kern_clocksource.c revision 223426
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification, immediately at the beginning of the file.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/kern_clocksource.c 223426 2011-06-22 16:40:45Z jkim $");
29
30/*
31 * Common routines to manage event timers hardware.
32 */
33
34#include "opt_device_polling.h"
35#include "opt_kdtrace.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/bus.h>
40#include <sys/lock.h>
41#include <sys/kdb.h>
42#include <sys/ktr.h>
43#include <sys/mutex.h>
44#include <sys/proc.h>
45#include <sys/kernel.h>
46#include <sys/sched.h>
47#include <sys/smp.h>
48#include <sys/sysctl.h>
49#include <sys/timeet.h>
50#include <sys/timetc.h>
51
52#include <machine/atomic.h>
53#include <machine/clock.h>
54#include <machine/cpu.h>
55#include <machine/smp.h>
56
57#ifdef KDTRACE_HOOKS
58#include <sys/dtrace_bsd.h>
59cyclic_clock_func_t	cyclic_clock_func = NULL;
60#endif
61
62int			cpu_can_deep_sleep = 0;	/* C3 state is available. */
63int			cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
64
65static void		setuptimer(void);
66static void		loadtimer(struct bintime *now, int first);
67static int		doconfigtimer(void);
68static void		configtimer(int start);
69static int		round_freq(struct eventtimer *et, int freq);
70
71static void		getnextcpuevent(struct bintime *event, int idle);
72static void		getnextevent(struct bintime *event);
73static int		handleevents(struct bintime *now, int fake);
74#ifdef SMP
75static void		cpu_new_callout(int cpu, int ticks);
76#endif
77
78static struct mtx	et_hw_mtx;
79
80#define	ET_HW_LOCK(state)						\
81	{								\
82		if (timer->et_flags & ET_FLAGS_PERCPU)			\
83			mtx_lock_spin(&(state)->et_hw_mtx);		\
84		else							\
85			mtx_lock_spin(&et_hw_mtx);			\
86	}
87
88#define	ET_HW_UNLOCK(state)						\
89	{								\
90		if (timer->et_flags & ET_FLAGS_PERCPU)			\
91			mtx_unlock_spin(&(state)->et_hw_mtx);		\
92		else							\
93			mtx_unlock_spin(&et_hw_mtx);			\
94	}
95
96static struct eventtimer *timer = NULL;
97static struct bintime	timerperiod;	/* Timer period for periodic mode. */
98static struct bintime	hardperiod;	/* hardclock() events period. */
99static struct bintime	statperiod;	/* statclock() events period. */
100static struct bintime	profperiod;	/* profclock() events period. */
101static struct bintime	nexttick;	/* Next global timer tick time. */
102static u_int		busy = 0;	/* Reconfiguration is in progress. */
103static int		profiling = 0;	/* Profiling events enabled. */
104
105static char		timername[32];	/* Wanted timer. */
106TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
107
108static int		singlemul = 0;	/* Multiplier for periodic mode. */
109TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
110SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
111    0, "Multiplier for periodic mode");
112
113static u_int		idletick = 0;	/* Idle mode allowed. */
114TUNABLE_INT("kern.eventtimer.idletick", &idletick);
115SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
116    0, "Run periodic events when idle");
117
118static int		periodic = 0;	/* Periodic or one-shot mode. */
119static int		want_periodic = 0; /* What mode to prefer. */
120TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
121
122struct pcpu_state {
123	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
124	u_int		action;		/* Reconfiguration requests. */
125	u_int		handle;		/* Immediate handle resuests. */
126	struct bintime	now;		/* Last tick time. */
127	struct bintime	nextevent;	/* Next scheduled event on this CPU. */
128	struct bintime	nexttick;	/* Next timer tick time. */
129	struct bintime	nexthard;	/* Next hardlock() event. */
130	struct bintime	nextstat;	/* Next statclock() event. */
131	struct bintime	nextprof;	/* Next profclock() event. */
132#ifdef KDTRACE_HOOKS
133	struct bintime	nextcyc;	/* Next OpenSolaris cyclics event. */
134#endif
135	int		ipi;		/* This CPU needs IPI. */
136	int		idle;		/* This CPU is in idle mode. */
137};
138
139static DPCPU_DEFINE(struct pcpu_state, timerstate);
140
141#define FREQ2BT(freq, bt)						\
142{									\
143	(bt)->sec = 0;							\
144	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;	\
145}
146#define BT2FREQ(bt)							\
147	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /		\
148	    ((bt)->frac >> 1))
149
150/*
151 * Timer broadcast IPI handler.
152 */
153int
154hardclockintr(void)
155{
156	struct bintime now;
157	struct pcpu_state *state;
158	int done;
159
160	if (doconfigtimer() || busy)
161		return (FILTER_HANDLED);
162	state = DPCPU_PTR(timerstate);
163	now = state->now;
164	CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
165	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
166			     (unsigned int)(now.frac & 0xffffffff));
167	done = handleevents(&now, 0);
168	return (done ? FILTER_HANDLED : FILTER_STRAY);
169}
170
171/*
172 * Handle all events for specified time on this CPU
173 */
174static int
175handleevents(struct bintime *now, int fake)
176{
177	struct bintime t;
178	struct trapframe *frame;
179	struct pcpu_state *state;
180	uintfptr_t pc;
181	int usermode;
182	int done, runs;
183
184	CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
185	    curcpu, now->sec, (unsigned int)(now->frac >> 32),
186		     (unsigned int)(now->frac & 0xffffffff));
187	done = 0;
188	if (fake) {
189		frame = NULL;
190		usermode = 0;
191		pc = 0;
192	} else {
193		frame = curthread->td_intr_frame;
194		usermode = TRAPF_USERMODE(frame);
195		pc = TRAPF_PC(frame);
196	}
197
198	runs = 0;
199	state = DPCPU_PTR(timerstate);
200
201	while (bintime_cmp(now, &state->nexthard, >=)) {
202		bintime_add(&state->nexthard, &hardperiod);
203		runs++;
204	}
205	if (runs && fake < 2) {
206		hardclock_anycpu(runs, usermode);
207		done = 1;
208	}
209	while (bintime_cmp(now, &state->nextstat, >=)) {
210		if (fake < 2)
211			statclock(usermode);
212		bintime_add(&state->nextstat, &statperiod);
213		done = 1;
214	}
215	if (profiling) {
216		while (bintime_cmp(now, &state->nextprof, >=)) {
217			if (!fake)
218				profclock(usermode, pc);
219			bintime_add(&state->nextprof, &profperiod);
220			done = 1;
221		}
222	} else
223		state->nextprof = state->nextstat;
224
225#ifdef KDTRACE_HOOKS
226	if (fake == 0 && cyclic_clock_func != NULL &&
227	    state->nextcyc.sec != -1 &&
228	    bintime_cmp(now, &state->nextcyc, >=)) {
229		state->nextcyc.sec = -1;
230		(*cyclic_clock_func)(frame);
231	}
232#endif
233
234	getnextcpuevent(&t, 0);
235	if (fake == 2) {
236		state->nextevent = t;
237		return (done);
238	}
239	ET_HW_LOCK(state);
240	if (!busy) {
241		state->idle = 0;
242		state->nextevent = t;
243		loadtimer(now, 0);
244	}
245	ET_HW_UNLOCK(state);
246	return (done);
247}
248
249/*
250 * Schedule binuptime of the next event on current CPU.
251 */
252static void
253getnextcpuevent(struct bintime *event, int idle)
254{
255	struct bintime tmp;
256	struct pcpu_state *state;
257	int skip;
258
259	state = DPCPU_PTR(timerstate);
260	*event = state->nexthard;
261	if (idle) { /* If CPU is idle - ask callouts for how long. */
262		skip = 4;
263		if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
264			skip = tc_min_ticktock_freq;
265		skip = callout_tickstofirst(hz / skip) - 1;
266		CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
267		tmp = hardperiod;
268		bintime_mul(&tmp, skip);
269		bintime_add(event, &tmp);
270	} else { /* If CPU is active - handle all types of events. */
271		if (bintime_cmp(event, &state->nextstat, >))
272			*event = state->nextstat;
273		if (profiling && bintime_cmp(event, &state->nextprof, >))
274			*event = state->nextprof;
275	}
276#ifdef KDTRACE_HOOKS
277	if (state->nextcyc.sec != -1 && bintime_cmp(event, &state->nextcyc, >))
278		*event = state->nextcyc;
279#endif
280}
281
282/*
283 * Schedule binuptime of the next event on all CPUs.
284 */
285static void
286getnextevent(struct bintime *event)
287{
288	struct pcpu_state *state;
289#ifdef SMP
290	int	cpu;
291#endif
292	int	c;
293
294	state = DPCPU_PTR(timerstate);
295	*event = state->nextevent;
296	c = curcpu;
297#ifdef SMP
298	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
299		CPU_FOREACH(cpu) {
300			if (curcpu == cpu)
301				continue;
302			state = DPCPU_ID_PTR(cpu, timerstate);
303			if (bintime_cmp(event, &state->nextevent, >)) {
304				*event = state->nextevent;
305				c = cpu;
306			}
307		}
308	}
309#endif
310	CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
311	    curcpu, event->sec, (unsigned int)(event->frac >> 32),
312			     (unsigned int)(event->frac & 0xffffffff), c);
313}
314
315/* Hardware timer callback function. */
316static void
317timercb(struct eventtimer *et, void *arg)
318{
319	struct bintime now;
320	struct bintime *next;
321	struct pcpu_state *state;
322#ifdef SMP
323	int cpu, bcast;
324#endif
325
326	/* Do not touch anything if somebody reconfiguring timers. */
327	if (busy)
328		return;
329	/* Update present and next tick times. */
330	state = DPCPU_PTR(timerstate);
331	if (et->et_flags & ET_FLAGS_PERCPU) {
332		next = &state->nexttick;
333	} else
334		next = &nexttick;
335	if (periodic) {
336		now = *next;	/* Ex-next tick time becomes present time. */
337		bintime_add(next, &timerperiod); /* Next tick in 1 period. */
338	} else {
339		binuptime(&now);	/* Get present time from hardware. */
340		next->sec = -1;		/* Next tick is not scheduled yet. */
341	}
342	state->now = now;
343	CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
344	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
345			     (unsigned int)(now.frac & 0xffffffff));
346
347#ifdef SMP
348	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
349	bcast = 0;
350	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
351		CPU_FOREACH(cpu) {
352			state = DPCPU_ID_PTR(cpu, timerstate);
353			ET_HW_LOCK(state);
354			state->now = now;
355			if (bintime_cmp(&now, &state->nextevent, >=)) {
356				state->nextevent.sec++;
357				if (curcpu != cpu) {
358					state->ipi = 1;
359					bcast = 1;
360				}
361			}
362			ET_HW_UNLOCK(state);
363		}
364	}
365#endif
366
367	/* Handle events for this time on this CPU. */
368	handleevents(&now, 0);
369
370#ifdef SMP
371	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
372	if (bcast) {
373		CPU_FOREACH(cpu) {
374			if (curcpu == cpu)
375				continue;
376			state = DPCPU_ID_PTR(cpu, timerstate);
377			if (state->ipi) {
378				state->ipi = 0;
379				ipi_cpu(cpu, IPI_HARDCLOCK);
380			}
381		}
382	}
383#endif
384}
385
386/*
387 * Load new value into hardware timer.
388 */
389static void
390loadtimer(struct bintime *now, int start)
391{
392	struct pcpu_state *state;
393	struct bintime new;
394	struct bintime *next;
395	uint64_t tmp;
396	int eq;
397
398	if (timer->et_flags & ET_FLAGS_PERCPU) {
399		state = DPCPU_PTR(timerstate);
400		next = &state->nexttick;
401	} else
402		next = &nexttick;
403	if (periodic) {
404		if (start) {
405			/*
406			 * Try to start all periodic timers aligned
407			 * to period to make events synchronous.
408			 */
409			tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
410			tmp = (tmp % (timerperiod.frac >> 28)) << 28;
411			new.sec = 0;
412			new.frac = timerperiod.frac - tmp;
413			if (new.frac < tmp)	/* Left less then passed. */
414				bintime_add(&new, &timerperiod);
415			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
416			    curcpu, now->sec, (unsigned int)(now->frac >> 32),
417			    new.sec, (unsigned int)(new.frac >> 32));
418			*next = new;
419			bintime_add(next, now);
420			et_start(timer, &new, &timerperiod);
421		}
422	} else {
423		getnextevent(&new);
424		eq = bintime_cmp(&new, next, ==);
425		CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
426		    curcpu, new.sec, (unsigned int)(new.frac >> 32),
427			     (unsigned int)(new.frac & 0xffffffff),
428			     eq);
429		if (!eq) {
430			*next = new;
431			bintime_sub(&new, now);
432			et_start(timer, &new, NULL);
433		}
434	}
435}
436
437/*
438 * Prepare event timer parameters after configuration changes.
439 */
440static void
441setuptimer(void)
442{
443	int freq;
444
445	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
446		periodic = 0;
447	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
448		periodic = 1;
449	singlemul = MIN(MAX(singlemul, 1), 20);
450	freq = hz * singlemul;
451	while (freq < (profiling ? profhz : stathz))
452		freq += hz;
453	freq = round_freq(timer, freq);
454	FREQ2BT(freq, &timerperiod);
455}
456
457/*
458 * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
459 */
460static int
461doconfigtimer(void)
462{
463	struct bintime now;
464	struct pcpu_state *state;
465
466	state = DPCPU_PTR(timerstate);
467	switch (atomic_load_acq_int(&state->action)) {
468	case 1:
469		binuptime(&now);
470		ET_HW_LOCK(state);
471		loadtimer(&now, 1);
472		ET_HW_UNLOCK(state);
473		state->handle = 0;
474		atomic_store_rel_int(&state->action, 0);
475		return (1);
476	case 2:
477		ET_HW_LOCK(state);
478		et_stop(timer);
479		ET_HW_UNLOCK(state);
480		state->handle = 0;
481		atomic_store_rel_int(&state->action, 0);
482		return (1);
483	}
484	if (atomic_readandclear_int(&state->handle) && !busy) {
485		binuptime(&now);
486		handleevents(&now, 0);
487		return (1);
488	}
489	return (0);
490}
491
492/*
493 * Reconfigure specified timer.
494 * For per-CPU timers use IPI to make other CPUs to reconfigure.
495 */
496static void
497configtimer(int start)
498{
499	struct bintime now, next;
500	struct pcpu_state *state;
501	int cpu;
502
503	if (start) {
504		setuptimer();
505		binuptime(&now);
506	}
507	critical_enter();
508	ET_HW_LOCK(DPCPU_PTR(timerstate));
509	if (start) {
510		/* Initialize time machine parameters. */
511		next = now;
512		bintime_add(&next, &timerperiod);
513		if (periodic)
514			nexttick = next;
515		else
516			nexttick.sec = -1;
517		CPU_FOREACH(cpu) {
518			state = DPCPU_ID_PTR(cpu, timerstate);
519			state->now = now;
520			state->nextevent = next;
521			if (periodic)
522				state->nexttick = next;
523			else
524				state->nexttick.sec = -1;
525			state->nexthard = next;
526			state->nextstat = next;
527			state->nextprof = next;
528			hardclock_sync(cpu);
529		}
530		busy = 0;
531		/* Start global timer or per-CPU timer of this CPU. */
532		loadtimer(&now, 1);
533	} else {
534		busy = 1;
535		/* Stop global timer or per-CPU timer of this CPU. */
536		et_stop(timer);
537	}
538	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
539#ifdef SMP
540	/* If timer is global or there is no other CPUs yet - we are done. */
541	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
542		critical_exit();
543		return;
544	}
545	/* Set reconfigure flags for other CPUs. */
546	CPU_FOREACH(cpu) {
547		state = DPCPU_ID_PTR(cpu, timerstate);
548		atomic_store_rel_int(&state->action,
549		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
550	}
551	/* Broadcast reconfigure IPI. */
552	ipi_all_but_self(IPI_HARDCLOCK);
553	/* Wait for reconfiguration completed. */
554restart:
555	cpu_spinwait();
556	CPU_FOREACH(cpu) {
557		if (cpu == curcpu)
558			continue;
559		state = DPCPU_ID_PTR(cpu, timerstate);
560		if (atomic_load_acq_int(&state->action))
561			goto restart;
562	}
563#endif
564	critical_exit();
565}
566
567/*
568 * Calculate nearest frequency supported by hardware timer.
569 */
570static int
571round_freq(struct eventtimer *et, int freq)
572{
573	uint64_t div;
574
575	if (et->et_frequency != 0) {
576		div = lmax((et->et_frequency + freq / 2) / freq, 1);
577		if (et->et_flags & ET_FLAGS_POW2DIV)
578			div = 1 << (flsl(div + div / 2) - 1);
579		freq = (et->et_frequency + div / 2) / div;
580	}
581	if (et->et_min_period.sec > 0)
582		freq = 0;
583	else if (et->et_min_period.frac != 0)
584		freq = min(freq, BT2FREQ(&et->et_min_period));
585	if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
586		freq = max(freq, BT2FREQ(&et->et_max_period));
587	return (freq);
588}
589
590/*
591 * Configure and start event timers (BSP part).
592 */
593void
594cpu_initclocks_bsp(void)
595{
596	struct pcpu_state *state;
597	int base, div, cpu;
598
599	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
600	CPU_FOREACH(cpu) {
601		state = DPCPU_ID_PTR(cpu, timerstate);
602		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
603#ifdef KDTRACE_HOOKS
604		state->nextcyc.sec = -1;
605#endif
606	}
607#ifdef SMP
608	callout_new_inserted = cpu_new_callout;
609#endif
610	periodic = want_periodic;
611	/* Grab requested timer or the best of present. */
612	if (timername[0])
613		timer = et_find(timername, 0, 0);
614	if (timer == NULL && periodic) {
615		timer = et_find(NULL,
616		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
617	}
618	if (timer == NULL) {
619		timer = et_find(NULL,
620		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
621	}
622	if (timer == NULL && !periodic) {
623		timer = et_find(NULL,
624		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
625	}
626	if (timer == NULL)
627		panic("No usable event timer found!");
628	et_init(timer, timercb, NULL, NULL);
629
630	/* Adapt to timer capabilities. */
631	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
632		periodic = 0;
633	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
634		periodic = 1;
635	if (timer->et_flags & ET_FLAGS_C3STOP)
636		cpu_disable_deep_sleep++;
637
638	/*
639	 * We honor the requested 'hz' value.
640	 * We want to run stathz in the neighborhood of 128hz.
641	 * We would like profhz to run as often as possible.
642	 */
643	if (singlemul <= 0 || singlemul > 20) {
644		if (hz >= 1500 || (hz % 128) == 0)
645			singlemul = 1;
646		else if (hz >= 750)
647			singlemul = 2;
648		else
649			singlemul = 4;
650	}
651	if (periodic) {
652		base = round_freq(timer, hz * singlemul);
653		singlemul = max((base + hz / 2) / hz, 1);
654		hz = (base + singlemul / 2) / singlemul;
655		if (base <= 128)
656			stathz = base;
657		else {
658			div = base / 128;
659			if (div >= singlemul && (div % singlemul) == 0)
660				div++;
661			stathz = base / div;
662		}
663		profhz = stathz;
664		while ((profhz + stathz) <= 128 * 64)
665			profhz += stathz;
666		profhz = round_freq(timer, profhz);
667	} else {
668		hz = round_freq(timer, hz);
669		stathz = round_freq(timer, 127);
670		profhz = round_freq(timer, stathz * 64);
671	}
672	tick = 1000000 / hz;
673	FREQ2BT(hz, &hardperiod);
674	FREQ2BT(stathz, &statperiod);
675	FREQ2BT(profhz, &profperiod);
676	ET_LOCK();
677	configtimer(1);
678	ET_UNLOCK();
679}
680
681/*
682 * Start per-CPU event timers on APs.
683 */
684void
685cpu_initclocks_ap(void)
686{
687	struct bintime now;
688	struct pcpu_state *state;
689
690	state = DPCPU_PTR(timerstate);
691	binuptime(&now);
692	ET_HW_LOCK(state);
693	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 && periodic) {
694		state->now = nexttick;
695		bintime_sub(&state->now, &timerperiod);
696	} else
697		state->now = now;
698	hardclock_sync(curcpu);
699	handleevents(&state->now, 2);
700	if (timer->et_flags & ET_FLAGS_PERCPU)
701		loadtimer(&now, 1);
702	ET_HW_UNLOCK(state);
703}
704
705/*
706 * Switch to profiling clock rates.
707 */
708void
709cpu_startprofclock(void)
710{
711
712	ET_LOCK();
713	if (periodic) {
714		configtimer(0);
715		profiling = 1;
716		configtimer(1);
717	} else
718		profiling = 1;
719	ET_UNLOCK();
720}
721
722/*
723 * Switch to regular clock rates.
724 */
725void
726cpu_stopprofclock(void)
727{
728
729	ET_LOCK();
730	if (periodic) {
731		configtimer(0);
732		profiling = 0;
733		configtimer(1);
734	} else
735		profiling = 0;
736	ET_UNLOCK();
737}
738
739/*
740 * Switch to idle mode (all ticks handled).
741 */
742void
743cpu_idleclock(void)
744{
745	struct bintime now, t;
746	struct pcpu_state *state;
747
748	if (idletick || busy ||
749	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
750#ifdef DEVICE_POLLING
751	    || curcpu == CPU_FIRST()
752#endif
753	    )
754		return;
755	state = DPCPU_PTR(timerstate);
756	if (periodic)
757		now = state->now;
758	else
759		binuptime(&now);
760	CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
761	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
762			     (unsigned int)(now.frac & 0xffffffff));
763	getnextcpuevent(&t, 1);
764	ET_HW_LOCK(state);
765	state->idle = 1;
766	state->nextevent = t;
767	if (!periodic)
768		loadtimer(&now, 0);
769	ET_HW_UNLOCK(state);
770}
771
772/*
773 * Switch to active mode (skip empty ticks).
774 */
775void
776cpu_activeclock(void)
777{
778	struct bintime now;
779	struct pcpu_state *state;
780	struct thread *td;
781
782	state = DPCPU_PTR(timerstate);
783	if (state->idle == 0 || busy)
784		return;
785	if (periodic)
786		now = state->now;
787	else
788		binuptime(&now);
789	CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
790	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
791			     (unsigned int)(now.frac & 0xffffffff));
792	spinlock_enter();
793	td = curthread;
794	td->td_intr_nesting_level++;
795	handleevents(&now, 1);
796	td->td_intr_nesting_level--;
797	spinlock_exit();
798}
799
800#ifdef KDTRACE_HOOKS
801void
802clocksource_cyc_set(const struct bintime *t)
803{
804	struct bintime now;
805	struct pcpu_state *state;
806
807	state = DPCPU_PTR(timerstate);
808	if (periodic)
809		now = state->now;
810	else
811		binuptime(&now);
812
813	CTR4(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x%08x",
814	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
815			     (unsigned int)(now.frac & 0xffffffff));
816	CTR4(KTR_SPARE2, "set_cyc at %d:  t  %d.%08x%08x",
817	    curcpu, t->sec, (unsigned int)(t->frac >> 32),
818			     (unsigned int)(t->frac & 0xffffffff));
819
820	ET_HW_LOCK(state);
821	if (bintime_cmp(t, &state->nextcyc, ==)) {
822		ET_HW_UNLOCK(state);
823		return;
824	}
825	state->nextcyc = *t;
826	if (bintime_cmp(&state->nextcyc, &state->nextevent, >=)) {
827		ET_HW_UNLOCK(state);
828		return;
829	}
830	state->nextevent = state->nextcyc;
831	if (!periodic)
832		loadtimer(&now, 0);
833	ET_HW_UNLOCK(state);
834}
835#endif
836
837#ifdef SMP
838static void
839cpu_new_callout(int cpu, int ticks)
840{
841	struct bintime tmp;
842	struct pcpu_state *state;
843
844	CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
845	    curcpu, cpu, ticks);
846	state = DPCPU_ID_PTR(cpu, timerstate);
847	ET_HW_LOCK(state);
848	if (state->idle == 0 || busy) {
849		ET_HW_UNLOCK(state);
850		return;
851	}
852	/*
853	 * If timer is periodic - just update next event time for target CPU.
854	 * If timer is global - there is chance it is already programmed.
855	 */
856	if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
857		state->nextevent = state->nexthard;
858		tmp = hardperiod;
859		bintime_mul(&tmp, ticks - 1);
860		bintime_add(&state->nextevent, &tmp);
861		if (periodic ||
862		    bintime_cmp(&state->nextevent, &nexttick, >=)) {
863			ET_HW_UNLOCK(state);
864			return;
865		}
866	}
867	/*
868	 * Otherwise we have to wake that CPU up, as we can't get present
869	 * bintime to reprogram global timer from here. If timer is per-CPU,
870	 * we by definition can't do it from here.
871	 */
872	ET_HW_UNLOCK(state);
873	if (timer->et_flags & ET_FLAGS_PERCPU) {
874		state->handle = 1;
875		ipi_cpu(cpu, IPI_HARDCLOCK);
876	} else {
877		if (!cpu_idle_wakeup(cpu))
878			ipi_cpu(cpu, IPI_AST);
879	}
880}
881#endif
882
883/*
884 * Report or change the active event timers hardware.
885 */
886static int
887sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
888{
889	char buf[32];
890	struct eventtimer *et;
891	int error;
892
893	ET_LOCK();
894	et = timer;
895	snprintf(buf, sizeof(buf), "%s", et->et_name);
896	ET_UNLOCK();
897	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
898	ET_LOCK();
899	et = timer;
900	if (error != 0 || req->newptr == NULL ||
901	    strcasecmp(buf, et->et_name) == 0) {
902		ET_UNLOCK();
903		return (error);
904	}
905	et = et_find(buf, 0, 0);
906	if (et == NULL) {
907		ET_UNLOCK();
908		return (ENOENT);
909	}
910	configtimer(0);
911	et_free(timer);
912	if (et->et_flags & ET_FLAGS_C3STOP)
913		cpu_disable_deep_sleep++;
914	if (timer->et_flags & ET_FLAGS_C3STOP)
915		cpu_disable_deep_sleep--;
916	periodic = want_periodic;
917	timer = et;
918	et_init(timer, timercb, NULL, NULL);
919	configtimer(1);
920	ET_UNLOCK();
921	return (error);
922}
923SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
924    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
925    0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
926
927/*
928 * Report or change the active event timer periodicity.
929 */
930static int
931sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
932{
933	int error, val;
934
935	val = periodic;
936	error = sysctl_handle_int(oidp, &val, 0, req);
937	if (error != 0 || req->newptr == NULL)
938		return (error);
939	ET_LOCK();
940	configtimer(0);
941	periodic = want_periodic = val;
942	configtimer(1);
943	ET_UNLOCK();
944	return (error);
945}
946SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
947    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
948    0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
949