kern_clock.c revision 304843
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/11/sys/kern/kern_clock.c 304843 2016-08-26 10:04:10Z kib $");
39
40#include "opt_kdb.h"
41#include "opt_device_polling.h"
42#include "opt_hwpmc_hooks.h"
43#include "opt_ntp.h"
44#include "opt_watchdog.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/callout.h>
49#include <sys/kdb.h>
50#include <sys/kernel.h>
51#include <sys/kthread.h>
52#include <sys/ktr.h>
53#include <sys/lock.h>
54#include <sys/mutex.h>
55#include <sys/proc.h>
56#include <sys/resource.h>
57#include <sys/resourcevar.h>
58#include <sys/sched.h>
59#include <sys/sdt.h>
60#include <sys/signalvar.h>
61#include <sys/sleepqueue.h>
62#include <sys/smp.h>
63#include <vm/vm.h>
64#include <vm/pmap.h>
65#include <vm/vm_map.h>
66#include <sys/sysctl.h>
67#include <sys/bus.h>
68#include <sys/interrupt.h>
69#include <sys/limits.h>
70#include <sys/timetc.h>
71
72#ifdef GPROF
73#include <sys/gmon.h>
74#endif
75
76#ifdef HWPMC_HOOKS
77#include <sys/pmckern.h>
78PMC_SOFT_DEFINE( , , clock, hard);
79PMC_SOFT_DEFINE( , , clock, stat);
80PMC_SOFT_DEFINE_EX( , , clock, prof, \
81    cpu_startprofclock, cpu_stopprofclock);
82#endif
83
84#ifdef DEVICE_POLLING
85extern void hardclock_device_poll(void);
86#endif /* DEVICE_POLLING */
87
88static void initclocks(void *dummy);
89SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
90
91/* Spin-lock protecting profiling statistics. */
92static struct mtx time_lock;
93
94SDT_PROVIDER_DECLARE(sched);
95SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
96
97static int
98sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
99{
100	int error;
101	long cp_time[CPUSTATES];
102#ifdef SCTL_MASK32
103	int i;
104	unsigned int cp_time32[CPUSTATES];
105#endif
106
107	read_cpu_time(cp_time);
108#ifdef SCTL_MASK32
109	if (req->flags & SCTL_MASK32) {
110		if (!req->oldptr)
111			return SYSCTL_OUT(req, 0, sizeof(cp_time32));
112		for (i = 0; i < CPUSTATES; i++)
113			cp_time32[i] = (unsigned int)cp_time[i];
114		error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
115	} else
116#endif
117	{
118		if (!req->oldptr)
119			return SYSCTL_OUT(req, 0, sizeof(cp_time));
120		error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
121	}
122	return error;
123}
124
125SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
126    0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
127
128static long empty[CPUSTATES];
129
130static int
131sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
132{
133	struct pcpu *pcpu;
134	int error;
135	int c;
136	long *cp_time;
137#ifdef SCTL_MASK32
138	unsigned int cp_time32[CPUSTATES];
139	int i;
140#endif
141
142	if (!req->oldptr) {
143#ifdef SCTL_MASK32
144		if (req->flags & SCTL_MASK32)
145			return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
146		else
147#endif
148			return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
149	}
150	for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
151		if (!CPU_ABSENT(c)) {
152			pcpu = pcpu_find(c);
153			cp_time = pcpu->pc_cp_time;
154		} else {
155			cp_time = empty;
156		}
157#ifdef SCTL_MASK32
158		if (req->flags & SCTL_MASK32) {
159			for (i = 0; i < CPUSTATES; i++)
160				cp_time32[i] = (unsigned int)cp_time[i];
161			error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
162		} else
163#endif
164			error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
165	}
166	return error;
167}
168
169SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
170    0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
171
172#ifdef DEADLKRES
173static const char *blessed[] = {
174	"getblk",
175	"so_snd_sx",
176	"so_rcv_sx",
177	NULL
178};
179static int slptime_threshold = 1800;
180static int blktime_threshold = 900;
181static int sleepfreq = 3;
182
183static void
184deadlkres(void)
185{
186	struct proc *p;
187	struct thread *td;
188	void *wchan;
189	int blkticks, i, slpticks, slptype, tryl, tticks;
190
191	tryl = 0;
192	for (;;) {
193		blkticks = blktime_threshold * hz;
194		slpticks = slptime_threshold * hz;
195
196		/*
197		 * Avoid to sleep on the sx_lock in order to avoid a possible
198		 * priority inversion problem leading to starvation.
199		 * If the lock can't be held after 100 tries, panic.
200		 */
201		if (!sx_try_slock(&allproc_lock)) {
202			if (tryl > 100)
203		panic("%s: possible deadlock detected on allproc_lock\n",
204				    __func__);
205			tryl++;
206			pause("allproc", sleepfreq * hz);
207			continue;
208		}
209		tryl = 0;
210		FOREACH_PROC_IN_SYSTEM(p) {
211			PROC_LOCK(p);
212			if (p->p_state == PRS_NEW) {
213				PROC_UNLOCK(p);
214				continue;
215			}
216			FOREACH_THREAD_IN_PROC(p, td) {
217
218				thread_lock(td);
219				if (TD_ON_LOCK(td)) {
220
221					/*
222					 * The thread should be blocked on a
223					 * turnstile, simply check if the
224					 * turnstile channel is in good state.
225					 */
226					MPASS(td->td_blocked != NULL);
227
228					tticks = ticks - td->td_blktick;
229					thread_unlock(td);
230					if (tticks > blkticks) {
231
232						/*
233						 * Accordingly with provided
234						 * thresholds, this thread is
235						 * stuck for too long on a
236						 * turnstile.
237						 */
238						PROC_UNLOCK(p);
239						sx_sunlock(&allproc_lock);
240	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
241						    __func__, td, tticks);
242					}
243				} else if (TD_IS_SLEEPING(td) &&
244				    TD_ON_SLEEPQ(td)) {
245
246					/*
247					 * Check if the thread is sleeping on a
248					 * lock, otherwise skip the check.
249					 * Drop the thread lock in order to
250					 * avoid a LOR with the sleepqueue
251					 * spinlock.
252					 */
253					wchan = td->td_wchan;
254					tticks = ticks - td->td_slptick;
255					thread_unlock(td);
256					slptype = sleepq_type(wchan);
257					if ((slptype == SLEEPQ_SX ||
258					    slptype == SLEEPQ_LK) &&
259					    tticks > slpticks) {
260
261						/*
262						 * Accordingly with provided
263						 * thresholds, this thread is
264						 * stuck for too long on a
265						 * sleepqueue.
266						 * However, being on a
267						 * sleepqueue, we might still
268						 * check for the blessed
269						 * list.
270						 */
271						tryl = 0;
272						for (i = 0; blessed[i] != NULL;
273						    i++) {
274							if (!strcmp(blessed[i],
275							    td->td_wmesg)) {
276								tryl = 1;
277								break;
278							}
279						}
280						if (tryl != 0) {
281							tryl = 0;
282							continue;
283						}
284						PROC_UNLOCK(p);
285						sx_sunlock(&allproc_lock);
286	panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
287						    __func__, td, tticks);
288					}
289				} else
290					thread_unlock(td);
291			}
292			PROC_UNLOCK(p);
293		}
294		sx_sunlock(&allproc_lock);
295
296		/* Sleep for sleepfreq seconds. */
297		pause("-", sleepfreq * hz);
298	}
299}
300
301static struct kthread_desc deadlkres_kd = {
302	"deadlkres",
303	deadlkres,
304	(struct thread **)NULL
305};
306
307SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
308
309static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
310    "Deadlock resolver");
311SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
312    &slptime_threshold, 0,
313    "Number of seconds within is valid to sleep on a sleepqueue");
314SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
315    &blktime_threshold, 0,
316    "Number of seconds within is valid to block on a turnstile");
317SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
318    "Number of seconds between any deadlock resolver thread run");
319#endif	/* DEADLKRES */
320
321void
322read_cpu_time(long *cp_time)
323{
324	struct pcpu *pc;
325	int i, j;
326
327	/* Sum up global cp_time[]. */
328	bzero(cp_time, sizeof(long) * CPUSTATES);
329	CPU_FOREACH(i) {
330		pc = pcpu_find(i);
331		for (j = 0; j < CPUSTATES; j++)
332			cp_time[j] += pc->pc_cp_time[j];
333	}
334}
335
336#ifdef SW_WATCHDOG
337#include <sys/watchdog.h>
338
339static int watchdog_ticks;
340static int watchdog_enabled;
341static void watchdog_fire(void);
342static void watchdog_config(void *, u_int, int *);
343#endif /* SW_WATCHDOG */
344
345/*
346 * Clock handling routines.
347 *
348 * This code is written to operate with two timers that run independently of
349 * each other.
350 *
351 * The main timer, running hz times per second, is used to trigger interval
352 * timers, timeouts and rescheduling as needed.
353 *
354 * The second timer handles kernel and user profiling,
355 * and does resource use estimation.  If the second timer is programmable,
356 * it is randomized to avoid aliasing between the two clocks.  For example,
357 * the randomization prevents an adversary from always giving up the cpu
358 * just before its quantum expires.  Otherwise, it would never accumulate
359 * cpu ticks.  The mean frequency of the second timer is stathz.
360 *
361 * If no second timer exists, stathz will be zero; in this case we drive
362 * profiling and statistics off the main clock.  This WILL NOT be accurate;
363 * do not do it unless absolutely necessary.
364 *
365 * The statistics clock may (or may not) be run at a higher rate while
366 * profiling.  This profile clock runs at profhz.  We require that profhz
367 * be an integral multiple of stathz.
368 *
369 * If the statistics clock is running fast, it must be divided by the ratio
370 * profhz/stathz for statistics.  (For profiling, every tick counts.)
371 *
372 * Time-of-day is maintained using a "timecounter", which may or may
373 * not be related to the hardware generating the above mentioned
374 * interrupts.
375 */
376
377int	stathz;
378int	profhz;
379int	profprocs;
380volatile int	ticks;
381int	psratio;
382
383static DPCPU_DEFINE(int, pcputicks);	/* Per-CPU version of ticks. */
384#ifdef DEVICE_POLLING
385static int devpoll_run = 0;
386#endif
387
388/*
389 * Initialize clock frequencies and start both clocks running.
390 */
391/* ARGSUSED*/
392static void
393initclocks(dummy)
394	void *dummy;
395{
396#ifdef EARLY_AP_STARTUP
397	struct proc *p;
398	struct thread *td;
399#endif
400	register int i;
401
402	/*
403	 * Set divisors to 1 (normal case) and let the machine-specific
404	 * code do its bit.
405	 */
406	mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
407	cpu_initclocks();
408
409	/*
410	 * Compute profhz/stathz, and fix profhz if needed.
411	 */
412	i = stathz ? stathz : hz;
413	if (profhz == 0)
414		profhz = i;
415	psratio = profhz / i;
416#ifdef SW_WATCHDOG
417	EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
418#endif
419	/*
420	 * Arrange for ticks to wrap 10 minutes after boot to help catch
421	 * sign problems sooner.
422	 */
423	ticks = INT_MAX - (hz * 10 * 60);
424
425#ifdef EARLY_AP_STARTUP
426	/*
427	 * Fixup the tick counts in any blocked or sleeping threads to
428	 * account for the jump above.
429	 */
430	sx_slock(&allproc_lock);
431	FOREACH_PROC_IN_SYSTEM(p) {
432		PROC_LOCK(p);
433		if (p->p_state == PRS_NEW) {
434			PROC_UNLOCK(p);
435			continue;
436		}
437		FOREACH_THREAD_IN_PROC(p, td) {
438			thread_lock(td);
439			if (TD_ON_LOCK(td)) {
440				MPASS(td->td_blktick == 0);
441				td->td_blktick = ticks;
442			}
443			if (TD_ON_SLEEPQ(td)) {
444				MPASS(td->td_slptick == 0);
445				td->td_slptick = ticks;
446			}
447			thread_unlock(td);
448		}
449		PROC_UNLOCK(p);
450	}
451	sx_sunlock(&allproc_lock);
452#endif
453}
454
455/*
456 * Each time the real-time timer fires, this function is called on all CPUs.
457 * Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
458 * the other CPUs in the system need to call this function.
459 */
460void
461hardclock_cpu(int usermode)
462{
463	struct pstats *pstats;
464	struct thread *td = curthread;
465	struct proc *p = td->td_proc;
466	int flags;
467
468	/*
469	 * Run current process's virtual and profile time, as needed.
470	 */
471	pstats = p->p_stats;
472	flags = 0;
473	if (usermode &&
474	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
475		PROC_ITIMLOCK(p);
476		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
477			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
478		PROC_ITIMUNLOCK(p);
479	}
480	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
481		PROC_ITIMLOCK(p);
482		if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
483			flags |= TDF_PROFPEND | TDF_ASTPENDING;
484		PROC_ITIMUNLOCK(p);
485	}
486	thread_lock(td);
487	td->td_flags |= flags;
488	thread_unlock(td);
489
490#ifdef HWPMC_HOOKS
491	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
492		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
493	if (td->td_intr_frame != NULL)
494		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
495#endif
496	callout_process(sbinuptime());
497}
498
499/*
500 * The real-time timer, interrupting hz times per second.
501 */
502void
503hardclock(int usermode, uintfptr_t pc)
504{
505
506	atomic_add_int(&ticks, 1);
507	hardclock_cpu(usermode);
508	tc_ticktock(1);
509	cpu_tick_calibration();
510	/*
511	 * If no separate statistics clock is available, run it from here.
512	 *
513	 * XXX: this only works for UP
514	 */
515	if (stathz == 0) {
516		profclock(usermode, pc);
517		statclock(usermode);
518	}
519#ifdef DEVICE_POLLING
520	hardclock_device_poll();	/* this is very short and quick */
521#endif /* DEVICE_POLLING */
522#ifdef SW_WATCHDOG
523	if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
524		watchdog_fire();
525#endif /* SW_WATCHDOG */
526}
527
528void
529hardclock_cnt(int cnt, int usermode)
530{
531	struct pstats *pstats;
532	struct thread *td = curthread;
533	struct proc *p = td->td_proc;
534	int *t = DPCPU_PTR(pcputicks);
535	int flags, global, newticks;
536#ifdef SW_WATCHDOG
537	int i;
538#endif /* SW_WATCHDOG */
539
540	/*
541	 * Update per-CPU and possibly global ticks values.
542	 */
543	*t += cnt;
544	do {
545		global = ticks;
546		newticks = *t - global;
547		if (newticks <= 0) {
548			if (newticks < -1)
549				*t = global - 1;
550			newticks = 0;
551			break;
552		}
553	} while (!atomic_cmpset_int(&ticks, global, *t));
554
555	/*
556	 * Run current process's virtual and profile time, as needed.
557	 */
558	pstats = p->p_stats;
559	flags = 0;
560	if (usermode &&
561	    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
562		PROC_ITIMLOCK(p);
563		if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
564		    tick * cnt) == 0)
565			flags |= TDF_ALRMPEND | TDF_ASTPENDING;
566		PROC_ITIMUNLOCK(p);
567	}
568	if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
569		PROC_ITIMLOCK(p);
570		if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
571		    tick * cnt) == 0)
572			flags |= TDF_PROFPEND | TDF_ASTPENDING;
573		PROC_ITIMUNLOCK(p);
574	}
575	if (flags != 0) {
576		thread_lock(td);
577		td->td_flags |= flags;
578		thread_unlock(td);
579	}
580
581#ifdef	HWPMC_HOOKS
582	if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
583		PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
584	if (td->td_intr_frame != NULL)
585		PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
586#endif
587	/* We are in charge to handle this tick duty. */
588	if (newticks > 0) {
589		tc_ticktock(newticks);
590#ifdef DEVICE_POLLING
591		/* Dangerous and no need to call these things concurrently. */
592		if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
593			/* This is very short and quick. */
594			hardclock_device_poll();
595			atomic_store_rel_int(&devpoll_run, 0);
596		}
597#endif /* DEVICE_POLLING */
598#ifdef SW_WATCHDOG
599		if (watchdog_enabled > 0) {
600			i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
601			if (i > 0 && i <= newticks)
602				watchdog_fire();
603		}
604#endif /* SW_WATCHDOG */
605	}
606	if (curcpu == CPU_FIRST())
607		cpu_tick_calibration();
608}
609
610void
611hardclock_sync(int cpu)
612{
613	int	*t = DPCPU_ID_PTR(cpu, pcputicks);
614
615	*t = ticks;
616}
617
618/*
619 * Compute number of ticks in the specified amount of time.
620 */
621int
622tvtohz(tv)
623	struct timeval *tv;
624{
625	register unsigned long ticks;
626	register long sec, usec;
627
628	/*
629	 * If the number of usecs in the whole seconds part of the time
630	 * difference fits in a long, then the total number of usecs will
631	 * fit in an unsigned long.  Compute the total and convert it to
632	 * ticks, rounding up and adding 1 to allow for the current tick
633	 * to expire.  Rounding also depends on unsigned long arithmetic
634	 * to avoid overflow.
635	 *
636	 * Otherwise, if the number of ticks in the whole seconds part of
637	 * the time difference fits in a long, then convert the parts to
638	 * ticks separately and add, using similar rounding methods and
639	 * overflow avoidance.  This method would work in the previous
640	 * case but it is slightly slower and assumes that hz is integral.
641	 *
642	 * Otherwise, round the time difference down to the maximum
643	 * representable value.
644	 *
645	 * If ints have 32 bits, then the maximum value for any timeout in
646	 * 10ms ticks is 248 days.
647	 */
648	sec = tv->tv_sec;
649	usec = tv->tv_usec;
650	if (usec < 0) {
651		sec--;
652		usec += 1000000;
653	}
654	if (sec < 0) {
655#ifdef DIAGNOSTIC
656		if (usec > 0) {
657			sec++;
658			usec -= 1000000;
659		}
660		printf("tvotohz: negative time difference %ld sec %ld usec\n",
661		       sec, usec);
662#endif
663		ticks = 1;
664	} else if (sec <= LONG_MAX / 1000000)
665		ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1;
666	else if (sec <= LONG_MAX / hz)
667		ticks = sec * hz
668			+ howmany((unsigned long)usec, tick) + 1;
669	else
670		ticks = LONG_MAX;
671	if (ticks > INT_MAX)
672		ticks = INT_MAX;
673	return ((int)ticks);
674}
675
676/*
677 * Start profiling on a process.
678 *
679 * Kernel profiling passes proc0 which never exits and hence
680 * keeps the profile clock running constantly.
681 */
682void
683startprofclock(p)
684	register struct proc *p;
685{
686
687	PROC_LOCK_ASSERT(p, MA_OWNED);
688	if (p->p_flag & P_STOPPROF)
689		return;
690	if ((p->p_flag & P_PROFIL) == 0) {
691		p->p_flag |= P_PROFIL;
692		mtx_lock(&time_lock);
693		if (++profprocs == 1)
694			cpu_startprofclock();
695		mtx_unlock(&time_lock);
696	}
697}
698
699/*
700 * Stop profiling on a process.
701 */
702void
703stopprofclock(p)
704	register struct proc *p;
705{
706
707	PROC_LOCK_ASSERT(p, MA_OWNED);
708	if (p->p_flag & P_PROFIL) {
709		if (p->p_profthreads != 0) {
710			while (p->p_profthreads != 0) {
711				p->p_flag |= P_STOPPROF;
712				msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
713				    "stopprof", 0);
714			}
715		}
716		if ((p->p_flag & P_PROFIL) == 0)
717			return;
718		p->p_flag &= ~P_PROFIL;
719		mtx_lock(&time_lock);
720		if (--profprocs == 0)
721			cpu_stopprofclock();
722		mtx_unlock(&time_lock);
723	}
724}
725
726/*
727 * Statistics clock.  Updates rusage information and calls the scheduler
728 * to adjust priorities of the active thread.
729 *
730 * This should be called by all active processors.
731 */
732void
733statclock(int usermode)
734{
735
736	statclock_cnt(1, usermode);
737}
738
739void
740statclock_cnt(int cnt, int usermode)
741{
742	struct rusage *ru;
743	struct vmspace *vm;
744	struct thread *td;
745	struct proc *p;
746	long rss;
747	long *cp_time;
748
749	td = curthread;
750	p = td->td_proc;
751
752	cp_time = (long *)PCPU_PTR(cp_time);
753	if (usermode) {
754		/*
755		 * Charge the time as appropriate.
756		 */
757		td->td_uticks += cnt;
758		if (p->p_nice > NZERO)
759			cp_time[CP_NICE] += cnt;
760		else
761			cp_time[CP_USER] += cnt;
762	} else {
763		/*
764		 * Came from kernel mode, so we were:
765		 * - handling an interrupt,
766		 * - doing syscall or trap work on behalf of the current
767		 *   user process, or
768		 * - spinning in the idle loop.
769		 * Whichever it is, charge the time as appropriate.
770		 * Note that we charge interrupts to the current process,
771		 * regardless of whether they are ``for'' that process,
772		 * so that we know how much of its real time was spent
773		 * in ``non-process'' (i.e., interrupt) work.
774		 */
775		if ((td->td_pflags & TDP_ITHREAD) ||
776		    td->td_intr_nesting_level >= 2) {
777			td->td_iticks += cnt;
778			cp_time[CP_INTR] += cnt;
779		} else {
780			td->td_pticks += cnt;
781			td->td_sticks += cnt;
782			if (!TD_IS_IDLETHREAD(td))
783				cp_time[CP_SYS] += cnt;
784			else
785				cp_time[CP_IDLE] += cnt;
786		}
787	}
788
789	/* Update resource usage integrals and maximums. */
790	MPASS(p->p_vmspace != NULL);
791	vm = p->p_vmspace;
792	ru = &td->td_ru;
793	ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
794	ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
795	ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
796	rss = pgtok(vmspace_resident_count(vm));
797	if (ru->ru_maxrss < rss)
798		ru->ru_maxrss = rss;
799	KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
800	    "prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
801	SDT_PROBE2(sched, , , tick, td, td->td_proc);
802	thread_lock_flags(td, MTX_QUIET);
803	for ( ; cnt > 0; cnt--)
804		sched_clock(td);
805	thread_unlock(td);
806#ifdef HWPMC_HOOKS
807	if (td->td_intr_frame != NULL)
808		PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
809#endif
810}
811
812void
813profclock(int usermode, uintfptr_t pc)
814{
815
816	profclock_cnt(1, usermode, pc);
817}
818
819void
820profclock_cnt(int cnt, int usermode, uintfptr_t pc)
821{
822	struct thread *td;
823#ifdef GPROF
824	struct gmonparam *g;
825	uintfptr_t i;
826#endif
827
828	td = curthread;
829	if (usermode) {
830		/*
831		 * Came from user mode; CPU was in user state.
832		 * If this process is being profiled, record the tick.
833		 * if there is no related user location yet, don't
834		 * bother trying to count it.
835		 */
836		if (td->td_proc->p_flag & P_PROFIL)
837			addupc_intr(td, pc, cnt);
838	}
839#ifdef GPROF
840	else {
841		/*
842		 * Kernel statistics are just like addupc_intr, only easier.
843		 */
844		g = &_gmonparam;
845		if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
846			i = PC_TO_I(g, pc);
847			if (i < g->textsize) {
848				KCOUNT(g, i) += cnt;
849			}
850		}
851	}
852#endif
853#ifdef HWPMC_HOOKS
854	if (td->td_intr_frame != NULL)
855		PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
856#endif
857}
858
859/*
860 * Return information about system clocks.
861 */
862static int
863sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
864{
865	struct clockinfo clkinfo;
866	/*
867	 * Construct clockinfo structure.
868	 */
869	bzero(&clkinfo, sizeof(clkinfo));
870	clkinfo.hz = hz;
871	clkinfo.tick = tick;
872	clkinfo.profhz = profhz;
873	clkinfo.stathz = stathz ? stathz : hz;
874	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
875}
876
877SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
878	CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
879	0, 0, sysctl_kern_clockrate, "S,clockinfo",
880	"Rate and period of various kernel clocks");
881
882#ifdef SW_WATCHDOG
883
884static void
885watchdog_config(void *unused __unused, u_int cmd, int *error)
886{
887	u_int u;
888
889	u = cmd & WD_INTERVAL;
890	if (u >= WD_TO_1SEC) {
891		watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
892		watchdog_enabled = 1;
893		*error = 0;
894	} else {
895		watchdog_enabled = 0;
896	}
897}
898
899/*
900 * Handle a watchdog timeout by dumping interrupt information and
901 * then either dropping to DDB or panicking.
902 */
903static void
904watchdog_fire(void)
905{
906	int nintr;
907	uint64_t inttotal;
908	u_long *curintr;
909	char *curname;
910
911	curintr = intrcnt;
912	curname = intrnames;
913	inttotal = 0;
914	nintr = sintrcnt / sizeof(u_long);
915
916	printf("interrupt                   total\n");
917	while (--nintr >= 0) {
918		if (*curintr)
919			printf("%-12s %20lu\n", curname, *curintr);
920		curname += strlen(curname) + 1;
921		inttotal += *curintr++;
922	}
923	printf("Total        %20ju\n", (uintmax_t)inttotal);
924
925#if defined(KDB) && !defined(KDB_UNATTENDED)
926	kdb_backtrace();
927	kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
928#else
929	panic("watchdog timeout");
930#endif
931}
932
933#endif /* SW_WATCHDOG */
934