npx.c revision 320309
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/i386/isa/npx.c 320309 2017-06-24 13:53:47Z kib $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58#include <vm/uma.h>
59
60#include <machine/asmacros.h>
61#include <machine/cputypes.h>
62#include <machine/frame.h>
63#include <machine/md_var.h>
64#include <machine/pcb.h>
65#include <machine/psl.h>
66#include <machine/resource.h>
67#include <machine/specialreg.h>
68#include <machine/segments.h>
69#include <machine/ucontext.h>
70
71#include <machine/intr_machdep.h>
72
73#ifdef DEV_ISA
74#include <isa/isavar.h>
75#endif
76
77/*
78 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
79 */
80
81#if defined(__GNUCLIKE_ASM) && !defined(lint)
82
83#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
84#define	fnclex()		__asm __volatile("fnclex")
85#define	fninit()		__asm __volatile("fninit")
86#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
87#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
88#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
89#define	fp_divide_by_0()	__asm __volatile( \
90				    "fldz; fld1; fdiv %st,%st(1); fnop")
91#define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
92#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
93#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
94#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
95#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
96
97static __inline void
98xrstor(char *addr, uint64_t mask)
99{
100	uint32_t low, hi;
101
102	low = mask;
103	hi = mask >> 32;
104	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
105}
106
107static __inline void
108xsave(char *addr, uint64_t mask)
109{
110	uint32_t low, hi;
111
112	low = mask;
113	hi = mask >> 32;
114	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
115	    "memory");
116}
117
118static __inline void
119xsaveopt(char *addr, uint64_t mask)
120{
121	uint32_t low, hi;
122
123	low = mask;
124	hi = mask >> 32;
125	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
126	    "memory");
127}
128#else	/* !(__GNUCLIKE_ASM && !lint) */
129
130void	fldcw(u_short cw);
131void	fnclex(void);
132void	fninit(void);
133void	fnsave(caddr_t addr);
134void	fnstcw(caddr_t addr);
135void	fnstsw(caddr_t addr);
136void	fp_divide_by_0(void);
137void	frstor(caddr_t addr);
138void	fxsave(caddr_t addr);
139void	fxrstor(caddr_t addr);
140void	ldmxcsr(u_int csr);
141void	stmxcsr(u_int *csr);
142void	xrstor(char *addr, uint64_t mask);
143void	xsave(char *addr, uint64_t mask);
144void	xsaveopt(char *addr, uint64_t mask);
145
146#endif	/* __GNUCLIKE_ASM && !lint */
147
148#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
149#define	stop_emulating()	clts()
150
151#define GET_FPU_CW(thread) \
152	(cpu_fxsr ? \
153		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
154		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
155#define GET_FPU_SW(thread) \
156	(cpu_fxsr ? \
157		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
158		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
159#define SET_FPU_CW(savefpu, value) do { \
160	if (cpu_fxsr) \
161		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
162	else \
163		(savefpu)->sv_87.sv_env.en_cw = (value); \
164} while (0)
165
166CTASSERT(sizeof(union savefpu) == 512);
167CTASSERT(sizeof(struct xstate_hdr) == 64);
168CTASSERT(sizeof(struct savefpu_ymm) == 832);
169
170/*
171 * This requirement is to make it easier for asm code to calculate
172 * offset of the fpu save area from the pcb address. FPU save area
173 * must be 64-byte aligned.
174 */
175CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
176
177/*
178 * Ensure the copy of XCR0 saved in a core is contained in the padding
179 * area.
180 */
181CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
182    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
183
184static	void	fpu_clean_state(void);
185
186static	void	fpusave(union savefpu *);
187static	void	fpurstor(union savefpu *);
188
189int	hw_float;
190
191SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
192    &hw_float, 0, "Floating point instructions executed in hardware");
193
194int use_xsave;
195uint64_t xsave_mask;
196static	uma_zone_t fpu_save_area_zone;
197static	union savefpu *npx_initialstate;
198
199struct xsave_area_elm_descr {
200	u_int	offset;
201	u_int	size;
202} *xsave_area_desc;
203
204static int use_xsaveopt;
205
206static	volatile u_int		npx_traps_while_probing;
207
208alias_for_inthand_t probetrap;
209__asm("								\n\
210	.text							\n\
211	.p2align 2,0x90						\n\
212	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
213" __XSTRING(CNAME(probetrap)) ":				\n\
214	ss							\n\
215	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
216	fnclex							\n\
217	iret							\n\
218");
219
220/*
221 * Determine if an FPU is present and how to use it.
222 */
223static int
224npx_probe(void)
225{
226	struct gate_descriptor save_idt_npxtrap;
227	u_short control, status;
228
229	/*
230	 * Modern CPUs all have an FPU that uses the INT16 interface
231	 * and provide a simple way to verify that, so handle the
232	 * common case right away.
233	 */
234	if (cpu_feature & CPUID_FPU) {
235		hw_float = 1;
236		return (1);
237	}
238
239	save_idt_npxtrap = idt[IDT_MF];
240	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
241	    GSEL(GCODE_SEL, SEL_KPL));
242
243	/*
244	 * Don't trap while we're probing.
245	 */
246	stop_emulating();
247
248	/*
249	 * Finish resetting the coprocessor, if any.  If there is an error
250	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
251	 * it OK.  Bogus halts have never been observed, but we enabled
252	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
253	 */
254	fninit();
255
256	/*
257	 * Don't use fwait here because it might hang.
258	 * Don't use fnop here because it usually hangs if there is no FPU.
259	 */
260	DELAY(1000);		/* wait for any IRQ13 */
261#ifdef DIAGNOSTIC
262	if (npx_traps_while_probing != 0)
263		printf("fninit caused %u bogus npx trap(s)\n",
264		       npx_traps_while_probing);
265#endif
266	/*
267	 * Check for a status of mostly zero.
268	 */
269	status = 0x5a5a;
270	fnstsw(&status);
271	if ((status & 0xb8ff) == 0) {
272		/*
273		 * Good, now check for a proper control word.
274		 */
275		control = 0x5a5a;
276		fnstcw(&control);
277		if ((control & 0x1f3f) == 0x033f) {
278			/*
279			 * We have an npx, now divide by 0 to see if exception
280			 * 16 works.
281			 */
282			control &= ~(1 << 2);	/* enable divide by 0 trap */
283			fldcw(control);
284#ifdef FPU_ERROR_BROKEN
285			/*
286			 * FPU error signal doesn't work on some CPU
287			 * accelerator board.
288			 */
289			hw_float = 1;
290			return (1);
291#endif
292			npx_traps_while_probing = 0;
293			fp_divide_by_0();
294			if (npx_traps_while_probing != 0) {
295				/*
296				 * Good, exception 16 works.
297				 */
298				hw_float = 1;
299				goto cleanup;
300			}
301			printf(
302	"FPU does not use exception 16 for error reporting\n");
303			goto cleanup;
304		}
305	}
306
307	/*
308	 * Probe failed.  Floating point simply won't work.
309	 * Notify user and disable FPU/MMX/SSE instruction execution.
310	 */
311	printf("WARNING: no FPU!\n");
312	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
313	    "n" (CR0_EM | CR0_MP) : "ax");
314
315cleanup:
316	idt[IDT_MF] = save_idt_npxtrap;
317	return (hw_float);
318}
319
320/*
321 * Enable XSAVE if supported and allowed by user.
322 * Calculate the xsave_mask.
323 */
324static void
325npxinit_bsp1(void)
326{
327	u_int cp[4];
328	uint64_t xsave_mask_user;
329
330	if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
331		use_xsave = 1;
332		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
333	}
334	if (!use_xsave)
335		return;
336
337	cpuid_count(0xd, 0x0, cp);
338	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
339	if ((cp[0] & xsave_mask) != xsave_mask)
340		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
341	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
342	xsave_mask_user = xsave_mask;
343	TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
344	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
345	xsave_mask &= xsave_mask_user;
346	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
347		xsave_mask &= ~XFEATURE_AVX512;
348	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
349		xsave_mask &= ~XFEATURE_MPX;
350
351	cpuid_count(0xd, 0x1, cp);
352	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
353		use_xsaveopt = 1;
354}
355
356/*
357
358 * Calculate the fpu save area size.
359 */
360static void
361npxinit_bsp2(void)
362{
363	u_int cp[4];
364
365	if (use_xsave) {
366		cpuid_count(0xd, 0x0, cp);
367		cpu_max_ext_state_size = cp[1];
368
369		/*
370		 * Reload the cpu_feature2, since we enabled OSXSAVE.
371		 */
372		do_cpuid(1, cp);
373		cpu_feature2 = cp[2];
374	} else
375		cpu_max_ext_state_size = sizeof(union savefpu);
376}
377
378/*
379 * Initialize floating point unit.
380 */
381void
382npxinit(bool bsp)
383{
384	static union savefpu dummy;
385	register_t saveintr;
386	u_int mxcsr;
387	u_short control;
388
389	if (bsp) {
390		if (!npx_probe())
391			return;
392		npxinit_bsp1();
393	}
394
395	if (use_xsave) {
396		load_cr4(rcr4() | CR4_XSAVE);
397		load_xcr(XCR0, xsave_mask);
398	}
399
400	/*
401	 * XCR0 shall be set up before CPU can report the save area size.
402	 */
403	if (bsp)
404		npxinit_bsp2();
405
406	/*
407	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
408	 * fnsave to throw away any junk in the fpu.  fpusave() initializes
409	 * the fpu.
410	 *
411	 * It is too early for critical_enter() to work on AP.
412	 */
413	saveintr = intr_disable();
414	stop_emulating();
415	if (cpu_fxsr)
416		fninit();
417	else
418		fnsave(&dummy);
419	control = __INITIAL_NPXCW__;
420	fldcw(control);
421	if (cpu_fxsr) {
422		mxcsr = __INITIAL_MXCSR__;
423		ldmxcsr(mxcsr);
424	}
425	start_emulating();
426	intr_restore(saveintr);
427}
428
429/*
430 * On the boot CPU we generate a clean state that is used to
431 * initialize the floating point unit when it is first used by a
432 * process.
433 */
434static void
435npxinitstate(void *arg __unused)
436{
437	register_t saveintr;
438	int cp[4], i, max_ext_n;
439
440	if (!hw_float)
441		return;
442
443	npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
444	    M_WAITOK | M_ZERO);
445	saveintr = intr_disable();
446	stop_emulating();
447
448	fpusave(npx_initialstate);
449	if (cpu_fxsr) {
450		if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
451			cpu_mxcsr_mask =
452			    npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
453		else
454			cpu_mxcsr_mask = 0xFFBF;
455
456		/*
457		 * The fninit instruction does not modify XMM
458		 * registers or x87 registers (MM/ST).  The fpusave
459		 * call dumped the garbage contained in the registers
460		 * after reset to the initial state saved.  Clear XMM
461		 * and x87 registers file image to make the startup
462		 * program state and signal handler XMM/x87 register
463		 * content predictable.
464		 */
465		bzero(npx_initialstate->sv_xmm.sv_fp,
466		    sizeof(npx_initialstate->sv_xmm.sv_fp));
467		bzero(npx_initialstate->sv_xmm.sv_xmm,
468		    sizeof(npx_initialstate->sv_xmm.sv_xmm));
469	} else
470		bzero(npx_initialstate->sv_87.sv_ac,
471		    sizeof(npx_initialstate->sv_87.sv_ac));
472
473	/*
474	 * Create a table describing the layout of the CPU Extended
475	 * Save Area.
476	 */
477	if (use_xsave) {
478		if (xsave_mask >> 32 != 0)
479			max_ext_n = fls(xsave_mask >> 32) + 32;
480		else
481			max_ext_n = fls(xsave_mask);
482		xsave_area_desc = malloc(max_ext_n * sizeof(struct
483		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
484		/* x87 state */
485		xsave_area_desc[0].offset = 0;
486		xsave_area_desc[0].size = 160;
487		/* XMM */
488		xsave_area_desc[1].offset = 160;
489		xsave_area_desc[1].size = 288 - 160;
490
491		for (i = 2; i < max_ext_n; i++) {
492			cpuid_count(0xd, i, cp);
493			xsave_area_desc[i].offset = cp[1];
494			xsave_area_desc[i].size = cp[0];
495		}
496	}
497
498	fpu_save_area_zone = uma_zcreate("FPU_save_area",
499	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
500	    XSAVE_AREA_ALIGN - 1, 0);
501
502	start_emulating();
503	intr_restore(saveintr);
504}
505SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
506
507/*
508 * Free coprocessor (if we have it).
509 */
510void
511npxexit(struct thread *td)
512{
513
514	critical_enter();
515	if (curthread == PCPU_GET(fpcurthread)) {
516		stop_emulating();
517		fpusave(curpcb->pcb_save);
518		start_emulating();
519		PCPU_SET(fpcurthread, NULL);
520	}
521	critical_exit();
522#ifdef NPX_DEBUG
523	if (hw_float) {
524		u_int	masked_exceptions;
525
526		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
527		/*
528		 * Log exceptions that would have trapped with the old
529		 * control word (overflow, divide by 0, and invalid operand).
530		 */
531		if (masked_exceptions & 0x0d)
532			log(LOG_ERR,
533	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
534			    td->td_proc->p_pid, td->td_proc->p_comm,
535			    masked_exceptions);
536	}
537#endif
538}
539
540int
541npxformat(void)
542{
543
544	if (!hw_float)
545		return (_MC_FPFMT_NODEV);
546	if (cpu_fxsr)
547		return (_MC_FPFMT_XMM);
548	return (_MC_FPFMT_387);
549}
550
551/*
552 * The following mechanism is used to ensure that the FPE_... value
553 * that is passed as a trapcode to the signal handler of the user
554 * process does not have more than one bit set.
555 *
556 * Multiple bits may be set if the user process modifies the control
557 * word while a status word bit is already set.  While this is a sign
558 * of bad coding, we have no choise than to narrow them down to one
559 * bit, since we must not send a trapcode that is not exactly one of
560 * the FPE_ macros.
561 *
562 * The mechanism has a static table with 127 entries.  Each combination
563 * of the 7 FPU status word exception bits directly translates to a
564 * position in this table, where a single FPE_... value is stored.
565 * This FPE_... value stored there is considered the "most important"
566 * of the exception bits and will be sent as the signal code.  The
567 * precedence of the bits is based upon Intel Document "Numerical
568 * Applications", Chapter "Special Computational Situations".
569 *
570 * The macro to choose one of these values does these steps: 1) Throw
571 * away status word bits that cannot be masked.  2) Throw away the bits
572 * currently masked in the control word, assuming the user isn't
573 * interested in them anymore.  3) Reinsert status word bit 7 (stack
574 * fault) if it is set, which cannot be masked but must be presered.
575 * 4) Use the remaining bits to point into the trapcode table.
576 *
577 * The 6 maskable bits in order of their preference, as stated in the
578 * above referenced Intel manual:
579 * 1  Invalid operation (FP_X_INV)
580 * 1a   Stack underflow
581 * 1b   Stack overflow
582 * 1c   Operand of unsupported format
583 * 1d   SNaN operand.
584 * 2  QNaN operand (not an exception, irrelavant here)
585 * 3  Any other invalid-operation not mentioned above or zero divide
586 *      (FP_X_INV, FP_X_DZ)
587 * 4  Denormal operand (FP_X_DNML)
588 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
589 * 6  Inexact result (FP_X_IMP)
590 */
591static char fpetable[128] = {
592	0,
593	FPE_FLTINV,	/*  1 - INV */
594	FPE_FLTUND,	/*  2 - DNML */
595	FPE_FLTINV,	/*  3 - INV | DNML */
596	FPE_FLTDIV,	/*  4 - DZ */
597	FPE_FLTINV,	/*  5 - INV | DZ */
598	FPE_FLTDIV,	/*  6 - DNML | DZ */
599	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
600	FPE_FLTOVF,	/*  8 - OFL */
601	FPE_FLTINV,	/*  9 - INV | OFL */
602	FPE_FLTUND,	/*  A - DNML | OFL */
603	FPE_FLTINV,	/*  B - INV | DNML | OFL */
604	FPE_FLTDIV,	/*  C - DZ | OFL */
605	FPE_FLTINV,	/*  D - INV | DZ | OFL */
606	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
607	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
608	FPE_FLTUND,	/* 10 - UFL */
609	FPE_FLTINV,	/* 11 - INV | UFL */
610	FPE_FLTUND,	/* 12 - DNML | UFL */
611	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
612	FPE_FLTDIV,	/* 14 - DZ | UFL */
613	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
614	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
615	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
616	FPE_FLTOVF,	/* 18 - OFL | UFL */
617	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
618	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
619	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
620	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
621	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
622	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
623	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
624	FPE_FLTRES,	/* 20 - IMP */
625	FPE_FLTINV,	/* 21 - INV | IMP */
626	FPE_FLTUND,	/* 22 - DNML | IMP */
627	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
628	FPE_FLTDIV,	/* 24 - DZ | IMP */
629	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
630	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
631	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
632	FPE_FLTOVF,	/* 28 - OFL | IMP */
633	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
634	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
635	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
636	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
637	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
638	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
639	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
640	FPE_FLTUND,	/* 30 - UFL | IMP */
641	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
642	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
643	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
644	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
645	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
646	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
647	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
648	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
649	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
650	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
651	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
652	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
653	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
654	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
655	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
656	FPE_FLTSUB,	/* 40 - STK */
657	FPE_FLTSUB,	/* 41 - INV | STK */
658	FPE_FLTUND,	/* 42 - DNML | STK */
659	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
660	FPE_FLTDIV,	/* 44 - DZ | STK */
661	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
662	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
663	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
664	FPE_FLTOVF,	/* 48 - OFL | STK */
665	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
666	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
667	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
668	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
669	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
670	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
671	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
672	FPE_FLTUND,	/* 50 - UFL | STK */
673	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
674	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
675	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
676	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
677	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
678	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
679	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
680	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
681	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
682	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
683	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
684	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
685	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
686	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
687	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
688	FPE_FLTRES,	/* 60 - IMP | STK */
689	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
690	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
691	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
692	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
693	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
694	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
695	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
696	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
697	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
698	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
699	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
700	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
701	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
702	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
703	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
704	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
705	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
706	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
707	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
708	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
709	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
710	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
711	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
712	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
713	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
714	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
715	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
716	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
717	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
718	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
719	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
720};
721
722/*
723 * Read the FP status and control words, then generate si_code value
724 * for SIGFPE.  The error code chosen will be one of the
725 * FPE_... macros.  It will be sent as the second argument to old
726 * BSD-style signal handlers and as "siginfo_t->si_code" (second
727 * argument) to SA_SIGINFO signal handlers.
728 *
729 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
730 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
731 * usermode code which understands the FPU hardware enough to enable
732 * the exceptions, can also handle clearing the exception state in the
733 * handler.  The only consequence of not clearing the exception is the
734 * rethrow of the SIGFPE on return from the signal handler and
735 * reexecution of the corresponding instruction.
736 *
737 * For XMM traps, the exceptions were never cleared.
738 */
739int
740npxtrap_x87(void)
741{
742	u_short control, status;
743
744	if (!hw_float) {
745		printf(
746	"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
747		       PCPU_GET(fpcurthread), curthread, hw_float);
748		panic("npxtrap from nowhere");
749	}
750	critical_enter();
751
752	/*
753	 * Interrupt handling (for another interrupt) may have pushed the
754	 * state to memory.  Fetch the relevant parts of the state from
755	 * wherever they are.
756	 */
757	if (PCPU_GET(fpcurthread) != curthread) {
758		control = GET_FPU_CW(curthread);
759		status = GET_FPU_SW(curthread);
760	} else {
761		fnstcw(&control);
762		fnstsw(&status);
763	}
764	critical_exit();
765	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
766}
767
768int
769npxtrap_sse(void)
770{
771	u_int mxcsr;
772
773	if (!hw_float) {
774		printf(
775	"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
776		       PCPU_GET(fpcurthread), curthread, hw_float);
777		panic("npxtrap from nowhere");
778	}
779	critical_enter();
780	if (PCPU_GET(fpcurthread) != curthread)
781		mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
782	else
783		stmxcsr(&mxcsr);
784	critical_exit();
785	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
786}
787
788/*
789 * Implement device not available (DNA) exception
790 *
791 * It would be better to switch FP context here (if curthread != fpcurthread)
792 * and not necessarily for every context switch, but it is too hard to
793 * access foreign pcb's.
794 */
795
796static int err_count = 0;
797
798int
799npxdna(void)
800{
801
802	if (!hw_float)
803		return (0);
804	critical_enter();
805	if (PCPU_GET(fpcurthread) == curthread) {
806		printf("npxdna: fpcurthread == curthread %d times\n",
807		    ++err_count);
808		stop_emulating();
809		critical_exit();
810		return (1);
811	}
812	if (PCPU_GET(fpcurthread) != NULL) {
813		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
814		       PCPU_GET(fpcurthread),
815		       PCPU_GET(fpcurthread)->td_proc->p_pid,
816		       curthread, curthread->td_proc->p_pid);
817		panic("npxdna");
818	}
819	stop_emulating();
820	/*
821	 * Record new context early in case frstor causes a trap.
822	 */
823	PCPU_SET(fpcurthread, curthread);
824
825	if (cpu_fxsr)
826		fpu_clean_state();
827
828	if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
829		/*
830		 * This is the first time this thread has used the FPU or
831		 * the PCB doesn't contain a clean FPU state.  Explicitly
832		 * load an initial state.
833		 *
834		 * We prefer to restore the state from the actual save
835		 * area in PCB instead of directly loading from
836		 * npx_initialstate, to ignite the XSAVEOPT
837		 * tracking engine.
838		 */
839		bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
840		fpurstor(curpcb->pcb_save);
841		if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
842			fldcw(curpcb->pcb_initial_npxcw);
843		curpcb->pcb_flags |= PCB_NPXINITDONE;
844		if (PCB_USER_FPU(curpcb))
845			curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
846	} else {
847		fpurstor(curpcb->pcb_save);
848	}
849	critical_exit();
850
851	return (1);
852}
853
854/*
855 * Wrapper for fpusave() called from context switch routines.
856 *
857 * npxsave() must be called with interrupts disabled, so that it clears
858 * fpcurthread atomically with saving the state.  We require callers to do the
859 * disabling, since most callers need to disable interrupts anyway to call
860 * npxsave() atomically with checking fpcurthread.
861 */
862void
863npxsave(addr)
864	union savefpu *addr;
865{
866
867	stop_emulating();
868	if (use_xsaveopt)
869		xsaveopt((char *)addr, xsave_mask);
870	else
871		fpusave(addr);
872	start_emulating();
873	PCPU_SET(fpcurthread, NULL);
874}
875
876/*
877 * Unconditionally save the current co-processor state across suspend and
878 * resume.
879 */
880void
881npxsuspend(union savefpu *addr)
882{
883	register_t cr0;
884
885	if (!hw_float)
886		return;
887	if (PCPU_GET(fpcurthread) == NULL) {
888		bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
889		return;
890	}
891	cr0 = rcr0();
892	stop_emulating();
893	fpusave(addr);
894	load_cr0(cr0);
895}
896
897void
898npxresume(union savefpu *addr)
899{
900	register_t cr0;
901
902	if (!hw_float)
903		return;
904
905	cr0 = rcr0();
906	npxinit(false);
907	stop_emulating();
908	fpurstor(addr);
909	load_cr0(cr0);
910}
911
912void
913npxdrop(void)
914{
915	struct thread *td;
916
917	/*
918	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
919	 * ones don't cause a panic on the next frstor.
920	 */
921	if (!cpu_fxsr)
922		fnclex();
923
924	td = PCPU_GET(fpcurthread);
925	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
926	CRITICAL_ASSERT(td);
927	PCPU_SET(fpcurthread, NULL);
928	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
929	start_emulating();
930}
931
932/*
933 * Get the user state of the FPU into pcb->pcb_user_save without
934 * dropping ownership (if possible).  It returns the FPU ownership
935 * status.
936 */
937int
938npxgetregs(struct thread *td)
939{
940	struct pcb *pcb;
941	uint64_t *xstate_bv, bit;
942	char *sa;
943	int max_ext_n, i;
944	int owned;
945
946	if (!hw_float)
947		return (_MC_FPOWNED_NONE);
948
949	pcb = td->td_pcb;
950	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
951		bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
952		    cpu_max_ext_state_size);
953		SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
954		npxuserinited(td);
955		return (_MC_FPOWNED_PCB);
956	}
957	critical_enter();
958	if (td == PCPU_GET(fpcurthread)) {
959		fpusave(get_pcb_user_save_pcb(pcb));
960		if (!cpu_fxsr)
961			/*
962			 * fnsave initializes the FPU and destroys whatever
963			 * context it contains.  Make sure the FPU owner
964			 * starts with a clean state next time.
965			 */
966			npxdrop();
967		owned = _MC_FPOWNED_FPU;
968	} else {
969		owned = _MC_FPOWNED_PCB;
970	}
971	critical_exit();
972	if (use_xsave) {
973		/*
974		 * Handle partially saved state.
975		 */
976		sa = (char *)get_pcb_user_save_pcb(pcb);
977		xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
978		    offsetof(struct xstate_hdr, xstate_bv));
979		if (xsave_mask >> 32 != 0)
980			max_ext_n = fls(xsave_mask >> 32) + 32;
981		else
982			max_ext_n = fls(xsave_mask);
983		for (i = 0; i < max_ext_n; i++) {
984			bit = 1ULL << i;
985			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
986				continue;
987			bcopy((char *)npx_initialstate +
988			    xsave_area_desc[i].offset,
989			    sa + xsave_area_desc[i].offset,
990			    xsave_area_desc[i].size);
991			*xstate_bv |= bit;
992		}
993	}
994	return (owned);
995}
996
997void
998npxuserinited(struct thread *td)
999{
1000	struct pcb *pcb;
1001
1002	pcb = td->td_pcb;
1003	if (PCB_USER_FPU(pcb))
1004		pcb->pcb_flags |= PCB_NPXINITDONE;
1005	pcb->pcb_flags |= PCB_NPXUSERINITDONE;
1006}
1007
1008int
1009npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
1010{
1011	struct xstate_hdr *hdr, *ehdr;
1012	size_t len, max_len;
1013	uint64_t bv;
1014
1015	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
1016	if (xfpustate == NULL)
1017		return (0);
1018	if (!use_xsave)
1019		return (EOPNOTSUPP);
1020
1021	len = xfpustate_size;
1022	if (len < sizeof(struct xstate_hdr))
1023		return (EINVAL);
1024	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
1025	if (len > max_len)
1026		return (EINVAL);
1027
1028	ehdr = (struct xstate_hdr *)xfpustate;
1029	bv = ehdr->xstate_bv;
1030
1031	/*
1032	 * Avoid #gp.
1033	 */
1034	if (bv & ~xsave_mask)
1035		return (EINVAL);
1036
1037	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
1038
1039	hdr->xstate_bv = bv;
1040	bcopy(xfpustate + sizeof(struct xstate_hdr),
1041	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
1042
1043	return (0);
1044}
1045
1046int
1047npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
1048	size_t xfpustate_size)
1049{
1050	struct pcb *pcb;
1051	int error;
1052
1053	if (!hw_float)
1054		return (ENXIO);
1055
1056	pcb = td->td_pcb;
1057	critical_enter();
1058	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
1059		error = npxsetxstate(td, xfpustate, xfpustate_size);
1060		if (error != 0) {
1061			critical_exit();
1062			return (error);
1063		}
1064		if (!cpu_fxsr)
1065			fnclex();	/* As in npxdrop(). */
1066		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1067		fpurstor(get_pcb_user_save_td(td));
1068		critical_exit();
1069		pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
1070	} else {
1071		critical_exit();
1072		error = npxsetxstate(td, xfpustate, xfpustate_size);
1073		if (error != 0)
1074			return (error);
1075		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1076		npxuserinited(td);
1077	}
1078	return (0);
1079}
1080
1081static void
1082fpusave(addr)
1083	union savefpu *addr;
1084{
1085
1086	if (use_xsave)
1087		xsave((char *)addr, xsave_mask);
1088	else if (cpu_fxsr)
1089		fxsave(addr);
1090	else
1091		fnsave(addr);
1092}
1093
1094static void
1095npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
1096{
1097	struct env87 *penv_87;
1098	struct envxmm *penv_xmm;
1099	int i;
1100
1101	penv_87 = &sv_87->sv_env;
1102	penv_xmm = &sv_xmm->sv_env;
1103
1104	/* FPU control/status */
1105	penv_87->en_cw = penv_xmm->en_cw;
1106	penv_87->en_sw = penv_xmm->en_sw;
1107	penv_87->en_fip = penv_xmm->en_fip;
1108	penv_87->en_fcs = penv_xmm->en_fcs;
1109	penv_87->en_opcode = penv_xmm->en_opcode;
1110	penv_87->en_foo = penv_xmm->en_foo;
1111	penv_87->en_fos = penv_xmm->en_fos;
1112
1113	/* FPU registers and tags */
1114	penv_87->en_tw = 0xffff;
1115	for (i = 0; i < 8; ++i) {
1116		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1117		if ((penv_xmm->en_tw & (1 << i)) != 0)
1118			/* zero and special are set as valid */
1119			penv_87->en_tw &= ~(3 << i * 2);
1120	}
1121}
1122
1123void
1124npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1125{
1126
1127	bzero(sv_87, sizeof(*sv_87));
1128	npx_fill_fpregs_xmm1(sv_xmm, sv_87);
1129}
1130
1131void
1132npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1133{
1134	struct env87 *penv_87;
1135	struct envxmm *penv_xmm;
1136	int i;
1137
1138	penv_87 = &sv_87->sv_env;
1139	penv_xmm = &sv_xmm->sv_env;
1140
1141	/* FPU control/status */
1142	penv_xmm->en_cw = penv_87->en_cw;
1143	penv_xmm->en_sw = penv_87->en_sw;
1144	penv_xmm->en_fip = penv_87->en_fip;
1145	penv_xmm->en_fcs = penv_87->en_fcs;
1146	penv_xmm->en_opcode = penv_87->en_opcode;
1147	penv_xmm->en_foo = penv_87->en_foo;
1148	penv_xmm->en_fos = penv_87->en_fos;
1149
1150	/*
1151	 * FPU registers and tags.
1152	 * Abridged  /  Full translation (values in binary), see FXSAVE spec.
1153	 * 0		11
1154	 * 1		00, 01, 10
1155	 */
1156	penv_xmm->en_tw = 0;
1157	for (i = 0; i < 8; ++i) {
1158		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1159		if ((penv_87->en_tw & (3 << i * 2)) != (3 << i * 2))
1160		    penv_xmm->en_tw |= 1 << i;
1161	}
1162}
1163
1164void
1165npx_get_fsave(void *addr)
1166{
1167	struct thread *td;
1168	union savefpu *sv;
1169
1170	td = curthread;
1171	npxgetregs(td);
1172	sv = get_pcb_user_save_td(td);
1173	if (cpu_fxsr)
1174		npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
1175	else
1176		bcopy(sv, addr, sizeof(struct env87) +
1177		    sizeof(struct fpacc87[8]));
1178}
1179
1180int
1181npx_set_fsave(void *addr)
1182{
1183	union savefpu sv;
1184	int error;
1185
1186	bzero(&sv, sizeof(sv));
1187	if (cpu_fxsr)
1188		npx_set_fpregs_xmm(addr, &sv.sv_xmm);
1189	else
1190		bcopy(addr, &sv, sizeof(struct env87) +
1191		    sizeof(struct fpacc87[8]));
1192	error = npxsetregs(curthread, &sv, NULL, 0);
1193	return (error);
1194}
1195
1196/*
1197 * On AuthenticAMD processors, the fxrstor instruction does not restore
1198 * the x87's stored last instruction pointer, last data pointer, and last
1199 * opcode values, except in the rare case in which the exception summary
1200 * (ES) bit in the x87 status word is set to 1.
1201 *
1202 * In order to avoid leaking this information across processes, we clean
1203 * these values by performing a dummy load before executing fxrstor().
1204 */
1205static void
1206fpu_clean_state(void)
1207{
1208	static float dummy_variable = 0.0;
1209	u_short status;
1210
1211	/*
1212	 * Clear the ES bit in the x87 status word if it is currently
1213	 * set, in order to avoid causing a fault in the upcoming load.
1214	 */
1215	fnstsw(&status);
1216	if (status & 0x80)
1217		fnclex();
1218
1219	/*
1220	 * Load the dummy variable into the x87 stack.  This mangles
1221	 * the x87 stack, but we don't care since we're about to call
1222	 * fxrstor() anyway.
1223	 */
1224	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1225}
1226
1227static void
1228fpurstor(union savefpu *addr)
1229{
1230
1231	if (use_xsave)
1232		xrstor((char *)addr, xsave_mask);
1233	else if (cpu_fxsr)
1234		fxrstor(addr);
1235	else
1236		frstor(addr);
1237}
1238
1239#ifdef DEV_ISA
1240/*
1241 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1242 */
1243static struct isa_pnp_id npxisa_ids[] = {
1244	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1245	{ 0 }
1246};
1247
1248static int
1249npxisa_probe(device_t dev)
1250{
1251	int result;
1252	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1253		device_quiet(dev);
1254	}
1255	return(result);
1256}
1257
1258static int
1259npxisa_attach(device_t dev)
1260{
1261	return (0);
1262}
1263
1264static device_method_t npxisa_methods[] = {
1265	/* Device interface */
1266	DEVMETHOD(device_probe,		npxisa_probe),
1267	DEVMETHOD(device_attach,	npxisa_attach),
1268	DEVMETHOD(device_detach,	bus_generic_detach),
1269	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1270	DEVMETHOD(device_suspend,	bus_generic_suspend),
1271	DEVMETHOD(device_resume,	bus_generic_resume),
1272
1273	{ 0, 0 }
1274};
1275
1276static driver_t npxisa_driver = {
1277	"npxisa",
1278	npxisa_methods,
1279	1,			/* no softc */
1280};
1281
1282static devclass_t npxisa_devclass;
1283
1284DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1285#ifndef PC98
1286DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1287#endif
1288#endif /* DEV_ISA */
1289
1290static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1291    "Kernel contexts for FPU state");
1292
1293#define	FPU_KERN_CTX_NPXINITDONE 0x01
1294#define	FPU_KERN_CTX_DUMMY	 0x02
1295#define	FPU_KERN_CTX_INUSE	 0x04
1296
1297struct fpu_kern_ctx {
1298	union savefpu *prev;
1299	uint32_t flags;
1300	char hwstate1[];
1301};
1302
1303struct fpu_kern_ctx *
1304fpu_kern_alloc_ctx(u_int flags)
1305{
1306	struct fpu_kern_ctx *res;
1307	size_t sz;
1308
1309	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1310	    cpu_max_ext_state_size;
1311	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1312	    M_NOWAIT : M_WAITOK) | M_ZERO);
1313	return (res);
1314}
1315
1316void
1317fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1318{
1319
1320	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1321	/* XXXKIB clear the memory ? */
1322	free(ctx, M_FPUKERN_CTX);
1323}
1324
1325static union savefpu *
1326fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1327{
1328	vm_offset_t p;
1329
1330	p = (vm_offset_t)&ctx->hwstate1;
1331	p = roundup2(p, XSAVE_AREA_ALIGN);
1332	return ((union savefpu *)p);
1333}
1334
1335int
1336fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1337{
1338	struct pcb *pcb;
1339
1340	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("using inuse ctx"));
1341
1342	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1343		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1344		return (0);
1345	}
1346	pcb = td->td_pcb;
1347	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1348	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1349	ctx->flags = FPU_KERN_CTX_INUSE;
1350	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1351		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1352	npxexit(td);
1353	ctx->prev = pcb->pcb_save;
1354	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1355	pcb->pcb_flags |= PCB_KERNNPX;
1356	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1357	return (0);
1358}
1359
1360int
1361fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1362{
1363	struct pcb *pcb;
1364
1365	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1366	    ("leaving not inuse ctx"));
1367	ctx->flags &= ~FPU_KERN_CTX_INUSE;
1368
1369	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1370		return (0);
1371	pcb = td->td_pcb;
1372	critical_enter();
1373	if (curthread == PCPU_GET(fpcurthread))
1374		npxdrop();
1375	critical_exit();
1376	pcb->pcb_save = ctx->prev;
1377	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1378		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1379			pcb->pcb_flags |= PCB_NPXINITDONE;
1380		else
1381			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1382		pcb->pcb_flags &= ~PCB_KERNNPX;
1383	} else {
1384		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1385			pcb->pcb_flags |= PCB_NPXINITDONE;
1386		else
1387			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1388		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1389	}
1390	return (0);
1391}
1392
1393int
1394fpu_kern_thread(u_int flags)
1395{
1396
1397	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1398	    ("Only kthread may use fpu_kern_thread"));
1399	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1400	    ("mangled pcb_save"));
1401	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1402
1403	curpcb->pcb_flags |= PCB_KERNNPX;
1404	return (0);
1405}
1406
1407int
1408is_fpu_kern_thread(u_int flags)
1409{
1410
1411	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1412		return (0);
1413	return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
1414}
1415
1416/*
1417 * FPU save area alloc/free/init utility routines
1418 */
1419union savefpu *
1420fpu_save_area_alloc(void)
1421{
1422
1423	return (uma_zalloc(fpu_save_area_zone, 0));
1424}
1425
1426void
1427fpu_save_area_free(union savefpu *fsa)
1428{
1429
1430	uma_zfree(fpu_save_area_zone, fsa);
1431}
1432
1433void
1434fpu_save_area_reset(union savefpu *fsa)
1435{
1436
1437	bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
1438}
1439