kern_ntptime.c revision 94740
1/***********************************************************************
2 *								       *
3 * Copyright (c) David L. Mills 1993-2001			       *
4 *								       *
5 * Permission to use, copy, modify, and distribute this software and   *
6 * its documentation for any purpose and without fee is hereby	       *
7 * granted, provided that the above copyright notice appears in all    *
8 * copies and that both the copyright notice and this permission       *
9 * notice appear in supporting documentation, and that the name	       *
10 * University of Delaware not be used in advertising or publicity      *
11 * pertaining to distribution of the software without specific,	       *
12 * written prior permission. The University of Delaware makes no       *
13 * representations about the suitability this software for any	       *
14 * purpose. It is provided "as is" without express or implied	       *
15 * warranty.							       *
16 *								       *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 *
31 * $FreeBSD: head/sys/kern/kern_ntptime.c 94740 2002-04-15 08:58:24Z phk $
32 */
33
34#include "opt_ntp.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/kernel.h>
40#include <sys/proc.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/time.h>
44#include <sys/timex.h>
45#include <sys/timetc.h>
46#include <sys/timepps.h>
47#include <sys/sysctl.h>
48
49/*
50 * Single-precision macros for 64-bit machines
51 */
52typedef long long l_fp;
53#define L_ADD(v, u)	((v) += (u))
54#define L_SUB(v, u)	((v) -= (u))
55#define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
56#define L_NEG(v)	((v) = -(v))
57#define L_RSHIFT(v, n) \
58	do { \
59		if ((v) < 0) \
60			(v) = -(-(v) >> (n)); \
61		else \
62			(v) = (v) >> (n); \
63	} while (0)
64#define L_MPY(v, a)	((v) *= (a))
65#define L_CLR(v)	((v) = 0)
66#define L_ISNEG(v)	((v) < 0)
67#define L_LINT(v, a)	((v) = (long long)(a) << 32)
68#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
69
70/*
71 * Generic NTP kernel interface
72 *
73 * These routines constitute the Network Time Protocol (NTP) interfaces
74 * for user and daemon application programs. The ntp_gettime() routine
75 * provides the time, maximum error (synch distance) and estimated error
76 * (dispersion) to client user application programs. The ntp_adjtime()
77 * routine is used by the NTP daemon to adjust the system clock to an
78 * externally derived time. The time offset and related variables set by
79 * this routine are used by other routines in this module to adjust the
80 * phase and frequency of the clock discipline loop which controls the
81 * system clock.
82 *
83 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84 * defined), the time at each tick interrupt is derived directly from
85 * the kernel time variable. When the kernel time is reckoned in
86 * microseconds, (NTP_NANO undefined), the time is derived from the
87 * kernel time variable together with a variable representing the
88 * leftover nanoseconds at the last tick interrupt. In either case, the
89 * current nanosecond time is reckoned from these values plus an
90 * interpolated value derived by the clock routines in another
91 * architecture-specific module. The interpolation can use either a
92 * dedicated counter or a processor cycle counter (PCC) implemented in
93 * some architectures.
94 *
95 * Note that all routines must run at priority splclock or higher.
96 */
97/*
98 * Phase/frequency-lock loop (PLL/FLL) definitions
99 *
100 * The nanosecond clock discipline uses two variable types, time
101 * variables and frequency variables. Both types are represented as 64-
102 * bit fixed-point quantities with the decimal point between two 32-bit
103 * halves. On a 32-bit machine, each half is represented as a single
104 * word and mathematical operations are done using multiple-precision
105 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
106 * used.
107 *
108 * A time variable is a signed 64-bit fixed-point number in ns and
109 * fraction. It represents the remaining time offset to be amortized
110 * over succeeding tick interrupts. The maximum time offset is about
111 * 0.5 s and the resolution is about 2.3e-10 ns.
112 *
113 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 * |s s s|			 ns				   |
117 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118 * |			    fraction				   |
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120 *
121 * A frequency variable is a signed 64-bit fixed-point number in ns/s
122 * and fraction. It represents the ns and fraction to be added to the
123 * kernel time variable at each second. The maximum frequency offset is
124 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
125 *
126 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 * |s s s s s s s s s s s s s|	          ns/s			   |
130 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 * |			    fraction				   |
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 */
134/*
135 * The following variables establish the state of the PLL/FLL and the
136 * residual time and frequency offset of the local clock.
137 */
138#define SHIFT_PLL	4		/* PLL loop gain (shift) */
139#define SHIFT_FLL	2		/* FLL loop gain (shift) */
140
141static int time_state = TIME_OK;	/* clock state */
142static int time_status = STA_UNSYNC;	/* clock status bits */
143static long time_tai;			/* TAI offset (s) */
144static long time_monitor;		/* last time offset scaled (ns) */
145static long time_constant;		/* poll interval (shift) (s) */
146static long time_precision = 1;		/* clock precision (ns) */
147static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
148static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
149static long time_reftime;		/* time at last adjustment (s) */
150static long time_tick;			/* nanoseconds per tick (ns) */
151static l_fp time_offset;		/* time offset (ns) */
152static l_fp time_freq;			/* frequency offset (ns/s) */
153static l_fp time_adj;			/* tick adjust (ns/s) */
154
155#ifdef PPS_SYNC
156/*
157 * The following variables are used when a pulse-per-second (PPS) signal
158 * is available and connected via a modem control lead. They establish
159 * the engineering parameters of the clock discipline loop when
160 * controlled by the PPS signal.
161 */
162#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
163#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
164#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
165#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
166#define PPS_VALID	120		/* PPS signal watchdog max (s) */
167#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
168#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
169
170static struct timespec pps_tf[3];	/* phase median filter */
171static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
172static long pps_fcount;			/* frequency accumulator */
173static long pps_jitter;			/* nominal jitter (ns) */
174static long pps_stabil;			/* nominal stability (scaled ns/s) */
175static long pps_lastsec;		/* time at last calibration (s) */
176static int pps_valid;			/* signal watchdog counter */
177static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
178static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
179static int pps_intcnt;			/* wander counter */
180
181/*
182 * PPS signal quality monitors
183 */
184static long pps_calcnt;			/* calibration intervals */
185static long pps_jitcnt;			/* jitter limit exceeded */
186static long pps_stbcnt;			/* stability limit exceeded */
187static long pps_errcnt;			/* calibration errors */
188#endif /* PPS_SYNC */
189/*
190 * End of phase/frequency-lock loop (PLL/FLL) definitions
191 */
192
193static void ntp_init(void);
194static void hardupdate(long offset);
195
196/*
197 * ntp_gettime() - NTP user application interface
198 *
199 * See the timex.h header file for synopsis and API description. Note
200 * that the TAI offset is returned in the ntvtimeval.tai structure
201 * member.
202 */
203static int
204ntp_sysctl(SYSCTL_HANDLER_ARGS)
205{
206	struct ntptimeval ntv;	/* temporary structure */
207	struct timespec atv;	/* nanosecond time */
208
209	nanotime(&atv);
210	ntv.time.tv_sec = atv.tv_sec;
211	ntv.time.tv_nsec = atv.tv_nsec;
212	ntv.maxerror = time_maxerror;
213	ntv.esterror = time_esterror;
214	ntv.tai = time_tai;
215	ntv.time_state = time_state;
216
217	/*
218	 * Status word error decode. If any of these conditions occur,
219	 * an error is returned, instead of the status word. Most
220	 * applications will care only about the fact the system clock
221	 * may not be trusted, not about the details.
222	 *
223	 * Hardware or software error
224	 */
225	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
226
227	/*
228	 * PPS signal lost when either time or frequency synchronization
229	 * requested
230	 */
231	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
232	    !(time_status & STA_PPSSIGNAL)) ||
233
234	/*
235	 * PPS jitter exceeded when time synchronization requested
236	 */
237	    (time_status & STA_PPSTIME &&
238	    time_status & STA_PPSJITTER) ||
239
240	/*
241	 * PPS wander exceeded or calibration error when frequency
242	 * synchronization requested
243	 */
244	    (time_status & STA_PPSFREQ &&
245	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246		ntv.time_state = TIME_ERROR;
247	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
248}
249
250SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
251SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
252	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
253
254#ifdef PPS_SYNC
255SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
256SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
257SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
258
259SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
260SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
261#endif
262/*
263 * ntp_adjtime() - NTP daemon application interface
264 *
265 * See the timex.h header file for synopsis and API description. Note
266 * that the timex.constant structure member has a dual purpose to set
267 * the time constant and to set the TAI offset.
268 */
269#ifndef _SYS_SYSPROTO_H_
270struct ntp_adjtime_args {
271	struct timex *tp;
272};
273#endif
274
275/*
276 * MPSAFE
277 */
278int
279ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
280{
281	struct timex ntv;	/* temporary structure */
282	long freq;		/* frequency ns/s) */
283	int modes;		/* mode bits from structure */
284	int s;			/* caller priority */
285	int error;
286
287	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
288	if (error)
289		return(error);
290
291	/*
292	 * Update selected clock variables - only the superuser can
293	 * change anything. Note that there is no error checking here on
294	 * the assumption the superuser should know what it is doing.
295	 * Note that either the time constant or TAI offset are loaded
296	 * from the ntv.constant member, depending on the mode bits. If
297	 * the STA_PLL bit in the status word is cleared, the state and
298	 * status words are reset to the initial values at boot.
299	 */
300	mtx_lock(&Giant);
301	modes = ntv.modes;
302	if (modes)
303		error = suser(td);
304	if (error)
305		goto done2;
306	s = splclock();
307	if (modes & MOD_MAXERROR)
308		time_maxerror = ntv.maxerror;
309	if (modes & MOD_ESTERROR)
310		time_esterror = ntv.esterror;
311	if (modes & MOD_STATUS) {
312		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
313			time_state = TIME_OK;
314			time_status = STA_UNSYNC;
315#ifdef PPS_SYNC
316			pps_shift = PPS_FAVG;
317#endif /* PPS_SYNC */
318		}
319		time_status &= STA_RONLY;
320		time_status |= ntv.status & ~STA_RONLY;
321	}
322	if (modes & MOD_TIMECONST) {
323		if (ntv.constant < 0)
324			time_constant = 0;
325		else if (ntv.constant > MAXTC)
326			time_constant = MAXTC;
327		else
328			time_constant = ntv.constant;
329	}
330	if (modes & MOD_TAI) {
331		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
332			time_tai = ntv.constant;
333	}
334#ifdef PPS_SYNC
335	if (modes & MOD_PPSMAX) {
336		if (ntv.shift < PPS_FAVG)
337			pps_shiftmax = PPS_FAVG;
338		else if (ntv.shift > PPS_FAVGMAX)
339			pps_shiftmax = PPS_FAVGMAX;
340		else
341			pps_shiftmax = ntv.shift;
342	}
343#endif /* PPS_SYNC */
344	if (modes & MOD_NANO)
345		time_status |= STA_NANO;
346	if (modes & MOD_MICRO)
347		time_status &= ~STA_NANO;
348	if (modes & MOD_CLKB)
349		time_status |= STA_CLK;
350	if (modes & MOD_CLKA)
351		time_status &= ~STA_CLK;
352	if (modes & MOD_OFFSET) {
353		if (time_status & STA_NANO)
354			hardupdate(ntv.offset);
355		else
356			hardupdate(ntv.offset * 1000);
357	}
358	if (modes & MOD_FREQUENCY) {
359		freq = (ntv.freq * 1000LL) >> 16;
360		if (freq > MAXFREQ)
361			L_LINT(time_freq, MAXFREQ);
362		else if (freq < -MAXFREQ)
363			L_LINT(time_freq, -MAXFREQ);
364		else
365			L_LINT(time_freq, freq);
366#ifdef PPS_SYNC
367		pps_freq = time_freq;
368#endif /* PPS_SYNC */
369	}
370
371	/*
372	 * Retrieve all clock variables. Note that the TAI offset is
373	 * returned only by ntp_gettime();
374	 */
375	if (time_status & STA_NANO)
376		ntv.offset = L_GINT(time_offset);
377	else
378		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
379	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
380	ntv.maxerror = time_maxerror;
381	ntv.esterror = time_esterror;
382	ntv.status = time_status;
383	ntv.constant = time_constant;
384	if (time_status & STA_NANO)
385		ntv.precision = time_precision;
386	else
387		ntv.precision = time_precision / 1000;
388	ntv.tolerance = MAXFREQ * SCALE_PPM;
389#ifdef PPS_SYNC
390	ntv.shift = pps_shift;
391	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
392	if (time_status & STA_NANO)
393		ntv.jitter = pps_jitter;
394	else
395		ntv.jitter = pps_jitter / 1000;
396	ntv.stabil = pps_stabil;
397	ntv.calcnt = pps_calcnt;
398	ntv.errcnt = pps_errcnt;
399	ntv.jitcnt = pps_jitcnt;
400	ntv.stbcnt = pps_stbcnt;
401#endif /* PPS_SYNC */
402	splx(s);
403
404	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
405	if (error)
406		goto done2;
407
408	/*
409	 * Status word error decode. See comments in
410	 * ntp_gettime() routine.
411	 */
412	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
413	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
414	    !(time_status & STA_PPSSIGNAL)) ||
415	    (time_status & STA_PPSTIME &&
416	    time_status & STA_PPSJITTER) ||
417	    (time_status & STA_PPSFREQ &&
418	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
419		td->td_retval[0] = TIME_ERROR;
420	} else {
421		td->td_retval[0] = time_state;
422	}
423done2:
424	mtx_unlock(&Giant);
425	return (error);
426}
427
428/*
429 * second_overflow() - called after ntp_tick_adjust()
430 *
431 * This routine is ordinarily called immediately following the above
432 * routine ntp_tick_adjust(). While these two routines are normally
433 * combined, they are separated here only for the purposes of
434 * simulation.
435 */
436void
437ntp_update_second(struct timecounter *tcp)
438{
439	u_int32_t *newsec;
440	l_fp ftemp;		/* 32/64-bit temporary */
441
442	newsec = &tcp->tc_offset.sec;
443	/*
444	 * On rollover of the second both the nanosecond and microsecond
445	 * clocks are updated and the state machine cranked as
446	 * necessary. The phase adjustment to be used for the next
447	 * second is calculated and the maximum error is increased by
448	 * the tolerance.
449	 */
450	time_maxerror += MAXFREQ / 1000;
451
452	/*
453	 * Leap second processing. If in leap-insert state at
454	 * the end of the day, the system clock is set back one
455	 * second; if in leap-delete state, the system clock is
456	 * set ahead one second. The nano_time() routine or
457	 * external clock driver will insure that reported time
458	 * is always monotonic.
459	 */
460	switch (time_state) {
461
462		/*
463		 * No warning.
464		 */
465		case TIME_OK:
466		if (time_status & STA_INS)
467			time_state = TIME_INS;
468		else if (time_status & STA_DEL)
469			time_state = TIME_DEL;
470		break;
471
472		/*
473		 * Insert second 23:59:60 following second
474		 * 23:59:59.
475		 */
476		case TIME_INS:
477		if (!(time_status & STA_INS))
478			time_state = TIME_OK;
479		else if ((*newsec) % 86400 == 0) {
480			(*newsec)--;
481			time_state = TIME_OOP;
482		}
483		break;
484
485		/*
486		 * Delete second 23:59:59.
487		 */
488		case TIME_DEL:
489		if (!(time_status & STA_DEL))
490			time_state = TIME_OK;
491		else if (((*newsec) + 1) % 86400 == 0) {
492			(*newsec)++;
493			time_tai--;
494			time_state = TIME_WAIT;
495		}
496		break;
497
498		/*
499		 * Insert second in progress.
500		 */
501		case TIME_OOP:
502			time_tai++;
503			time_state = TIME_WAIT;
504		break;
505
506		/*
507		 * Wait for status bits to clear.
508		 */
509		case TIME_WAIT:
510		if (!(time_status & (STA_INS | STA_DEL)))
511			time_state = TIME_OK;
512	}
513
514	/*
515	 * Compute the total time adjustment for the next second
516	 * in ns. The offset is reduced by a factor depending on
517	 * whether the PPS signal is operating. Note that the
518	 * value is in effect scaled by the clock frequency,
519	 * since the adjustment is added at each tick interrupt.
520	 */
521	ftemp = time_offset;
522#ifdef PPS_SYNC
523	/* XXX even if PPS signal dies we should finish adjustment ? */
524	if (time_status & STA_PPSTIME && time_status &
525	    STA_PPSSIGNAL)
526		L_RSHIFT(ftemp, pps_shift);
527	else
528		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
529#else
530		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
531#endif /* PPS_SYNC */
532	time_adj = ftemp;
533	L_SUB(time_offset, ftemp);
534	L_ADD(time_adj, time_freq);
535	tcp->tc_adjustment = time_adj;
536#ifdef PPS_SYNC
537	if (pps_valid > 0)
538		pps_valid--;
539	else
540		time_status &= ~STA_PPSSIGNAL;
541#endif /* PPS_SYNC */
542}
543
544/*
545 * ntp_init() - initialize variables and structures
546 *
547 * This routine must be called after the kernel variables hz and tick
548 * are set or changed and before the next tick interrupt. In this
549 * particular implementation, these values are assumed set elsewhere in
550 * the kernel. The design allows the clock frequency and tick interval
551 * to be changed while the system is running. So, this routine should
552 * probably be integrated with the code that does that.
553 */
554static void
555ntp_init()
556{
557
558	/*
559	 * The following variable must be initialized any time the
560	 * kernel variable hz is changed.
561	 */
562	time_tick = NANOSECOND / hz;
563
564	/*
565	 * The following variables are initialized only at startup. Only
566	 * those structures not cleared by the compiler need to be
567	 * initialized, and these only in the simulator. In the actual
568	 * kernel, any nonzero values here will quickly evaporate.
569	 */
570	L_CLR(time_offset);
571	L_CLR(time_freq);
572#ifdef PPS_SYNC
573	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
574	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
575	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
576	pps_fcount = 0;
577	L_CLR(pps_freq);
578#endif /* PPS_SYNC */
579}
580
581SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
582
583/*
584 * hardupdate() - local clock update
585 *
586 * This routine is called by ntp_adjtime() to update the local clock
587 * phase and frequency. The implementation is of an adaptive-parameter,
588 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
589 * time and frequency offset estimates for each call. If the kernel PPS
590 * discipline code is configured (PPS_SYNC), the PPS signal itself
591 * determines the new time offset, instead of the calling argument.
592 * Presumably, calls to ntp_adjtime() occur only when the caller
593 * believes the local clock is valid within some bound (+-128 ms with
594 * NTP). If the caller's time is far different than the PPS time, an
595 * argument will ensue, and it's not clear who will lose.
596 *
597 * For uncompensated quartz crystal oscillators and nominal update
598 * intervals less than 256 s, operation should be in phase-lock mode,
599 * where the loop is disciplined to phase. For update intervals greater
600 * than 1024 s, operation should be in frequency-lock mode, where the
601 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
602 * is selected by the STA_MODE status bit.
603 */
604static void
605hardupdate(offset)
606	long offset;		/* clock offset (ns) */
607{
608	long mtemp;
609	l_fp ftemp;
610
611	/*
612	 * Select how the phase is to be controlled and from which
613	 * source. If the PPS signal is present and enabled to
614	 * discipline the time, the PPS offset is used; otherwise, the
615	 * argument offset is used.
616	 */
617	if (!(time_status & STA_PLL))
618		return;
619	if (!(time_status & STA_PPSTIME && time_status &
620	    STA_PPSSIGNAL)) {
621		if (offset > MAXPHASE)
622			time_monitor = MAXPHASE;
623		else if (offset < -MAXPHASE)
624			time_monitor = -MAXPHASE;
625		else
626			time_monitor = offset;
627		L_LINT(time_offset, time_monitor);
628	}
629
630	/*
631	 * Select how the frequency is to be controlled and in which
632	 * mode (PLL or FLL). If the PPS signal is present and enabled
633	 * to discipline the frequency, the PPS frequency is used;
634	 * otherwise, the argument offset is used to compute it.
635	 */
636	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
637		time_reftime = time_second;
638		return;
639	}
640	if (time_status & STA_FREQHOLD || time_reftime == 0)
641		time_reftime = time_second;
642	mtemp = time_second - time_reftime;
643	L_LINT(ftemp, time_monitor);
644	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
645	L_MPY(ftemp, mtemp);
646	L_ADD(time_freq, ftemp);
647	time_status &= ~STA_MODE;
648	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
649	    MAXSEC)) {
650		L_LINT(ftemp, (time_monitor << 4) / mtemp);
651		L_RSHIFT(ftemp, SHIFT_FLL + 4);
652		L_ADD(time_freq, ftemp);
653		time_status |= STA_MODE;
654	}
655	time_reftime = time_second;
656	if (L_GINT(time_freq) > MAXFREQ)
657		L_LINT(time_freq, MAXFREQ);
658	else if (L_GINT(time_freq) < -MAXFREQ)
659		L_LINT(time_freq, -MAXFREQ);
660}
661
662#ifdef PPS_SYNC
663/*
664 * hardpps() - discipline CPU clock oscillator to external PPS signal
665 *
666 * This routine is called at each PPS interrupt in order to discipline
667 * the CPU clock oscillator to the PPS signal. There are two independent
668 * first-order feedback loops, one for the phase, the other for the
669 * frequency. The phase loop measures and grooms the PPS phase offset
670 * and leaves it in a handy spot for the seconds overflow routine. The
671 * frequency loop averages successive PPS phase differences and
672 * calculates the PPS frequency offset, which is also processed by the
673 * seconds overflow routine. The code requires the caller to capture the
674 * time and architecture-dependent hardware counter values in
675 * nanoseconds at the on-time PPS signal transition.
676 *
677 * Note that, on some Unix systems this routine runs at an interrupt
678 * priority level higher than the timer interrupt routine hardclock().
679 * Therefore, the variables used are distinct from the hardclock()
680 * variables, except for the actual time and frequency variables, which
681 * are determined by this routine and updated atomically.
682 */
683void
684hardpps(tsp, nsec)
685	struct timespec *tsp;	/* time at PPS */
686	long nsec;		/* hardware counter at PPS */
687{
688	long u_sec, u_nsec, v_nsec; /* temps */
689	l_fp ftemp;
690
691	/*
692	 * The signal is first processed by a range gate and frequency
693	 * discriminator. The range gate rejects noise spikes outside
694	 * the range +-500 us. The frequency discriminator rejects input
695	 * signals with apparent frequency outside the range 1 +-500
696	 * PPM. If two hits occur in the same second, we ignore the
697	 * later hit; if not and a hit occurs outside the range gate,
698	 * keep the later hit for later comparison, but do not process
699	 * it.
700	 */
701	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
702	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
703	pps_valid = PPS_VALID;
704	u_sec = tsp->tv_sec;
705	u_nsec = tsp->tv_nsec;
706	if (u_nsec >= (NANOSECOND >> 1)) {
707		u_nsec -= NANOSECOND;
708		u_sec++;
709	}
710	v_nsec = u_nsec - pps_tf[0].tv_nsec;
711	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
712	    MAXFREQ)
713		return;
714	pps_tf[2] = pps_tf[1];
715	pps_tf[1] = pps_tf[0];
716	pps_tf[0].tv_sec = u_sec;
717	pps_tf[0].tv_nsec = u_nsec;
718
719	/*
720	 * Compute the difference between the current and previous
721	 * counter values. If the difference exceeds 0.5 s, assume it
722	 * has wrapped around, so correct 1.0 s. If the result exceeds
723	 * the tick interval, the sample point has crossed a tick
724	 * boundary during the last second, so correct the tick. Very
725	 * intricate.
726	 */
727	u_nsec = nsec;
728	if (u_nsec > (NANOSECOND >> 1))
729		u_nsec -= NANOSECOND;
730	else if (u_nsec < -(NANOSECOND >> 1))
731		u_nsec += NANOSECOND;
732	pps_fcount += u_nsec;
733	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
734		return;
735	time_status &= ~STA_PPSJITTER;
736
737	/*
738	 * A three-stage median filter is used to help denoise the PPS
739	 * time. The median sample becomes the time offset estimate; the
740	 * difference between the other two samples becomes the time
741	 * dispersion (jitter) estimate.
742	 */
743	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
744		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
745			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
746			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
747		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
748			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
749			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
750		} else {
751			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
752			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
753		}
754	} else {
755		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
756			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
757			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
758		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
759			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
760			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
761		} else {
762			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
763			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
764		}
765	}
766
767	/*
768	 * Nominal jitter is due to PPS signal noise and interrupt
769	 * latency. If it exceeds the popcorn threshold, the sample is
770	 * discarded. otherwise, if so enabled, the time offset is
771	 * updated. We can tolerate a modest loss of data here without
772	 * much degrading time accuracy.
773	 */
774	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
775		time_status |= STA_PPSJITTER;
776		pps_jitcnt++;
777	} else if (time_status & STA_PPSTIME) {
778		time_monitor = -v_nsec;
779		L_LINT(time_offset, time_monitor);
780	}
781	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
782	u_sec = pps_tf[0].tv_sec - pps_lastsec;
783	if (u_sec < (1 << pps_shift))
784		return;
785
786	/*
787	 * At the end of the calibration interval the difference between
788	 * the first and last counter values becomes the scaled
789	 * frequency. It will later be divided by the length of the
790	 * interval to determine the frequency update. If the frequency
791	 * exceeds a sanity threshold, or if the actual calibration
792	 * interval is not equal to the expected length, the data are
793	 * discarded. We can tolerate a modest loss of data here without
794	 * much degrading frequency accuracy.
795	 */
796	pps_calcnt++;
797	v_nsec = -pps_fcount;
798	pps_lastsec = pps_tf[0].tv_sec;
799	pps_fcount = 0;
800	u_nsec = MAXFREQ << pps_shift;
801	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
802	    pps_shift)) {
803		time_status |= STA_PPSERROR;
804		pps_errcnt++;
805		return;
806	}
807
808	/*
809	 * Here the raw frequency offset and wander (stability) is
810	 * calculated. If the wander is less than the wander threshold
811	 * for four consecutive averaging intervals, the interval is
812	 * doubled; if it is greater than the threshold for four
813	 * consecutive intervals, the interval is halved. The scaled
814	 * frequency offset is converted to frequency offset. The
815	 * stability metric is calculated as the average of recent
816	 * frequency changes, but is used only for performance
817	 * monitoring.
818	 */
819	L_LINT(ftemp, v_nsec);
820	L_RSHIFT(ftemp, pps_shift);
821	L_SUB(ftemp, pps_freq);
822	u_nsec = L_GINT(ftemp);
823	if (u_nsec > PPS_MAXWANDER) {
824		L_LINT(ftemp, PPS_MAXWANDER);
825		pps_intcnt--;
826		time_status |= STA_PPSWANDER;
827		pps_stbcnt++;
828	} else if (u_nsec < -PPS_MAXWANDER) {
829		L_LINT(ftemp, -PPS_MAXWANDER);
830		pps_intcnt--;
831		time_status |= STA_PPSWANDER;
832		pps_stbcnt++;
833	} else {
834		pps_intcnt++;
835	}
836	if (pps_intcnt >= 4) {
837		pps_intcnt = 4;
838		if (pps_shift < pps_shiftmax) {
839			pps_shift++;
840			pps_intcnt = 0;
841		}
842	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
843		pps_intcnt = -4;
844		if (pps_shift > PPS_FAVG) {
845			pps_shift--;
846			pps_intcnt = 0;
847		}
848	}
849	if (u_nsec < 0)
850		u_nsec = -u_nsec;
851	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
852
853	/*
854	 * The PPS frequency is recalculated and clamped to the maximum
855	 * MAXFREQ. If enabled, the system clock frequency is updated as
856	 * well.
857	 */
858	L_ADD(pps_freq, ftemp);
859	u_nsec = L_GINT(pps_freq);
860	if (u_nsec > MAXFREQ)
861		L_LINT(pps_freq, MAXFREQ);
862	else if (u_nsec < -MAXFREQ)
863		L_LINT(pps_freq, -MAXFREQ);
864	if (time_status & STA_PPSFREQ)
865		time_freq = pps_freq;
866}
867#endif /* PPS_SYNC */
868