kern_proc.c revision 225617
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_proc.c 225617 2011-09-16 13:58:51Z kmacy $");
34
35#include "opt_compat.h"
36#include "opt_ddb.h"
37#include "opt_kdtrace.h"
38#include "opt_ktrace.h"
39#include "opt_kstack_pages.h"
40#include "opt_stack.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/loginclass.h>
48#include <sys/malloc.h>
49#include <sys/mount.h>
50#include <sys/mutex.h>
51#include <sys/proc.h>
52#include <sys/refcount.h>
53#include <sys/sbuf.h>
54#include <sys/sysent.h>
55#include <sys/sched.h>
56#include <sys/smp.h>
57#include <sys/stack.h>
58#include <sys/sysctl.h>
59#include <sys/filedesc.h>
60#include <sys/tty.h>
61#include <sys/signalvar.h>
62#include <sys/sdt.h>
63#include <sys/sx.h>
64#include <sys/user.h>
65#include <sys/jail.h>
66#include <sys/vnode.h>
67#include <sys/eventhandler.h>
68
69#ifdef DDB
70#include <ddb/ddb.h>
71#endif
72
73#include <vm/vm.h>
74#include <vm/vm_extern.h>
75#include <vm/pmap.h>
76#include <vm/vm_map.h>
77#include <vm/vm_object.h>
78#include <vm/uma.h>
79
80#ifdef COMPAT_FREEBSD32
81#include <compat/freebsd32/freebsd32.h>
82#include <compat/freebsd32/freebsd32_util.h>
83#endif
84
85SDT_PROVIDER_DEFINE(proc);
86SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
87SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
88SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
89SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
90SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
91SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
92SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
93SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
94SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
95SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
96SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
97SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
98SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
99SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
100SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
101SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
102SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
103SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
104SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
105SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
106SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
107SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
108SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
109SDT_PROBE_DEFINE(proc, kernel, init, return, return);
110SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
111SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
112SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
113
114MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
115MALLOC_DEFINE(M_SESSION, "session", "session header");
116static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
117MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
118
119static void doenterpgrp(struct proc *, struct pgrp *);
120static void orphanpg(struct pgrp *pg);
121static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
122static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
123static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
124    int preferthread);
125static void pgadjustjobc(struct pgrp *pgrp, int entering);
126static void pgdelete(struct pgrp *);
127static int proc_ctor(void *mem, int size, void *arg, int flags);
128static void proc_dtor(void *mem, int size, void *arg);
129static int proc_init(void *mem, int size, int flags);
130static void proc_fini(void *mem, int size);
131static void pargs_free(struct pargs *pa);
132
133/*
134 * Other process lists
135 */
136struct pidhashhead *pidhashtbl;
137u_long pidhash;
138struct pgrphashhead *pgrphashtbl;
139u_long pgrphash;
140struct proclist allproc;
141struct proclist zombproc;
142struct sx allproc_lock;
143struct sx proctree_lock;
144struct mtx ppeers_lock;
145uma_zone_t proc_zone;
146
147int kstack_pages = KSTACK_PAGES;
148SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
149    "Kernel stack size in pages");
150
151CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
152#ifdef COMPAT_FREEBSD32
153CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
154#endif
155
156/*
157 * Initialize global process hashing structures.
158 */
159void
160procinit()
161{
162
163	sx_init(&allproc_lock, "allproc");
164	sx_init(&proctree_lock, "proctree");
165	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
166	LIST_INIT(&allproc);
167	LIST_INIT(&zombproc);
168	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
169	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
170	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
171	    proc_ctor, proc_dtor, proc_init, proc_fini,
172	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
173	uihashinit();
174}
175
176/*
177 * Prepare a proc for use.
178 */
179static int
180proc_ctor(void *mem, int size, void *arg, int flags)
181{
182	struct proc *p;
183
184	p = (struct proc *)mem;
185	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
186	EVENTHANDLER_INVOKE(process_ctor, p);
187	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
188	return (0);
189}
190
191/*
192 * Reclaim a proc after use.
193 */
194static void
195proc_dtor(void *mem, int size, void *arg)
196{
197	struct proc *p;
198	struct thread *td;
199
200	/* INVARIANTS checks go here */
201	p = (struct proc *)mem;
202	td = FIRST_THREAD_IN_PROC(p);
203	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
204	if (td != NULL) {
205#ifdef INVARIANTS
206		KASSERT((p->p_numthreads == 1),
207		    ("bad number of threads in exiting process"));
208		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
209#endif
210		/* Free all OSD associated to this thread. */
211		osd_thread_exit(td);
212	}
213	EVENTHANDLER_INVOKE(process_dtor, p);
214	if (p->p_ksi != NULL)
215		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
216	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
217}
218
219/*
220 * Initialize type-stable parts of a proc (when newly created).
221 */
222static int
223proc_init(void *mem, int size, int flags)
224{
225	struct proc *p;
226
227	p = (struct proc *)mem;
228	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
229	p->p_sched = (struct p_sched *)&p[1];
230	bzero(&p->p_mtx, sizeof(struct mtx));
231	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
232	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
233	cv_init(&p->p_pwait, "ppwait");
234	cv_init(&p->p_dbgwait, "dbgwait");
235	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
236	EVENTHANDLER_INVOKE(process_init, p);
237	p->p_stats = pstats_alloc();
238	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
239	return (0);
240}
241
242/*
243 * UMA should ensure that this function is never called.
244 * Freeing a proc structure would violate type stability.
245 */
246static void
247proc_fini(void *mem, int size)
248{
249#ifdef notnow
250	struct proc *p;
251
252	p = (struct proc *)mem;
253	EVENTHANDLER_INVOKE(process_fini, p);
254	pstats_free(p->p_stats);
255	thread_free(FIRST_THREAD_IN_PROC(p));
256	mtx_destroy(&p->p_mtx);
257	if (p->p_ksi != NULL)
258		ksiginfo_free(p->p_ksi);
259#else
260	panic("proc reclaimed");
261#endif
262}
263
264/*
265 * Is p an inferior of the current process?
266 */
267int
268inferior(p)
269	register struct proc *p;
270{
271
272	sx_assert(&proctree_lock, SX_LOCKED);
273	for (; p != curproc; p = p->p_pptr)
274		if (p->p_pid == 0)
275			return (0);
276	return (1);
277}
278
279/*
280 * Locate a process by number; return only "live" processes -- i.e., neither
281 * zombies nor newly born but incompletely initialized processes.  By not
282 * returning processes in the PRS_NEW state, we allow callers to avoid
283 * testing for that condition to avoid dereferencing p_ucred, et al.
284 */
285struct proc *
286pfind(pid)
287	register pid_t pid;
288{
289	register struct proc *p;
290
291	sx_slock(&allproc_lock);
292	LIST_FOREACH(p, PIDHASH(pid), p_hash)
293		if (p->p_pid == pid) {
294			PROC_LOCK(p);
295			if (p->p_state == PRS_NEW) {
296				PROC_UNLOCK(p);
297				p = NULL;
298			}
299			break;
300		}
301	sx_sunlock(&allproc_lock);
302	return (p);
303}
304
305/*
306 * Locate a process group by number.
307 * The caller must hold proctree_lock.
308 */
309struct pgrp *
310pgfind(pgid)
311	register pid_t pgid;
312{
313	register struct pgrp *pgrp;
314
315	sx_assert(&proctree_lock, SX_LOCKED);
316
317	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
318		if (pgrp->pg_id == pgid) {
319			PGRP_LOCK(pgrp);
320			return (pgrp);
321		}
322	}
323	return (NULL);
324}
325
326/*
327 * Create a new process group.
328 * pgid must be equal to the pid of p.
329 * Begin a new session if required.
330 */
331int
332enterpgrp(p, pgid, pgrp, sess)
333	register struct proc *p;
334	pid_t pgid;
335	struct pgrp *pgrp;
336	struct session *sess;
337{
338	struct pgrp *pgrp2;
339
340	sx_assert(&proctree_lock, SX_XLOCKED);
341
342	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
343	KASSERT(p->p_pid == pgid,
344	    ("enterpgrp: new pgrp and pid != pgid"));
345
346	pgrp2 = pgfind(pgid);
347
348	KASSERT(pgrp2 == NULL,
349	    ("enterpgrp: pgrp with pgid exists"));
350	KASSERT(!SESS_LEADER(p),
351	    ("enterpgrp: session leader attempted setpgrp"));
352
353	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
354
355	if (sess != NULL) {
356		/*
357		 * new session
358		 */
359		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
360		PROC_LOCK(p);
361		p->p_flag &= ~P_CONTROLT;
362		PROC_UNLOCK(p);
363		PGRP_LOCK(pgrp);
364		sess->s_leader = p;
365		sess->s_sid = p->p_pid;
366		refcount_init(&sess->s_count, 1);
367		sess->s_ttyvp = NULL;
368		sess->s_ttydp = NULL;
369		sess->s_ttyp = NULL;
370		bcopy(p->p_session->s_login, sess->s_login,
371			    sizeof(sess->s_login));
372		pgrp->pg_session = sess;
373		KASSERT(p == curproc,
374		    ("enterpgrp: mksession and p != curproc"));
375	} else {
376		pgrp->pg_session = p->p_session;
377		sess_hold(pgrp->pg_session);
378		PGRP_LOCK(pgrp);
379	}
380	pgrp->pg_id = pgid;
381	LIST_INIT(&pgrp->pg_members);
382
383	/*
384	 * As we have an exclusive lock of proctree_lock,
385	 * this should not deadlock.
386	 */
387	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
388	pgrp->pg_jobc = 0;
389	SLIST_INIT(&pgrp->pg_sigiolst);
390	PGRP_UNLOCK(pgrp);
391
392	doenterpgrp(p, pgrp);
393
394	return (0);
395}
396
397/*
398 * Move p to an existing process group
399 */
400int
401enterthispgrp(p, pgrp)
402	register struct proc *p;
403	struct pgrp *pgrp;
404{
405
406	sx_assert(&proctree_lock, SX_XLOCKED);
407	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
408	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
409	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
410	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
411	KASSERT(pgrp->pg_session == p->p_session,
412		("%s: pgrp's session %p, p->p_session %p.\n",
413		__func__,
414		pgrp->pg_session,
415		p->p_session));
416	KASSERT(pgrp != p->p_pgrp,
417		("%s: p belongs to pgrp.", __func__));
418
419	doenterpgrp(p, pgrp);
420
421	return (0);
422}
423
424/*
425 * Move p to a process group
426 */
427static void
428doenterpgrp(p, pgrp)
429	struct proc *p;
430	struct pgrp *pgrp;
431{
432	struct pgrp *savepgrp;
433
434	sx_assert(&proctree_lock, SX_XLOCKED);
435	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
436	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
437	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
438	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
439
440	savepgrp = p->p_pgrp;
441
442	/*
443	 * Adjust eligibility of affected pgrps to participate in job control.
444	 * Increment eligibility counts before decrementing, otherwise we
445	 * could reach 0 spuriously during the first call.
446	 */
447	fixjobc(p, pgrp, 1);
448	fixjobc(p, p->p_pgrp, 0);
449
450	PGRP_LOCK(pgrp);
451	PGRP_LOCK(savepgrp);
452	PROC_LOCK(p);
453	LIST_REMOVE(p, p_pglist);
454	p->p_pgrp = pgrp;
455	PROC_UNLOCK(p);
456	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
457	PGRP_UNLOCK(savepgrp);
458	PGRP_UNLOCK(pgrp);
459	if (LIST_EMPTY(&savepgrp->pg_members))
460		pgdelete(savepgrp);
461}
462
463/*
464 * remove process from process group
465 */
466int
467leavepgrp(p)
468	register struct proc *p;
469{
470	struct pgrp *savepgrp;
471
472	sx_assert(&proctree_lock, SX_XLOCKED);
473	savepgrp = p->p_pgrp;
474	PGRP_LOCK(savepgrp);
475	PROC_LOCK(p);
476	LIST_REMOVE(p, p_pglist);
477	p->p_pgrp = NULL;
478	PROC_UNLOCK(p);
479	PGRP_UNLOCK(savepgrp);
480	if (LIST_EMPTY(&savepgrp->pg_members))
481		pgdelete(savepgrp);
482	return (0);
483}
484
485/*
486 * delete a process group
487 */
488static void
489pgdelete(pgrp)
490	register struct pgrp *pgrp;
491{
492	struct session *savesess;
493	struct tty *tp;
494
495	sx_assert(&proctree_lock, SX_XLOCKED);
496	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
498
499	/*
500	 * Reset any sigio structures pointing to us as a result of
501	 * F_SETOWN with our pgid.
502	 */
503	funsetownlst(&pgrp->pg_sigiolst);
504
505	PGRP_LOCK(pgrp);
506	tp = pgrp->pg_session->s_ttyp;
507	LIST_REMOVE(pgrp, pg_hash);
508	savesess = pgrp->pg_session;
509	PGRP_UNLOCK(pgrp);
510
511	/* Remove the reference to the pgrp before deallocating it. */
512	if (tp != NULL) {
513		tty_lock(tp);
514		tty_rel_pgrp(tp, pgrp);
515	}
516
517	mtx_destroy(&pgrp->pg_mtx);
518	free(pgrp, M_PGRP);
519	sess_release(savesess);
520}
521
522static void
523pgadjustjobc(pgrp, entering)
524	struct pgrp *pgrp;
525	int entering;
526{
527
528	PGRP_LOCK(pgrp);
529	if (entering)
530		pgrp->pg_jobc++;
531	else {
532		--pgrp->pg_jobc;
533		if (pgrp->pg_jobc == 0)
534			orphanpg(pgrp);
535	}
536	PGRP_UNLOCK(pgrp);
537}
538
539/*
540 * Adjust pgrp jobc counters when specified process changes process group.
541 * We count the number of processes in each process group that "qualify"
542 * the group for terminal job control (those with a parent in a different
543 * process group of the same session).  If that count reaches zero, the
544 * process group becomes orphaned.  Check both the specified process'
545 * process group and that of its children.
546 * entering == 0 => p is leaving specified group.
547 * entering == 1 => p is entering specified group.
548 */
549void
550fixjobc(p, pgrp, entering)
551	register struct proc *p;
552	register struct pgrp *pgrp;
553	int entering;
554{
555	register struct pgrp *hispgrp;
556	register struct session *mysession;
557
558	sx_assert(&proctree_lock, SX_LOCKED);
559	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
560	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
561	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
562
563	/*
564	 * Check p's parent to see whether p qualifies its own process
565	 * group; if so, adjust count for p's process group.
566	 */
567	mysession = pgrp->pg_session;
568	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
569	    hispgrp->pg_session == mysession)
570		pgadjustjobc(pgrp, entering);
571
572	/*
573	 * Check this process' children to see whether they qualify
574	 * their process groups; if so, adjust counts for children's
575	 * process groups.
576	 */
577	LIST_FOREACH(p, &p->p_children, p_sibling) {
578		hispgrp = p->p_pgrp;
579		if (hispgrp == pgrp ||
580		    hispgrp->pg_session != mysession)
581			continue;
582		PROC_LOCK(p);
583		if (p->p_state == PRS_ZOMBIE) {
584			PROC_UNLOCK(p);
585			continue;
586		}
587		PROC_UNLOCK(p);
588		pgadjustjobc(hispgrp, entering);
589	}
590}
591
592/*
593 * A process group has become orphaned;
594 * if there are any stopped processes in the group,
595 * hang-up all process in that group.
596 */
597static void
598orphanpg(pg)
599	struct pgrp *pg;
600{
601	register struct proc *p;
602
603	PGRP_LOCK_ASSERT(pg, MA_OWNED);
604
605	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
606		PROC_LOCK(p);
607		if (P_SHOULDSTOP(p)) {
608			PROC_UNLOCK(p);
609			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
610				PROC_LOCK(p);
611				kern_psignal(p, SIGHUP);
612				kern_psignal(p, SIGCONT);
613				PROC_UNLOCK(p);
614			}
615			return;
616		}
617		PROC_UNLOCK(p);
618	}
619}
620
621void
622sess_hold(struct session *s)
623{
624
625	refcount_acquire(&s->s_count);
626}
627
628void
629sess_release(struct session *s)
630{
631
632	if (refcount_release(&s->s_count)) {
633		if (s->s_ttyp != NULL) {
634			tty_lock(s->s_ttyp);
635			tty_rel_sess(s->s_ttyp, s);
636		}
637		mtx_destroy(&s->s_mtx);
638		free(s, M_SESSION);
639	}
640}
641
642#include "opt_ddb.h"
643#ifdef DDB
644#include <ddb/ddb.h>
645
646DB_SHOW_COMMAND(pgrpdump, pgrpdump)
647{
648	register struct pgrp *pgrp;
649	register struct proc *p;
650	register int i;
651
652	for (i = 0; i <= pgrphash; i++) {
653		if (!LIST_EMPTY(&pgrphashtbl[i])) {
654			printf("\tindx %d\n", i);
655			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
656				printf(
657			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
658				    (void *)pgrp, (long)pgrp->pg_id,
659				    (void *)pgrp->pg_session,
660				    pgrp->pg_session->s_count,
661				    (void *)LIST_FIRST(&pgrp->pg_members));
662				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
663					printf("\t\tpid %ld addr %p pgrp %p\n",
664					    (long)p->p_pid, (void *)p,
665					    (void *)p->p_pgrp);
666				}
667			}
668		}
669	}
670}
671#endif /* DDB */
672
673/*
674 * Calculate the kinfo_proc members which contain process-wide
675 * informations.
676 * Must be called with the target process locked.
677 */
678static void
679fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
680{
681	struct thread *td;
682
683	PROC_LOCK_ASSERT(p, MA_OWNED);
684
685	kp->ki_estcpu = 0;
686	kp->ki_pctcpu = 0;
687	FOREACH_THREAD_IN_PROC(p, td) {
688		thread_lock(td);
689		kp->ki_pctcpu += sched_pctcpu(td);
690		kp->ki_estcpu += td->td_estcpu;
691		thread_unlock(td);
692	}
693}
694
695/*
696 * Clear kinfo_proc and fill in any information that is common
697 * to all threads in the process.
698 * Must be called with the target process locked.
699 */
700static void
701fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
702{
703	struct thread *td0;
704	struct tty *tp;
705	struct session *sp;
706	struct ucred *cred;
707	struct sigacts *ps;
708
709	PROC_LOCK_ASSERT(p, MA_OWNED);
710	bzero(kp, sizeof(*kp));
711
712	kp->ki_structsize = sizeof(*kp);
713	kp->ki_paddr = p;
714	kp->ki_addr =/* p->p_addr; */0; /* XXX */
715	kp->ki_args = p->p_args;
716	kp->ki_textvp = p->p_textvp;
717#ifdef KTRACE
718	kp->ki_tracep = p->p_tracevp;
719	kp->ki_traceflag = p->p_traceflag;
720#endif
721	kp->ki_fd = p->p_fd;
722	kp->ki_vmspace = p->p_vmspace;
723	kp->ki_flag = p->p_flag;
724	cred = p->p_ucred;
725	if (cred) {
726		kp->ki_uid = cred->cr_uid;
727		kp->ki_ruid = cred->cr_ruid;
728		kp->ki_svuid = cred->cr_svuid;
729		kp->ki_cr_flags = 0;
730		if (cred->cr_flags & CRED_FLAG_CAPMODE)
731			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
732		/* XXX bde doesn't like KI_NGROUPS */
733		if (cred->cr_ngroups > KI_NGROUPS) {
734			kp->ki_ngroups = KI_NGROUPS;
735			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
736		} else
737			kp->ki_ngroups = cred->cr_ngroups;
738		bcopy(cred->cr_groups, kp->ki_groups,
739		    kp->ki_ngroups * sizeof(gid_t));
740		kp->ki_rgid = cred->cr_rgid;
741		kp->ki_svgid = cred->cr_svgid;
742		/* If jailed(cred), emulate the old P_JAILED flag. */
743		if (jailed(cred)) {
744			kp->ki_flag |= P_JAILED;
745			/* If inside the jail, use 0 as a jail ID. */
746			if (cred->cr_prison != curthread->td_ucred->cr_prison)
747				kp->ki_jid = cred->cr_prison->pr_id;
748		}
749		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
750		    sizeof(kp->ki_loginclass));
751	}
752	ps = p->p_sigacts;
753	if (ps) {
754		mtx_lock(&ps->ps_mtx);
755		kp->ki_sigignore = ps->ps_sigignore;
756		kp->ki_sigcatch = ps->ps_sigcatch;
757		mtx_unlock(&ps->ps_mtx);
758	}
759	if (p->p_state != PRS_NEW &&
760	    p->p_state != PRS_ZOMBIE &&
761	    p->p_vmspace != NULL) {
762		struct vmspace *vm = p->p_vmspace;
763
764		kp->ki_size = vm->vm_map.size;
765		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
766		FOREACH_THREAD_IN_PROC(p, td0) {
767			if (!TD_IS_SWAPPED(td0))
768				kp->ki_rssize += td0->td_kstack_pages;
769		}
770		kp->ki_swrss = vm->vm_swrss;
771		kp->ki_tsize = vm->vm_tsize;
772		kp->ki_dsize = vm->vm_dsize;
773		kp->ki_ssize = vm->vm_ssize;
774	} else if (p->p_state == PRS_ZOMBIE)
775		kp->ki_stat = SZOMB;
776	if (kp->ki_flag & P_INMEM)
777		kp->ki_sflag = PS_INMEM;
778	else
779		kp->ki_sflag = 0;
780	/* Calculate legacy swtime as seconds since 'swtick'. */
781	kp->ki_swtime = (ticks - p->p_swtick) / hz;
782	kp->ki_pid = p->p_pid;
783	kp->ki_nice = p->p_nice;
784	kp->ki_start = p->p_stats->p_start;
785	timevaladd(&kp->ki_start, &boottime);
786	PROC_SLOCK(p);
787	rufetch(p, &kp->ki_rusage);
788	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
789	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
790	PROC_SUNLOCK(p);
791	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
792	/* Some callers want child times in a single value. */
793	kp->ki_childtime = kp->ki_childstime;
794	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
795
796	tp = NULL;
797	if (p->p_pgrp) {
798		kp->ki_pgid = p->p_pgrp->pg_id;
799		kp->ki_jobc = p->p_pgrp->pg_jobc;
800		sp = p->p_pgrp->pg_session;
801
802		if (sp != NULL) {
803			kp->ki_sid = sp->s_sid;
804			SESS_LOCK(sp);
805			strlcpy(kp->ki_login, sp->s_login,
806			    sizeof(kp->ki_login));
807			if (sp->s_ttyvp)
808				kp->ki_kiflag |= KI_CTTY;
809			if (SESS_LEADER(p))
810				kp->ki_kiflag |= KI_SLEADER;
811			/* XXX proctree_lock */
812			tp = sp->s_ttyp;
813			SESS_UNLOCK(sp);
814		}
815	}
816	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
817		kp->ki_tdev = tty_udev(tp);
818		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
819		if (tp->t_session)
820			kp->ki_tsid = tp->t_session->s_sid;
821	} else
822		kp->ki_tdev = NODEV;
823	if (p->p_comm[0] != '\0')
824		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
825	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
826	    p->p_sysent->sv_name[0] != '\0')
827		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
828	kp->ki_siglist = p->p_siglist;
829	kp->ki_xstat = p->p_xstat;
830	kp->ki_acflag = p->p_acflag;
831	kp->ki_lock = p->p_lock;
832	if (p->p_pptr)
833		kp->ki_ppid = p->p_pptr->p_pid;
834}
835
836/*
837 * Fill in information that is thread specific.  Must be called with
838 * target process locked.  If 'preferthread' is set, overwrite certain
839 * process-related fields that are maintained for both threads and
840 * processes.
841 */
842static void
843fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
844{
845	struct proc *p;
846
847	p = td->td_proc;
848	kp->ki_tdaddr = td;
849	PROC_LOCK_ASSERT(p, MA_OWNED);
850
851	if (preferthread)
852		PROC_SLOCK(p);
853	thread_lock(td);
854	if (td->td_wmesg != NULL)
855		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
856	else
857		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
858	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
859	if (TD_ON_LOCK(td)) {
860		kp->ki_kiflag |= KI_LOCKBLOCK;
861		strlcpy(kp->ki_lockname, td->td_lockname,
862		    sizeof(kp->ki_lockname));
863	} else {
864		kp->ki_kiflag &= ~KI_LOCKBLOCK;
865		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
866	}
867
868	if (p->p_state == PRS_NORMAL) { /* approximate. */
869		if (TD_ON_RUNQ(td) ||
870		    TD_CAN_RUN(td) ||
871		    TD_IS_RUNNING(td)) {
872			kp->ki_stat = SRUN;
873		} else if (P_SHOULDSTOP(p)) {
874			kp->ki_stat = SSTOP;
875		} else if (TD_IS_SLEEPING(td)) {
876			kp->ki_stat = SSLEEP;
877		} else if (TD_ON_LOCK(td)) {
878			kp->ki_stat = SLOCK;
879		} else {
880			kp->ki_stat = SWAIT;
881		}
882	} else if (p->p_state == PRS_ZOMBIE) {
883		kp->ki_stat = SZOMB;
884	} else {
885		kp->ki_stat = SIDL;
886	}
887
888	/* Things in the thread */
889	kp->ki_wchan = td->td_wchan;
890	kp->ki_pri.pri_level = td->td_priority;
891	kp->ki_pri.pri_native = td->td_base_pri;
892	kp->ki_lastcpu = td->td_lastcpu;
893	kp->ki_oncpu = td->td_oncpu;
894	kp->ki_tdflags = td->td_flags;
895	kp->ki_tid = td->td_tid;
896	kp->ki_numthreads = p->p_numthreads;
897	kp->ki_pcb = td->td_pcb;
898	kp->ki_kstack = (void *)td->td_kstack;
899	kp->ki_slptime = (ticks - td->td_slptick) / hz;
900	kp->ki_pri.pri_class = td->td_pri_class;
901	kp->ki_pri.pri_user = td->td_user_pri;
902
903	if (preferthread) {
904		rufetchtd(td, &kp->ki_rusage);
905		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
906		kp->ki_pctcpu = sched_pctcpu(td);
907		kp->ki_estcpu = td->td_estcpu;
908	}
909
910	/* We can't get this anymore but ps etc never used it anyway. */
911	kp->ki_rqindex = 0;
912
913	if (preferthread)
914		kp->ki_siglist = td->td_siglist;
915	kp->ki_sigmask = td->td_sigmask;
916	thread_unlock(td);
917	if (preferthread)
918		PROC_SUNLOCK(p);
919}
920
921/*
922 * Fill in a kinfo_proc structure for the specified process.
923 * Must be called with the target process locked.
924 */
925void
926fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
927{
928
929	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
930
931	fill_kinfo_proc_only(p, kp);
932	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
933	fill_kinfo_aggregate(p, kp);
934}
935
936struct pstats *
937pstats_alloc(void)
938{
939
940	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
941}
942
943/*
944 * Copy parts of p_stats; zero the rest of p_stats (statistics).
945 */
946void
947pstats_fork(struct pstats *src, struct pstats *dst)
948{
949
950	bzero(&dst->pstat_startzero,
951	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
952	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
953	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
954}
955
956void
957pstats_free(struct pstats *ps)
958{
959
960	free(ps, M_SUBPROC);
961}
962
963/*
964 * Locate a zombie process by number
965 */
966struct proc *
967zpfind(pid_t pid)
968{
969	struct proc *p;
970
971	sx_slock(&allproc_lock);
972	LIST_FOREACH(p, &zombproc, p_list)
973		if (p->p_pid == pid) {
974			PROC_LOCK(p);
975			break;
976		}
977	sx_sunlock(&allproc_lock);
978	return (p);
979}
980
981#define KERN_PROC_ZOMBMASK	0x3
982#define KERN_PROC_NOTHREADS	0x4
983
984#ifdef COMPAT_FREEBSD32
985
986/*
987 * This function is typically used to copy out the kernel address, so
988 * it can be replaced by assignment of zero.
989 */
990static inline uint32_t
991ptr32_trim(void *ptr)
992{
993	uintptr_t uptr;
994
995	uptr = (uintptr_t)ptr;
996	return ((uptr > UINT_MAX) ? 0 : uptr);
997}
998
999#define PTRTRIM_CP(src,dst,fld) \
1000	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1001
1002static void
1003freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1004{
1005	int i;
1006
1007	bzero(ki32, sizeof(struct kinfo_proc32));
1008	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1009	CP(*ki, *ki32, ki_layout);
1010	PTRTRIM_CP(*ki, *ki32, ki_args);
1011	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1012	PTRTRIM_CP(*ki, *ki32, ki_addr);
1013	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1014	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1015	PTRTRIM_CP(*ki, *ki32, ki_fd);
1016	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1017	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1018	CP(*ki, *ki32, ki_pid);
1019	CP(*ki, *ki32, ki_ppid);
1020	CP(*ki, *ki32, ki_pgid);
1021	CP(*ki, *ki32, ki_tpgid);
1022	CP(*ki, *ki32, ki_sid);
1023	CP(*ki, *ki32, ki_tsid);
1024	CP(*ki, *ki32, ki_jobc);
1025	CP(*ki, *ki32, ki_tdev);
1026	CP(*ki, *ki32, ki_siglist);
1027	CP(*ki, *ki32, ki_sigmask);
1028	CP(*ki, *ki32, ki_sigignore);
1029	CP(*ki, *ki32, ki_sigcatch);
1030	CP(*ki, *ki32, ki_uid);
1031	CP(*ki, *ki32, ki_ruid);
1032	CP(*ki, *ki32, ki_svuid);
1033	CP(*ki, *ki32, ki_rgid);
1034	CP(*ki, *ki32, ki_svgid);
1035	CP(*ki, *ki32, ki_ngroups);
1036	for (i = 0; i < KI_NGROUPS; i++)
1037		CP(*ki, *ki32, ki_groups[i]);
1038	CP(*ki, *ki32, ki_size);
1039	CP(*ki, *ki32, ki_rssize);
1040	CP(*ki, *ki32, ki_swrss);
1041	CP(*ki, *ki32, ki_tsize);
1042	CP(*ki, *ki32, ki_dsize);
1043	CP(*ki, *ki32, ki_ssize);
1044	CP(*ki, *ki32, ki_xstat);
1045	CP(*ki, *ki32, ki_acflag);
1046	CP(*ki, *ki32, ki_pctcpu);
1047	CP(*ki, *ki32, ki_estcpu);
1048	CP(*ki, *ki32, ki_slptime);
1049	CP(*ki, *ki32, ki_swtime);
1050	CP(*ki, *ki32, ki_runtime);
1051	TV_CP(*ki, *ki32, ki_start);
1052	TV_CP(*ki, *ki32, ki_childtime);
1053	CP(*ki, *ki32, ki_flag);
1054	CP(*ki, *ki32, ki_kiflag);
1055	CP(*ki, *ki32, ki_traceflag);
1056	CP(*ki, *ki32, ki_stat);
1057	CP(*ki, *ki32, ki_nice);
1058	CP(*ki, *ki32, ki_lock);
1059	CP(*ki, *ki32, ki_rqindex);
1060	CP(*ki, *ki32, ki_oncpu);
1061	CP(*ki, *ki32, ki_lastcpu);
1062	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1063	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1064	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1065	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1066	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1067	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1068	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1069	CP(*ki, *ki32, ki_cr_flags);
1070	CP(*ki, *ki32, ki_jid);
1071	CP(*ki, *ki32, ki_numthreads);
1072	CP(*ki, *ki32, ki_tid);
1073	CP(*ki, *ki32, ki_pri);
1074	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1075	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1076	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1077	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1078	PTRTRIM_CP(*ki, *ki32, ki_udata);
1079	CP(*ki, *ki32, ki_sflag);
1080	CP(*ki, *ki32, ki_tdflags);
1081}
1082
1083static int
1084sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1085{
1086	struct kinfo_proc32 ki32;
1087	int error;
1088
1089	if (req->flags & SCTL_MASK32) {
1090		freebsd32_kinfo_proc_out(ki, &ki32);
1091		error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1092	} else
1093		error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1094	return (error);
1095}
1096#else
1097static int
1098sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1099{
1100
1101	return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1102}
1103#endif
1104
1105/*
1106 * Must be called with the process locked and will return with it unlocked.
1107 */
1108static int
1109sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1110{
1111	struct thread *td;
1112	struct kinfo_proc kinfo_proc;
1113	int error = 0;
1114	struct proc *np;
1115	pid_t pid = p->p_pid;
1116
1117	PROC_LOCK_ASSERT(p, MA_OWNED);
1118	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1119
1120	fill_kinfo_proc(p, &kinfo_proc);
1121	if (flags & KERN_PROC_NOTHREADS)
1122		error = sysctl_out_proc_copyout(&kinfo_proc, req);
1123	else {
1124		FOREACH_THREAD_IN_PROC(p, td) {
1125			fill_kinfo_thread(td, &kinfo_proc, 1);
1126			error = sysctl_out_proc_copyout(&kinfo_proc, req);
1127			if (error)
1128				break;
1129		}
1130	}
1131	PROC_UNLOCK(p);
1132	if (error)
1133		return (error);
1134	if (flags & KERN_PROC_ZOMBMASK)
1135		np = zpfind(pid);
1136	else {
1137		if (pid == 0)
1138			return (0);
1139		np = pfind(pid);
1140	}
1141	if (np == NULL)
1142		return (ESRCH);
1143	if (np != p) {
1144		PROC_UNLOCK(np);
1145		return (ESRCH);
1146	}
1147	PROC_UNLOCK(np);
1148	return (0);
1149}
1150
1151static int
1152sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1153{
1154	int *name = (int*) arg1;
1155	u_int namelen = arg2;
1156	struct proc *p;
1157	int flags, doingzomb, oid_number;
1158	int error = 0;
1159
1160	oid_number = oidp->oid_number;
1161	if (oid_number != KERN_PROC_ALL &&
1162	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1163		flags = KERN_PROC_NOTHREADS;
1164	else {
1165		flags = 0;
1166		oid_number &= ~KERN_PROC_INC_THREAD;
1167	}
1168	if (oid_number == KERN_PROC_PID) {
1169		if (namelen != 1)
1170			return (EINVAL);
1171		error = sysctl_wire_old_buffer(req, 0);
1172		if (error)
1173			return (error);
1174		p = pfind((pid_t)name[0]);
1175		if (!p)
1176			return (ESRCH);
1177		if ((error = p_cansee(curthread, p))) {
1178			PROC_UNLOCK(p);
1179			return (error);
1180		}
1181		error = sysctl_out_proc(p, req, flags);
1182		return (error);
1183	}
1184
1185	switch (oid_number) {
1186	case KERN_PROC_ALL:
1187		if (namelen != 0)
1188			return (EINVAL);
1189		break;
1190	case KERN_PROC_PROC:
1191		if (namelen != 0 && namelen != 1)
1192			return (EINVAL);
1193		break;
1194	default:
1195		if (namelen != 1)
1196			return (EINVAL);
1197		break;
1198	}
1199
1200	if (!req->oldptr) {
1201		/* overestimate by 5 procs */
1202		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1203		if (error)
1204			return (error);
1205	}
1206	error = sysctl_wire_old_buffer(req, 0);
1207	if (error != 0)
1208		return (error);
1209	sx_slock(&allproc_lock);
1210	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1211		if (!doingzomb)
1212			p = LIST_FIRST(&allproc);
1213		else
1214			p = LIST_FIRST(&zombproc);
1215		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1216			/*
1217			 * Skip embryonic processes.
1218			 */
1219			PROC_LOCK(p);
1220			if (p->p_state == PRS_NEW) {
1221				PROC_UNLOCK(p);
1222				continue;
1223			}
1224			KASSERT(p->p_ucred != NULL,
1225			    ("process credential is NULL for non-NEW proc"));
1226			/*
1227			 * Show a user only appropriate processes.
1228			 */
1229			if (p_cansee(curthread, p)) {
1230				PROC_UNLOCK(p);
1231				continue;
1232			}
1233			/*
1234			 * TODO - make more efficient (see notes below).
1235			 * do by session.
1236			 */
1237			switch (oid_number) {
1238
1239			case KERN_PROC_GID:
1240				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1241					PROC_UNLOCK(p);
1242					continue;
1243				}
1244				break;
1245
1246			case KERN_PROC_PGRP:
1247				/* could do this by traversing pgrp */
1248				if (p->p_pgrp == NULL ||
1249				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1250					PROC_UNLOCK(p);
1251					continue;
1252				}
1253				break;
1254
1255			case KERN_PROC_RGID:
1256				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1257					PROC_UNLOCK(p);
1258					continue;
1259				}
1260				break;
1261
1262			case KERN_PROC_SESSION:
1263				if (p->p_session == NULL ||
1264				    p->p_session->s_sid != (pid_t)name[0]) {
1265					PROC_UNLOCK(p);
1266					continue;
1267				}
1268				break;
1269
1270			case KERN_PROC_TTY:
1271				if ((p->p_flag & P_CONTROLT) == 0 ||
1272				    p->p_session == NULL) {
1273					PROC_UNLOCK(p);
1274					continue;
1275				}
1276				/* XXX proctree_lock */
1277				SESS_LOCK(p->p_session);
1278				if (p->p_session->s_ttyp == NULL ||
1279				    tty_udev(p->p_session->s_ttyp) !=
1280				    (dev_t)name[0]) {
1281					SESS_UNLOCK(p->p_session);
1282					PROC_UNLOCK(p);
1283					continue;
1284				}
1285				SESS_UNLOCK(p->p_session);
1286				break;
1287
1288			case KERN_PROC_UID:
1289				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1290					PROC_UNLOCK(p);
1291					continue;
1292				}
1293				break;
1294
1295			case KERN_PROC_RUID:
1296				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1297					PROC_UNLOCK(p);
1298					continue;
1299				}
1300				break;
1301
1302			case KERN_PROC_PROC:
1303				break;
1304
1305			default:
1306				break;
1307
1308			}
1309
1310			error = sysctl_out_proc(p, req, flags | doingzomb);
1311			if (error) {
1312				sx_sunlock(&allproc_lock);
1313				return (error);
1314			}
1315		}
1316	}
1317	sx_sunlock(&allproc_lock);
1318	return (0);
1319}
1320
1321struct pargs *
1322pargs_alloc(int len)
1323{
1324	struct pargs *pa;
1325
1326	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1327		M_WAITOK);
1328	refcount_init(&pa->ar_ref, 1);
1329	pa->ar_length = len;
1330	return (pa);
1331}
1332
1333static void
1334pargs_free(struct pargs *pa)
1335{
1336
1337	free(pa, M_PARGS);
1338}
1339
1340void
1341pargs_hold(struct pargs *pa)
1342{
1343
1344	if (pa == NULL)
1345		return;
1346	refcount_acquire(&pa->ar_ref);
1347}
1348
1349void
1350pargs_drop(struct pargs *pa)
1351{
1352
1353	if (pa == NULL)
1354		return;
1355	if (refcount_release(&pa->ar_ref))
1356		pargs_free(pa);
1357}
1358
1359/*
1360 * This sysctl allows a process to retrieve the argument list or process
1361 * title for another process without groping around in the address space
1362 * of the other process.  It also allow a process to set its own "process
1363 * title to a string of its own choice.
1364 */
1365static int
1366sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1367{
1368	int *name = (int*) arg1;
1369	u_int namelen = arg2;
1370	struct pargs *newpa, *pa;
1371	struct proc *p;
1372	int error = 0;
1373
1374	if (namelen != 1)
1375		return (EINVAL);
1376
1377	p = pfind((pid_t)name[0]);
1378	if (!p)
1379		return (ESRCH);
1380
1381	if ((error = p_cansee(curthread, p)) != 0) {
1382		PROC_UNLOCK(p);
1383		return (error);
1384	}
1385
1386	if (req->newptr && curproc != p) {
1387		PROC_UNLOCK(p);
1388		return (EPERM);
1389	}
1390
1391	pa = p->p_args;
1392	pargs_hold(pa);
1393	PROC_UNLOCK(p);
1394	if (pa != NULL)
1395		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1396	pargs_drop(pa);
1397	if (error != 0 || req->newptr == NULL)
1398		return (error);
1399
1400	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1401		return (ENOMEM);
1402	newpa = pargs_alloc(req->newlen);
1403	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1404	if (error != 0) {
1405		pargs_free(newpa);
1406		return (error);
1407	}
1408	PROC_LOCK(p);
1409	pa = p->p_args;
1410	p->p_args = newpa;
1411	PROC_UNLOCK(p);
1412	pargs_drop(pa);
1413	return (0);
1414}
1415
1416/*
1417 * This sysctl allows a process to retrieve the path of the executable for
1418 * itself or another process.
1419 */
1420static int
1421sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1422{
1423	pid_t *pidp = (pid_t *)arg1;
1424	unsigned int arglen = arg2;
1425	struct proc *p;
1426	struct vnode *vp;
1427	char *retbuf, *freebuf;
1428	int error, vfslocked;
1429
1430	if (arglen != 1)
1431		return (EINVAL);
1432	if (*pidp == -1) {	/* -1 means this process */
1433		p = req->td->td_proc;
1434	} else {
1435		p = pfind(*pidp);
1436		if (p == NULL)
1437			return (ESRCH);
1438		if ((error = p_cansee(curthread, p)) != 0) {
1439			PROC_UNLOCK(p);
1440			return (error);
1441		}
1442	}
1443
1444	vp = p->p_textvp;
1445	if (vp == NULL) {
1446		if (*pidp != -1)
1447			PROC_UNLOCK(p);
1448		return (0);
1449	}
1450	vref(vp);
1451	if (*pidp != -1)
1452		PROC_UNLOCK(p);
1453	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1454	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1455	vrele(vp);
1456	VFS_UNLOCK_GIANT(vfslocked);
1457	if (error)
1458		return (error);
1459	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1460	free(freebuf, M_TEMP);
1461	return (error);
1462}
1463
1464static int
1465sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1466{
1467	struct proc *p;
1468	char *sv_name;
1469	int *name;
1470	int namelen;
1471	int error;
1472
1473	namelen = arg2;
1474	if (namelen != 1)
1475		return (EINVAL);
1476
1477	name = (int *)arg1;
1478	if ((p = pfind((pid_t)name[0])) == NULL)
1479		return (ESRCH);
1480	if ((error = p_cansee(curthread, p))) {
1481		PROC_UNLOCK(p);
1482		return (error);
1483	}
1484	sv_name = p->p_sysent->sv_name;
1485	PROC_UNLOCK(p);
1486	return (sysctl_handle_string(oidp, sv_name, 0, req));
1487}
1488
1489#ifdef KINFO_OVMENTRY_SIZE
1490CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1491#endif
1492
1493#ifdef COMPAT_FREEBSD7
1494static int
1495sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1496{
1497	vm_map_entry_t entry, tmp_entry;
1498	unsigned int last_timestamp;
1499	char *fullpath, *freepath;
1500	struct kinfo_ovmentry *kve;
1501	struct vattr va;
1502	struct ucred *cred;
1503	int error, *name;
1504	struct vnode *vp;
1505	struct proc *p;
1506	vm_map_t map;
1507	struct vmspace *vm;
1508
1509	name = (int *)arg1;
1510	if ((p = pfind((pid_t)name[0])) == NULL)
1511		return (ESRCH);
1512	if (p->p_flag & P_WEXIT) {
1513		PROC_UNLOCK(p);
1514		return (ESRCH);
1515	}
1516	if ((error = p_candebug(curthread, p))) {
1517		PROC_UNLOCK(p);
1518		return (error);
1519	}
1520	_PHOLD(p);
1521	PROC_UNLOCK(p);
1522	vm = vmspace_acquire_ref(p);
1523	if (vm == NULL) {
1524		PRELE(p);
1525		return (ESRCH);
1526	}
1527	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1528
1529	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1530	vm_map_lock_read(map);
1531	for (entry = map->header.next; entry != &map->header;
1532	    entry = entry->next) {
1533		vm_object_t obj, tobj, lobj;
1534		vm_offset_t addr;
1535		int vfslocked;
1536
1537		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1538			continue;
1539
1540		bzero(kve, sizeof(*kve));
1541		kve->kve_structsize = sizeof(*kve);
1542
1543		kve->kve_private_resident = 0;
1544		obj = entry->object.vm_object;
1545		if (obj != NULL) {
1546			VM_OBJECT_LOCK(obj);
1547			if (obj->shadow_count == 1)
1548				kve->kve_private_resident =
1549				    obj->resident_page_count;
1550		}
1551		kve->kve_resident = 0;
1552		addr = entry->start;
1553		while (addr < entry->end) {
1554			if (pmap_extract(map->pmap, addr))
1555				kve->kve_resident++;
1556			addr += PAGE_SIZE;
1557		}
1558
1559		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1560			if (tobj != obj)
1561				VM_OBJECT_LOCK(tobj);
1562			if (lobj != obj)
1563				VM_OBJECT_UNLOCK(lobj);
1564			lobj = tobj;
1565		}
1566
1567		kve->kve_start = (void*)entry->start;
1568		kve->kve_end = (void*)entry->end;
1569		kve->kve_offset = (off_t)entry->offset;
1570
1571		if (entry->protection & VM_PROT_READ)
1572			kve->kve_protection |= KVME_PROT_READ;
1573		if (entry->protection & VM_PROT_WRITE)
1574			kve->kve_protection |= KVME_PROT_WRITE;
1575		if (entry->protection & VM_PROT_EXECUTE)
1576			kve->kve_protection |= KVME_PROT_EXEC;
1577
1578		if (entry->eflags & MAP_ENTRY_COW)
1579			kve->kve_flags |= KVME_FLAG_COW;
1580		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1581			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1582		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1583			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1584
1585		last_timestamp = map->timestamp;
1586		vm_map_unlock_read(map);
1587
1588		kve->kve_fileid = 0;
1589		kve->kve_fsid = 0;
1590		freepath = NULL;
1591		fullpath = "";
1592		if (lobj) {
1593			vp = NULL;
1594			switch (lobj->type) {
1595			case OBJT_DEFAULT:
1596				kve->kve_type = KVME_TYPE_DEFAULT;
1597				break;
1598			case OBJT_VNODE:
1599				kve->kve_type = KVME_TYPE_VNODE;
1600				vp = lobj->handle;
1601				vref(vp);
1602				break;
1603			case OBJT_SWAP:
1604				kve->kve_type = KVME_TYPE_SWAP;
1605				break;
1606			case OBJT_DEVICE:
1607				kve->kve_type = KVME_TYPE_DEVICE;
1608				break;
1609			case OBJT_PHYS:
1610				kve->kve_type = KVME_TYPE_PHYS;
1611				break;
1612			case OBJT_DEAD:
1613				kve->kve_type = KVME_TYPE_DEAD;
1614				break;
1615			case OBJT_SG:
1616				kve->kve_type = KVME_TYPE_SG;
1617				break;
1618			default:
1619				kve->kve_type = KVME_TYPE_UNKNOWN;
1620				break;
1621			}
1622			if (lobj != obj)
1623				VM_OBJECT_UNLOCK(lobj);
1624
1625			kve->kve_ref_count = obj->ref_count;
1626			kve->kve_shadow_count = obj->shadow_count;
1627			VM_OBJECT_UNLOCK(obj);
1628			if (vp != NULL) {
1629				vn_fullpath(curthread, vp, &fullpath,
1630				    &freepath);
1631				cred = curthread->td_ucred;
1632				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1633				vn_lock(vp, LK_SHARED | LK_RETRY);
1634				if (VOP_GETATTR(vp, &va, cred) == 0) {
1635					kve->kve_fileid = va.va_fileid;
1636					kve->kve_fsid = va.va_fsid;
1637				}
1638				vput(vp);
1639				VFS_UNLOCK_GIANT(vfslocked);
1640			}
1641		} else {
1642			kve->kve_type = KVME_TYPE_NONE;
1643			kve->kve_ref_count = 0;
1644			kve->kve_shadow_count = 0;
1645		}
1646
1647		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1648		if (freepath != NULL)
1649			free(freepath, M_TEMP);
1650
1651		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1652		vm_map_lock_read(map);
1653		if (error)
1654			break;
1655		if (last_timestamp != map->timestamp) {
1656			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1657			entry = tmp_entry;
1658		}
1659	}
1660	vm_map_unlock_read(map);
1661	vmspace_free(vm);
1662	PRELE(p);
1663	free(kve, M_TEMP);
1664	return (error);
1665}
1666#endif	/* COMPAT_FREEBSD7 */
1667
1668#ifdef KINFO_VMENTRY_SIZE
1669CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1670#endif
1671
1672static int
1673sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1674{
1675	vm_map_entry_t entry, tmp_entry;
1676	unsigned int last_timestamp;
1677	char *fullpath, *freepath;
1678	struct kinfo_vmentry *kve;
1679	struct vattr va;
1680	struct ucred *cred;
1681	int error, *name;
1682	struct vnode *vp;
1683	struct proc *p;
1684	struct vmspace *vm;
1685	vm_map_t map;
1686
1687	name = (int *)arg1;
1688	if ((p = pfind((pid_t)name[0])) == NULL)
1689		return (ESRCH);
1690	if (p->p_flag & P_WEXIT) {
1691		PROC_UNLOCK(p);
1692		return (ESRCH);
1693	}
1694	if ((error = p_candebug(curthread, p))) {
1695		PROC_UNLOCK(p);
1696		return (error);
1697	}
1698	_PHOLD(p);
1699	PROC_UNLOCK(p);
1700	vm = vmspace_acquire_ref(p);
1701	if (vm == NULL) {
1702		PRELE(p);
1703		return (ESRCH);
1704	}
1705	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1706
1707	map = &vm->vm_map;	/* XXXRW: More locking required? */
1708	vm_map_lock_read(map);
1709	for (entry = map->header.next; entry != &map->header;
1710	    entry = entry->next) {
1711		vm_object_t obj, tobj, lobj;
1712		vm_offset_t addr;
1713		int vfslocked;
1714
1715		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1716			continue;
1717
1718		bzero(kve, sizeof(*kve));
1719
1720		kve->kve_private_resident = 0;
1721		obj = entry->object.vm_object;
1722		if (obj != NULL) {
1723			VM_OBJECT_LOCK(obj);
1724			if (obj->shadow_count == 1)
1725				kve->kve_private_resident =
1726				    obj->resident_page_count;
1727		}
1728		kve->kve_resident = 0;
1729		addr = entry->start;
1730		while (addr < entry->end) {
1731			if (pmap_extract(map->pmap, addr))
1732				kve->kve_resident++;
1733			addr += PAGE_SIZE;
1734		}
1735
1736		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1737			if (tobj != obj)
1738				VM_OBJECT_LOCK(tobj);
1739			if (lobj != obj)
1740				VM_OBJECT_UNLOCK(lobj);
1741			lobj = tobj;
1742		}
1743
1744		kve->kve_start = entry->start;
1745		kve->kve_end = entry->end;
1746		kve->kve_offset = entry->offset;
1747
1748		if (entry->protection & VM_PROT_READ)
1749			kve->kve_protection |= KVME_PROT_READ;
1750		if (entry->protection & VM_PROT_WRITE)
1751			kve->kve_protection |= KVME_PROT_WRITE;
1752		if (entry->protection & VM_PROT_EXECUTE)
1753			kve->kve_protection |= KVME_PROT_EXEC;
1754
1755		if (entry->eflags & MAP_ENTRY_COW)
1756			kve->kve_flags |= KVME_FLAG_COW;
1757		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1758			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1759		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1760			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1761
1762		last_timestamp = map->timestamp;
1763		vm_map_unlock_read(map);
1764
1765		freepath = NULL;
1766		fullpath = "";
1767		if (lobj) {
1768			vp = NULL;
1769			switch (lobj->type) {
1770			case OBJT_DEFAULT:
1771				kve->kve_type = KVME_TYPE_DEFAULT;
1772				break;
1773			case OBJT_VNODE:
1774				kve->kve_type = KVME_TYPE_VNODE;
1775				vp = lobj->handle;
1776				vref(vp);
1777				break;
1778			case OBJT_SWAP:
1779				kve->kve_type = KVME_TYPE_SWAP;
1780				break;
1781			case OBJT_DEVICE:
1782				kve->kve_type = KVME_TYPE_DEVICE;
1783				break;
1784			case OBJT_PHYS:
1785				kve->kve_type = KVME_TYPE_PHYS;
1786				break;
1787			case OBJT_DEAD:
1788				kve->kve_type = KVME_TYPE_DEAD;
1789				break;
1790			case OBJT_SG:
1791				kve->kve_type = KVME_TYPE_SG;
1792				break;
1793			default:
1794				kve->kve_type = KVME_TYPE_UNKNOWN;
1795				break;
1796			}
1797			if (lobj != obj)
1798				VM_OBJECT_UNLOCK(lobj);
1799
1800			kve->kve_ref_count = obj->ref_count;
1801			kve->kve_shadow_count = obj->shadow_count;
1802			VM_OBJECT_UNLOCK(obj);
1803			if (vp != NULL) {
1804				vn_fullpath(curthread, vp, &fullpath,
1805				    &freepath);
1806				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
1807				cred = curthread->td_ucred;
1808				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1809				vn_lock(vp, LK_SHARED | LK_RETRY);
1810				if (VOP_GETATTR(vp, &va, cred) == 0) {
1811					kve->kve_vn_fileid = va.va_fileid;
1812					kve->kve_vn_fsid = va.va_fsid;
1813					kve->kve_vn_mode =
1814					    MAKEIMODE(va.va_type, va.va_mode);
1815					kve->kve_vn_size = va.va_size;
1816					kve->kve_vn_rdev = va.va_rdev;
1817					kve->kve_status = KF_ATTR_VALID;
1818				}
1819				vput(vp);
1820				VFS_UNLOCK_GIANT(vfslocked);
1821			}
1822		} else {
1823			kve->kve_type = KVME_TYPE_NONE;
1824			kve->kve_ref_count = 0;
1825			kve->kve_shadow_count = 0;
1826		}
1827
1828		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1829		if (freepath != NULL)
1830			free(freepath, M_TEMP);
1831
1832		/* Pack record size down */
1833		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1834		    strlen(kve->kve_path) + 1;
1835		kve->kve_structsize = roundup(kve->kve_structsize,
1836		    sizeof(uint64_t));
1837		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1838		vm_map_lock_read(map);
1839		if (error)
1840			break;
1841		if (last_timestamp != map->timestamp) {
1842			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1843			entry = tmp_entry;
1844		}
1845	}
1846	vm_map_unlock_read(map);
1847	vmspace_free(vm);
1848	PRELE(p);
1849	free(kve, M_TEMP);
1850	return (error);
1851}
1852
1853#if defined(STACK) || defined(DDB)
1854static int
1855sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1856{
1857	struct kinfo_kstack *kkstp;
1858	int error, i, *name, numthreads;
1859	lwpid_t *lwpidarray;
1860	struct thread *td;
1861	struct stack *st;
1862	struct sbuf sb;
1863	struct proc *p;
1864
1865	name = (int *)arg1;
1866	if ((p = pfind((pid_t)name[0])) == NULL)
1867		return (ESRCH);
1868	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1869	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1870		PROC_UNLOCK(p);
1871		return (ESRCH);
1872	}
1873	if ((error = p_candebug(curthread, p))) {
1874		PROC_UNLOCK(p);
1875		return (error);
1876	}
1877	_PHOLD(p);
1878	PROC_UNLOCK(p);
1879
1880	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1881	st = stack_create();
1882
1883	lwpidarray = NULL;
1884	numthreads = 0;
1885	PROC_LOCK(p);
1886repeat:
1887	if (numthreads < p->p_numthreads) {
1888		if (lwpidarray != NULL) {
1889			free(lwpidarray, M_TEMP);
1890			lwpidarray = NULL;
1891		}
1892		numthreads = p->p_numthreads;
1893		PROC_UNLOCK(p);
1894		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1895		    M_WAITOK | M_ZERO);
1896		PROC_LOCK(p);
1897		goto repeat;
1898	}
1899	i = 0;
1900
1901	/*
1902	 * XXXRW: During the below loop, execve(2) and countless other sorts
1903	 * of changes could have taken place.  Should we check to see if the
1904	 * vmspace has been replaced, or the like, in order to prevent
1905	 * giving a snapshot that spans, say, execve(2), with some threads
1906	 * before and some after?  Among other things, the credentials could
1907	 * have changed, in which case the right to extract debug info might
1908	 * no longer be assured.
1909	 */
1910	FOREACH_THREAD_IN_PROC(p, td) {
1911		KASSERT(i < numthreads,
1912		    ("sysctl_kern_proc_kstack: numthreads"));
1913		lwpidarray[i] = td->td_tid;
1914		i++;
1915	}
1916	numthreads = i;
1917	for (i = 0; i < numthreads; i++) {
1918		td = thread_find(p, lwpidarray[i]);
1919		if (td == NULL) {
1920			continue;
1921		}
1922		bzero(kkstp, sizeof(*kkstp));
1923		(void)sbuf_new(&sb, kkstp->kkst_trace,
1924		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1925		thread_lock(td);
1926		kkstp->kkst_tid = td->td_tid;
1927		if (TD_IS_SWAPPED(td))
1928			kkstp->kkst_state = KKST_STATE_SWAPPED;
1929		else if (TD_IS_RUNNING(td))
1930			kkstp->kkst_state = KKST_STATE_RUNNING;
1931		else {
1932			kkstp->kkst_state = KKST_STATE_STACKOK;
1933			stack_save_td(st, td);
1934		}
1935		thread_unlock(td);
1936		PROC_UNLOCK(p);
1937		stack_sbuf_print(&sb, st);
1938		sbuf_finish(&sb);
1939		sbuf_delete(&sb);
1940		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1941		PROC_LOCK(p);
1942		if (error)
1943			break;
1944	}
1945	_PRELE(p);
1946	PROC_UNLOCK(p);
1947	if (lwpidarray != NULL)
1948		free(lwpidarray, M_TEMP);
1949	stack_destroy(st);
1950	free(kkstp, M_TEMP);
1951	return (error);
1952}
1953#endif
1954
1955/*
1956 * This sysctl allows a process to retrieve the full list of groups from
1957 * itself or another process.
1958 */
1959static int
1960sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1961{
1962	pid_t *pidp = (pid_t *)arg1;
1963	unsigned int arglen = arg2;
1964	struct proc *p;
1965	struct ucred *cred;
1966	int error;
1967
1968	if (arglen != 1)
1969		return (EINVAL);
1970	if (*pidp == -1) {	/* -1 means this process */
1971		p = req->td->td_proc;
1972	} else {
1973		p = pfind(*pidp);
1974		if (p == NULL)
1975			return (ESRCH);
1976		if ((error = p_cansee(curthread, p)) != 0) {
1977			PROC_UNLOCK(p);
1978			return (error);
1979		}
1980	}
1981
1982	cred = crhold(p->p_ucred);
1983	if (*pidp != -1)
1984		PROC_UNLOCK(p);
1985
1986	error = SYSCTL_OUT(req, cred->cr_groups,
1987	    cred->cr_ngroups * sizeof(gid_t));
1988	crfree(cred);
1989	return (error);
1990}
1991
1992SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1993
1994SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1995	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1996	"Return entire process table");
1997
1998static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1999	sysctl_kern_proc, "Process table");
2000
2001static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2002	sysctl_kern_proc, "Process table");
2003
2004static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2005	sysctl_kern_proc, "Process table");
2006
2007static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2008	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2009
2010static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2011	sysctl_kern_proc, "Process table");
2012
2013static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2014	sysctl_kern_proc, "Process table");
2015
2016static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2017	sysctl_kern_proc, "Process table");
2018
2019static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2020	sysctl_kern_proc, "Process table");
2021
2022static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2023	sysctl_kern_proc, "Return process table, no threads");
2024
2025static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2026	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2027	sysctl_kern_proc_args, "Process argument list");
2028
2029static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2030	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2031
2032static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2033	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2034	"Process syscall vector name (ABI type)");
2035
2036static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2037	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2038
2039static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2040	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2041
2042static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2043	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2044
2045static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2046	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2047
2048static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2049	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2050
2051static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2052	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2053
2054static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2055	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2056
2057static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2058	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2059
2060static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2061	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2062	"Return process table, no threads");
2063
2064#ifdef COMPAT_FREEBSD7
2065static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2066	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2067#endif
2068
2069static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2070	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2071
2072#if defined(STACK) || defined(DDB)
2073static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2074	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2075#endif
2076
2077static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2078	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2079