kern_exit.c revision 333162
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/kern/kern_exit.c 333162 2018-05-02 07:57:36Z kib $");
39
40#include "opt_compat.h"
41#include "opt_ktrace.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysproto.h>
46#include <sys/capsicum.h>
47#include <sys/eventhandler.h>
48#include <sys/kernel.h>
49#include <sys/malloc.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/procdesc.h>
54#include <sys/pioctl.h>
55#include <sys/jail.h>
56#include <sys/tty.h>
57#include <sys/wait.h>
58#include <sys/vmmeter.h>
59#include <sys/vnode.h>
60#include <sys/racct.h>
61#include <sys/resourcevar.h>
62#include <sys/sbuf.h>
63#include <sys/signalvar.h>
64#include <sys/sched.h>
65#include <sys/sx.h>
66#include <sys/syscallsubr.h>
67#include <sys/syslog.h>
68#include <sys/ptrace.h>
69#include <sys/acct.h>		/* for acct_process() function prototype */
70#include <sys/filedesc.h>
71#include <sys/sdt.h>
72#include <sys/shm.h>
73#include <sys/sem.h>
74#include <sys/umtx.h>
75#ifdef KTRACE
76#include <sys/ktrace.h>
77#endif
78
79#include <security/audit/audit.h>
80#include <security/mac/mac_framework.h>
81
82#include <vm/vm.h>
83#include <vm/vm_extern.h>
84#include <vm/vm_param.h>
85#include <vm/pmap.h>
86#include <vm/vm_map.h>
87#include <vm/vm_page.h>
88#include <vm/uma.h>
89#include <vm/vm_domain.h>
90
91#ifdef KDTRACE_HOOKS
92#include <sys/dtrace_bsd.h>
93dtrace_execexit_func_t	dtrace_fasttrap_exit;
94#endif
95
96SDT_PROVIDER_DECLARE(proc);
97SDT_PROBE_DEFINE1(proc, , , exit, "int");
98
99/* Hook for NFS teardown procedure. */
100void (*nlminfo_release_p)(struct proc *p);
101
102EVENTHANDLER_LIST_DECLARE(process_exit);
103
104struct proc *
105proc_realparent(struct proc *child)
106{
107	struct proc *p, *parent;
108
109	sx_assert(&proctree_lock, SX_LOCKED);
110	if ((child->p_treeflag & P_TREE_ORPHANED) == 0) {
111		if (child->p_oppid == 0 ||
112		    child->p_pptr->p_pid == child->p_oppid)
113			parent = child->p_pptr;
114		else
115			parent = initproc;
116		return (parent);
117	}
118	for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
119		/* Cannot use LIST_PREV(), since the list head is not known. */
120		p = __containerof(p->p_orphan.le_prev, struct proc,
121		    p_orphan.le_next);
122		KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
123		    ("missing P_ORPHAN %p", p));
124	}
125	parent = __containerof(p->p_orphan.le_prev, struct proc,
126	    p_orphans.lh_first);
127	return (parent);
128}
129
130void
131reaper_abandon_children(struct proc *p, bool exiting)
132{
133	struct proc *p1, *p2, *ptmp;
134
135	sx_assert(&proctree_lock, SX_LOCKED);
136	KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
137	if ((p->p_treeflag & P_TREE_REAPER) == 0)
138		return;
139	p1 = p->p_reaper;
140	LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
141		LIST_REMOVE(p2, p_reapsibling);
142		p2->p_reaper = p1;
143		p2->p_reapsubtree = p->p_reapsubtree;
144		LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
145		if (exiting && p2->p_pptr == p) {
146			PROC_LOCK(p2);
147			proc_reparent(p2, p1);
148			PROC_UNLOCK(p2);
149		}
150	}
151	KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
152	p->p_treeflag &= ~P_TREE_REAPER;
153}
154
155static void
156clear_orphan(struct proc *p)
157{
158	struct proc *p1;
159
160	sx_assert(&proctree_lock, SA_XLOCKED);
161	if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
162		return;
163	if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
164		p1 = LIST_NEXT(p, p_orphan);
165		if (p1 != NULL)
166			p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
167		p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
168	}
169	LIST_REMOVE(p, p_orphan);
170	p->p_treeflag &= ~P_TREE_ORPHANED;
171}
172
173/*
174 * exit -- death of process.
175 */
176void
177sys_sys_exit(struct thread *td, struct sys_exit_args *uap)
178{
179
180	exit1(td, uap->rval, 0);
181	/* NOTREACHED */
182}
183
184/*
185 * Exit: deallocate address space and other resources, change proc state to
186 * zombie, and unlink proc from allproc and parent's lists.  Save exit status
187 * and rusage for wait().  Check for child processes and orphan them.
188 */
189void
190exit1(struct thread *td, int rval, int signo)
191{
192	struct proc *p, *nq, *q, *t;
193	struct thread *tdt;
194	ksiginfo_t *ksi, *ksi1;
195
196	mtx_assert(&Giant, MA_NOTOWNED);
197	KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
198
199	p = td->td_proc;
200	/*
201	 * XXX in case we're rebooting we just let init die in order to
202	 * work around an unsolved stack overflow seen very late during
203	 * shutdown on sparc64 when the gmirror worker process exists.
204	 */
205	if (p == initproc && rebooting == 0) {
206		printf("init died (signal %d, exit %d)\n", signo, rval);
207		panic("Going nowhere without my init!");
208	}
209
210	/*
211	 * Deref SU mp, since the thread does not return to userspace.
212	 */
213	td_softdep_cleanup(td);
214
215	/*
216	 * MUST abort all other threads before proceeding past here.
217	 */
218	PROC_LOCK(p);
219	/*
220	 * First check if some other thread or external request got
221	 * here before us.  If so, act appropriately: exit or suspend.
222	 * We must ensure that stop requests are handled before we set
223	 * P_WEXIT.
224	 */
225	thread_suspend_check(0);
226	while (p->p_flag & P_HADTHREADS) {
227		/*
228		 * Kill off the other threads. This requires
229		 * some co-operation from other parts of the kernel
230		 * so it may not be instantaneous.  With this state set
231		 * any thread entering the kernel from userspace will
232		 * thread_exit() in trap().  Any thread attempting to
233		 * sleep will return immediately with EINTR or EWOULDBLOCK
234		 * which will hopefully force them to back out to userland
235		 * freeing resources as they go.  Any thread attempting
236		 * to return to userland will thread_exit() from userret().
237		 * thread_exit() will unsuspend us when the last of the
238		 * other threads exits.
239		 * If there is already a thread singler after resumption,
240		 * calling thread_single will fail; in that case, we just
241		 * re-check all suspension request, the thread should
242		 * either be suspended there or exit.
243		 */
244		if (!thread_single(p, SINGLE_EXIT))
245			/*
246			 * All other activity in this process is now
247			 * stopped.  Threading support has been turned
248			 * off.
249			 */
250			break;
251		/*
252		 * Recheck for new stop or suspend requests which
253		 * might appear while process lock was dropped in
254		 * thread_single().
255		 */
256		thread_suspend_check(0);
257	}
258	KASSERT(p->p_numthreads == 1,
259	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
260	racct_sub(p, RACCT_NTHR, 1);
261
262	/* Let event handler change exit status */
263	p->p_xexit = rval;
264	p->p_xsig = signo;
265
266	/*
267	 * Wakeup anyone in procfs' PIOCWAIT.  They should have a hold
268	 * on our vmspace, so we should block below until they have
269	 * released their reference to us.  Note that if they have
270	 * requested S_EXIT stops we will block here until they ack
271	 * via PIOCCONT.
272	 */
273	_STOPEVENT(p, S_EXIT, 0);
274
275	/*
276	 * Ignore any pending request to stop due to a stop signal.
277	 * Once P_WEXIT is set, future requests will be ignored as
278	 * well.
279	 */
280	p->p_flag &= ~P_STOPPED_SIG;
281	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
282
283	/*
284	 * Note that we are exiting and do another wakeup of anyone in
285	 * PIOCWAIT in case they aren't listening for S_EXIT stops or
286	 * decided to wait again after we told them we are exiting.
287	 */
288	p->p_flag |= P_WEXIT;
289	wakeup(&p->p_stype);
290
291	/*
292	 * Wait for any processes that have a hold on our vmspace to
293	 * release their reference.
294	 */
295	while (p->p_lock > 0)
296		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
297
298	PROC_UNLOCK(p);
299	/* Drain the limit callout while we don't have the proc locked */
300	callout_drain(&p->p_limco);
301
302#ifdef AUDIT
303	/*
304	 * The Sun BSM exit token contains two components: an exit status as
305	 * passed to exit(), and a return value to indicate what sort of exit
306	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
307	 * what the return value is.
308	 */
309	AUDIT_ARG_EXIT(rval, 0);
310	AUDIT_SYSCALL_EXIT(0, td);
311#endif
312
313	/* Are we a task leader with peers? */
314	if (p->p_peers != NULL && p == p->p_leader) {
315		mtx_lock(&ppeers_lock);
316		q = p->p_peers;
317		while (q != NULL) {
318			PROC_LOCK(q);
319			kern_psignal(q, SIGKILL);
320			PROC_UNLOCK(q);
321			q = q->p_peers;
322		}
323		while (p->p_peers != NULL)
324			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
325		mtx_unlock(&ppeers_lock);
326	}
327
328	/*
329	 * Check if any loadable modules need anything done at process exit.
330	 * E.g. SYSV IPC stuff.
331	 * Event handler could change exit status.
332	 * XXX what if one of these generates an error?
333	 */
334	EVENTHANDLER_DIRECT_INVOKE(process_exit, p);
335
336	/*
337	 * If parent is waiting for us to exit or exec,
338	 * P_PPWAIT is set; we will wakeup the parent below.
339	 */
340	PROC_LOCK(p);
341	stopprofclock(p);
342	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
343	p->p_ptevents = 0;
344
345	/*
346	 * Stop the real interval timer.  If the handler is currently
347	 * executing, prevent it from rearming itself and let it finish.
348	 */
349	if (timevalisset(&p->p_realtimer.it_value) &&
350	    _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) {
351		timevalclear(&p->p_realtimer.it_interval);
352		msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
353		KASSERT(!timevalisset(&p->p_realtimer.it_value),
354		    ("realtime timer is still armed"));
355	}
356
357	PROC_UNLOCK(p);
358
359	umtx_thread_exit(td);
360
361	/*
362	 * Reset any sigio structures pointing to us as a result of
363	 * F_SETOWN with our pid.
364	 */
365	funsetownlst(&p->p_sigiolst);
366
367	/*
368	 * If this process has an nlminfo data area (for lockd), release it
369	 */
370	if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
371		(*nlminfo_release_p)(p);
372
373	/*
374	 * Close open files and release open-file table.
375	 * This may block!
376	 */
377	fdescfree(td);
378
379	/*
380	 * If this thread tickled GEOM, we need to wait for the giggling to
381	 * stop before we return to userland
382	 */
383	if (td->td_pflags & TDP_GEOM)
384		g_waitidle();
385
386	/*
387	 * Remove ourself from our leader's peer list and wake our leader.
388	 */
389	if (p->p_leader->p_peers != NULL) {
390		mtx_lock(&ppeers_lock);
391		if (p->p_leader->p_peers != NULL) {
392			q = p->p_leader;
393			while (q->p_peers != p)
394				q = q->p_peers;
395			q->p_peers = p->p_peers;
396			wakeup(p->p_leader);
397		}
398		mtx_unlock(&ppeers_lock);
399	}
400
401	vmspace_exit(td);
402	killjobc();
403	(void)acct_process(td);
404
405#ifdef KTRACE
406	ktrprocexit(td);
407#endif
408	/*
409	 * Release reference to text vnode
410	 */
411	if (p->p_textvp != NULL) {
412		vrele(p->p_textvp);
413		p->p_textvp = NULL;
414	}
415
416	/*
417	 * Release our limits structure.
418	 */
419	lim_free(p->p_limit);
420	p->p_limit = NULL;
421
422	tidhash_remove(td);
423
424	/*
425	 * Remove proc from allproc queue and pidhash chain.
426	 * Place onto zombproc.  Unlink from parent's child list.
427	 */
428	sx_xlock(&allproc_lock);
429	LIST_REMOVE(p, p_list);
430	LIST_INSERT_HEAD(&zombproc, p, p_list);
431	LIST_REMOVE(p, p_hash);
432	sx_xunlock(&allproc_lock);
433
434	/*
435	 * Call machine-dependent code to release any
436	 * machine-dependent resources other than the address space.
437	 * The address space is released by "vmspace_exitfree(p)" in
438	 * vm_waitproc().
439	 */
440	cpu_exit(td);
441
442	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
443
444	/*
445	 * Reparent all children processes:
446	 * - traced ones to the original parent (or init if we are that parent)
447	 * - the rest to init
448	 */
449	sx_xlock(&proctree_lock);
450	q = LIST_FIRST(&p->p_children);
451	if (q != NULL)		/* only need this if any child is S_ZOMB */
452		wakeup(q->p_reaper);
453	for (; q != NULL; q = nq) {
454		nq = LIST_NEXT(q, p_sibling);
455		ksi = ksiginfo_alloc(TRUE);
456		PROC_LOCK(q);
457		q->p_sigparent = SIGCHLD;
458
459		if (!(q->p_flag & P_TRACED)) {
460			proc_reparent(q, q->p_reaper);
461			if (q->p_state == PRS_ZOMBIE) {
462				/*
463				 * Inform reaper about the reparented
464				 * zombie, since wait(2) has something
465				 * new to report.  Guarantee queueing
466				 * of the SIGCHLD signal, similar to
467				 * the _exit() behaviour, by providing
468				 * our ksiginfo.  Ksi is freed by the
469				 * signal delivery.
470				 */
471				if (q->p_ksi == NULL) {
472					ksi1 = NULL;
473				} else {
474					ksiginfo_copy(q->p_ksi, ksi);
475					ksi->ksi_flags |= KSI_INS;
476					ksi1 = ksi;
477					ksi = NULL;
478				}
479				PROC_LOCK(q->p_reaper);
480				pksignal(q->p_reaper, SIGCHLD, ksi1);
481				PROC_UNLOCK(q->p_reaper);
482			} else if (q->p_pdeathsig > 0) {
483				/*
484				 * The child asked to received a signal
485				 * when we exit.
486				 */
487				kern_psignal(q, q->p_pdeathsig);
488			}
489		} else {
490			/*
491			 * Traced processes are killed since their existence
492			 * means someone is screwing up.
493			 */
494			t = proc_realparent(q);
495			if (t == p) {
496				proc_reparent(q, q->p_reaper);
497			} else {
498				PROC_LOCK(t);
499				proc_reparent(q, t);
500				PROC_UNLOCK(t);
501			}
502			/*
503			 * Since q was found on our children list, the
504			 * proc_reparent() call moved q to the orphan
505			 * list due to present P_TRACED flag. Clear
506			 * orphan link for q now while q is locked.
507			 */
508			clear_orphan(q);
509			q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
510			q->p_flag2 &= ~P2_PTRACE_FSTP;
511			q->p_ptevents = 0;
512			FOREACH_THREAD_IN_PROC(q, tdt) {
513				tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
514				    TDB_FSTP);
515			}
516			kern_psignal(q, SIGKILL);
517		}
518		PROC_UNLOCK(q);
519		if (ksi != NULL)
520			ksiginfo_free(ksi);
521	}
522
523	/*
524	 * Also get rid of our orphans.
525	 */
526	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
527		PROC_LOCK(q);
528		/*
529		 * If we are the real parent of this process
530		 * but it has been reparented to a debugger, then
531		 * check if it asked for a signal when we exit.
532		 */
533		if (q->p_pdeathsig > 0)
534			kern_psignal(q, q->p_pdeathsig);
535		CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
536		    q->p_pid);
537		clear_orphan(q);
538		PROC_UNLOCK(q);
539	}
540
541	/* Save exit status. */
542	PROC_LOCK(p);
543	p->p_xthread = td;
544
545	/* Tell the prison that we are gone. */
546	prison_proc_free(p->p_ucred->cr_prison);
547
548#ifdef KDTRACE_HOOKS
549	/*
550	 * Tell the DTrace fasttrap provider about the exit if it
551	 * has declared an interest.
552	 */
553	if (dtrace_fasttrap_exit)
554		dtrace_fasttrap_exit(p);
555#endif
556
557	/*
558	 * Notify interested parties of our demise.
559	 */
560	KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
561
562#ifdef KDTRACE_HOOKS
563	int reason = CLD_EXITED;
564	if (WCOREDUMP(signo))
565		reason = CLD_DUMPED;
566	else if (WIFSIGNALED(signo))
567		reason = CLD_KILLED;
568	SDT_PROBE1(proc, , , exit, reason);
569#endif
570
571	/*
572	 * If this is a process with a descriptor, we may not need to deliver
573	 * a signal to the parent.  proctree_lock is held over
574	 * procdesc_exit() to serialize concurrent calls to close() and
575	 * exit().
576	 */
577	if (p->p_procdesc == NULL || procdesc_exit(p)) {
578		/*
579		 * Notify parent that we're gone.  If parent has the
580		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
581		 * notify process 1 instead (and hope it will handle this
582		 * situation).
583		 */
584		PROC_LOCK(p->p_pptr);
585		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
586		if (p->p_pptr->p_sigacts->ps_flag &
587		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
588			struct proc *pp;
589
590			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
591			pp = p->p_pptr;
592			PROC_UNLOCK(pp);
593			proc_reparent(p, p->p_reaper);
594			p->p_sigparent = SIGCHLD;
595			PROC_LOCK(p->p_pptr);
596
597			/*
598			 * Notify parent, so in case he was wait(2)ing or
599			 * executing waitpid(2) with our pid, he will
600			 * continue.
601			 */
602			wakeup(pp);
603		} else
604			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
605
606		if (p->p_pptr == p->p_reaper || p->p_pptr == initproc)
607			childproc_exited(p);
608		else if (p->p_sigparent != 0) {
609			if (p->p_sigparent == SIGCHLD)
610				childproc_exited(p);
611			else	/* LINUX thread */
612				kern_psignal(p->p_pptr, p->p_sigparent);
613		}
614	} else
615		PROC_LOCK(p->p_pptr);
616	sx_xunlock(&proctree_lock);
617
618	/*
619	 * The state PRS_ZOMBIE prevents other proesses from sending
620	 * signal to the process, to avoid memory leak, we free memory
621	 * for signal queue at the time when the state is set.
622	 */
623	sigqueue_flush(&p->p_sigqueue);
624	sigqueue_flush(&td->td_sigqueue);
625
626	/*
627	 * We have to wait until after acquiring all locks before
628	 * changing p_state.  We need to avoid all possible context
629	 * switches (including ones from blocking on a mutex) while
630	 * marked as a zombie.  We also have to set the zombie state
631	 * before we release the parent process' proc lock to avoid
632	 * a lost wakeup.  So, we first call wakeup, then we grab the
633	 * sched lock, update the state, and release the parent process'
634	 * proc lock.
635	 */
636	wakeup(p->p_pptr);
637	cv_broadcast(&p->p_pwait);
638	sched_exit(p->p_pptr, td);
639	PROC_SLOCK(p);
640	p->p_state = PRS_ZOMBIE;
641	PROC_UNLOCK(p->p_pptr);
642
643	/*
644	 * Save our children's rusage information in our exit rusage.
645	 */
646	PROC_STATLOCK(p);
647	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
648	PROC_STATUNLOCK(p);
649
650	/*
651	 * Make sure the scheduler takes this thread out of its tables etc.
652	 * This will also release this thread's reference to the ucred.
653	 * Other thread parts to release include pcb bits and such.
654	 */
655	thread_exit();
656}
657
658
659#ifndef _SYS_SYSPROTO_H_
660struct abort2_args {
661	char *why;
662	int nargs;
663	void **args;
664};
665#endif
666
667int
668sys_abort2(struct thread *td, struct abort2_args *uap)
669{
670	struct proc *p = td->td_proc;
671	struct sbuf *sb;
672	void *uargs[16];
673	int error, i, sig;
674
675	/*
676	 * Do it right now so we can log either proper call of abort2(), or
677	 * note, that invalid argument was passed. 512 is big enough to
678	 * handle 16 arguments' descriptions with additional comments.
679	 */
680	sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
681	sbuf_clear(sb);
682	sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
683	    p->p_comm, p->p_pid, td->td_ucred->cr_uid);
684	/*
685	 * Since we can't return from abort2(), send SIGKILL in cases, where
686	 * abort2() was called improperly
687	 */
688	sig = SIGKILL;
689	/* Prevent from DoSes from user-space. */
690	if (uap->nargs < 0 || uap->nargs > 16)
691		goto out;
692	if (uap->nargs > 0) {
693		if (uap->args == NULL)
694			goto out;
695		error = copyin(uap->args, uargs, uap->nargs * sizeof(void *));
696		if (error != 0)
697			goto out;
698	}
699	/*
700	 * Limit size of 'reason' string to 128. Will fit even when
701	 * maximal number of arguments was chosen to be logged.
702	 */
703	if (uap->why != NULL) {
704		error = sbuf_copyin(sb, uap->why, 128);
705		if (error < 0)
706			goto out;
707	} else {
708		sbuf_printf(sb, "(null)");
709	}
710	if (uap->nargs > 0) {
711		sbuf_printf(sb, "(");
712		for (i = 0;i < uap->nargs; i++)
713			sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
714		sbuf_printf(sb, ")");
715	}
716	/*
717	 * Final stage: arguments were proper, string has been
718	 * successfully copied from userspace, and copying pointers
719	 * from user-space succeed.
720	 */
721	sig = SIGABRT;
722out:
723	if (sig == SIGKILL) {
724		sbuf_trim(sb);
725		sbuf_printf(sb, " (Reason text inaccessible)");
726	}
727	sbuf_cat(sb, "\n");
728	sbuf_finish(sb);
729	log(LOG_INFO, "%s", sbuf_data(sb));
730	sbuf_delete(sb);
731	exit1(td, 0, sig);
732	return (0);
733}
734
735
736#ifdef COMPAT_43
737/*
738 * The dirty work is handled by kern_wait().
739 */
740int
741owait(struct thread *td, struct owait_args *uap __unused)
742{
743	int error, status;
744
745	error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
746	if (error == 0)
747		td->td_retval[1] = status;
748	return (error);
749}
750#endif /* COMPAT_43 */
751
752/*
753 * The dirty work is handled by kern_wait().
754 */
755int
756sys_wait4(struct thread *td, struct wait4_args *uap)
757{
758	struct rusage ru, *rup;
759	int error, status;
760
761	if (uap->rusage != NULL)
762		rup = &ru;
763	else
764		rup = NULL;
765	error = kern_wait(td, uap->pid, &status, uap->options, rup);
766	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
767		error = copyout(&status, uap->status, sizeof(status));
768	if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
769		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
770	return (error);
771}
772
773int
774sys_wait6(struct thread *td, struct wait6_args *uap)
775{
776	struct __wrusage wru, *wrup;
777	siginfo_t si, *sip;
778	idtype_t idtype;
779	id_t id;
780	int error, status;
781
782	idtype = uap->idtype;
783	id = uap->id;
784
785	if (uap->wrusage != NULL)
786		wrup = &wru;
787	else
788		wrup = NULL;
789
790	if (uap->info != NULL) {
791		sip = &si;
792		bzero(sip, sizeof(*sip));
793	} else
794		sip = NULL;
795
796	/*
797	 *  We expect all callers of wait6() to know about WEXITED and
798	 *  WTRAPPED.
799	 */
800	error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
801
802	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
803		error = copyout(&status, uap->status, sizeof(status));
804	if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
805		error = copyout(&wru, uap->wrusage, sizeof(wru));
806	if (uap->info != NULL && error == 0)
807		error = copyout(&si, uap->info, sizeof(si));
808	return (error);
809}
810
811/*
812 * Reap the remains of a zombie process and optionally return status and
813 * rusage.  Asserts and will release both the proctree_lock and the process
814 * lock as part of its work.
815 */
816void
817proc_reap(struct thread *td, struct proc *p, int *status, int options)
818{
819	struct proc *q, *t;
820
821	sx_assert(&proctree_lock, SA_XLOCKED);
822	PROC_LOCK_ASSERT(p, MA_OWNED);
823	PROC_SLOCK_ASSERT(p, MA_OWNED);
824	KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
825
826	q = td->td_proc;
827
828	PROC_SUNLOCK(p);
829	if (status)
830		*status = KW_EXITCODE(p->p_xexit, p->p_xsig);
831	if (options & WNOWAIT) {
832		/*
833		 *  Only poll, returning the status.  Caller does not wish to
834		 * release the proc struct just yet.
835		 */
836		PROC_UNLOCK(p);
837		sx_xunlock(&proctree_lock);
838		return;
839	}
840
841	PROC_LOCK(q);
842	sigqueue_take(p->p_ksi);
843	PROC_UNLOCK(q);
844
845	/*
846	 * If we got the child via a ptrace 'attach', we need to give it back
847	 * to the old parent.
848	 */
849	if (p->p_oppid != 0 && p->p_oppid != p->p_pptr->p_pid) {
850		PROC_UNLOCK(p);
851		t = proc_realparent(p);
852		PROC_LOCK(t);
853		PROC_LOCK(p);
854		CTR2(KTR_PTRACE,
855		    "wait: traced child %d moved back to parent %d", p->p_pid,
856		    t->p_pid);
857		proc_reparent(p, t);
858		p->p_oppid = 0;
859		PROC_UNLOCK(p);
860		pksignal(t, SIGCHLD, p->p_ksi);
861		wakeup(t);
862		cv_broadcast(&p->p_pwait);
863		PROC_UNLOCK(t);
864		sx_xunlock(&proctree_lock);
865		return;
866	}
867	p->p_oppid = 0;
868	PROC_UNLOCK(p);
869
870	/*
871	 * Remove other references to this process to ensure we have an
872	 * exclusive reference.
873	 */
874	sx_xlock(&allproc_lock);
875	LIST_REMOVE(p, p_list);	/* off zombproc */
876	sx_xunlock(&allproc_lock);
877	LIST_REMOVE(p, p_sibling);
878	reaper_abandon_children(p, true);
879	LIST_REMOVE(p, p_reapsibling);
880	PROC_LOCK(p);
881	clear_orphan(p);
882	PROC_UNLOCK(p);
883	leavepgrp(p);
884	if (p->p_procdesc != NULL)
885		procdesc_reap(p);
886	sx_xunlock(&proctree_lock);
887
888	PROC_LOCK(p);
889	knlist_detach(p->p_klist);
890	p->p_klist = NULL;
891	PROC_UNLOCK(p);
892
893	/*
894	 * Removal from allproc list and process group list paired with
895	 * PROC_LOCK which was executed during that time should guarantee
896	 * nothing can reach this process anymore. As such further locking
897	 * is unnecessary.
898	 */
899	p->p_xexit = p->p_xsig = 0;		/* XXX: why? */
900
901	PROC_LOCK(q);
902	ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
903	PROC_UNLOCK(q);
904
905	/*
906	 * Decrement the count of procs running with this uid.
907	 */
908	(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
909
910	/*
911	 * Destroy resource accounting information associated with the process.
912	 */
913#ifdef RACCT
914	if (racct_enable) {
915		PROC_LOCK(p);
916		racct_sub(p, RACCT_NPROC, 1);
917		PROC_UNLOCK(p);
918	}
919#endif
920	racct_proc_exit(p);
921
922	/*
923	 * Free credentials, arguments, and sigacts.
924	 */
925	crfree(p->p_ucred);
926	proc_set_cred(p, NULL);
927	pargs_drop(p->p_args);
928	p->p_args = NULL;
929	sigacts_free(p->p_sigacts);
930	p->p_sigacts = NULL;
931
932	/*
933	 * Do any thread-system specific cleanups.
934	 */
935	thread_wait(p);
936
937	/*
938	 * Give vm and machine-dependent layer a chance to free anything that
939	 * cpu_exit couldn't release while still running in process context.
940	 */
941	vm_waitproc(p);
942#ifdef MAC
943	mac_proc_destroy(p);
944#endif
945	/*
946	 * Free any domain policy that's still hiding around.
947	 */
948	vm_domain_policy_cleanup(&p->p_vm_dom_policy);
949
950	KASSERT(FIRST_THREAD_IN_PROC(p),
951	    ("proc_reap: no residual thread!"));
952	uma_zfree(proc_zone, p);
953	atomic_add_int(&nprocs, -1);
954}
955
956static int
957proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
958    int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
959    int check_only)
960{
961	struct rusage *rup;
962
963	sx_assert(&proctree_lock, SA_XLOCKED);
964
965	PROC_LOCK(p);
966
967	switch (idtype) {
968	case P_ALL:
969		if (p->p_procdesc != NULL) {
970			PROC_UNLOCK(p);
971			return (0);
972		}
973		break;
974	case P_PID:
975		if (p->p_pid != (pid_t)id) {
976			PROC_UNLOCK(p);
977			return (0);
978		}
979		break;
980	case P_PGID:
981		if (p->p_pgid != (pid_t)id) {
982			PROC_UNLOCK(p);
983			return (0);
984		}
985		break;
986	case P_SID:
987		if (p->p_session->s_sid != (pid_t)id) {
988			PROC_UNLOCK(p);
989			return (0);
990		}
991		break;
992	case P_UID:
993		if (p->p_ucred->cr_uid != (uid_t)id) {
994			PROC_UNLOCK(p);
995			return (0);
996		}
997		break;
998	case P_GID:
999		if (p->p_ucred->cr_gid != (gid_t)id) {
1000			PROC_UNLOCK(p);
1001			return (0);
1002		}
1003		break;
1004	case P_JAILID:
1005		if (p->p_ucred->cr_prison->pr_id != (int)id) {
1006			PROC_UNLOCK(p);
1007			return (0);
1008		}
1009		break;
1010	/*
1011	 * It seems that the thread structures get zeroed out
1012	 * at process exit.  This makes it impossible to
1013	 * support P_SETID, P_CID or P_CPUID.
1014	 */
1015	default:
1016		PROC_UNLOCK(p);
1017		return (0);
1018	}
1019
1020	if (p_canwait(td, p)) {
1021		PROC_UNLOCK(p);
1022		return (0);
1023	}
1024
1025	if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
1026		PROC_UNLOCK(p);
1027		return (0);
1028	}
1029
1030	/*
1031	 * This special case handles a kthread spawned by linux_clone
1032	 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1033	 * functions need to be able to distinguish between waiting
1034	 * on a process and waiting on a thread.  It is a thread if
1035	 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1036	 * signifies we want to wait for threads and not processes.
1037	 */
1038	if ((p->p_sigparent != SIGCHLD) ^
1039	    ((options & WLINUXCLONE) != 0)) {
1040		PROC_UNLOCK(p);
1041		return (0);
1042	}
1043
1044	if (siginfo != NULL) {
1045		bzero(siginfo, sizeof(*siginfo));
1046		siginfo->si_errno = 0;
1047
1048		/*
1049		 * SUSv4 requires that the si_signo value is always
1050		 * SIGCHLD. Obey it despite the rfork(2) interface
1051		 * allows to request other signal for child exit
1052		 * notification.
1053		 */
1054		siginfo->si_signo = SIGCHLD;
1055
1056		/*
1057		 *  This is still a rough estimate.  We will fix the
1058		 *  cases TRAPPED, STOPPED, and CONTINUED later.
1059		 */
1060		if (WCOREDUMP(p->p_xsig)) {
1061			siginfo->si_code = CLD_DUMPED;
1062			siginfo->si_status = WTERMSIG(p->p_xsig);
1063		} else if (WIFSIGNALED(p->p_xsig)) {
1064			siginfo->si_code = CLD_KILLED;
1065			siginfo->si_status = WTERMSIG(p->p_xsig);
1066		} else {
1067			siginfo->si_code = CLD_EXITED;
1068			siginfo->si_status = p->p_xexit;
1069		}
1070
1071		siginfo->si_pid = p->p_pid;
1072		siginfo->si_uid = p->p_ucred->cr_uid;
1073
1074		/*
1075		 * The si_addr field would be useful additional
1076		 * detail, but apparently the PC value may be lost
1077		 * when we reach this point.  bzero() above sets
1078		 * siginfo->si_addr to NULL.
1079		 */
1080	}
1081
1082	/*
1083	 * There should be no reason to limit resources usage info to
1084	 * exited processes only.  A snapshot about any resources used
1085	 * by a stopped process may be exactly what is needed.
1086	 */
1087	if (wrusage != NULL) {
1088		rup = &wrusage->wru_self;
1089		*rup = p->p_ru;
1090		PROC_STATLOCK(p);
1091		calcru(p, &rup->ru_utime, &rup->ru_stime);
1092		PROC_STATUNLOCK(p);
1093
1094		rup = &wrusage->wru_children;
1095		*rup = p->p_stats->p_cru;
1096		calccru(p, &rup->ru_utime, &rup->ru_stime);
1097	}
1098
1099	if (p->p_state == PRS_ZOMBIE && !check_only) {
1100		PROC_SLOCK(p);
1101		proc_reap(td, p, status, options);
1102		return (-1);
1103	}
1104	return (1);
1105}
1106
1107int
1108kern_wait(struct thread *td, pid_t pid, int *status, int options,
1109    struct rusage *rusage)
1110{
1111	struct __wrusage wru, *wrup;
1112	idtype_t idtype;
1113	id_t id;
1114	int ret;
1115
1116	/*
1117	 * Translate the special pid values into the (idtype, pid)
1118	 * pair for kern_wait6.  The WAIT_MYPGRP case is handled by
1119	 * kern_wait6() on its own.
1120	 */
1121	if (pid == WAIT_ANY) {
1122		idtype = P_ALL;
1123		id = 0;
1124	} else if (pid < 0) {
1125		idtype = P_PGID;
1126		id = (id_t)-pid;
1127	} else {
1128		idtype = P_PID;
1129		id = (id_t)pid;
1130	}
1131
1132	if (rusage != NULL)
1133		wrup = &wru;
1134	else
1135		wrup = NULL;
1136
1137	/*
1138	 * For backward compatibility we implicitly add flags WEXITED
1139	 * and WTRAPPED here.
1140	 */
1141	options |= WEXITED | WTRAPPED;
1142	ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1143	if (rusage != NULL)
1144		*rusage = wru.wru_self;
1145	return (ret);
1146}
1147
1148static void
1149report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo,
1150    int *status, int options, int si_code)
1151{
1152	bool cont;
1153
1154	PROC_LOCK_ASSERT(p, MA_OWNED);
1155	sx_assert(&proctree_lock, SA_XLOCKED);
1156	MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED ||
1157	    si_code == CLD_CONTINUED);
1158
1159	cont = si_code == CLD_CONTINUED;
1160	if ((options & WNOWAIT) == 0) {
1161		if (cont)
1162			p->p_flag &= ~P_CONTINUED;
1163		else
1164			p->p_flag |= P_WAITED;
1165		PROC_LOCK(td->td_proc);
1166		sigqueue_take(p->p_ksi);
1167		PROC_UNLOCK(td->td_proc);
1168	}
1169	sx_xunlock(&proctree_lock);
1170	if (siginfo != NULL) {
1171		siginfo->si_code = si_code;
1172		siginfo->si_status = cont ? SIGCONT : p->p_xsig;
1173	}
1174	if (status != NULL)
1175		*status = cont ? SIGCONT : W_STOPCODE(p->p_xsig);
1176	PROC_UNLOCK(p);
1177	td->td_retval[0] = p->p_pid;
1178}
1179
1180int
1181kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1182    int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1183{
1184	struct proc *p, *q;
1185	pid_t pid;
1186	int error, nfound, ret;
1187
1188	AUDIT_ARG_VALUE((int)idtype);	/* XXX - This is likely wrong! */
1189	AUDIT_ARG_PID((pid_t)id);	/* XXX - This may be wrong! */
1190	AUDIT_ARG_VALUE(options);
1191
1192	q = td->td_proc;
1193
1194	if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1195		PROC_LOCK(q);
1196		id = (id_t)q->p_pgid;
1197		PROC_UNLOCK(q);
1198		idtype = P_PGID;
1199	}
1200
1201	/* If we don't know the option, just return. */
1202	if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1203	    WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1204		return (EINVAL);
1205	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1206		/*
1207		 * We will be unable to find any matching processes,
1208		 * because there are no known events to look for.
1209		 * Prefer to return error instead of blocking
1210		 * indefinitely.
1211		 */
1212		return (EINVAL);
1213	}
1214
1215loop:
1216	if (q->p_flag & P_STATCHILD) {
1217		PROC_LOCK(q);
1218		q->p_flag &= ~P_STATCHILD;
1219		PROC_UNLOCK(q);
1220	}
1221	nfound = 0;
1222	sx_xlock(&proctree_lock);
1223	LIST_FOREACH(p, &q->p_children, p_sibling) {
1224		pid = p->p_pid;
1225		ret = proc_to_reap(td, p, idtype, id, status, options,
1226		    wrusage, siginfo, 0);
1227		if (ret == 0)
1228			continue;
1229		else if (ret == 1)
1230			nfound++;
1231		else {
1232			td->td_retval[0] = pid;
1233			return (0);
1234		}
1235
1236		PROC_LOCK_ASSERT(p, MA_OWNED);
1237
1238		if ((options & (WTRAPPED | WUNTRACED)) != 0)
1239			PROC_SLOCK(p);
1240
1241		if ((options & WTRAPPED) != 0 &&
1242		    (p->p_flag & P_TRACED) != 0 &&
1243		    (p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 &&
1244		    p->p_suspcount == p->p_numthreads &&
1245		    (p->p_flag & P_WAITED) == 0) {
1246			PROC_SUNLOCK(p);
1247			CTR4(KTR_PTRACE,
1248			    "wait: returning trapped pid %d status %#x "
1249			    "(xstat %d) xthread %d",
1250			    p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1251			    p->p_xthread != NULL ?
1252			    p->p_xthread->td_tid : -1);
1253			report_alive_proc(td, p, siginfo, status, options,
1254			    CLD_TRAPPED);
1255			return (0);
1256			}
1257		if ((options & WUNTRACED) != 0 &&
1258		    (p->p_flag & P_STOPPED_SIG) != 0 &&
1259		    p->p_suspcount == p->p_numthreads &&
1260		    (p->p_flag & P_WAITED) == 0) {
1261			PROC_SUNLOCK(p);
1262			report_alive_proc(td, p, siginfo, status, options,
1263			    CLD_STOPPED);
1264			return (0);
1265		}
1266		if ((options & (WTRAPPED | WUNTRACED)) != 0)
1267			PROC_SUNLOCK(p);
1268		if ((options & WCONTINUED) != 0 &&
1269		    (p->p_flag & P_CONTINUED) != 0) {
1270			report_alive_proc(td, p, siginfo, status, options,
1271			    CLD_CONTINUED);
1272			return (0);
1273		}
1274		PROC_UNLOCK(p);
1275	}
1276
1277	/*
1278	 * Look in the orphans list too, to allow the parent to
1279	 * collect it's child exit status even if child is being
1280	 * debugged.
1281	 *
1282	 * Debugger detaches from the parent upon successful
1283	 * switch-over from parent to child.  At this point due to
1284	 * re-parenting the parent loses the child to debugger and a
1285	 * wait4(2) call would report that it has no children to wait
1286	 * for.  By maintaining a list of orphans we allow the parent
1287	 * to successfully wait until the child becomes a zombie.
1288	 */
1289	if (nfound == 0) {
1290		LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1291			ret = proc_to_reap(td, p, idtype, id, NULL, options,
1292			    NULL, NULL, 1);
1293			if (ret != 0) {
1294				KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1295				    (int)td->td_retval[0]));
1296				PROC_UNLOCK(p);
1297				nfound++;
1298				break;
1299			}
1300		}
1301	}
1302	if (nfound == 0) {
1303		sx_xunlock(&proctree_lock);
1304		return (ECHILD);
1305	}
1306	if (options & WNOHANG) {
1307		sx_xunlock(&proctree_lock);
1308		td->td_retval[0] = 0;
1309		return (0);
1310	}
1311	PROC_LOCK(q);
1312	sx_xunlock(&proctree_lock);
1313	if (q->p_flag & P_STATCHILD) {
1314		q->p_flag &= ~P_STATCHILD;
1315		error = 0;
1316	} else
1317		error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
1318	PROC_UNLOCK(q);
1319	if (error)
1320		return (error);
1321	goto loop;
1322}
1323
1324/*
1325 * Make process 'parent' the new parent of process 'child'.
1326 * Must be called with an exclusive hold of proctree lock.
1327 */
1328void
1329proc_reparent(struct proc *child, struct proc *parent)
1330{
1331
1332	sx_assert(&proctree_lock, SX_XLOCKED);
1333	PROC_LOCK_ASSERT(child, MA_OWNED);
1334	if (child->p_pptr == parent)
1335		return;
1336
1337	PROC_LOCK(child->p_pptr);
1338	sigqueue_take(child->p_ksi);
1339	PROC_UNLOCK(child->p_pptr);
1340	LIST_REMOVE(child, p_sibling);
1341	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1342
1343	clear_orphan(child);
1344	if (child->p_flag & P_TRACED) {
1345		if (LIST_EMPTY(&child->p_pptr->p_orphans)) {
1346			child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1347			LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child,
1348			    p_orphan);
1349		} else {
1350			LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans),
1351			    child, p_orphan);
1352		}
1353		child->p_treeflag |= P_TREE_ORPHANED;
1354	}
1355
1356	child->p_pptr = parent;
1357}
1358