kern_ntptime.c revision 177253
1/*-
2 ***********************************************************************
3 *								       *
4 * Copyright (c) David L. Mills 1993-2001			       *
5 *								       *
6 * Permission to use, copy, modify, and distribute this software and   *
7 * its documentation for any purpose and without fee is hereby	       *
8 * granted, provided that the above copyright notice appears in all    *
9 * copies and that both the copyright notice and this permission       *
10 * notice appear in supporting documentation, and that the name	       *
11 * University of Delaware not be used in advertising or publicity      *
12 * pertaining to distribution of the software without specific,	       *
13 * written prior permission. The University of Delaware makes no       *
14 * representations about the suitability this software for any	       *
15 * purpose. It is provided "as is" without express or implied	       *
16 * warranty.							       *
17 *								       *
18 **********************************************************************/
19
20/*
21 * Adapted from the original sources for FreeBSD and timecounters by:
22 * Poul-Henning Kamp <phk@FreeBSD.org>.
23 *
24 * The 32bit version of the "LP" macros seems a bit past its "sell by"
25 * date so I have retained only the 64bit version and included it directly
26 * in this file.
27 *
28 * Only minor changes done to interface with the timecounters over in
29 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30 * confusing and/or plain wrong in that context.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/kern_ntptime.c 177253 2008-03-16 10:58:09Z rwatson $");
35
36#include "opt_ntp.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/priv.h>
43#include <sys/proc.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/time.h>
47#include <sys/timex.h>
48#include <sys/timetc.h>
49#include <sys/timepps.h>
50#include <sys/syscallsubr.h>
51#include <sys/sysctl.h>
52
53/*
54 * Single-precision macros for 64-bit machines
55 */
56typedef int64_t l_fp;
57#define L_ADD(v, u)	((v) += (u))
58#define L_SUB(v, u)	((v) -= (u))
59#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
60#define L_NEG(v)	((v) = -(v))
61#define L_RSHIFT(v, n) \
62	do { \
63		if ((v) < 0) \
64			(v) = -(-(v) >> (n)); \
65		else \
66			(v) = (v) >> (n); \
67	} while (0)
68#define L_MPY(v, a)	((v) *= (a))
69#define L_CLR(v)	((v) = 0)
70#define L_ISNEG(v)	((v) < 0)
71#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
72#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
73
74/*
75 * Generic NTP kernel interface
76 *
77 * These routines constitute the Network Time Protocol (NTP) interfaces
78 * for user and daemon application programs. The ntp_gettime() routine
79 * provides the time, maximum error (synch distance) and estimated error
80 * (dispersion) to client user application programs. The ntp_adjtime()
81 * routine is used by the NTP daemon to adjust the system clock to an
82 * externally derived time. The time offset and related variables set by
83 * this routine are used by other routines in this module to adjust the
84 * phase and frequency of the clock discipline loop which controls the
85 * system clock.
86 *
87 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
88 * defined), the time at each tick interrupt is derived directly from
89 * the kernel time variable. When the kernel time is reckoned in
90 * microseconds, (NTP_NANO undefined), the time is derived from the
91 * kernel time variable together with a variable representing the
92 * leftover nanoseconds at the last tick interrupt. In either case, the
93 * current nanosecond time is reckoned from these values plus an
94 * interpolated value derived by the clock routines in another
95 * architecture-specific module. The interpolation can use either a
96 * dedicated counter or a processor cycle counter (PCC) implemented in
97 * some architectures.
98 *
99 * Note that all routines must run at priority splclock or higher.
100 */
101/*
102 * Phase/frequency-lock loop (PLL/FLL) definitions
103 *
104 * The nanosecond clock discipline uses two variable types, time
105 * variables and frequency variables. Both types are represented as 64-
106 * bit fixed-point quantities with the decimal point between two 32-bit
107 * halves. On a 32-bit machine, each half is represented as a single
108 * word and mathematical operations are done using multiple-precision
109 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
110 * used.
111 *
112 * A time variable is a signed 64-bit fixed-point number in ns and
113 * fraction. It represents the remaining time offset to be amortized
114 * over succeeding tick interrupts. The maximum time offset is about
115 * 0.5 s and the resolution is about 2.3e-10 ns.
116 *
117 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
118 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
119 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120 * |s s s|			 ns				   |
121 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122 * |			    fraction				   |
123 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
124 *
125 * A frequency variable is a signed 64-bit fixed-point number in ns/s
126 * and fraction. It represents the ns and fraction to be added to the
127 * kernel time variable at each second. The maximum frequency offset is
128 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
129 *
130 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
131 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
132 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133 * |s s s s s s s s s s s s s|	          ns/s			   |
134 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135 * |			    fraction				   |
136 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
137 */
138/*
139 * The following variables establish the state of the PLL/FLL and the
140 * residual time and frequency offset of the local clock.
141 */
142#define SHIFT_PLL	4		/* PLL loop gain (shift) */
143#define SHIFT_FLL	2		/* FLL loop gain (shift) */
144
145static int time_state = TIME_OK;	/* clock state */
146static int time_status = STA_UNSYNC;	/* clock status bits */
147static long time_tai;			/* TAI offset (s) */
148static long time_monitor;		/* last time offset scaled (ns) */
149static long time_constant;		/* poll interval (shift) (s) */
150static long time_precision = 1;		/* clock precision (ns) */
151static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
152static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
153static long time_reftime;		/* time at last adjustment (s) */
154static l_fp time_offset;		/* time offset (ns) */
155static l_fp time_freq;			/* frequency offset (ns/s) */
156static l_fp time_adj;			/* tick adjust (ns/s) */
157
158static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
159
160#ifdef PPS_SYNC
161/*
162 * The following variables are used when a pulse-per-second (PPS) signal
163 * is available and connected via a modem control lead. They establish
164 * the engineering parameters of the clock discipline loop when
165 * controlled by the PPS signal.
166 */
167#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
168#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
169#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
170#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
171#define PPS_VALID	120		/* PPS signal watchdog max (s) */
172#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
173#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
174
175static struct timespec pps_tf[3];	/* phase median filter */
176static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
177static long pps_fcount;			/* frequency accumulator */
178static long pps_jitter;			/* nominal jitter (ns) */
179static long pps_stabil;			/* nominal stability (scaled ns/s) */
180static long pps_lastsec;		/* time at last calibration (s) */
181static int pps_valid;			/* signal watchdog counter */
182static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
183static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
184static int pps_intcnt;			/* wander counter */
185
186/*
187 * PPS signal quality monitors
188 */
189static long pps_calcnt;			/* calibration intervals */
190static long pps_jitcnt;			/* jitter limit exceeded */
191static long pps_stbcnt;			/* stability limit exceeded */
192static long pps_errcnt;			/* calibration errors */
193#endif /* PPS_SYNC */
194/*
195 * End of phase/frequency-lock loop (PLL/FLL) definitions
196 */
197
198static void ntp_init(void);
199static void hardupdate(long offset);
200static void ntp_gettime1(struct ntptimeval *ntvp);
201
202static void
203ntp_gettime1(struct ntptimeval *ntvp)
204{
205	struct timespec atv;	/* nanosecond time */
206
207	GIANT_REQUIRED;
208
209	nanotime(&atv);
210	ntvp->time.tv_sec = atv.tv_sec;
211	ntvp->time.tv_nsec = atv.tv_nsec;
212	ntvp->maxerror = time_maxerror;
213	ntvp->esterror = time_esterror;
214	ntvp->tai = time_tai;
215	ntvp->time_state = time_state;
216
217	/*
218	 * Status word error decode. If any of these conditions occur,
219	 * an error is returned, instead of the status word. Most
220	 * applications will care only about the fact the system clock
221	 * may not be trusted, not about the details.
222	 *
223	 * Hardware or software error
224	 */
225	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
226
227	/*
228	 * PPS signal lost when either time or frequency synchronization
229	 * requested
230	 */
231	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
232	    !(time_status & STA_PPSSIGNAL)) ||
233
234	/*
235	 * PPS jitter exceeded when time synchronization requested
236	 */
237	    (time_status & STA_PPSTIME &&
238	    time_status & STA_PPSJITTER) ||
239
240	/*
241	 * PPS wander exceeded or calibration error when frequency
242	 * synchronization requested
243	 */
244	    (time_status & STA_PPSFREQ &&
245	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246		ntvp->time_state = TIME_ERROR;
247}
248
249/*
250 * ntp_gettime() - NTP user application interface
251 *
252 * See the timex.h header file for synopsis and API description.  Note that
253 * the TAI offset is returned in the ntvtimeval.tai structure member.
254 */
255#ifndef _SYS_SYSPROTO_H_
256struct ntp_gettime_args {
257	struct ntptimeval *ntvp;
258};
259#endif
260/* ARGSUSED */
261int
262ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
263{
264	struct ntptimeval ntv;
265
266	mtx_lock(&Giant);
267	ntp_gettime1(&ntv);
268	mtx_unlock(&Giant);
269
270	td->td_retval[0] = ntv.time_state;
271	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
272}
273
274static int
275ntp_sysctl(SYSCTL_HANDLER_ARGS)
276{
277	struct ntptimeval ntv;	/* temporary structure */
278
279	ntp_gettime1(&ntv);
280
281	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
282}
283
284SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
285SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
286	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
287
288#ifdef PPS_SYNC
289SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
290SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
291SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
292
293SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
294SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
295#endif
296
297/*
298 * ntp_adjtime() - NTP daemon application interface
299 *
300 * See the timex.h header file for synopsis and API description.  Note that
301 * the timex.constant structure member has a dual purpose to set the time
302 * constant and to set the TAI offset.
303 */
304#ifndef _SYS_SYSPROTO_H_
305struct ntp_adjtime_args {
306	struct timex *tp;
307};
308#endif
309
310int
311ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
312{
313	struct timex ntv;	/* temporary structure */
314	long freq;		/* frequency ns/s) */
315	int modes;		/* mode bits from structure */
316	int s;			/* caller priority */
317	int error;
318
319	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
320	if (error)
321		return(error);
322
323	/*
324	 * Update selected clock variables - only the superuser can
325	 * change anything. Note that there is no error checking here on
326	 * the assumption the superuser should know what it is doing.
327	 * Note that either the time constant or TAI offset are loaded
328	 * from the ntv.constant member, depending on the mode bits. If
329	 * the STA_PLL bit in the status word is cleared, the state and
330	 * status words are reset to the initial values at boot.
331	 */
332	mtx_lock(&Giant);
333	modes = ntv.modes;
334	if (modes)
335		error = priv_check(td, PRIV_NTP_ADJTIME);
336	if (error)
337		goto done2;
338	s = splclock();
339	if (modes & MOD_MAXERROR)
340		time_maxerror = ntv.maxerror;
341	if (modes & MOD_ESTERROR)
342		time_esterror = ntv.esterror;
343	if (modes & MOD_STATUS) {
344		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
345			time_state = TIME_OK;
346			time_status = STA_UNSYNC;
347#ifdef PPS_SYNC
348			pps_shift = PPS_FAVG;
349#endif /* PPS_SYNC */
350		}
351		time_status &= STA_RONLY;
352		time_status |= ntv.status & ~STA_RONLY;
353	}
354	if (modes & MOD_TIMECONST) {
355		if (ntv.constant < 0)
356			time_constant = 0;
357		else if (ntv.constant > MAXTC)
358			time_constant = MAXTC;
359		else
360			time_constant = ntv.constant;
361	}
362	if (modes & MOD_TAI) {
363		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
364			time_tai = ntv.constant;
365	}
366#ifdef PPS_SYNC
367	if (modes & MOD_PPSMAX) {
368		if (ntv.shift < PPS_FAVG)
369			pps_shiftmax = PPS_FAVG;
370		else if (ntv.shift > PPS_FAVGMAX)
371			pps_shiftmax = PPS_FAVGMAX;
372		else
373			pps_shiftmax = ntv.shift;
374	}
375#endif /* PPS_SYNC */
376	if (modes & MOD_NANO)
377		time_status |= STA_NANO;
378	if (modes & MOD_MICRO)
379		time_status &= ~STA_NANO;
380	if (modes & MOD_CLKB)
381		time_status |= STA_CLK;
382	if (modes & MOD_CLKA)
383		time_status &= ~STA_CLK;
384	if (modes & MOD_FREQUENCY) {
385		freq = (ntv.freq * 1000LL) >> 16;
386		if (freq > MAXFREQ)
387			L_LINT(time_freq, MAXFREQ);
388		else if (freq < -MAXFREQ)
389			L_LINT(time_freq, -MAXFREQ);
390		else {
391			/*
392			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
393			 * time_freq is [ns/s * 2^32]
394			 */
395			time_freq = ntv.freq * 1000LL * 65536LL;
396		}
397#ifdef PPS_SYNC
398		pps_freq = time_freq;
399#endif /* PPS_SYNC */
400	}
401	if (modes & MOD_OFFSET) {
402		if (time_status & STA_NANO)
403			hardupdate(ntv.offset);
404		else
405			hardupdate(ntv.offset * 1000);
406	}
407
408	/*
409	 * Retrieve all clock variables. Note that the TAI offset is
410	 * returned only by ntp_gettime();
411	 */
412	if (time_status & STA_NANO)
413		ntv.offset = L_GINT(time_offset);
414	else
415		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
416	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
417	ntv.maxerror = time_maxerror;
418	ntv.esterror = time_esterror;
419	ntv.status = time_status;
420	ntv.constant = time_constant;
421	if (time_status & STA_NANO)
422		ntv.precision = time_precision;
423	else
424		ntv.precision = time_precision / 1000;
425	ntv.tolerance = MAXFREQ * SCALE_PPM;
426#ifdef PPS_SYNC
427	ntv.shift = pps_shift;
428	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
429	if (time_status & STA_NANO)
430		ntv.jitter = pps_jitter;
431	else
432		ntv.jitter = pps_jitter / 1000;
433	ntv.stabil = pps_stabil;
434	ntv.calcnt = pps_calcnt;
435	ntv.errcnt = pps_errcnt;
436	ntv.jitcnt = pps_jitcnt;
437	ntv.stbcnt = pps_stbcnt;
438#endif /* PPS_SYNC */
439	splx(s);
440
441	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
442	if (error)
443		goto done2;
444
445	/*
446	 * Status word error decode. See comments in
447	 * ntp_gettime() routine.
448	 */
449	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
450	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
451	    !(time_status & STA_PPSSIGNAL)) ||
452	    (time_status & STA_PPSTIME &&
453	    time_status & STA_PPSJITTER) ||
454	    (time_status & STA_PPSFREQ &&
455	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
456		td->td_retval[0] = TIME_ERROR;
457	} else {
458		td->td_retval[0] = time_state;
459	}
460done2:
461	mtx_unlock(&Giant);
462	return (error);
463}
464
465/*
466 * second_overflow() - called after ntp_tick_adjust()
467 *
468 * This routine is ordinarily called immediately following the above
469 * routine ntp_tick_adjust(). While these two routines are normally
470 * combined, they are separated here only for the purposes of
471 * simulation.
472 */
473void
474ntp_update_second(int64_t *adjustment, time_t *newsec)
475{
476	int tickrate;
477	l_fp ftemp;		/* 32/64-bit temporary */
478
479	/*
480	 * On rollover of the second both the nanosecond and microsecond
481	 * clocks are updated and the state machine cranked as
482	 * necessary. The phase adjustment to be used for the next
483	 * second is calculated and the maximum error is increased by
484	 * the tolerance.
485	 */
486	time_maxerror += MAXFREQ / 1000;
487
488	/*
489	 * Leap second processing. If in leap-insert state at
490	 * the end of the day, the system clock is set back one
491	 * second; if in leap-delete state, the system clock is
492	 * set ahead one second. The nano_time() routine or
493	 * external clock driver will insure that reported time
494	 * is always monotonic.
495	 */
496	switch (time_state) {
497
498		/*
499		 * No warning.
500		 */
501		case TIME_OK:
502		if (time_status & STA_INS)
503			time_state = TIME_INS;
504		else if (time_status & STA_DEL)
505			time_state = TIME_DEL;
506		break;
507
508		/*
509		 * Insert second 23:59:60 following second
510		 * 23:59:59.
511		 */
512		case TIME_INS:
513		if (!(time_status & STA_INS))
514			time_state = TIME_OK;
515		else if ((*newsec) % 86400 == 0) {
516			(*newsec)--;
517			time_state = TIME_OOP;
518			time_tai++;
519		}
520		break;
521
522		/*
523		 * Delete second 23:59:59.
524		 */
525		case TIME_DEL:
526		if (!(time_status & STA_DEL))
527			time_state = TIME_OK;
528		else if (((*newsec) + 1) % 86400 == 0) {
529			(*newsec)++;
530			time_tai--;
531			time_state = TIME_WAIT;
532		}
533		break;
534
535		/*
536		 * Insert second in progress.
537		 */
538		case TIME_OOP:
539			time_state = TIME_WAIT;
540		break;
541
542		/*
543		 * Wait for status bits to clear.
544		 */
545		case TIME_WAIT:
546		if (!(time_status & (STA_INS | STA_DEL)))
547			time_state = TIME_OK;
548	}
549
550	/*
551	 * Compute the total time adjustment for the next second
552	 * in ns. The offset is reduced by a factor depending on
553	 * whether the PPS signal is operating. Note that the
554	 * value is in effect scaled by the clock frequency,
555	 * since the adjustment is added at each tick interrupt.
556	 */
557	ftemp = time_offset;
558#ifdef PPS_SYNC
559	/* XXX even if PPS signal dies we should finish adjustment ? */
560	if (time_status & STA_PPSTIME && time_status &
561	    STA_PPSSIGNAL)
562		L_RSHIFT(ftemp, pps_shift);
563	else
564		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
565#else
566		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
567#endif /* PPS_SYNC */
568	time_adj = ftemp;
569	L_SUB(time_offset, ftemp);
570	L_ADD(time_adj, time_freq);
571
572	/*
573	 * Apply any correction from adjtime(2).  If more than one second
574	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
575	 * until the last second is slewed the final < 500 usecs.
576	 */
577	if (time_adjtime != 0) {
578		if (time_adjtime > 1000000)
579			tickrate = 5000;
580		else if (time_adjtime < -1000000)
581			tickrate = -5000;
582		else if (time_adjtime > 500)
583			tickrate = 500;
584		else if (time_adjtime < -500)
585			tickrate = -500;
586		else
587			tickrate = time_adjtime;
588		time_adjtime -= tickrate;
589		L_LINT(ftemp, tickrate * 1000);
590		L_ADD(time_adj, ftemp);
591	}
592	*adjustment = time_adj;
593
594#ifdef PPS_SYNC
595	if (pps_valid > 0)
596		pps_valid--;
597	else
598		time_status &= ~STA_PPSSIGNAL;
599#endif /* PPS_SYNC */
600}
601
602/*
603 * ntp_init() - initialize variables and structures
604 *
605 * This routine must be called after the kernel variables hz and tick
606 * are set or changed and before the next tick interrupt. In this
607 * particular implementation, these values are assumed set elsewhere in
608 * the kernel. The design allows the clock frequency and tick interval
609 * to be changed while the system is running. So, this routine should
610 * probably be integrated with the code that does that.
611 */
612static void
613ntp_init()
614{
615
616	/*
617	 * The following variables are initialized only at startup. Only
618	 * those structures not cleared by the compiler need to be
619	 * initialized, and these only in the simulator. In the actual
620	 * kernel, any nonzero values here will quickly evaporate.
621	 */
622	L_CLR(time_offset);
623	L_CLR(time_freq);
624#ifdef PPS_SYNC
625	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
626	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
627	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
628	pps_fcount = 0;
629	L_CLR(pps_freq);
630#endif /* PPS_SYNC */
631}
632
633SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
634
635/*
636 * hardupdate() - local clock update
637 *
638 * This routine is called by ntp_adjtime() to update the local clock
639 * phase and frequency. The implementation is of an adaptive-parameter,
640 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
641 * time and frequency offset estimates for each call. If the kernel PPS
642 * discipline code is configured (PPS_SYNC), the PPS signal itself
643 * determines the new time offset, instead of the calling argument.
644 * Presumably, calls to ntp_adjtime() occur only when the caller
645 * believes the local clock is valid within some bound (+-128 ms with
646 * NTP). If the caller's time is far different than the PPS time, an
647 * argument will ensue, and it's not clear who will lose.
648 *
649 * For uncompensated quartz crystal oscillators and nominal update
650 * intervals less than 256 s, operation should be in phase-lock mode,
651 * where the loop is disciplined to phase. For update intervals greater
652 * than 1024 s, operation should be in frequency-lock mode, where the
653 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
654 * is selected by the STA_MODE status bit.
655 */
656static void
657hardupdate(offset)
658	long offset;		/* clock offset (ns) */
659{
660	long mtemp;
661	l_fp ftemp;
662
663	/*
664	 * Select how the phase is to be controlled and from which
665	 * source. If the PPS signal is present and enabled to
666	 * discipline the time, the PPS offset is used; otherwise, the
667	 * argument offset is used.
668	 */
669	if (!(time_status & STA_PLL))
670		return;
671	if (!(time_status & STA_PPSTIME && time_status &
672	    STA_PPSSIGNAL)) {
673		if (offset > MAXPHASE)
674			time_monitor = MAXPHASE;
675		else if (offset < -MAXPHASE)
676			time_monitor = -MAXPHASE;
677		else
678			time_monitor = offset;
679		L_LINT(time_offset, time_monitor);
680	}
681
682	/*
683	 * Select how the frequency is to be controlled and in which
684	 * mode (PLL or FLL). If the PPS signal is present and enabled
685	 * to discipline the frequency, the PPS frequency is used;
686	 * otherwise, the argument offset is used to compute it.
687	 */
688	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
689		time_reftime = time_second;
690		return;
691	}
692	if (time_status & STA_FREQHOLD || time_reftime == 0)
693		time_reftime = time_second;
694	mtemp = time_second - time_reftime;
695	L_LINT(ftemp, time_monitor);
696	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
697	L_MPY(ftemp, mtemp);
698	L_ADD(time_freq, ftemp);
699	time_status &= ~STA_MODE;
700	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
701	    MAXSEC)) {
702		L_LINT(ftemp, (time_monitor << 4) / mtemp);
703		L_RSHIFT(ftemp, SHIFT_FLL + 4);
704		L_ADD(time_freq, ftemp);
705		time_status |= STA_MODE;
706	}
707	time_reftime = time_second;
708	if (L_GINT(time_freq) > MAXFREQ)
709		L_LINT(time_freq, MAXFREQ);
710	else if (L_GINT(time_freq) < -MAXFREQ)
711		L_LINT(time_freq, -MAXFREQ);
712}
713
714#ifdef PPS_SYNC
715/*
716 * hardpps() - discipline CPU clock oscillator to external PPS signal
717 *
718 * This routine is called at each PPS interrupt in order to discipline
719 * the CPU clock oscillator to the PPS signal. There are two independent
720 * first-order feedback loops, one for the phase, the other for the
721 * frequency. The phase loop measures and grooms the PPS phase offset
722 * and leaves it in a handy spot for the seconds overflow routine. The
723 * frequency loop averages successive PPS phase differences and
724 * calculates the PPS frequency offset, which is also processed by the
725 * seconds overflow routine. The code requires the caller to capture the
726 * time and architecture-dependent hardware counter values in
727 * nanoseconds at the on-time PPS signal transition.
728 *
729 * Note that, on some Unix systems this routine runs at an interrupt
730 * priority level higher than the timer interrupt routine hardclock().
731 * Therefore, the variables used are distinct from the hardclock()
732 * variables, except for the actual time and frequency variables, which
733 * are determined by this routine and updated atomically.
734 */
735void
736hardpps(tsp, nsec)
737	struct timespec *tsp;	/* time at PPS */
738	long nsec;		/* hardware counter at PPS */
739{
740	long u_sec, u_nsec, v_nsec; /* temps */
741	l_fp ftemp;
742
743	/*
744	 * The signal is first processed by a range gate and frequency
745	 * discriminator. The range gate rejects noise spikes outside
746	 * the range +-500 us. The frequency discriminator rejects input
747	 * signals with apparent frequency outside the range 1 +-500
748	 * PPM. If two hits occur in the same second, we ignore the
749	 * later hit; if not and a hit occurs outside the range gate,
750	 * keep the later hit for later comparison, but do not process
751	 * it.
752	 */
753	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
754	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
755	pps_valid = PPS_VALID;
756	u_sec = tsp->tv_sec;
757	u_nsec = tsp->tv_nsec;
758	if (u_nsec >= (NANOSECOND >> 1)) {
759		u_nsec -= NANOSECOND;
760		u_sec++;
761	}
762	v_nsec = u_nsec - pps_tf[0].tv_nsec;
763	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
764	    MAXFREQ)
765		return;
766	pps_tf[2] = pps_tf[1];
767	pps_tf[1] = pps_tf[0];
768	pps_tf[0].tv_sec = u_sec;
769	pps_tf[0].tv_nsec = u_nsec;
770
771	/*
772	 * Compute the difference between the current and previous
773	 * counter values. If the difference exceeds 0.5 s, assume it
774	 * has wrapped around, so correct 1.0 s. If the result exceeds
775	 * the tick interval, the sample point has crossed a tick
776	 * boundary during the last second, so correct the tick. Very
777	 * intricate.
778	 */
779	u_nsec = nsec;
780	if (u_nsec > (NANOSECOND >> 1))
781		u_nsec -= NANOSECOND;
782	else if (u_nsec < -(NANOSECOND >> 1))
783		u_nsec += NANOSECOND;
784	pps_fcount += u_nsec;
785	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
786		return;
787	time_status &= ~STA_PPSJITTER;
788
789	/*
790	 * A three-stage median filter is used to help denoise the PPS
791	 * time. The median sample becomes the time offset estimate; the
792	 * difference between the other two samples becomes the time
793	 * dispersion (jitter) estimate.
794	 */
795	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
796		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
797			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
798			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
799		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
800			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
801			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
802		} else {
803			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
804			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
805		}
806	} else {
807		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
808			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
809			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
810		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
811			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
812			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
813		} else {
814			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
815			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
816		}
817	}
818
819	/*
820	 * Nominal jitter is due to PPS signal noise and interrupt
821	 * latency. If it exceeds the popcorn threshold, the sample is
822	 * discarded. otherwise, if so enabled, the time offset is
823	 * updated. We can tolerate a modest loss of data here without
824	 * much degrading time accuracy.
825	 */
826	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
827		time_status |= STA_PPSJITTER;
828		pps_jitcnt++;
829	} else if (time_status & STA_PPSTIME) {
830		time_monitor = -v_nsec;
831		L_LINT(time_offset, time_monitor);
832	}
833	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
834	u_sec = pps_tf[0].tv_sec - pps_lastsec;
835	if (u_sec < (1 << pps_shift))
836		return;
837
838	/*
839	 * At the end of the calibration interval the difference between
840	 * the first and last counter values becomes the scaled
841	 * frequency. It will later be divided by the length of the
842	 * interval to determine the frequency update. If the frequency
843	 * exceeds a sanity threshold, or if the actual calibration
844	 * interval is not equal to the expected length, the data are
845	 * discarded. We can tolerate a modest loss of data here without
846	 * much degrading frequency accuracy.
847	 */
848	pps_calcnt++;
849	v_nsec = -pps_fcount;
850	pps_lastsec = pps_tf[0].tv_sec;
851	pps_fcount = 0;
852	u_nsec = MAXFREQ << pps_shift;
853	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
854	    pps_shift)) {
855		time_status |= STA_PPSERROR;
856		pps_errcnt++;
857		return;
858	}
859
860	/*
861	 * Here the raw frequency offset and wander (stability) is
862	 * calculated. If the wander is less than the wander threshold
863	 * for four consecutive averaging intervals, the interval is
864	 * doubled; if it is greater than the threshold for four
865	 * consecutive intervals, the interval is halved. The scaled
866	 * frequency offset is converted to frequency offset. The
867	 * stability metric is calculated as the average of recent
868	 * frequency changes, but is used only for performance
869	 * monitoring.
870	 */
871	L_LINT(ftemp, v_nsec);
872	L_RSHIFT(ftemp, pps_shift);
873	L_SUB(ftemp, pps_freq);
874	u_nsec = L_GINT(ftemp);
875	if (u_nsec > PPS_MAXWANDER) {
876		L_LINT(ftemp, PPS_MAXWANDER);
877		pps_intcnt--;
878		time_status |= STA_PPSWANDER;
879		pps_stbcnt++;
880	} else if (u_nsec < -PPS_MAXWANDER) {
881		L_LINT(ftemp, -PPS_MAXWANDER);
882		pps_intcnt--;
883		time_status |= STA_PPSWANDER;
884		pps_stbcnt++;
885	} else {
886		pps_intcnt++;
887	}
888	if (pps_intcnt >= 4) {
889		pps_intcnt = 4;
890		if (pps_shift < pps_shiftmax) {
891			pps_shift++;
892			pps_intcnt = 0;
893		}
894	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
895		pps_intcnt = -4;
896		if (pps_shift > PPS_FAVG) {
897			pps_shift--;
898			pps_intcnt = 0;
899		}
900	}
901	if (u_nsec < 0)
902		u_nsec = -u_nsec;
903	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
904
905	/*
906	 * The PPS frequency is recalculated and clamped to the maximum
907	 * MAXFREQ. If enabled, the system clock frequency is updated as
908	 * well.
909	 */
910	L_ADD(pps_freq, ftemp);
911	u_nsec = L_GINT(pps_freq);
912	if (u_nsec > MAXFREQ)
913		L_LINT(pps_freq, MAXFREQ);
914	else if (u_nsec < -MAXFREQ)
915		L_LINT(pps_freq, -MAXFREQ);
916	if (time_status & STA_PPSFREQ)
917		time_freq = pps_freq;
918}
919#endif /* PPS_SYNC */
920
921#ifndef _SYS_SYSPROTO_H_
922struct adjtime_args {
923	struct timeval *delta;
924	struct timeval *olddelta;
925};
926#endif
927/* ARGSUSED */
928int
929adjtime(struct thread *td, struct adjtime_args *uap)
930{
931	struct timeval delta, olddelta, *deltap;
932	int error;
933
934	if (uap->delta) {
935		error = copyin(uap->delta, &delta, sizeof(delta));
936		if (error)
937			return (error);
938		deltap = &delta;
939	} else
940		deltap = NULL;
941	error = kern_adjtime(td, deltap, &olddelta);
942	if (uap->olddelta && error == 0)
943		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
944	return (error);
945}
946
947int
948kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
949{
950	struct timeval atv;
951	int error;
952
953	mtx_lock(&Giant);
954	if (olddelta) {
955		atv.tv_sec = time_adjtime / 1000000;
956		atv.tv_usec = time_adjtime % 1000000;
957		if (atv.tv_usec < 0) {
958			atv.tv_usec += 1000000;
959			atv.tv_sec--;
960		}
961		*olddelta = atv;
962	}
963	if (delta) {
964		if ((error = priv_check(td, PRIV_ADJTIME))) {
965			mtx_unlock(&Giant);
966			return (error);
967		}
968		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
969		    delta->tv_usec;
970	}
971	mtx_unlock(&Giant);
972	return (0);
973}
974
975