kern_clocksource.c revision 214987
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification, immediately at the beginning of the file.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/kern_clocksource.c 214987 2010-11-08 15:25:12Z mav $");
29
30/*
31 * Common routines to manage event timers hardware.
32 */
33
34/* XEN has own timer routines now. */
35#ifndef XEN
36
37#include "opt_device_polling.h"
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/lock.h>
44#include <sys/kdb.h>
45#include <sys/ktr.h>
46#include <sys/mutex.h>
47#include <sys/proc.h>
48#include <sys/kernel.h>
49#include <sys/sched.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <sys/timeet.h>
53#include <sys/timetc.h>
54
55#include <machine/atomic.h>
56#include <machine/clock.h>
57#include <machine/cpu.h>
58#include <machine/smp.h>
59
60#ifdef KDTRACE_HOOKS
61#include <sys/dtrace_bsd.h>
62cyclic_clock_func_t	cyclic_clock_func[MAXCPU];
63#endif
64
65int			cpu_disable_deep_sleep = 0; /* Timer dies in C3. */
66
67static void		setuptimer(void);
68static void		loadtimer(struct bintime *now, int first);
69static int		doconfigtimer(void);
70static void		configtimer(int start);
71static int		round_freq(struct eventtimer *et, int freq);
72
73static void		getnextcpuevent(struct bintime *event, int idle);
74static void		getnextevent(struct bintime *event);
75static int		handleevents(struct bintime *now, int fake);
76#ifdef SMP
77static void		cpu_new_callout(int cpu, int ticks);
78#endif
79
80static struct mtx	et_hw_mtx;
81
82#define	ET_HW_LOCK(state)						\
83	{								\
84		if (timer->et_flags & ET_FLAGS_PERCPU)			\
85			mtx_lock_spin(&(state)->et_hw_mtx);		\
86		else							\
87			mtx_lock_spin(&et_hw_mtx);			\
88	}
89
90#define	ET_HW_UNLOCK(state)						\
91	{								\
92		if (timer->et_flags & ET_FLAGS_PERCPU)			\
93			mtx_unlock_spin(&(state)->et_hw_mtx);		\
94		else							\
95			mtx_unlock_spin(&et_hw_mtx);			\
96	}
97
98static struct eventtimer *timer = NULL;
99static struct bintime	timerperiod;	/* Timer period for periodic mode. */
100static struct bintime	hardperiod;	/* hardclock() events period. */
101static struct bintime	statperiod;	/* statclock() events period. */
102static struct bintime	profperiod;	/* profclock() events period. */
103static struct bintime	nexttick;	/* Next global timer tick time. */
104static u_int		busy = 0;	/* Reconfiguration is in progress. */
105static int		profiling = 0;	/* Profiling events enabled. */
106
107static char		timername[32];	/* Wanted timer. */
108TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
109
110static int		singlemul = 0;	/* Multiplier for periodic mode. */
111TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
112SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
113    0, "Multiplier for periodic mode");
114
115static u_int		idletick = 0;	/* Idle mode allowed. */
116TUNABLE_INT("kern.eventtimer.idletick", &idletick);
117SYSCTL_INT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
118    0, "Run periodic events when idle");
119
120static int		periodic = 0;	/* Periodic or one-shot mode. */
121static int		want_periodic = 0; /* What mode to prefer. */
122TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
123
124struct pcpu_state {
125	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
126	u_int		action;		/* Reconfiguration requests. */
127	u_int		handle;		/* Immediate handle resuests. */
128	struct bintime	now;		/* Last tick time. */
129	struct bintime	nextevent;	/* Next scheduled event on this CPU. */
130	struct bintime	nexttick;	/* Next timer tick time. */
131	struct bintime	nexthard;	/* Next hardlock() event. */
132	struct bintime	nextstat;	/* Next statclock() event. */
133	struct bintime	nextprof;	/* Next profclock() event. */
134	int		ipi;		/* This CPU needs IPI. */
135	int		idle;		/* This CPU is in idle mode. */
136};
137
138static DPCPU_DEFINE(struct pcpu_state, timerstate);
139
140#define FREQ2BT(freq, bt)						\
141{									\
142	(bt)->sec = 0;							\
143	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;	\
144}
145#define BT2FREQ(bt)							\
146	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /		\
147	    ((bt)->frac >> 1))
148
149/*
150 * Timer broadcast IPI handler.
151 */
152int
153hardclockintr(void)
154{
155	struct bintime now;
156	struct pcpu_state *state;
157	int done;
158
159	if (doconfigtimer() || busy)
160		return (FILTER_HANDLED);
161	state = DPCPU_PTR(timerstate);
162	now = state->now;
163	CTR4(KTR_SPARE2, "ipi  at %d:    now  %d.%08x%08x",
164	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
165			     (unsigned int)(now.frac & 0xffffffff));
166	done = handleevents(&now, 0);
167	return (done ? FILTER_HANDLED : FILTER_STRAY);
168}
169
170/*
171 * Handle all events for specified time on this CPU
172 */
173static int
174handleevents(struct bintime *now, int fake)
175{
176	struct bintime t;
177	struct trapframe *frame;
178	struct pcpu_state *state;
179	uintfptr_t pc;
180	int usermode;
181	int done, runs;
182
183	CTR4(KTR_SPARE2, "handle at %d:  now  %d.%08x%08x",
184	    curcpu, now->sec, (unsigned int)(now->frac >> 32),
185		     (unsigned int)(now->frac & 0xffffffff));
186	done = 0;
187	if (fake) {
188		frame = NULL;
189		usermode = 0;
190		pc = 0;
191	} else {
192		frame = curthread->td_intr_frame;
193		usermode = TRAPF_USERMODE(frame);
194		pc = TRAPF_PC(frame);
195	}
196#ifdef KDTRACE_HOOKS
197	/*
198	 * If the DTrace hooks are configured and a callback function
199	 * has been registered, then call it to process the high speed
200	 * timers.
201	 */
202	if (!fake && cyclic_clock_func[curcpu] != NULL)
203		(*cyclic_clock_func[curcpu])(frame);
204#endif
205	runs = 0;
206	state = DPCPU_PTR(timerstate);
207	while (bintime_cmp(now, &state->nexthard, >=)) {
208		bintime_add(&state->nexthard, &hardperiod);
209		runs++;
210	}
211	if (runs && fake < 2) {
212		hardclock_anycpu(runs, usermode);
213		done = 1;
214	}
215	while (bintime_cmp(now, &state->nextstat, >=)) {
216		if (fake < 2)
217			statclock(usermode);
218		bintime_add(&state->nextstat, &statperiod);
219		done = 1;
220	}
221	if (profiling) {
222		while (bintime_cmp(now, &state->nextprof, >=)) {
223			if (!fake)
224				profclock(usermode, pc);
225			bintime_add(&state->nextprof, &profperiod);
226			done = 1;
227		}
228	} else
229		state->nextprof = state->nextstat;
230	getnextcpuevent(&t, 0);
231	if (fake == 2) {
232		state->nextevent = t;
233		return (done);
234	}
235	ET_HW_LOCK(state);
236	if (!busy) {
237		state->idle = 0;
238		state->nextevent = t;
239		loadtimer(now, 0);
240	}
241	ET_HW_UNLOCK(state);
242	return (done);
243}
244
245/*
246 * Schedule binuptime of the next event on current CPU.
247 */
248static void
249getnextcpuevent(struct bintime *event, int idle)
250{
251	struct bintime tmp;
252	struct pcpu_state *state;
253	int skip;
254
255	state = DPCPU_PTR(timerstate);
256	*event = state->nexthard;
257	if (idle) { /* If CPU is idle - ask callouts for how long. */
258		skip = 4;
259		if (curcpu == CPU_FIRST() && tc_min_ticktock_freq > skip)
260			skip = tc_min_ticktock_freq;
261		skip = callout_tickstofirst(hz / skip) - 1;
262		CTR2(KTR_SPARE2, "skip   at %d: %d", curcpu, skip);
263		tmp = hardperiod;
264		bintime_mul(&tmp, skip);
265		bintime_add(event, &tmp);
266	} else { /* If CPU is active - handle all types of events. */
267		if (bintime_cmp(event, &state->nextstat, >))
268			*event = state->nextstat;
269		if (profiling &&
270		    bintime_cmp(event, &state->nextprof, >))
271			*event = state->nextprof;
272	}
273}
274
275/*
276 * Schedule binuptime of the next event on all CPUs.
277 */
278static void
279getnextevent(struct bintime *event)
280{
281	struct pcpu_state *state;
282#ifdef SMP
283	int	cpu;
284#endif
285	int	c;
286
287	state = DPCPU_PTR(timerstate);
288	*event = state->nextevent;
289	c = curcpu;
290#ifdef SMP
291	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
292		CPU_FOREACH(cpu) {
293			if (curcpu == cpu)
294				continue;
295			state = DPCPU_ID_PTR(cpu, timerstate);
296			if (bintime_cmp(event, &state->nextevent, >)) {
297				*event = state->nextevent;
298				c = cpu;
299			}
300		}
301	}
302#endif
303	CTR5(KTR_SPARE2, "next at %d:    next %d.%08x%08x by %d",
304	    curcpu, event->sec, (unsigned int)(event->frac >> 32),
305			     (unsigned int)(event->frac & 0xffffffff), c);
306}
307
308/* Hardware timer callback function. */
309static void
310timercb(struct eventtimer *et, void *arg)
311{
312	struct bintime now;
313	struct bintime *next;
314	struct pcpu_state *state;
315#ifdef SMP
316	int cpu, bcast;
317#endif
318
319	/* Do not touch anything if somebody reconfiguring timers. */
320	if (busy)
321		return;
322	/* Update present and next tick times. */
323	state = DPCPU_PTR(timerstate);
324	if (et->et_flags & ET_FLAGS_PERCPU) {
325		next = &state->nexttick;
326	} else
327		next = &nexttick;
328	if (periodic) {
329		now = *next;	/* Ex-next tick time becomes present time. */
330		bintime_add(next, &timerperiod); /* Next tick in 1 period. */
331	} else {
332		binuptime(&now);	/* Get present time from hardware. */
333		next->sec = -1;		/* Next tick is not scheduled yet. */
334	}
335	state->now = now;
336	CTR4(KTR_SPARE2, "intr at %d:    now  %d.%08x%08x",
337	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
338			     (unsigned int)(now.frac & 0xffffffff));
339
340#ifdef SMP
341	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
342	bcast = 0;
343	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
344		CPU_FOREACH(cpu) {
345			state = DPCPU_ID_PTR(cpu, timerstate);
346			ET_HW_LOCK(state);
347			state->now = now;
348			if (bintime_cmp(&now, &state->nextevent, >=)) {
349				state->nextevent.sec++;
350				if (curcpu != cpu) {
351					state->ipi = 1;
352					bcast = 1;
353				}
354			}
355			ET_HW_UNLOCK(state);
356		}
357	}
358#endif
359
360	/* Handle events for this time on this CPU. */
361	handleevents(&now, 0);
362
363#ifdef SMP
364	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
365	if (bcast) {
366		CPU_FOREACH(cpu) {
367			if (curcpu == cpu)
368				continue;
369			state = DPCPU_ID_PTR(cpu, timerstate);
370			if (state->ipi) {
371				state->ipi = 0;
372				ipi_cpu(cpu, IPI_HARDCLOCK);
373			}
374		}
375	}
376#endif
377}
378
379/*
380 * Load new value into hardware timer.
381 */
382static void
383loadtimer(struct bintime *now, int start)
384{
385	struct pcpu_state *state;
386	struct bintime new;
387	struct bintime *next;
388	uint64_t tmp;
389	int eq;
390
391	if (timer->et_flags & ET_FLAGS_PERCPU) {
392		state = DPCPU_PTR(timerstate);
393		next = &state->nexttick;
394	} else
395		next = &nexttick;
396	if (periodic) {
397		if (start) {
398			/*
399			 * Try to start all periodic timers aligned
400			 * to period to make events synchronous.
401			 */
402			tmp = ((uint64_t)now->sec << 36) + (now->frac >> 28);
403			tmp = (tmp % (timerperiod.frac >> 28)) << 28;
404			new.sec = 0;
405			new.frac = timerperiod.frac - tmp;
406			if (new.frac < tmp)	/* Left less then passed. */
407				bintime_add(&new, &timerperiod);
408			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
409			    curcpu, now->sec, (unsigned int)(now->frac >> 32),
410			    new.sec, (unsigned int)(new.frac >> 32));
411			*next = new;
412			bintime_add(next, now);
413			et_start(timer, &new, &timerperiod);
414		}
415	} else {
416		getnextevent(&new);
417		eq = bintime_cmp(&new, next, ==);
418		CTR5(KTR_SPARE2, "load at %d:    next %d.%08x%08x eq %d",
419		    curcpu, new.sec, (unsigned int)(new.frac >> 32),
420			     (unsigned int)(new.frac & 0xffffffff),
421			     eq);
422		if (!eq) {
423			*next = new;
424			bintime_sub(&new, now);
425			et_start(timer, &new, NULL);
426		}
427	}
428}
429
430/*
431 * Prepare event timer parameters after configuration changes.
432 */
433static void
434setuptimer(void)
435{
436	int freq;
437
438	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
439		periodic = 0;
440	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
441		periodic = 1;
442	singlemul = MIN(MAX(singlemul, 1), 20);
443	freq = hz * singlemul;
444	while (freq < (profiling ? profhz : stathz))
445		freq += hz;
446	freq = round_freq(timer, freq);
447	FREQ2BT(freq, &timerperiod);
448}
449
450/*
451 * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
452 */
453static int
454doconfigtimer(void)
455{
456	struct bintime now;
457	struct pcpu_state *state;
458
459	state = DPCPU_PTR(timerstate);
460	switch (atomic_load_acq_int(&state->action)) {
461	case 1:
462		binuptime(&now);
463		ET_HW_LOCK(state);
464		loadtimer(&now, 1);
465		ET_HW_UNLOCK(state);
466		state->handle = 0;
467		atomic_store_rel_int(&state->action, 0);
468		return (1);
469	case 2:
470		ET_HW_LOCK(state);
471		et_stop(timer);
472		ET_HW_UNLOCK(state);
473		state->handle = 0;
474		atomic_store_rel_int(&state->action, 0);
475		return (1);
476	}
477	if (atomic_readandclear_int(&state->handle) && !busy) {
478		binuptime(&now);
479		handleevents(&now, 0);
480		return (1);
481	}
482	return (0);
483}
484
485/*
486 * Reconfigure specified timer.
487 * For per-CPU timers use IPI to make other CPUs to reconfigure.
488 */
489static void
490configtimer(int start)
491{
492	struct bintime now, next;
493	struct pcpu_state *state;
494	int cpu;
495
496	if (start) {
497		setuptimer();
498		binuptime(&now);
499	}
500	critical_enter();
501	ET_HW_LOCK(DPCPU_PTR(timerstate));
502	if (start) {
503		/* Initialize time machine parameters. */
504		next = now;
505		bintime_add(&next, &timerperiod);
506		if (periodic)
507			nexttick = next;
508		else
509			nexttick.sec = -1;
510		CPU_FOREACH(cpu) {
511			state = DPCPU_ID_PTR(cpu, timerstate);
512			state->now = now;
513			state->nextevent = next;
514			if (periodic)
515				state->nexttick = next;
516			else
517				state->nexttick.sec = -1;
518			state->nexthard = next;
519			state->nextstat = next;
520			state->nextprof = next;
521			hardclock_sync(cpu);
522		}
523		busy = 0;
524		/* Start global timer or per-CPU timer of this CPU. */
525		loadtimer(&now, 1);
526	} else {
527		busy = 1;
528		/* Stop global timer or per-CPU timer of this CPU. */
529		et_stop(timer);
530	}
531	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
532#ifdef SMP
533	/* If timer is global or there is no other CPUs yet - we are done. */
534	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
535		critical_exit();
536		return;
537	}
538	/* Set reconfigure flags for other CPUs. */
539	CPU_FOREACH(cpu) {
540		state = DPCPU_ID_PTR(cpu, timerstate);
541		atomic_store_rel_int(&state->action,
542		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
543	}
544	/* Broadcast reconfigure IPI. */
545	ipi_all_but_self(IPI_HARDCLOCK);
546	/* Wait for reconfiguration completed. */
547restart:
548	cpu_spinwait();
549	CPU_FOREACH(cpu) {
550		if (cpu == curcpu)
551			continue;
552		state = DPCPU_ID_PTR(cpu, timerstate);
553		if (atomic_load_acq_int(&state->action))
554			goto restart;
555	}
556#endif
557	critical_exit();
558}
559
560/*
561 * Calculate nearest frequency supported by hardware timer.
562 */
563static int
564round_freq(struct eventtimer *et, int freq)
565{
566	uint64_t div;
567
568	if (et->et_frequency != 0) {
569		div = lmax((et->et_frequency + freq / 2) / freq, 1);
570		if (et->et_flags & ET_FLAGS_POW2DIV)
571			div = 1 << (flsl(div + div / 2) - 1);
572		freq = (et->et_frequency + div / 2) / div;
573	}
574	if (et->et_min_period.sec > 0)
575		freq = 0;
576	else if (et->et_min_period.frac != 0)
577		freq = min(freq, BT2FREQ(&et->et_min_period));
578	if (et->et_max_period.sec == 0 && et->et_max_period.frac != 0)
579		freq = max(freq, BT2FREQ(&et->et_max_period));
580	return (freq);
581}
582
583/*
584 * Configure and start event timers (BSP part).
585 */
586void
587cpu_initclocks_bsp(void)
588{
589	struct pcpu_state *state;
590	int base, div, cpu;
591
592	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
593	CPU_FOREACH(cpu) {
594		state = DPCPU_ID_PTR(cpu, timerstate);
595		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
596	}
597#ifdef SMP
598	callout_new_inserted = cpu_new_callout;
599#endif
600	periodic = want_periodic;
601	/* Grab requested timer or the best of present. */
602	if (timername[0])
603		timer = et_find(timername, 0, 0);
604	if (timer == NULL && periodic) {
605		timer = et_find(NULL,
606		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
607	}
608	if (timer == NULL) {
609		timer = et_find(NULL,
610		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
611	}
612	if (timer == NULL && !periodic) {
613		timer = et_find(NULL,
614		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
615	}
616	if (timer == NULL)
617		panic("No usable event timer found!");
618	et_init(timer, timercb, NULL, NULL);
619
620	/* Adapt to timer capabilities. */
621	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
622		periodic = 0;
623	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
624		periodic = 1;
625	if (timer->et_flags & ET_FLAGS_C3STOP)
626		cpu_disable_deep_sleep++;
627
628	/*
629	 * We honor the requested 'hz' value.
630	 * We want to run stathz in the neighborhood of 128hz.
631	 * We would like profhz to run as often as possible.
632	 */
633	if (singlemul <= 0 || singlemul > 20) {
634		if (hz >= 1500 || (hz % 128) == 0)
635			singlemul = 1;
636		else if (hz >= 750)
637			singlemul = 2;
638		else
639			singlemul = 4;
640	}
641	if (periodic) {
642		base = round_freq(timer, hz * singlemul);
643		singlemul = max((base + hz / 2) / hz, 1);
644		hz = (base + singlemul / 2) / singlemul;
645		if (base <= 128)
646			stathz = base;
647		else {
648			div = base / 128;
649			if (div >= singlemul && (div % singlemul) == 0)
650				div++;
651			stathz = base / div;
652		}
653		profhz = stathz;
654		while ((profhz + stathz) <= 128 * 64)
655			profhz += stathz;
656		profhz = round_freq(timer, profhz);
657	} else {
658		hz = round_freq(timer, hz);
659		stathz = round_freq(timer, 127);
660		profhz = round_freq(timer, stathz * 64);
661	}
662	tick = 1000000 / hz;
663	FREQ2BT(hz, &hardperiod);
664	FREQ2BT(stathz, &statperiod);
665	FREQ2BT(profhz, &profperiod);
666	ET_LOCK();
667	configtimer(1);
668	ET_UNLOCK();
669}
670
671/*
672 * Start per-CPU event timers on APs.
673 */
674void
675cpu_initclocks_ap(void)
676{
677	struct bintime now;
678	struct pcpu_state *state;
679
680	state = DPCPU_PTR(timerstate);
681	binuptime(&now);
682	ET_HW_LOCK(state);
683	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 && periodic) {
684		state->now = nexttick;
685		bintime_sub(&state->now, &timerperiod);
686	} else
687		state->now = now;
688	hardclock_sync(curcpu);
689	handleevents(&state->now, 2);
690	if (timer->et_flags & ET_FLAGS_PERCPU)
691		loadtimer(&now, 1);
692	ET_HW_UNLOCK(state);
693}
694
695/*
696 * Switch to profiling clock rates.
697 */
698void
699cpu_startprofclock(void)
700{
701
702	ET_LOCK();
703	if (periodic) {
704		configtimer(0);
705		profiling = 1;
706		configtimer(1);
707	} else
708		profiling = 1;
709	ET_UNLOCK();
710}
711
712/*
713 * Switch to regular clock rates.
714 */
715void
716cpu_stopprofclock(void)
717{
718
719	ET_LOCK();
720	if (periodic) {
721		configtimer(0);
722		profiling = 0;
723		configtimer(1);
724	} else
725		profiling = 0;
726	ET_UNLOCK();
727}
728
729/*
730 * Switch to idle mode (all ticks handled).
731 */
732void
733cpu_idleclock(void)
734{
735	struct bintime now, t;
736	struct pcpu_state *state;
737
738	if (idletick || busy ||
739	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
740#ifdef DEVICE_POLLING
741	    || curcpu == CPU_FIRST()
742#endif
743	    )
744		return;
745	state = DPCPU_PTR(timerstate);
746	if (periodic)
747		now = state->now;
748	else
749		binuptime(&now);
750	CTR4(KTR_SPARE2, "idle at %d:    now  %d.%08x%08x",
751	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
752			     (unsigned int)(now.frac & 0xffffffff));
753	getnextcpuevent(&t, 1);
754	ET_HW_LOCK(state);
755	state->idle = 1;
756	state->nextevent = t;
757	if (!periodic)
758		loadtimer(&now, 0);
759	ET_HW_UNLOCK(state);
760}
761
762/*
763 * Switch to active mode (skip empty ticks).
764 */
765void
766cpu_activeclock(void)
767{
768	struct bintime now;
769	struct pcpu_state *state;
770	struct thread *td;
771
772	state = DPCPU_PTR(timerstate);
773	if (state->idle == 0 || busy)
774		return;
775	if (periodic)
776		now = state->now;
777	else
778		binuptime(&now);
779	CTR4(KTR_SPARE2, "active at %d:  now  %d.%08x%08x",
780	    curcpu, now.sec, (unsigned int)(now.frac >> 32),
781			     (unsigned int)(now.frac & 0xffffffff));
782	spinlock_enter();
783	td = curthread;
784	td->td_intr_nesting_level++;
785	handleevents(&now, 1);
786	td->td_intr_nesting_level--;
787	spinlock_exit();
788}
789
790#ifdef SMP
791static void
792cpu_new_callout(int cpu, int ticks)
793{
794	struct bintime tmp;
795	struct pcpu_state *state;
796
797	CTR3(KTR_SPARE2, "new co at %d:    on %d in %d",
798	    curcpu, cpu, ticks);
799	state = DPCPU_ID_PTR(cpu, timerstate);
800	ET_HW_LOCK(state);
801	if (state->idle == 0 || busy) {
802		ET_HW_UNLOCK(state);
803		return;
804	}
805	/*
806	 * If timer is periodic - just update next event time for target CPU.
807	 * If timer is global - there is chance it is already programmed.
808	 */
809	if (periodic || (timer->et_flags & ET_FLAGS_PERCPU) == 0) {
810		state->nextevent = state->nexthard;
811		tmp = hardperiod;
812		bintime_mul(&tmp, ticks - 1);
813		bintime_add(&state->nextevent, &tmp);
814		if (periodic ||
815		    bintime_cmp(&state->nextevent, &nexttick, >=)) {
816			ET_HW_UNLOCK(state);
817			return;
818		}
819	}
820	/*
821	 * Otherwise we have to wake that CPU up, as we can't get present
822	 * bintime to reprogram global timer from here. If timer is per-CPU,
823	 * we by definition can't do it from here.
824	 */
825	ET_HW_UNLOCK(state);
826	if (timer->et_flags & ET_FLAGS_PERCPU) {
827		state->handle = 1;
828		ipi_cpu(cpu, IPI_HARDCLOCK);
829	} else {
830		if (!cpu_idle_wakeup(cpu))
831			ipi_cpu(cpu, IPI_AST);
832	}
833}
834#endif
835
836/*
837 * Report or change the active event timers hardware.
838 */
839static int
840sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
841{
842	char buf[32];
843	struct eventtimer *et;
844	int error;
845
846	ET_LOCK();
847	et = timer;
848	snprintf(buf, sizeof(buf), "%s", et->et_name);
849	ET_UNLOCK();
850	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
851	ET_LOCK();
852	et = timer;
853	if (error != 0 || req->newptr == NULL ||
854	    strcasecmp(buf, et->et_name) == 0) {
855		ET_UNLOCK();
856		return (error);
857	}
858	et = et_find(buf, 0, 0);
859	if (et == NULL) {
860		ET_UNLOCK();
861		return (ENOENT);
862	}
863	configtimer(0);
864	et_free(timer);
865	if (et->et_flags & ET_FLAGS_C3STOP)
866		cpu_disable_deep_sleep++;
867	if (timer->et_flags & ET_FLAGS_C3STOP)
868		cpu_disable_deep_sleep--;
869	periodic = want_periodic;
870	timer = et;
871	et_init(timer, timercb, NULL, NULL);
872	configtimer(1);
873	ET_UNLOCK();
874	return (error);
875}
876SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
877    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
878    0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
879
880/*
881 * Report or change the active event timer periodicity.
882 */
883static int
884sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
885{
886	int error, val;
887
888	val = periodic;
889	error = sysctl_handle_int(oidp, &val, 0, req);
890	if (error != 0 || req->newptr == NULL)
891		return (error);
892	ET_LOCK();
893	configtimer(0);
894	periodic = want_periodic = val;
895	configtimer(1);
896	ET_UNLOCK();
897	return (error);
898}
899SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
900    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
901    0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
902
903#endif
904