kern_proc.c revision 228648
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_proc.c 228648 2011-12-17 16:59:22Z trociny $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/exec.h>
46#include <sys/kernel.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/loginclass.h>
50#include <sys/malloc.h>
51#include <sys/mman.h>
52#include <sys/mount.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/ptrace.h>
56#include <sys/refcount.h>
57#include <sys/resourcevar.h>
58#include <sys/sbuf.h>
59#include <sys/sysent.h>
60#include <sys/sched.h>
61#include <sys/smp.h>
62#include <sys/stack.h>
63#include <sys/sysctl.h>
64#include <sys/filedesc.h>
65#include <sys/tty.h>
66#include <sys/signalvar.h>
67#include <sys/sdt.h>
68#include <sys/sx.h>
69#include <sys/user.h>
70#include <sys/jail.h>
71#include <sys/vnode.h>
72#include <sys/eventhandler.h>
73
74#ifdef DDB
75#include <ddb/ddb.h>
76#endif
77
78#include <vm/vm.h>
79#include <vm/vm_extern.h>
80#include <vm/pmap.h>
81#include <vm/vm_map.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/uma.h>
85
86#ifdef COMPAT_FREEBSD32
87#include <compat/freebsd32/freebsd32.h>
88#include <compat/freebsd32/freebsd32_util.h>
89#endif
90
91SDT_PROVIDER_DEFINE(proc);
92SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
93SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
94SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
95SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
96SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
97SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
98SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
99SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
100SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
101SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
102SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
103SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
104SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
105SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
106SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
107SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
108SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
109SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
110SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
111SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
112SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
113SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
114SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
115SDT_PROBE_DEFINE(proc, kernel, init, return, return);
116SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
117SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
118SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
119
120MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
121MALLOC_DEFINE(M_SESSION, "session", "session header");
122static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
123MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
124
125static void doenterpgrp(struct proc *, struct pgrp *);
126static void orphanpg(struct pgrp *pg);
127static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
128static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
129static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
130    int preferthread);
131static void pgadjustjobc(struct pgrp *pgrp, int entering);
132static void pgdelete(struct pgrp *);
133static int proc_ctor(void *mem, int size, void *arg, int flags);
134static void proc_dtor(void *mem, int size, void *arg);
135static int proc_init(void *mem, int size, int flags);
136static void proc_fini(void *mem, int size);
137static void pargs_free(struct pargs *pa);
138
139/*
140 * Other process lists
141 */
142struct pidhashhead *pidhashtbl;
143u_long pidhash;
144struct pgrphashhead *pgrphashtbl;
145u_long pgrphash;
146struct proclist allproc;
147struct proclist zombproc;
148struct sx allproc_lock;
149struct sx proctree_lock;
150struct mtx ppeers_lock;
151uma_zone_t proc_zone;
152
153int kstack_pages = KSTACK_PAGES;
154SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
155    "Kernel stack size in pages");
156
157CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
158#ifdef COMPAT_FREEBSD32
159CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
160#endif
161
162/*
163 * Initialize global process hashing structures.
164 */
165void
166procinit()
167{
168
169	sx_init(&allproc_lock, "allproc");
170	sx_init(&proctree_lock, "proctree");
171	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
172	LIST_INIT(&allproc);
173	LIST_INIT(&zombproc);
174	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
175	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
176	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
177	    proc_ctor, proc_dtor, proc_init, proc_fini,
178	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
179	uihashinit();
180}
181
182/*
183 * Prepare a proc for use.
184 */
185static int
186proc_ctor(void *mem, int size, void *arg, int flags)
187{
188	struct proc *p;
189
190	p = (struct proc *)mem;
191	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
192	EVENTHANDLER_INVOKE(process_ctor, p);
193	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
194	return (0);
195}
196
197/*
198 * Reclaim a proc after use.
199 */
200static void
201proc_dtor(void *mem, int size, void *arg)
202{
203	struct proc *p;
204	struct thread *td;
205
206	/* INVARIANTS checks go here */
207	p = (struct proc *)mem;
208	td = FIRST_THREAD_IN_PROC(p);
209	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
210	if (td != NULL) {
211#ifdef INVARIANTS
212		KASSERT((p->p_numthreads == 1),
213		    ("bad number of threads in exiting process"));
214		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
215#endif
216		/* Free all OSD associated to this thread. */
217		osd_thread_exit(td);
218	}
219	EVENTHANDLER_INVOKE(process_dtor, p);
220	if (p->p_ksi != NULL)
221		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
222	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
223}
224
225/*
226 * Initialize type-stable parts of a proc (when newly created).
227 */
228static int
229proc_init(void *mem, int size, int flags)
230{
231	struct proc *p;
232
233	p = (struct proc *)mem;
234	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
235	p->p_sched = (struct p_sched *)&p[1];
236	bzero(&p->p_mtx, sizeof(struct mtx));
237	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
238	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
239	cv_init(&p->p_pwait, "ppwait");
240	cv_init(&p->p_dbgwait, "dbgwait");
241	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
242	EVENTHANDLER_INVOKE(process_init, p);
243	p->p_stats = pstats_alloc();
244	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
245	return (0);
246}
247
248/*
249 * UMA should ensure that this function is never called.
250 * Freeing a proc structure would violate type stability.
251 */
252static void
253proc_fini(void *mem, int size)
254{
255#ifdef notnow
256	struct proc *p;
257
258	p = (struct proc *)mem;
259	EVENTHANDLER_INVOKE(process_fini, p);
260	pstats_free(p->p_stats);
261	thread_free(FIRST_THREAD_IN_PROC(p));
262	mtx_destroy(&p->p_mtx);
263	if (p->p_ksi != NULL)
264		ksiginfo_free(p->p_ksi);
265#else
266	panic("proc reclaimed");
267#endif
268}
269
270/*
271 * Is p an inferior of the current process?
272 */
273int
274inferior(p)
275	register struct proc *p;
276{
277
278	sx_assert(&proctree_lock, SX_LOCKED);
279	for (; p != curproc; p = p->p_pptr)
280		if (p->p_pid == 0)
281			return (0);
282	return (1);
283}
284
285/*
286 * Locate a process by number; return only "live" processes -- i.e., neither
287 * zombies nor newly born but incompletely initialized processes.  By not
288 * returning processes in the PRS_NEW state, we allow callers to avoid
289 * testing for that condition to avoid dereferencing p_ucred, et al.
290 */
291struct proc *
292pfind(pid)
293	register pid_t pid;
294{
295	register struct proc *p;
296
297	sx_slock(&allproc_lock);
298	LIST_FOREACH(p, PIDHASH(pid), p_hash)
299		if (p->p_pid == pid) {
300			PROC_LOCK(p);
301			if (p->p_state == PRS_NEW) {
302				PROC_UNLOCK(p);
303				p = NULL;
304			}
305			break;
306		}
307	sx_sunlock(&allproc_lock);
308	return (p);
309}
310
311/*
312 * Locate a process group by number.
313 * The caller must hold proctree_lock.
314 */
315struct pgrp *
316pgfind(pgid)
317	register pid_t pgid;
318{
319	register struct pgrp *pgrp;
320
321	sx_assert(&proctree_lock, SX_LOCKED);
322
323	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
324		if (pgrp->pg_id == pgid) {
325			PGRP_LOCK(pgrp);
326			return (pgrp);
327		}
328	}
329	return (NULL);
330}
331
332/*
333 * Locate process and do additional manipulations, depending on flags.
334 */
335int
336pget(pid_t pid, int flags, struct proc **pp)
337{
338	struct proc *p;
339	int error;
340
341	p = pfind(pid);
342	if (p == NULL)
343		return (ESRCH);
344	if ((flags & PGET_CANSEE) != 0) {
345		error = p_cansee(curthread, p);
346		if (error != 0)
347			goto errout;
348	}
349	if ((flags & PGET_CANDEBUG) != 0) {
350		error = p_candebug(curthread, p);
351		if (error != 0)
352			goto errout;
353	}
354	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
355		error = EPERM;
356		goto errout;
357	}
358	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
359		error = ESRCH;
360		goto errout;
361	}
362	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
363		/*
364		 * XXXRW: Not clear ESRCH is the right error during proc
365		 * execve().
366		 */
367		error = ESRCH;
368		goto errout;
369	}
370	if ((flags & PGET_HOLD) != 0) {
371		_PHOLD(p);
372		PROC_UNLOCK(p);
373	}
374	*pp = p;
375	return (0);
376errout:
377	PROC_UNLOCK(p);
378	return (error);
379}
380
381/*
382 * Create a new process group.
383 * pgid must be equal to the pid of p.
384 * Begin a new session if required.
385 */
386int
387enterpgrp(p, pgid, pgrp, sess)
388	register struct proc *p;
389	pid_t pgid;
390	struct pgrp *pgrp;
391	struct session *sess;
392{
393	struct pgrp *pgrp2;
394
395	sx_assert(&proctree_lock, SX_XLOCKED);
396
397	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
398	KASSERT(p->p_pid == pgid,
399	    ("enterpgrp: new pgrp and pid != pgid"));
400
401	pgrp2 = pgfind(pgid);
402
403	KASSERT(pgrp2 == NULL,
404	    ("enterpgrp: pgrp with pgid exists"));
405	KASSERT(!SESS_LEADER(p),
406	    ("enterpgrp: session leader attempted setpgrp"));
407
408	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
409
410	if (sess != NULL) {
411		/*
412		 * new session
413		 */
414		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
415		PROC_LOCK(p);
416		p->p_flag &= ~P_CONTROLT;
417		PROC_UNLOCK(p);
418		PGRP_LOCK(pgrp);
419		sess->s_leader = p;
420		sess->s_sid = p->p_pid;
421		refcount_init(&sess->s_count, 1);
422		sess->s_ttyvp = NULL;
423		sess->s_ttydp = NULL;
424		sess->s_ttyp = NULL;
425		bcopy(p->p_session->s_login, sess->s_login,
426			    sizeof(sess->s_login));
427		pgrp->pg_session = sess;
428		KASSERT(p == curproc,
429		    ("enterpgrp: mksession and p != curproc"));
430	} else {
431		pgrp->pg_session = p->p_session;
432		sess_hold(pgrp->pg_session);
433		PGRP_LOCK(pgrp);
434	}
435	pgrp->pg_id = pgid;
436	LIST_INIT(&pgrp->pg_members);
437
438	/*
439	 * As we have an exclusive lock of proctree_lock,
440	 * this should not deadlock.
441	 */
442	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
443	pgrp->pg_jobc = 0;
444	SLIST_INIT(&pgrp->pg_sigiolst);
445	PGRP_UNLOCK(pgrp);
446
447	doenterpgrp(p, pgrp);
448
449	return (0);
450}
451
452/*
453 * Move p to an existing process group
454 */
455int
456enterthispgrp(p, pgrp)
457	register struct proc *p;
458	struct pgrp *pgrp;
459{
460
461	sx_assert(&proctree_lock, SX_XLOCKED);
462	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
463	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
464	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
465	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
466	KASSERT(pgrp->pg_session == p->p_session,
467		("%s: pgrp's session %p, p->p_session %p.\n",
468		__func__,
469		pgrp->pg_session,
470		p->p_session));
471	KASSERT(pgrp != p->p_pgrp,
472		("%s: p belongs to pgrp.", __func__));
473
474	doenterpgrp(p, pgrp);
475
476	return (0);
477}
478
479/*
480 * Move p to a process group
481 */
482static void
483doenterpgrp(p, pgrp)
484	struct proc *p;
485	struct pgrp *pgrp;
486{
487	struct pgrp *savepgrp;
488
489	sx_assert(&proctree_lock, SX_XLOCKED);
490	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
491	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
492	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
493	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
494
495	savepgrp = p->p_pgrp;
496
497	/*
498	 * Adjust eligibility of affected pgrps to participate in job control.
499	 * Increment eligibility counts before decrementing, otherwise we
500	 * could reach 0 spuriously during the first call.
501	 */
502	fixjobc(p, pgrp, 1);
503	fixjobc(p, p->p_pgrp, 0);
504
505	PGRP_LOCK(pgrp);
506	PGRP_LOCK(savepgrp);
507	PROC_LOCK(p);
508	LIST_REMOVE(p, p_pglist);
509	p->p_pgrp = pgrp;
510	PROC_UNLOCK(p);
511	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
512	PGRP_UNLOCK(savepgrp);
513	PGRP_UNLOCK(pgrp);
514	if (LIST_EMPTY(&savepgrp->pg_members))
515		pgdelete(savepgrp);
516}
517
518/*
519 * remove process from process group
520 */
521int
522leavepgrp(p)
523	register struct proc *p;
524{
525	struct pgrp *savepgrp;
526
527	sx_assert(&proctree_lock, SX_XLOCKED);
528	savepgrp = p->p_pgrp;
529	PGRP_LOCK(savepgrp);
530	PROC_LOCK(p);
531	LIST_REMOVE(p, p_pglist);
532	p->p_pgrp = NULL;
533	PROC_UNLOCK(p);
534	PGRP_UNLOCK(savepgrp);
535	if (LIST_EMPTY(&savepgrp->pg_members))
536		pgdelete(savepgrp);
537	return (0);
538}
539
540/*
541 * delete a process group
542 */
543static void
544pgdelete(pgrp)
545	register struct pgrp *pgrp;
546{
547	struct session *savesess;
548	struct tty *tp;
549
550	sx_assert(&proctree_lock, SX_XLOCKED);
551	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
552	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
553
554	/*
555	 * Reset any sigio structures pointing to us as a result of
556	 * F_SETOWN with our pgid.
557	 */
558	funsetownlst(&pgrp->pg_sigiolst);
559
560	PGRP_LOCK(pgrp);
561	tp = pgrp->pg_session->s_ttyp;
562	LIST_REMOVE(pgrp, pg_hash);
563	savesess = pgrp->pg_session;
564	PGRP_UNLOCK(pgrp);
565
566	/* Remove the reference to the pgrp before deallocating it. */
567	if (tp != NULL) {
568		tty_lock(tp);
569		tty_rel_pgrp(tp, pgrp);
570	}
571
572	mtx_destroy(&pgrp->pg_mtx);
573	free(pgrp, M_PGRP);
574	sess_release(savesess);
575}
576
577static void
578pgadjustjobc(pgrp, entering)
579	struct pgrp *pgrp;
580	int entering;
581{
582
583	PGRP_LOCK(pgrp);
584	if (entering)
585		pgrp->pg_jobc++;
586	else {
587		--pgrp->pg_jobc;
588		if (pgrp->pg_jobc == 0)
589			orphanpg(pgrp);
590	}
591	PGRP_UNLOCK(pgrp);
592}
593
594/*
595 * Adjust pgrp jobc counters when specified process changes process group.
596 * We count the number of processes in each process group that "qualify"
597 * the group for terminal job control (those with a parent in a different
598 * process group of the same session).  If that count reaches zero, the
599 * process group becomes orphaned.  Check both the specified process'
600 * process group and that of its children.
601 * entering == 0 => p is leaving specified group.
602 * entering == 1 => p is entering specified group.
603 */
604void
605fixjobc(p, pgrp, entering)
606	register struct proc *p;
607	register struct pgrp *pgrp;
608	int entering;
609{
610	register struct pgrp *hispgrp;
611	register struct session *mysession;
612
613	sx_assert(&proctree_lock, SX_LOCKED);
614	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
615	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
616	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
617
618	/*
619	 * Check p's parent to see whether p qualifies its own process
620	 * group; if so, adjust count for p's process group.
621	 */
622	mysession = pgrp->pg_session;
623	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
624	    hispgrp->pg_session == mysession)
625		pgadjustjobc(pgrp, entering);
626
627	/*
628	 * Check this process' children to see whether they qualify
629	 * their process groups; if so, adjust counts for children's
630	 * process groups.
631	 */
632	LIST_FOREACH(p, &p->p_children, p_sibling) {
633		hispgrp = p->p_pgrp;
634		if (hispgrp == pgrp ||
635		    hispgrp->pg_session != mysession)
636			continue;
637		PROC_LOCK(p);
638		if (p->p_state == PRS_ZOMBIE) {
639			PROC_UNLOCK(p);
640			continue;
641		}
642		PROC_UNLOCK(p);
643		pgadjustjobc(hispgrp, entering);
644	}
645}
646
647/*
648 * A process group has become orphaned;
649 * if there are any stopped processes in the group,
650 * hang-up all process in that group.
651 */
652static void
653orphanpg(pg)
654	struct pgrp *pg;
655{
656	register struct proc *p;
657
658	PGRP_LOCK_ASSERT(pg, MA_OWNED);
659
660	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
661		PROC_LOCK(p);
662		if (P_SHOULDSTOP(p)) {
663			PROC_UNLOCK(p);
664			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
665				PROC_LOCK(p);
666				kern_psignal(p, SIGHUP);
667				kern_psignal(p, SIGCONT);
668				PROC_UNLOCK(p);
669			}
670			return;
671		}
672		PROC_UNLOCK(p);
673	}
674}
675
676void
677sess_hold(struct session *s)
678{
679
680	refcount_acquire(&s->s_count);
681}
682
683void
684sess_release(struct session *s)
685{
686
687	if (refcount_release(&s->s_count)) {
688		if (s->s_ttyp != NULL) {
689			tty_lock(s->s_ttyp);
690			tty_rel_sess(s->s_ttyp, s);
691		}
692		mtx_destroy(&s->s_mtx);
693		free(s, M_SESSION);
694	}
695}
696
697#include "opt_ddb.h"
698#ifdef DDB
699#include <ddb/ddb.h>
700
701DB_SHOW_COMMAND(pgrpdump, pgrpdump)
702{
703	register struct pgrp *pgrp;
704	register struct proc *p;
705	register int i;
706
707	for (i = 0; i <= pgrphash; i++) {
708		if (!LIST_EMPTY(&pgrphashtbl[i])) {
709			printf("\tindx %d\n", i);
710			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
711				printf(
712			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
713				    (void *)pgrp, (long)pgrp->pg_id,
714				    (void *)pgrp->pg_session,
715				    pgrp->pg_session->s_count,
716				    (void *)LIST_FIRST(&pgrp->pg_members));
717				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
718					printf("\t\tpid %ld addr %p pgrp %p\n",
719					    (long)p->p_pid, (void *)p,
720					    (void *)p->p_pgrp);
721				}
722			}
723		}
724	}
725}
726#endif /* DDB */
727
728/*
729 * Calculate the kinfo_proc members which contain process-wide
730 * informations.
731 * Must be called with the target process locked.
732 */
733static void
734fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
735{
736	struct thread *td;
737
738	PROC_LOCK_ASSERT(p, MA_OWNED);
739
740	kp->ki_estcpu = 0;
741	kp->ki_pctcpu = 0;
742	FOREACH_THREAD_IN_PROC(p, td) {
743		thread_lock(td);
744		kp->ki_pctcpu += sched_pctcpu(td);
745		kp->ki_estcpu += td->td_estcpu;
746		thread_unlock(td);
747	}
748}
749
750/*
751 * Clear kinfo_proc and fill in any information that is common
752 * to all threads in the process.
753 * Must be called with the target process locked.
754 */
755static void
756fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
757{
758	struct thread *td0;
759	struct tty *tp;
760	struct session *sp;
761	struct ucred *cred;
762	struct sigacts *ps;
763
764	PROC_LOCK_ASSERT(p, MA_OWNED);
765	bzero(kp, sizeof(*kp));
766
767	kp->ki_structsize = sizeof(*kp);
768	kp->ki_paddr = p;
769	kp->ki_addr =/* p->p_addr; */0; /* XXX */
770	kp->ki_args = p->p_args;
771	kp->ki_textvp = p->p_textvp;
772#ifdef KTRACE
773	kp->ki_tracep = p->p_tracevp;
774	kp->ki_traceflag = p->p_traceflag;
775#endif
776	kp->ki_fd = p->p_fd;
777	kp->ki_vmspace = p->p_vmspace;
778	kp->ki_flag = p->p_flag;
779	cred = p->p_ucred;
780	if (cred) {
781		kp->ki_uid = cred->cr_uid;
782		kp->ki_ruid = cred->cr_ruid;
783		kp->ki_svuid = cred->cr_svuid;
784		kp->ki_cr_flags = 0;
785		if (cred->cr_flags & CRED_FLAG_CAPMODE)
786			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
787		/* XXX bde doesn't like KI_NGROUPS */
788		if (cred->cr_ngroups > KI_NGROUPS) {
789			kp->ki_ngroups = KI_NGROUPS;
790			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
791		} else
792			kp->ki_ngroups = cred->cr_ngroups;
793		bcopy(cred->cr_groups, kp->ki_groups,
794		    kp->ki_ngroups * sizeof(gid_t));
795		kp->ki_rgid = cred->cr_rgid;
796		kp->ki_svgid = cred->cr_svgid;
797		/* If jailed(cred), emulate the old P_JAILED flag. */
798		if (jailed(cred)) {
799			kp->ki_flag |= P_JAILED;
800			/* If inside the jail, use 0 as a jail ID. */
801			if (cred->cr_prison != curthread->td_ucred->cr_prison)
802				kp->ki_jid = cred->cr_prison->pr_id;
803		}
804		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
805		    sizeof(kp->ki_loginclass));
806	}
807	ps = p->p_sigacts;
808	if (ps) {
809		mtx_lock(&ps->ps_mtx);
810		kp->ki_sigignore = ps->ps_sigignore;
811		kp->ki_sigcatch = ps->ps_sigcatch;
812		mtx_unlock(&ps->ps_mtx);
813	}
814	if (p->p_state != PRS_NEW &&
815	    p->p_state != PRS_ZOMBIE &&
816	    p->p_vmspace != NULL) {
817		struct vmspace *vm = p->p_vmspace;
818
819		kp->ki_size = vm->vm_map.size;
820		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
821		FOREACH_THREAD_IN_PROC(p, td0) {
822			if (!TD_IS_SWAPPED(td0))
823				kp->ki_rssize += td0->td_kstack_pages;
824		}
825		kp->ki_swrss = vm->vm_swrss;
826		kp->ki_tsize = vm->vm_tsize;
827		kp->ki_dsize = vm->vm_dsize;
828		kp->ki_ssize = vm->vm_ssize;
829	} else if (p->p_state == PRS_ZOMBIE)
830		kp->ki_stat = SZOMB;
831	if (kp->ki_flag & P_INMEM)
832		kp->ki_sflag = PS_INMEM;
833	else
834		kp->ki_sflag = 0;
835	/* Calculate legacy swtime as seconds since 'swtick'. */
836	kp->ki_swtime = (ticks - p->p_swtick) / hz;
837	kp->ki_pid = p->p_pid;
838	kp->ki_nice = p->p_nice;
839	kp->ki_start = p->p_stats->p_start;
840	timevaladd(&kp->ki_start, &boottime);
841	PROC_SLOCK(p);
842	rufetch(p, &kp->ki_rusage);
843	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
844	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
845	PROC_SUNLOCK(p);
846	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
847	/* Some callers want child times in a single value. */
848	kp->ki_childtime = kp->ki_childstime;
849	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
850
851	tp = NULL;
852	if (p->p_pgrp) {
853		kp->ki_pgid = p->p_pgrp->pg_id;
854		kp->ki_jobc = p->p_pgrp->pg_jobc;
855		sp = p->p_pgrp->pg_session;
856
857		if (sp != NULL) {
858			kp->ki_sid = sp->s_sid;
859			SESS_LOCK(sp);
860			strlcpy(kp->ki_login, sp->s_login,
861			    sizeof(kp->ki_login));
862			if (sp->s_ttyvp)
863				kp->ki_kiflag |= KI_CTTY;
864			if (SESS_LEADER(p))
865				kp->ki_kiflag |= KI_SLEADER;
866			/* XXX proctree_lock */
867			tp = sp->s_ttyp;
868			SESS_UNLOCK(sp);
869		}
870	}
871	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
872		kp->ki_tdev = tty_udev(tp);
873		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
874		if (tp->t_session)
875			kp->ki_tsid = tp->t_session->s_sid;
876	} else
877		kp->ki_tdev = NODEV;
878	if (p->p_comm[0] != '\0')
879		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
880	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
881	    p->p_sysent->sv_name[0] != '\0')
882		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
883	kp->ki_siglist = p->p_siglist;
884	kp->ki_xstat = p->p_xstat;
885	kp->ki_acflag = p->p_acflag;
886	kp->ki_lock = p->p_lock;
887	if (p->p_pptr)
888		kp->ki_ppid = p->p_pptr->p_pid;
889}
890
891/*
892 * Fill in information that is thread specific.  Must be called with
893 * target process locked.  If 'preferthread' is set, overwrite certain
894 * process-related fields that are maintained for both threads and
895 * processes.
896 */
897static void
898fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
899{
900	struct proc *p;
901
902	p = td->td_proc;
903	kp->ki_tdaddr = td;
904	PROC_LOCK_ASSERT(p, MA_OWNED);
905
906	if (preferthread)
907		PROC_SLOCK(p);
908	thread_lock(td);
909	if (td->td_wmesg != NULL)
910		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
911	else
912		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
913	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
914	if (TD_ON_LOCK(td)) {
915		kp->ki_kiflag |= KI_LOCKBLOCK;
916		strlcpy(kp->ki_lockname, td->td_lockname,
917		    sizeof(kp->ki_lockname));
918	} else {
919		kp->ki_kiflag &= ~KI_LOCKBLOCK;
920		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
921	}
922
923	if (p->p_state == PRS_NORMAL) { /* approximate. */
924		if (TD_ON_RUNQ(td) ||
925		    TD_CAN_RUN(td) ||
926		    TD_IS_RUNNING(td)) {
927			kp->ki_stat = SRUN;
928		} else if (P_SHOULDSTOP(p)) {
929			kp->ki_stat = SSTOP;
930		} else if (TD_IS_SLEEPING(td)) {
931			kp->ki_stat = SSLEEP;
932		} else if (TD_ON_LOCK(td)) {
933			kp->ki_stat = SLOCK;
934		} else {
935			kp->ki_stat = SWAIT;
936		}
937	} else if (p->p_state == PRS_ZOMBIE) {
938		kp->ki_stat = SZOMB;
939	} else {
940		kp->ki_stat = SIDL;
941	}
942
943	/* Things in the thread */
944	kp->ki_wchan = td->td_wchan;
945	kp->ki_pri.pri_level = td->td_priority;
946	kp->ki_pri.pri_native = td->td_base_pri;
947	kp->ki_lastcpu = td->td_lastcpu;
948	kp->ki_oncpu = td->td_oncpu;
949	kp->ki_tdflags = td->td_flags;
950	kp->ki_tid = td->td_tid;
951	kp->ki_numthreads = p->p_numthreads;
952	kp->ki_pcb = td->td_pcb;
953	kp->ki_kstack = (void *)td->td_kstack;
954	kp->ki_slptime = (ticks - td->td_slptick) / hz;
955	kp->ki_pri.pri_class = td->td_pri_class;
956	kp->ki_pri.pri_user = td->td_user_pri;
957
958	if (preferthread) {
959		rufetchtd(td, &kp->ki_rusage);
960		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
961		kp->ki_pctcpu = sched_pctcpu(td);
962		kp->ki_estcpu = td->td_estcpu;
963	}
964
965	/* We can't get this anymore but ps etc never used it anyway. */
966	kp->ki_rqindex = 0;
967
968	if (preferthread)
969		kp->ki_siglist = td->td_siglist;
970	kp->ki_sigmask = td->td_sigmask;
971	thread_unlock(td);
972	if (preferthread)
973		PROC_SUNLOCK(p);
974}
975
976/*
977 * Fill in a kinfo_proc structure for the specified process.
978 * Must be called with the target process locked.
979 */
980void
981fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
982{
983
984	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
985
986	fill_kinfo_proc_only(p, kp);
987	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
988	fill_kinfo_aggregate(p, kp);
989}
990
991struct pstats *
992pstats_alloc(void)
993{
994
995	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
996}
997
998/*
999 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1000 */
1001void
1002pstats_fork(struct pstats *src, struct pstats *dst)
1003{
1004
1005	bzero(&dst->pstat_startzero,
1006	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1007	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1008	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1009}
1010
1011void
1012pstats_free(struct pstats *ps)
1013{
1014
1015	free(ps, M_SUBPROC);
1016}
1017
1018/*
1019 * Locate a zombie process by number
1020 */
1021struct proc *
1022zpfind(pid_t pid)
1023{
1024	struct proc *p;
1025
1026	sx_slock(&allproc_lock);
1027	LIST_FOREACH(p, &zombproc, p_list)
1028		if (p->p_pid == pid) {
1029			PROC_LOCK(p);
1030			break;
1031		}
1032	sx_sunlock(&allproc_lock);
1033	return (p);
1034}
1035
1036#define KERN_PROC_ZOMBMASK	0x3
1037#define KERN_PROC_NOTHREADS	0x4
1038
1039#ifdef COMPAT_FREEBSD32
1040
1041/*
1042 * This function is typically used to copy out the kernel address, so
1043 * it can be replaced by assignment of zero.
1044 */
1045static inline uint32_t
1046ptr32_trim(void *ptr)
1047{
1048	uintptr_t uptr;
1049
1050	uptr = (uintptr_t)ptr;
1051	return ((uptr > UINT_MAX) ? 0 : uptr);
1052}
1053
1054#define PTRTRIM_CP(src,dst,fld) \
1055	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1056
1057static void
1058freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1059{
1060	int i;
1061
1062	bzero(ki32, sizeof(struct kinfo_proc32));
1063	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1064	CP(*ki, *ki32, ki_layout);
1065	PTRTRIM_CP(*ki, *ki32, ki_args);
1066	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1067	PTRTRIM_CP(*ki, *ki32, ki_addr);
1068	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1069	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1070	PTRTRIM_CP(*ki, *ki32, ki_fd);
1071	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1072	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1073	CP(*ki, *ki32, ki_pid);
1074	CP(*ki, *ki32, ki_ppid);
1075	CP(*ki, *ki32, ki_pgid);
1076	CP(*ki, *ki32, ki_tpgid);
1077	CP(*ki, *ki32, ki_sid);
1078	CP(*ki, *ki32, ki_tsid);
1079	CP(*ki, *ki32, ki_jobc);
1080	CP(*ki, *ki32, ki_tdev);
1081	CP(*ki, *ki32, ki_siglist);
1082	CP(*ki, *ki32, ki_sigmask);
1083	CP(*ki, *ki32, ki_sigignore);
1084	CP(*ki, *ki32, ki_sigcatch);
1085	CP(*ki, *ki32, ki_uid);
1086	CP(*ki, *ki32, ki_ruid);
1087	CP(*ki, *ki32, ki_svuid);
1088	CP(*ki, *ki32, ki_rgid);
1089	CP(*ki, *ki32, ki_svgid);
1090	CP(*ki, *ki32, ki_ngroups);
1091	for (i = 0; i < KI_NGROUPS; i++)
1092		CP(*ki, *ki32, ki_groups[i]);
1093	CP(*ki, *ki32, ki_size);
1094	CP(*ki, *ki32, ki_rssize);
1095	CP(*ki, *ki32, ki_swrss);
1096	CP(*ki, *ki32, ki_tsize);
1097	CP(*ki, *ki32, ki_dsize);
1098	CP(*ki, *ki32, ki_ssize);
1099	CP(*ki, *ki32, ki_xstat);
1100	CP(*ki, *ki32, ki_acflag);
1101	CP(*ki, *ki32, ki_pctcpu);
1102	CP(*ki, *ki32, ki_estcpu);
1103	CP(*ki, *ki32, ki_slptime);
1104	CP(*ki, *ki32, ki_swtime);
1105	CP(*ki, *ki32, ki_runtime);
1106	TV_CP(*ki, *ki32, ki_start);
1107	TV_CP(*ki, *ki32, ki_childtime);
1108	CP(*ki, *ki32, ki_flag);
1109	CP(*ki, *ki32, ki_kiflag);
1110	CP(*ki, *ki32, ki_traceflag);
1111	CP(*ki, *ki32, ki_stat);
1112	CP(*ki, *ki32, ki_nice);
1113	CP(*ki, *ki32, ki_lock);
1114	CP(*ki, *ki32, ki_rqindex);
1115	CP(*ki, *ki32, ki_oncpu);
1116	CP(*ki, *ki32, ki_lastcpu);
1117	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1118	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1119	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1120	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1121	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1122	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1123	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1124	CP(*ki, *ki32, ki_cr_flags);
1125	CP(*ki, *ki32, ki_jid);
1126	CP(*ki, *ki32, ki_numthreads);
1127	CP(*ki, *ki32, ki_tid);
1128	CP(*ki, *ki32, ki_pri);
1129	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1130	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1131	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1132	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1133	PTRTRIM_CP(*ki, *ki32, ki_udata);
1134	CP(*ki, *ki32, ki_sflag);
1135	CP(*ki, *ki32, ki_tdflags);
1136}
1137
1138static int
1139sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1140{
1141	struct kinfo_proc32 ki32;
1142	int error;
1143
1144	if (req->flags & SCTL_MASK32) {
1145		freebsd32_kinfo_proc_out(ki, &ki32);
1146		error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1147	} else
1148		error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1149	return (error);
1150}
1151#else
1152static int
1153sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1154{
1155
1156	return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1157}
1158#endif
1159
1160/*
1161 * Must be called with the process locked and will return with it unlocked.
1162 */
1163static int
1164sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1165{
1166	struct thread *td;
1167	struct kinfo_proc kinfo_proc;
1168	int error = 0;
1169	struct proc *np;
1170	pid_t pid = p->p_pid;
1171
1172	PROC_LOCK_ASSERT(p, MA_OWNED);
1173	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1174
1175	fill_kinfo_proc(p, &kinfo_proc);
1176	if (flags & KERN_PROC_NOTHREADS)
1177		error = sysctl_out_proc_copyout(&kinfo_proc, req);
1178	else {
1179		FOREACH_THREAD_IN_PROC(p, td) {
1180			fill_kinfo_thread(td, &kinfo_proc, 1);
1181			error = sysctl_out_proc_copyout(&kinfo_proc, req);
1182			if (error)
1183				break;
1184		}
1185	}
1186	PROC_UNLOCK(p);
1187	if (error)
1188		return (error);
1189	if (flags & KERN_PROC_ZOMBMASK)
1190		np = zpfind(pid);
1191	else {
1192		if (pid == 0)
1193			return (0);
1194		np = pfind(pid);
1195	}
1196	if (np == NULL)
1197		return (ESRCH);
1198	if (np != p) {
1199		PROC_UNLOCK(np);
1200		return (ESRCH);
1201	}
1202	PROC_UNLOCK(np);
1203	return (0);
1204}
1205
1206static int
1207sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1208{
1209	int *name = (int*) arg1;
1210	u_int namelen = arg2;
1211	struct proc *p;
1212	int flags, doingzomb, oid_number;
1213	int error = 0;
1214
1215	oid_number = oidp->oid_number;
1216	if (oid_number != KERN_PROC_ALL &&
1217	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1218		flags = KERN_PROC_NOTHREADS;
1219	else {
1220		flags = 0;
1221		oid_number &= ~KERN_PROC_INC_THREAD;
1222	}
1223	if (oid_number == KERN_PROC_PID) {
1224		if (namelen != 1)
1225			return (EINVAL);
1226		error = sysctl_wire_old_buffer(req, 0);
1227		if (error)
1228			return (error);
1229		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1230		if (error != 0)
1231			return (error);
1232		error = sysctl_out_proc(p, req, flags);
1233		return (error);
1234	}
1235
1236	switch (oid_number) {
1237	case KERN_PROC_ALL:
1238		if (namelen != 0)
1239			return (EINVAL);
1240		break;
1241	case KERN_PROC_PROC:
1242		if (namelen != 0 && namelen != 1)
1243			return (EINVAL);
1244		break;
1245	default:
1246		if (namelen != 1)
1247			return (EINVAL);
1248		break;
1249	}
1250
1251	if (!req->oldptr) {
1252		/* overestimate by 5 procs */
1253		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1254		if (error)
1255			return (error);
1256	}
1257	error = sysctl_wire_old_buffer(req, 0);
1258	if (error != 0)
1259		return (error);
1260	sx_slock(&allproc_lock);
1261	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1262		if (!doingzomb)
1263			p = LIST_FIRST(&allproc);
1264		else
1265			p = LIST_FIRST(&zombproc);
1266		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1267			/*
1268			 * Skip embryonic processes.
1269			 */
1270			PROC_LOCK(p);
1271			if (p->p_state == PRS_NEW) {
1272				PROC_UNLOCK(p);
1273				continue;
1274			}
1275			KASSERT(p->p_ucred != NULL,
1276			    ("process credential is NULL for non-NEW proc"));
1277			/*
1278			 * Show a user only appropriate processes.
1279			 */
1280			if (p_cansee(curthread, p)) {
1281				PROC_UNLOCK(p);
1282				continue;
1283			}
1284			/*
1285			 * TODO - make more efficient (see notes below).
1286			 * do by session.
1287			 */
1288			switch (oid_number) {
1289
1290			case KERN_PROC_GID:
1291				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1292					PROC_UNLOCK(p);
1293					continue;
1294				}
1295				break;
1296
1297			case KERN_PROC_PGRP:
1298				/* could do this by traversing pgrp */
1299				if (p->p_pgrp == NULL ||
1300				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1301					PROC_UNLOCK(p);
1302					continue;
1303				}
1304				break;
1305
1306			case KERN_PROC_RGID:
1307				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1308					PROC_UNLOCK(p);
1309					continue;
1310				}
1311				break;
1312
1313			case KERN_PROC_SESSION:
1314				if (p->p_session == NULL ||
1315				    p->p_session->s_sid != (pid_t)name[0]) {
1316					PROC_UNLOCK(p);
1317					continue;
1318				}
1319				break;
1320
1321			case KERN_PROC_TTY:
1322				if ((p->p_flag & P_CONTROLT) == 0 ||
1323				    p->p_session == NULL) {
1324					PROC_UNLOCK(p);
1325					continue;
1326				}
1327				/* XXX proctree_lock */
1328				SESS_LOCK(p->p_session);
1329				if (p->p_session->s_ttyp == NULL ||
1330				    tty_udev(p->p_session->s_ttyp) !=
1331				    (dev_t)name[0]) {
1332					SESS_UNLOCK(p->p_session);
1333					PROC_UNLOCK(p);
1334					continue;
1335				}
1336				SESS_UNLOCK(p->p_session);
1337				break;
1338
1339			case KERN_PROC_UID:
1340				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1341					PROC_UNLOCK(p);
1342					continue;
1343				}
1344				break;
1345
1346			case KERN_PROC_RUID:
1347				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1348					PROC_UNLOCK(p);
1349					continue;
1350				}
1351				break;
1352
1353			case KERN_PROC_PROC:
1354				break;
1355
1356			default:
1357				break;
1358
1359			}
1360
1361			error = sysctl_out_proc(p, req, flags | doingzomb);
1362			if (error) {
1363				sx_sunlock(&allproc_lock);
1364				return (error);
1365			}
1366		}
1367	}
1368	sx_sunlock(&allproc_lock);
1369	return (0);
1370}
1371
1372struct pargs *
1373pargs_alloc(int len)
1374{
1375	struct pargs *pa;
1376
1377	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1378		M_WAITOK);
1379	refcount_init(&pa->ar_ref, 1);
1380	pa->ar_length = len;
1381	return (pa);
1382}
1383
1384static void
1385pargs_free(struct pargs *pa)
1386{
1387
1388	free(pa, M_PARGS);
1389}
1390
1391void
1392pargs_hold(struct pargs *pa)
1393{
1394
1395	if (pa == NULL)
1396		return;
1397	refcount_acquire(&pa->ar_ref);
1398}
1399
1400void
1401pargs_drop(struct pargs *pa)
1402{
1403
1404	if (pa == NULL)
1405		return;
1406	if (refcount_release(&pa->ar_ref))
1407		pargs_free(pa);
1408}
1409
1410static int
1411proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1412    size_t len)
1413{
1414	struct iovec iov;
1415	struct uio uio;
1416
1417	iov.iov_base = (caddr_t)buf;
1418	iov.iov_len = len;
1419	uio.uio_iov = &iov;
1420	uio.uio_iovcnt = 1;
1421	uio.uio_offset = offset;
1422	uio.uio_resid = (ssize_t)len;
1423	uio.uio_segflg = UIO_SYSSPACE;
1424	uio.uio_rw = UIO_READ;
1425	uio.uio_td = td;
1426
1427	return (proc_rwmem(p, &uio));
1428}
1429
1430static int
1431proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1432    size_t len)
1433{
1434	size_t i;
1435	int error;
1436
1437	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1438	/*
1439	 * Reading the chunk may validly return EFAULT if the string is shorter
1440	 * than the chunk and is aligned at the end of the page, assuming the
1441	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1442	 * one byte read loop.
1443	 */
1444	if (error == EFAULT) {
1445		for (i = 0; i < len; i++, buf++, sptr++) {
1446			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1447			if (error != 0)
1448				return (error);
1449			if (*buf == '\0')
1450				break;
1451		}
1452		error = 0;
1453	}
1454	return (error);
1455}
1456
1457#define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1458
1459enum proc_vector_type {
1460	PROC_ARG,
1461	PROC_ENV,
1462	PROC_AUX,
1463};
1464
1465#ifdef COMPAT_FREEBSD32
1466static int
1467get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1468    size_t *vsizep, enum proc_vector_type type)
1469{
1470	struct freebsd32_ps_strings pss;
1471	Elf32_Auxinfo aux;
1472	vm_offset_t vptr, ptr;
1473	uint32_t *proc_vector32;
1474	char **proc_vector;
1475	size_t vsize, size;
1476	int i, error;
1477
1478	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1479	    &pss, sizeof(pss));
1480	if (error != 0)
1481		return (error);
1482	switch (type) {
1483	case PROC_ARG:
1484		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1485		vsize = pss.ps_nargvstr;
1486		if (vsize > ARG_MAX)
1487			return (ENOEXEC);
1488		size = vsize * sizeof(int32_t);
1489		break;
1490	case PROC_ENV:
1491		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1492		vsize = pss.ps_nenvstr;
1493		if (vsize > ARG_MAX)
1494			return (ENOEXEC);
1495		size = vsize * sizeof(int32_t);
1496		break;
1497	case PROC_AUX:
1498		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1499		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1500		if (vptr % 4 != 0)
1501			return (ENOEXEC);
1502		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1503			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1504			if (error != 0)
1505				return (error);
1506			if (aux.a_type == AT_NULL)
1507				break;
1508			ptr += sizeof(aux);
1509		}
1510		if (aux.a_type != AT_NULL)
1511			return (ENOEXEC);
1512		vsize = i + 1;
1513		size = vsize * sizeof(aux);
1514		break;
1515	default:
1516		KASSERT(0, ("Wrong proc vector type: %d", type));
1517		return (EINVAL);
1518	}
1519	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1520	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1521	if (error != 0)
1522		goto done;
1523	if (type == PROC_AUX) {
1524		*proc_vectorp = (char **)proc_vector32;
1525		*vsizep = vsize;
1526		return (0);
1527	}
1528	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1529	for (i = 0; i < (int)vsize; i++)
1530		proc_vector[i] = PTRIN(proc_vector32[i]);
1531	*proc_vectorp = proc_vector;
1532	*vsizep = vsize;
1533done:
1534	free(proc_vector32, M_TEMP);
1535	return (error);
1536}
1537#endif
1538
1539static int
1540get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1541    size_t *vsizep, enum proc_vector_type type)
1542{
1543	struct ps_strings pss;
1544	Elf_Auxinfo aux;
1545	vm_offset_t vptr, ptr;
1546	char **proc_vector;
1547	size_t vsize, size;
1548	int error, i;
1549
1550#ifdef COMPAT_FREEBSD32
1551	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1552		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1553#endif
1554	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1555	    &pss, sizeof(pss));
1556	if (error != 0)
1557		return (error);
1558	switch (type) {
1559	case PROC_ARG:
1560		vptr = (vm_offset_t)pss.ps_argvstr;
1561		vsize = pss.ps_nargvstr;
1562		if (vsize > ARG_MAX)
1563			return (ENOEXEC);
1564		size = vsize * sizeof(char *);
1565		break;
1566	case PROC_ENV:
1567		vptr = (vm_offset_t)pss.ps_envstr;
1568		vsize = pss.ps_nenvstr;
1569		if (vsize > ARG_MAX)
1570			return (ENOEXEC);
1571		size = vsize * sizeof(char *);
1572		break;
1573	case PROC_AUX:
1574		/*
1575		 * The aux array is just above env array on the stack. Check
1576		 * that the address is naturally aligned.
1577		 */
1578		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1579		    * sizeof(char *);
1580#if __ELF_WORD_SIZE == 64
1581		if (vptr % sizeof(uint64_t) != 0)
1582#else
1583		if (vptr % sizeof(uint32_t) != 0)
1584#endif
1585			return (ENOEXEC);
1586		/*
1587		 * We count the array size reading the aux vectors from the
1588		 * stack until AT_NULL vector is returned.  So (to keep the code
1589		 * simple) we read the process stack twice: the first time here
1590		 * to find the size and the second time when copying the vectors
1591		 * to the allocated proc_vector.
1592		 */
1593		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1594			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1595			if (error != 0)
1596				return (error);
1597			if (aux.a_type == AT_NULL)
1598				break;
1599			ptr += sizeof(aux);
1600		}
1601		/*
1602		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1603		 * not reached AT_NULL, it is most likely we are reading wrong
1604		 * data: either the process doesn't have auxv array or data has
1605		 * been modified. Return the error in this case.
1606		 */
1607		if (aux.a_type != AT_NULL)
1608			return (ENOEXEC);
1609		vsize = i + 1;
1610		size = vsize * sizeof(aux);
1611		break;
1612	default:
1613		KASSERT(0, ("Wrong proc vector type: %d", type));
1614		return (EINVAL); /* In case we are built without INVARIANTS. */
1615	}
1616	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1617	if (proc_vector == NULL)
1618		return (ENOMEM);
1619	error = proc_read_mem(td, p, vptr, proc_vector, size);
1620	if (error != 0) {
1621		free(proc_vector, M_TEMP);
1622		return (error);
1623	}
1624	*proc_vectorp = proc_vector;
1625	*vsizep = vsize;
1626
1627	return (0);
1628}
1629
1630#define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1631
1632static int
1633get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1634    enum proc_vector_type type, size_t nchr)
1635{
1636	size_t done, len, vsize;
1637	int error, i;
1638	char **proc_vector, *sptr;
1639	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1640
1641	PROC_ASSERT_HELD(p);
1642
1643	 /*
1644	  * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1645	  */
1646	if (nchr > 2 * (PATH_MAX + ARG_MAX))
1647		nchr = 2 * (PATH_MAX + ARG_MAX);
1648
1649	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1650	if (error != 0)
1651		return (error);
1652	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1653		/*
1654		 * The program may have scribbled into its argv array, e.g. to
1655		 * remove some arguments.  If that has happened, break out
1656		 * before trying to read from NULL.
1657		 */
1658		if (proc_vector[i] == NULL)
1659			break;
1660		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1661			error = proc_read_string(td, p, sptr, pss_string,
1662			    sizeof(pss_string));
1663			if (error != 0)
1664				goto done;
1665			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1666			if (done + len >= nchr)
1667				len = nchr - done - 1;
1668			sbuf_bcat(sb, pss_string, len);
1669			if (len != GET_PS_STRINGS_CHUNK_SZ)
1670				break;
1671			done += GET_PS_STRINGS_CHUNK_SZ;
1672		}
1673		sbuf_bcat(sb, "", 1);
1674		done += len + 1;
1675	}
1676done:
1677	free(proc_vector, M_TEMP);
1678	return (error);
1679}
1680
1681int
1682proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb, size_t nchr)
1683{
1684
1685	return (get_ps_strings(curthread, p, sb, PROC_ARG, nchr));
1686}
1687
1688int
1689proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb, size_t nchr)
1690{
1691
1692	return (get_ps_strings(curthread, p, sb, PROC_ENV, nchr));
1693}
1694
1695/*
1696 * This sysctl allows a process to retrieve the argument list or process
1697 * title for another process without groping around in the address space
1698 * of the other process.  It also allow a process to set its own "process
1699 * title to a string of its own choice.
1700 */
1701static int
1702sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1703{
1704	int *name = (int*) arg1;
1705	u_int namelen = arg2;
1706	struct pargs *newpa, *pa;
1707	struct proc *p;
1708	struct sbuf sb;
1709	int flags, error = 0, error2;
1710
1711	if (namelen != 1)
1712		return (EINVAL);
1713
1714	flags = PGET_CANSEE;
1715	if (req->newptr != NULL)
1716		flags |= PGET_ISCURRENT;
1717	error = pget((pid_t)name[0], flags, &p);
1718	if (error)
1719		return (error);
1720
1721	pa = p->p_args;
1722	if (pa != NULL) {
1723		pargs_hold(pa);
1724		PROC_UNLOCK(p);
1725		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1726		pargs_drop(pa);
1727	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1728		_PHOLD(p);
1729		PROC_UNLOCK(p);
1730		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1731		error = proc_getargv(curthread, p, &sb, req->oldlen);
1732		error2 = sbuf_finish(&sb);
1733		PRELE(p);
1734		sbuf_delete(&sb);
1735		if (error == 0 && error2 != 0)
1736			error = error2;
1737	} else {
1738		PROC_UNLOCK(p);
1739	}
1740	if (error != 0 || req->newptr == NULL)
1741		return (error);
1742
1743	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1744		return (ENOMEM);
1745	newpa = pargs_alloc(req->newlen);
1746	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1747	if (error != 0) {
1748		pargs_free(newpa);
1749		return (error);
1750	}
1751	PROC_LOCK(p);
1752	pa = p->p_args;
1753	p->p_args = newpa;
1754	PROC_UNLOCK(p);
1755	pargs_drop(pa);
1756	return (0);
1757}
1758
1759/*
1760 * This sysctl allows a process to retrieve environment of another process.
1761 */
1762static int
1763sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1764{
1765	int *name = (int*) arg1;
1766	u_int namelen = arg2;
1767	struct proc *p;
1768	struct sbuf sb;
1769	int error, error2;
1770
1771	if (namelen != 1)
1772		return (EINVAL);
1773
1774	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1775	if (error != 0)
1776		return (error);
1777	if ((p->p_flag & P_SYSTEM) != 0) {
1778		PRELE(p);
1779		return (0);
1780	}
1781
1782	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1783	error = proc_getenvv(curthread, p, &sb, req->oldlen);
1784	error2 = sbuf_finish(&sb);
1785	PRELE(p);
1786	sbuf_delete(&sb);
1787	return (error != 0 ? error : error2);
1788}
1789
1790/*
1791 * This sysctl allows a process to retrieve ELF auxiliary vector of
1792 * another process.
1793 */
1794static int
1795sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1796{
1797	int *name = (int*) arg1;
1798	u_int namelen = arg2;
1799	struct proc *p;
1800	size_t vsize, size;
1801	char **auxv;
1802	int error;
1803
1804	if (namelen != 1)
1805		return (EINVAL);
1806
1807	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1808	if (error != 0)
1809		return (error);
1810	if ((p->p_flag & P_SYSTEM) != 0) {
1811		PRELE(p);
1812		return (0);
1813	}
1814	error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX);
1815	if (error == 0) {
1816#ifdef COMPAT_FREEBSD32
1817		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1818			size = vsize * sizeof(Elf32_Auxinfo);
1819		else
1820#endif
1821		size = vsize * sizeof(Elf_Auxinfo);
1822		PRELE(p);
1823		error = SYSCTL_OUT(req, auxv, size);
1824		free(auxv, M_TEMP);
1825	} else {
1826		PRELE(p);
1827	}
1828	return (error);
1829}
1830
1831/*
1832 * This sysctl allows a process to retrieve the path of the executable for
1833 * itself or another process.
1834 */
1835static int
1836sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1837{
1838	pid_t *pidp = (pid_t *)arg1;
1839	unsigned int arglen = arg2;
1840	struct proc *p;
1841	struct vnode *vp;
1842	char *retbuf, *freebuf;
1843	int error, vfslocked;
1844
1845	if (arglen != 1)
1846		return (EINVAL);
1847	if (*pidp == -1) {	/* -1 means this process */
1848		p = req->td->td_proc;
1849	} else {
1850		error = pget(*pidp, PGET_CANSEE, &p);
1851		if (error != 0)
1852			return (error);
1853	}
1854
1855	vp = p->p_textvp;
1856	if (vp == NULL) {
1857		if (*pidp != -1)
1858			PROC_UNLOCK(p);
1859		return (0);
1860	}
1861	vref(vp);
1862	if (*pidp != -1)
1863		PROC_UNLOCK(p);
1864	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1865	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1866	vrele(vp);
1867	VFS_UNLOCK_GIANT(vfslocked);
1868	if (error)
1869		return (error);
1870	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1871	free(freebuf, M_TEMP);
1872	return (error);
1873}
1874
1875static int
1876sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1877{
1878	struct proc *p;
1879	char *sv_name;
1880	int *name;
1881	int namelen;
1882	int error;
1883
1884	namelen = arg2;
1885	if (namelen != 1)
1886		return (EINVAL);
1887
1888	name = (int *)arg1;
1889	error = pget((pid_t)name[0], PGET_CANSEE, &p);
1890	if (error != 0)
1891		return (error);
1892	sv_name = p->p_sysent->sv_name;
1893	PROC_UNLOCK(p);
1894	return (sysctl_handle_string(oidp, sv_name, 0, req));
1895}
1896
1897#ifdef KINFO_OVMENTRY_SIZE
1898CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1899#endif
1900
1901#ifdef COMPAT_FREEBSD7
1902static int
1903sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1904{
1905	vm_map_entry_t entry, tmp_entry;
1906	unsigned int last_timestamp;
1907	char *fullpath, *freepath;
1908	struct kinfo_ovmentry *kve;
1909	struct vattr va;
1910	struct ucred *cred;
1911	int error, *name;
1912	struct vnode *vp;
1913	struct proc *p;
1914	vm_map_t map;
1915	struct vmspace *vm;
1916
1917	name = (int *)arg1;
1918	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1919	if (error != 0)
1920		return (error);
1921	vm = vmspace_acquire_ref(p);
1922	if (vm == NULL) {
1923		PRELE(p);
1924		return (ESRCH);
1925	}
1926	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1927
1928	map = &vm->vm_map;
1929	vm_map_lock_read(map);
1930	for (entry = map->header.next; entry != &map->header;
1931	    entry = entry->next) {
1932		vm_object_t obj, tobj, lobj;
1933		vm_offset_t addr;
1934		int vfslocked;
1935
1936		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1937			continue;
1938
1939		bzero(kve, sizeof(*kve));
1940		kve->kve_structsize = sizeof(*kve);
1941
1942		kve->kve_private_resident = 0;
1943		obj = entry->object.vm_object;
1944		if (obj != NULL) {
1945			VM_OBJECT_LOCK(obj);
1946			if (obj->shadow_count == 1)
1947				kve->kve_private_resident =
1948				    obj->resident_page_count;
1949		}
1950		kve->kve_resident = 0;
1951		addr = entry->start;
1952		while (addr < entry->end) {
1953			if (pmap_extract(map->pmap, addr))
1954				kve->kve_resident++;
1955			addr += PAGE_SIZE;
1956		}
1957
1958		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1959			if (tobj != obj)
1960				VM_OBJECT_LOCK(tobj);
1961			if (lobj != obj)
1962				VM_OBJECT_UNLOCK(lobj);
1963			lobj = tobj;
1964		}
1965
1966		kve->kve_start = (void*)entry->start;
1967		kve->kve_end = (void*)entry->end;
1968		kve->kve_offset = (off_t)entry->offset;
1969
1970		if (entry->protection & VM_PROT_READ)
1971			kve->kve_protection |= KVME_PROT_READ;
1972		if (entry->protection & VM_PROT_WRITE)
1973			kve->kve_protection |= KVME_PROT_WRITE;
1974		if (entry->protection & VM_PROT_EXECUTE)
1975			kve->kve_protection |= KVME_PROT_EXEC;
1976
1977		if (entry->eflags & MAP_ENTRY_COW)
1978			kve->kve_flags |= KVME_FLAG_COW;
1979		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1980			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1981		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1982			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1983
1984		last_timestamp = map->timestamp;
1985		vm_map_unlock_read(map);
1986
1987		kve->kve_fileid = 0;
1988		kve->kve_fsid = 0;
1989		freepath = NULL;
1990		fullpath = "";
1991		if (lobj) {
1992			vp = NULL;
1993			switch (lobj->type) {
1994			case OBJT_DEFAULT:
1995				kve->kve_type = KVME_TYPE_DEFAULT;
1996				break;
1997			case OBJT_VNODE:
1998				kve->kve_type = KVME_TYPE_VNODE;
1999				vp = lobj->handle;
2000				vref(vp);
2001				break;
2002			case OBJT_SWAP:
2003				kve->kve_type = KVME_TYPE_SWAP;
2004				break;
2005			case OBJT_DEVICE:
2006				kve->kve_type = KVME_TYPE_DEVICE;
2007				break;
2008			case OBJT_PHYS:
2009				kve->kve_type = KVME_TYPE_PHYS;
2010				break;
2011			case OBJT_DEAD:
2012				kve->kve_type = KVME_TYPE_DEAD;
2013				break;
2014			case OBJT_SG:
2015				kve->kve_type = KVME_TYPE_SG;
2016				break;
2017			default:
2018				kve->kve_type = KVME_TYPE_UNKNOWN;
2019				break;
2020			}
2021			if (lobj != obj)
2022				VM_OBJECT_UNLOCK(lobj);
2023
2024			kve->kve_ref_count = obj->ref_count;
2025			kve->kve_shadow_count = obj->shadow_count;
2026			VM_OBJECT_UNLOCK(obj);
2027			if (vp != NULL) {
2028				vn_fullpath(curthread, vp, &fullpath,
2029				    &freepath);
2030				cred = curthread->td_ucred;
2031				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
2032				vn_lock(vp, LK_SHARED | LK_RETRY);
2033				if (VOP_GETATTR(vp, &va, cred) == 0) {
2034					kve->kve_fileid = va.va_fileid;
2035					kve->kve_fsid = va.va_fsid;
2036				}
2037				vput(vp);
2038				VFS_UNLOCK_GIANT(vfslocked);
2039			}
2040		} else {
2041			kve->kve_type = KVME_TYPE_NONE;
2042			kve->kve_ref_count = 0;
2043			kve->kve_shadow_count = 0;
2044		}
2045
2046		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2047		if (freepath != NULL)
2048			free(freepath, M_TEMP);
2049
2050		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2051		vm_map_lock_read(map);
2052		if (error)
2053			break;
2054		if (last_timestamp != map->timestamp) {
2055			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2056			entry = tmp_entry;
2057		}
2058	}
2059	vm_map_unlock_read(map);
2060	vmspace_free(vm);
2061	PRELE(p);
2062	free(kve, M_TEMP);
2063	return (error);
2064}
2065#endif	/* COMPAT_FREEBSD7 */
2066
2067#ifdef KINFO_VMENTRY_SIZE
2068CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2069#endif
2070
2071static int
2072sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2073{
2074	vm_map_entry_t entry, tmp_entry;
2075	unsigned int last_timestamp;
2076	char *fullpath, *freepath;
2077	struct kinfo_vmentry *kve;
2078	struct vattr va;
2079	struct ucred *cred;
2080	int error, *name;
2081	struct vnode *vp;
2082	struct proc *p;
2083	struct vmspace *vm;
2084	vm_map_t map;
2085
2086	name = (int *)arg1;
2087	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2088	if (error != 0)
2089		return (error);
2090	vm = vmspace_acquire_ref(p);
2091	if (vm == NULL) {
2092		PRELE(p);
2093		return (ESRCH);
2094	}
2095	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2096
2097	map = &vm->vm_map;
2098	vm_map_lock_read(map);
2099	for (entry = map->header.next; entry != &map->header;
2100	    entry = entry->next) {
2101		vm_object_t obj, tobj, lobj;
2102		vm_offset_t addr;
2103		vm_paddr_t locked_pa;
2104		int vfslocked, mincoreinfo;
2105
2106		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2107			continue;
2108
2109		bzero(kve, sizeof(*kve));
2110
2111		kve->kve_private_resident = 0;
2112		obj = entry->object.vm_object;
2113		if (obj != NULL) {
2114			VM_OBJECT_LOCK(obj);
2115			if (obj->shadow_count == 1)
2116				kve->kve_private_resident =
2117				    obj->resident_page_count;
2118		}
2119		kve->kve_resident = 0;
2120		addr = entry->start;
2121		while (addr < entry->end) {
2122			locked_pa = 0;
2123			mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
2124			if (locked_pa != 0)
2125				vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
2126			if (mincoreinfo & MINCORE_INCORE)
2127				kve->kve_resident++;
2128			if (mincoreinfo & MINCORE_SUPER)
2129				kve->kve_flags |= KVME_FLAG_SUPER;
2130			addr += PAGE_SIZE;
2131		}
2132
2133		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2134			if (tobj != obj)
2135				VM_OBJECT_LOCK(tobj);
2136			if (lobj != obj)
2137				VM_OBJECT_UNLOCK(lobj);
2138			lobj = tobj;
2139		}
2140
2141		kve->kve_start = entry->start;
2142		kve->kve_end = entry->end;
2143		kve->kve_offset = entry->offset;
2144
2145		if (entry->protection & VM_PROT_READ)
2146			kve->kve_protection |= KVME_PROT_READ;
2147		if (entry->protection & VM_PROT_WRITE)
2148			kve->kve_protection |= KVME_PROT_WRITE;
2149		if (entry->protection & VM_PROT_EXECUTE)
2150			kve->kve_protection |= KVME_PROT_EXEC;
2151
2152		if (entry->eflags & MAP_ENTRY_COW)
2153			kve->kve_flags |= KVME_FLAG_COW;
2154		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2155			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2156		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2157			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2158
2159		last_timestamp = map->timestamp;
2160		vm_map_unlock_read(map);
2161
2162		freepath = NULL;
2163		fullpath = "";
2164		if (lobj) {
2165			vp = NULL;
2166			switch (lobj->type) {
2167			case OBJT_DEFAULT:
2168				kve->kve_type = KVME_TYPE_DEFAULT;
2169				break;
2170			case OBJT_VNODE:
2171				kve->kve_type = KVME_TYPE_VNODE;
2172				vp = lobj->handle;
2173				vref(vp);
2174				break;
2175			case OBJT_SWAP:
2176				kve->kve_type = KVME_TYPE_SWAP;
2177				break;
2178			case OBJT_DEVICE:
2179				kve->kve_type = KVME_TYPE_DEVICE;
2180				break;
2181			case OBJT_PHYS:
2182				kve->kve_type = KVME_TYPE_PHYS;
2183				break;
2184			case OBJT_DEAD:
2185				kve->kve_type = KVME_TYPE_DEAD;
2186				break;
2187			case OBJT_SG:
2188				kve->kve_type = KVME_TYPE_SG;
2189				break;
2190			default:
2191				kve->kve_type = KVME_TYPE_UNKNOWN;
2192				break;
2193			}
2194			if (lobj != obj)
2195				VM_OBJECT_UNLOCK(lobj);
2196
2197			kve->kve_ref_count = obj->ref_count;
2198			kve->kve_shadow_count = obj->shadow_count;
2199			VM_OBJECT_UNLOCK(obj);
2200			if (vp != NULL) {
2201				vn_fullpath(curthread, vp, &fullpath,
2202				    &freepath);
2203				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2204				cred = curthread->td_ucred;
2205				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
2206				vn_lock(vp, LK_SHARED | LK_RETRY);
2207				if (VOP_GETATTR(vp, &va, cred) == 0) {
2208					kve->kve_vn_fileid = va.va_fileid;
2209					kve->kve_vn_fsid = va.va_fsid;
2210					kve->kve_vn_mode =
2211					    MAKEIMODE(va.va_type, va.va_mode);
2212					kve->kve_vn_size = va.va_size;
2213					kve->kve_vn_rdev = va.va_rdev;
2214					kve->kve_status = KF_ATTR_VALID;
2215				}
2216				vput(vp);
2217				VFS_UNLOCK_GIANT(vfslocked);
2218			}
2219		} else {
2220			kve->kve_type = KVME_TYPE_NONE;
2221			kve->kve_ref_count = 0;
2222			kve->kve_shadow_count = 0;
2223		}
2224
2225		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2226		if (freepath != NULL)
2227			free(freepath, M_TEMP);
2228
2229		/* Pack record size down */
2230		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
2231		    strlen(kve->kve_path) + 1;
2232		kve->kve_structsize = roundup(kve->kve_structsize,
2233		    sizeof(uint64_t));
2234		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
2235		vm_map_lock_read(map);
2236		if (error)
2237			break;
2238		if (last_timestamp != map->timestamp) {
2239			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2240			entry = tmp_entry;
2241		}
2242	}
2243	vm_map_unlock_read(map);
2244	vmspace_free(vm);
2245	PRELE(p);
2246	free(kve, M_TEMP);
2247	return (error);
2248}
2249
2250#if defined(STACK) || defined(DDB)
2251static int
2252sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2253{
2254	struct kinfo_kstack *kkstp;
2255	int error, i, *name, numthreads;
2256	lwpid_t *lwpidarray;
2257	struct thread *td;
2258	struct stack *st;
2259	struct sbuf sb;
2260	struct proc *p;
2261
2262	name = (int *)arg1;
2263	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2264	if (error != 0)
2265		return (error);
2266
2267	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2268	st = stack_create();
2269
2270	lwpidarray = NULL;
2271	numthreads = 0;
2272	PROC_LOCK(p);
2273repeat:
2274	if (numthreads < p->p_numthreads) {
2275		if (lwpidarray != NULL) {
2276			free(lwpidarray, M_TEMP);
2277			lwpidarray = NULL;
2278		}
2279		numthreads = p->p_numthreads;
2280		PROC_UNLOCK(p);
2281		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2282		    M_WAITOK | M_ZERO);
2283		PROC_LOCK(p);
2284		goto repeat;
2285	}
2286	i = 0;
2287
2288	/*
2289	 * XXXRW: During the below loop, execve(2) and countless other sorts
2290	 * of changes could have taken place.  Should we check to see if the
2291	 * vmspace has been replaced, or the like, in order to prevent
2292	 * giving a snapshot that spans, say, execve(2), with some threads
2293	 * before and some after?  Among other things, the credentials could
2294	 * have changed, in which case the right to extract debug info might
2295	 * no longer be assured.
2296	 */
2297	FOREACH_THREAD_IN_PROC(p, td) {
2298		KASSERT(i < numthreads,
2299		    ("sysctl_kern_proc_kstack: numthreads"));
2300		lwpidarray[i] = td->td_tid;
2301		i++;
2302	}
2303	numthreads = i;
2304	for (i = 0; i < numthreads; i++) {
2305		td = thread_find(p, lwpidarray[i]);
2306		if (td == NULL) {
2307			continue;
2308		}
2309		bzero(kkstp, sizeof(*kkstp));
2310		(void)sbuf_new(&sb, kkstp->kkst_trace,
2311		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2312		thread_lock(td);
2313		kkstp->kkst_tid = td->td_tid;
2314		if (TD_IS_SWAPPED(td))
2315			kkstp->kkst_state = KKST_STATE_SWAPPED;
2316		else if (TD_IS_RUNNING(td))
2317			kkstp->kkst_state = KKST_STATE_RUNNING;
2318		else {
2319			kkstp->kkst_state = KKST_STATE_STACKOK;
2320			stack_save_td(st, td);
2321		}
2322		thread_unlock(td);
2323		PROC_UNLOCK(p);
2324		stack_sbuf_print(&sb, st);
2325		sbuf_finish(&sb);
2326		sbuf_delete(&sb);
2327		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2328		PROC_LOCK(p);
2329		if (error)
2330			break;
2331	}
2332	_PRELE(p);
2333	PROC_UNLOCK(p);
2334	if (lwpidarray != NULL)
2335		free(lwpidarray, M_TEMP);
2336	stack_destroy(st);
2337	free(kkstp, M_TEMP);
2338	return (error);
2339}
2340#endif
2341
2342/*
2343 * This sysctl allows a process to retrieve the full list of groups from
2344 * itself or another process.
2345 */
2346static int
2347sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2348{
2349	pid_t *pidp = (pid_t *)arg1;
2350	unsigned int arglen = arg2;
2351	struct proc *p;
2352	struct ucred *cred;
2353	int error;
2354
2355	if (arglen != 1)
2356		return (EINVAL);
2357	if (*pidp == -1) {	/* -1 means this process */
2358		p = req->td->td_proc;
2359	} else {
2360		error = pget(*pidp, PGET_CANSEE, &p);
2361		if (error != 0)
2362			return (error);
2363	}
2364
2365	cred = crhold(p->p_ucred);
2366	if (*pidp != -1)
2367		PROC_UNLOCK(p);
2368
2369	error = SYSCTL_OUT(req, cred->cr_groups,
2370	    cred->cr_ngroups * sizeof(gid_t));
2371	crfree(cred);
2372	return (error);
2373}
2374
2375/*
2376 * This sysctl allows a process to retrieve the resource limits for
2377 * another process.
2378 */
2379static int
2380sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2381{
2382	int *name = (int*) arg1;
2383	u_int namelen = arg2;
2384	struct plimit *limp;
2385	struct proc *p;
2386	int error = 0;
2387
2388	if (namelen != 1)
2389		return (EINVAL);
2390
2391	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2392	if (error != 0)
2393		return (error);
2394	/*
2395	 * Check the request size.  We alow sizes smaller rlimit array for
2396	 * backward binary compatibility: the number of resource limits may
2397	 * grow.
2398	 */
2399	if (sizeof(limp->pl_rlimit) < req->oldlen) {
2400		PROC_UNLOCK(p);
2401		return (EINVAL);
2402	}
2403
2404	limp = lim_hold(p->p_limit);
2405	PROC_UNLOCK(p);
2406	error = SYSCTL_OUT(req, limp->pl_rlimit, req->oldlen);
2407	lim_free(limp);
2408	return (error);
2409}
2410
2411/*
2412 * This sysctl allows a process to retrieve ps_strings structure location of
2413 * another process.
2414 */
2415static int
2416sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2417{
2418	int *name = (int*) arg1;
2419	u_int namelen = arg2;
2420	struct proc *p;
2421	vm_offset_t ps_strings;
2422	int error;
2423#ifdef COMPAT_FREEBSD32
2424	uint32_t ps_strings32;
2425#endif
2426
2427	if (namelen != 1)
2428		return (EINVAL);
2429
2430	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2431	if (error != 0)
2432		return (error);
2433#ifdef COMPAT_FREEBSD32
2434	if ((req->flags & SCTL_MASK32) != 0) {
2435		/*
2436		 * We return 0 if the 32 bit emulation request is for a 64 bit
2437		 * process.
2438		 */
2439		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2440		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2441		PROC_UNLOCK(p);
2442		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2443		return (error);
2444	}
2445#endif
2446	ps_strings = p->p_sysent->sv_psstrings;
2447	PROC_UNLOCK(p);
2448	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2449	return (error);
2450}
2451
2452SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2453
2454SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2455	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2456	"Return entire process table");
2457
2458static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2459	sysctl_kern_proc, "Process table");
2460
2461static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2462	sysctl_kern_proc, "Process table");
2463
2464static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2465	sysctl_kern_proc, "Process table");
2466
2467static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2468	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2469
2470static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2471	sysctl_kern_proc, "Process table");
2472
2473static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2474	sysctl_kern_proc, "Process table");
2475
2476static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2477	sysctl_kern_proc, "Process table");
2478
2479static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2480	sysctl_kern_proc, "Process table");
2481
2482static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2483	sysctl_kern_proc, "Return process table, no threads");
2484
2485static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2486	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2487	sysctl_kern_proc_args, "Process argument list");
2488
2489static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env,
2490	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2491	sysctl_kern_proc_env, "Process environment");
2492
2493static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv,
2494	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2495	sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2496
2497static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2498	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2499
2500static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2501	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2502	"Process syscall vector name (ABI type)");
2503
2504static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2505	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2506
2507static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2508	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2509
2510static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2511	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2512
2513static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2514	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2515
2516static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2517	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2518
2519static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2520	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2521
2522static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2523	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2524
2525static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2526	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2527
2528static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2529	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2530	"Return process table, no threads");
2531
2532#ifdef COMPAT_FREEBSD7
2533static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2534	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2535#endif
2536
2537static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2538	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2539
2540#if defined(STACK) || defined(DDB)
2541static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2542	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2543#endif
2544
2545static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2546	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2547
2548static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RD |
2549	CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits");
2550
2551static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings,
2552	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2553	sysctl_kern_proc_ps_strings, "Process ps_strings location");
2554