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2051		vm_map_lock_read(map);
2052		if (error)
2053			break;
2054		if (last_timestamp != map->timestamp) {
2055			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2056			entry = tmp_entry;
2057		}
2058	}
2059	vm_map_unlock_read(map);
2060	vmspace_free(vm);
2061	PRELE(p);
2062	free(kve, M_TEMP);
2063	return (error);
2064}
2065#endif	/* COMPAT_FREEBSD7 */
2066
2067#ifdef KINFO_VMENTRY_SIZE
2068CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2069#endif
2070
2071static int
2072sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2073{
2074	vm_map_entry_t entry, tmp_entry;
2075	unsigned int last_timestamp;
2076	char *fullpath, *freepath;
2077	struct kinfo_vmentry *kve;
2078	struct vattr va;
2079	struct ucred *cred;
2080	int error, *name;
2081	struct vnode *vp;
2082	struct proc *p;
2083	struct vmspace *vm;
2084	vm_map_t map;
2085
2086	name = (int *)arg1;
2087	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2088	if (error != 0)
2089		return (error);
2090	vm = vmspace_acquire_ref(p);
2091	if (vm == NULL) {
2092		PRELE(p);
2093		return (ESRCH);
2094	}
2095	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2096
2097	map = &vm->vm_map;
2098	vm_map_lock_read(map);
2099	for (entry = map->header.next; entry != &map->header;
2100	    entry = entry->next) {
2101		vm_object_t obj, tobj, lobj;
2102		vm_offset_t addr;
2103		vm_paddr_t locked_pa;
2104		int vfslocked, mincoreinfo;
2105
2106		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2107			continue;
2108
2109		bzero(kve, sizeof(*kve));
2110
2111		kve->kve_private_resident = 0;
2112		obj = entry->object.vm_object;
2113		if (obj != NULL) {
2114			VM_OBJECT_LOCK(obj);
2115			if (obj->shadow_count == 1)
2116				kve->kve_private_resident =
2117				    obj->resident_page_count;
2118		}
2119		kve->kve_resident = 0;
2120		addr = entry->start;
2121		while (addr < entry->end) {
2122			locked_pa = 0;
2123			mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
2124			if (locked_pa != 0)
2125				vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
2126			if (mincoreinfo & MINCORE_INCORE)
2127				kve->kve_resident++;
2128			if (mincoreinfo & MINCORE_SUPER)
2129				kve->kve_flags |= KVME_FLAG_SUPER;
2130			addr += PAGE_SIZE;
2131		}
2132
2133		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2134			if (tobj != obj)
2135				VM_OBJECT_LOCK(tobj);
2136			if (lobj != obj)
2137				VM_OBJECT_UNLOCK(lobj);
2138			lobj = tobj;
2139		}
2140
2141		kve->kve_start = entry->start;
2142		kve->kve_end = entry->end;
2143		kve->kve_offset = entry->offset;
2144
2145		if (entry->protection & VM_PROT_READ)
2146			kve->kve_protection |= KVME_PROT_READ;
2147		if (entry->protection & VM_PROT_WRITE)
2148			kve->kve_protection |= KVME_PROT_WRITE;
2149		if (entry->protection & VM_PROT_EXECUTE)
2150			kve->kve_protection |= KVME_PROT_EXEC;
2151
2152		if (entry->eflags & MAP_ENTRY_COW)
2153			kve->kve_flags |= KVME_FLAG_COW;
2154		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2155			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2156		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2157			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2158
2159		last_timestamp = map->timestamp;
2160		vm_map_unlock_read(map);
2161
2162		freepath = NULL;
2163		fullpath = "";
2164		if (lobj) {
2165			vp = NULL;
2166			switch (lobj->type) {
2167			case OBJT_DEFAULT:
2168				kve->kve_type = KVME_TYPE_DEFAULT;
2169				break;
2170			case OBJT_VNODE:
2171				kve->kve_type = KVME_TYPE_VNODE;
2172				vp = lobj->handle;
2173				vref(vp);
2174				break;
2175			case OBJT_SWAP:
2176				kve->kve_type = KVME_TYPE_SWAP;
2177				break;
2178			case OBJT_DEVICE:
2179				kve->kve_type = KVME_TYPE_DEVICE;
2180				break;
2181			case OBJT_PHYS:
2182				kve->kve_type = KVME_TYPE_PHYS;
2183				break;
2184			case OBJT_DEAD:
2185				kve->kve_type = KVME_TYPE_DEAD;
2186				break;
2187			case OBJT_SG:
2188				kve->kve_type = KVME_TYPE_SG;
2189				break;
2190			default:
2191				kve->kve_type = KVME_TYPE_UNKNOWN;
2192				break;
2193			}
2194			if (lobj != obj)
2195				VM_OBJECT_UNLOCK(lobj);
2196
2197			kve->kve_ref_count = obj->ref_count;
2198			kve->kve_shadow_count = obj->shadow_count;
2199			VM_OBJECT_UNLOCK(obj);
2200			if (vp != NULL) {
2201				vn_fullpath(curthread, vp, &fullpath,
2202				    &freepath);
2203				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2204				cred = curthread->td_ucred;
2205				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
2206				vn_lock(vp, LK_SHARED | LK_RETRY);
2207				if (VOP_GETATTR(vp, &va, cred) == 0) {
2208					kve->kve_vn_fileid = va.va_fileid;
2209					kve->kve_vn_fsid = va.va_fsid;
2210					kve->kve_vn_mode =
2211					    MAKEIMODE(va.va_type, va.va_mode);
2212					kve->kve_vn_size = va.va_size;
2213					kve->kve_vn_rdev = va.va_rdev;
2214					kve->kve_status = KF_ATTR_VALID;
2215				}
2216				vput(vp);
2217				VFS_UNLOCK_GIANT(vfslocked);
2218			}
2219		} else {
2220			kve->kve_type = KVME_TYPE_NONE;
2221			kve->kve_ref_count = 0;
2222			kve->kve_shadow_count = 0;
2223		}
2224
2225		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2226		if (freepath != NULL)
2227			free(freepath, M_TEMP);
2228
2229		/* Pack record size down */
2230		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
2231		    strlen(kve->kve_path) + 1;
2232		kve->kve_structsize = roundup(kve->kve_structsize,
2233		    sizeof(uint64_t));
2234		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
2235		vm_map_lock_read(map);
2236		if (error)
2237			break;
2238		if (last_timestamp != map->timestamp) {
2239			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2240			entry = tmp_entry;
2241		}
2242	}
2243	vm_map_unlock_read(map);
2244	vmspace_free(vm);
2245	PRELE(p);
2246	free(kve, M_TEMP);
2247	return (error);
2248}
2249
2250#if defined(STACK) || defined(DDB)
2251static int
2252sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2253{
2254	struct kinfo_kstack *kkstp;
2255	int error, i, *name, numthreads;
2256	lwpid_t *lwpidarray;
2257	struct thread *td;
2258	struct stack *st;
2259	struct sbuf sb;
2260	struct proc *p;
2261
2262	name = (int *)arg1;
2263	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2264	if (error != 0)
2265		return (error);
2266
2267	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2268	st = stack_create();
2269
2270	lwpidarray = NULL;
2271	numthreads = 0;
2272	PROC_LOCK(p);
2273repeat:
2274	if (numthreads < p->p_numthreads) {
2275		if (lwpidarray != NULL) {
2276			free(lwpidarray, M_TEMP);
2277			lwpidarray = NULL;
2278		}
2279		numthreads = p->p_numthreads;
2280		PROC_UNLOCK(p);
2281		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2282		    M_WAITOK | M_ZERO);
2283		PROC_LOCK(p);
2284		goto repeat;
2285	}
2286	i = 0;
2287
2288	/*
2289	 * XXXRW: During the below loop, execve(2) and countless other sorts
2290	 * of changes could have taken place.  Should we check to see if the
2291	 * vmspace has been replaced, or the like, in order to prevent
2292	 * giving a snapshot that spans, say, execve(2), with some threads
2293	 * before and some after?  Among other things, the credentials could
2294	 * have changed, in which case the right to extract debug info might
2295	 * no longer be assured.
2296	 */
2297	FOREACH_THREAD_IN_PROC(p, td) {
2298		KASSERT(i < numthreads,
2299		    ("sysctl_kern_proc_kstack: numthreads"));
2300		lwpidarray[i] = td->td_tid;
2301		i++;
2302	}
2303	numthreads = i;
2304	for (i = 0; i < numthreads; i++) {
2305		td = thread_find(p, lwpidarray[i]);
2306		if (td == NULL) {
2307			continue;
2308		}
2309		bzero(kkstp, sizeof(*kkstp));
2310		(void)sbuf_new(&sb, kkstp->kkst_trace,
2311		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2312		thread_lock(td);
2313		kkstp->kkst_tid = td->td_tid;
2314		if (TD_IS_SWAPPED(td))
2315			kkstp->kkst_state = KKST_STATE_SWAPPED;
2316		else if (TD_IS_RUNNING(td))
2317			kkstp->kkst_state = KKST_STATE_RUNNING;
2318		else {
2319			kkstp->kkst_state = KKST_STATE_STACKOK;
2320			stack_save_td(st, td);
2321		}
2322		thread_unlock(td);
2323		PROC_UNLOCK(p);
2324		stack_sbuf_print(&sb, st);
2325		sbuf_finish(&sb);
2326		sbuf_delete(&sb);
2327		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2328		PROC_LOCK(p);
2329		if (error)
2330			break;
2331	}
2332	_PRELE(p);
2333	PROC_UNLOCK(p);
2334	if (lwpidarray != NULL)
2335		free(lwpidarray, M_TEMP);
2336	stack_destroy(st);
2337	free(kkstp, M_TEMP);
2338	return (error);
2339}
2340#endif
2341
2342/*
2343 * This sysctl allows a process to retrieve the full list of groups from
2344 * itself or another process.
2345 */
2346static int
2347sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2348{
2349	pid_t *pidp = (pid_t *)arg1;
2350	unsigned int arglen = arg2;
2351	struct proc *p;
2352	struct ucred *cred;
2353	int error;
2354
2355	if (arglen != 1)
2356		return (EINVAL);
2357	if (*pidp == -1) {	/* -1 means this process */
2358		p = req->td->td_proc;
2359	} else {
2360		error = pget(*pidp, PGET_CANSEE, &p);
2361		if (error != 0)
2362			return (error);
2363	}
2364
2365	cred = crhold(p->p_ucred);
2366	if (*pidp != -1)
2367		PROC_UNLOCK(p);
2368
2369	error = SYSCTL_OUT(req, cred->cr_groups,
2370	    cred->cr_ngroups * sizeof(gid_t));
2371	crfree(cred);
2372	return (error);
2373}
2374
2375/*
2376 * This sysctl allows a process to retrieve or/and set the resource limit for
2377 * another process.
2378 */
2379static int
2380sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2381{
2382	int *name = (int *)arg1;
2383	u_int namelen = arg2;
2384	struct rlimit rlim;
2385	struct proc *p;
2386	u_int which;
2387	int flags, error;
2388
2389	if (namelen != 2)
2390		return (EINVAL);
2391
2392	which = (u_int)name[1];
2393	if (which >= RLIM_NLIMITS)
2394		return (EINVAL);
2395
2396	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2397		return (EINVAL);
2398
2399	flags = PGET_HOLD | PGET_NOTWEXIT;
2400	if (req->newptr != NULL)
2401		flags |= PGET_CANDEBUG;
2402	else
2403		flags |= PGET_CANSEE;
2404	error = pget((pid_t)name[0], flags, &p);
2405	if (error != 0)
2406		return (error);
2407
2408	/*
2409	 * Retrieve limit.
2410	 */
2411	if (req->oldptr != NULL) {
2412		PROC_LOCK(p);
2413		lim_rlimit(p, which, &rlim);
2414		PROC_UNLOCK(p);
2415	}
2416	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2417	if (error != 0)
2418		goto errout;
2419
2420	/*
2421	 * Set limit.
2422	 */
2423	if (req->newptr != NULL) {
2424		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2425		if (error == 0)
2426			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2427	}
2428
2429errout:
2430	PRELE(p);
2431	return (error);
2432}
2433
2434/*
2435 * This sysctl allows a process to retrieve ps_strings structure location of
2436 * another process.
2437 */
2438static int
2439sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2440{
2441	int *name = (int *)arg1;
2442	u_int namelen = arg2;
2443	struct proc *p;
2444	vm_offset_t ps_strings;
2445	int error;
2446#ifdef COMPAT_FREEBSD32
2447	uint32_t ps_strings32;
2448#endif
2449
2450	if (namelen != 1)
2451		return (EINVAL);
2452
2453	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2454	if (error != 0)
2455		return (error);
2456#ifdef COMPAT_FREEBSD32
2457	if ((req->flags & SCTL_MASK32) != 0) {
2458		/*
2459		 * We return 0 if the 32 bit emulation request is for a 64 bit
2460		 * process.
2461		 */
2462		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2463		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2464		PROC_UNLOCK(p);
2465		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2466		return (error);
2467	}
2468#endif
2469	ps_strings = p->p_sysent->sv_psstrings;
2470	PROC_UNLOCK(p);
2471	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2472	return (error);
2473}
2474
2475/*
2476 * This sysctl allows a process to retrieve or/and set umask of
2477 * another process.
2478 */
2479static int
2480sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2481{
2482	int *name = (int *)arg1;
2483	u_int namelen = arg2;
2484	struct proc *p;
2485	int error;
2486	u_short fd_cmask;
2487
2488	if (namelen != 1)
2489		return (EINVAL);
2490
2491	if (req->newptr != NULL && req->newlen != sizeof(fd_cmask))
2492		return (EINVAL);
2493
2494	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2495	if (error != 0)
2496		return (error);
2497
2498	FILEDESC_SLOCK(p->p_fd);
2499	fd_cmask = p->p_fd->fd_cmask;
2500	FILEDESC_SUNLOCK(p->p_fd);
2501	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2502	if (error != 0)
2503		goto errout;
2504
2505	if (req->newptr != NULL) {
2506		error = SYSCTL_IN(req, &fd_cmask, sizeof(fd_cmask));
2507		if (error == 0) {
2508			FILEDESC_XLOCK(p->p_fd);
2509			p->p_fd->fd_cmask = fd_cmask & ALLPERMS;
2510			FILEDESC_XUNLOCK(p->p_fd);
2511		}
2512	}
2513errout:
2514	PRELE(p);
2515	return (error);
2516}
2517
2518SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2519
2520SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2521	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2522	"Return entire process table");
2523
2524static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2525	sysctl_kern_proc, "Process table");
2526
2527static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2528	sysctl_kern_proc, "Process table");
2529
2530static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2531	sysctl_kern_proc, "Process table");
2532
2533static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2534	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2535
2536static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2537	sysctl_kern_proc, "Process table");
2538
2539static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2540	sysctl_kern_proc, "Process table");
2541
2542static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2543	sysctl_kern_proc, "Process table");
2544
2545static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2546	sysctl_kern_proc, "Process table");
2547
2548static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2549	sysctl_kern_proc, "Return process table, no threads");
2550
2551static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2552	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2553	sysctl_kern_proc_args, "Process argument list");
2554
2555static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2556	sysctl_kern_proc_env, "Process environment");
2557
2558static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2559	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2560
2561static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2562	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2563
2564static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2565	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2566	"Process syscall vector name (ABI type)");
2567
2568static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2569	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2570
2571static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2572	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2573
2574static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2575	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2576
2577static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2578	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2579
2580static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2581	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2582
2583static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2584	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2585
2586static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2587	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2588
2589static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2590	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2591
2592static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2593	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2594	"Return process table, no threads");
2595
2596#ifdef COMPAT_FREEBSD7
2597static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2598	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2599#endif
2600
2601static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2602	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2603
2604#if defined(STACK) || defined(DDB)
2605static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2606	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2607#endif
2608
2609static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2610	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2611
2612static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2613	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2614	"Process resource limits");
2615
2616static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2617	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2618	"Process ps_strings location");
2619
2620static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RW |
2621	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_umask,
2622	"Process umask");
2623