npx.c revision 313463
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/i386/isa/npx.c 313463 2017-02-09 04:42:21Z kib $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58#include <vm/uma.h>
59
60#include <machine/asmacros.h>
61#include <machine/cputypes.h>
62#include <machine/frame.h>
63#include <machine/md_var.h>
64#include <machine/pcb.h>
65#include <machine/psl.h>
66#include <machine/resource.h>
67#include <machine/specialreg.h>
68#include <machine/segments.h>
69#include <machine/ucontext.h>
70
71#include <machine/intr_machdep.h>
72
73#ifdef DEV_ISA
74#include <isa/isavar.h>
75#endif
76
77#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
78#define CPU_ENABLE_SSE
79#endif
80
81/*
82 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
83 */
84
85#if defined(__GNUCLIKE_ASM) && !defined(lint)
86
87#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
88#define	fnclex()		__asm __volatile("fnclex")
89#define	fninit()		__asm __volatile("fninit")
90#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
91#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
92#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
93#define	fp_divide_by_0()	__asm __volatile( \
94				    "fldz; fld1; fdiv %st,%st(1); fnop")
95#define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
96#ifdef CPU_ENABLE_SSE
97#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
98#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
99#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
100#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
101
102static __inline void
103xrstor(char *addr, uint64_t mask)
104{
105	uint32_t low, hi;
106
107	low = mask;
108	hi = mask >> 32;
109	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
110}
111
112static __inline void
113xsave(char *addr, uint64_t mask)
114{
115	uint32_t low, hi;
116
117	low = mask;
118	hi = mask >> 32;
119	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
120	    "memory");
121}
122
123static __inline void
124xsaveopt(char *addr, uint64_t mask)
125{
126	uint32_t low, hi;
127
128	low = mask;
129	hi = mask >> 32;
130	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
131	    "memory");
132}
133#endif
134#else	/* !(__GNUCLIKE_ASM && !lint) */
135
136void	fldcw(u_short cw);
137void	fnclex(void);
138void	fninit(void);
139void	fnsave(caddr_t addr);
140void	fnstcw(caddr_t addr);
141void	fnstsw(caddr_t addr);
142void	fp_divide_by_0(void);
143void	frstor(caddr_t addr);
144#ifdef CPU_ENABLE_SSE
145void	fxsave(caddr_t addr);
146void	fxrstor(caddr_t addr);
147void	ldmxcsr(u_int csr);
148void	stmxcsr(u_int *csr);
149void	xrstor(char *addr, uint64_t mask);
150void	xsave(char *addr, uint64_t mask);
151void	xsaveopt(char *addr, uint64_t mask);
152#endif
153
154#endif	/* __GNUCLIKE_ASM && !lint */
155
156#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
157#define	stop_emulating()	clts()
158
159#ifdef CPU_ENABLE_SSE
160#define GET_FPU_CW(thread) \
161	(cpu_fxsr ? \
162		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
163		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
164#define GET_FPU_SW(thread) \
165	(cpu_fxsr ? \
166		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
167		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
168#define SET_FPU_CW(savefpu, value) do { \
169	if (cpu_fxsr) \
170		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
171	else \
172		(savefpu)->sv_87.sv_env.en_cw = (value); \
173} while (0)
174#else /* CPU_ENABLE_SSE */
175#define GET_FPU_CW(thread) \
176	(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
177#define GET_FPU_SW(thread) \
178	(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
179#define SET_FPU_CW(savefpu, value) \
180	(savefpu)->sv_87.sv_env.en_cw = (value)
181#endif /* CPU_ENABLE_SSE */
182
183#ifdef CPU_ENABLE_SSE
184CTASSERT(sizeof(union savefpu) == 512);
185CTASSERT(sizeof(struct xstate_hdr) == 64);
186CTASSERT(sizeof(struct savefpu_ymm) == 832);
187
188/*
189 * This requirement is to make it easier for asm code to calculate
190 * offset of the fpu save area from the pcb address. FPU save area
191 * must be 64-byte aligned.
192 */
193CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
194
195/*
196 * Ensure the copy of XCR0 saved in a core is contained in the padding
197 * area.
198 */
199CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savexmm, sv_pad) &&
200    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savexmm));
201
202static	void	fpu_clean_state(void);
203#endif
204
205static	void	fpusave(union savefpu *);
206static	void	fpurstor(union savefpu *);
207
208int	hw_float;
209
210SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
211    &hw_float, 0, "Floating point instructions executed in hardware");
212
213#ifdef CPU_ENABLE_SSE
214int use_xsave;
215uint64_t xsave_mask;
216#endif
217static	uma_zone_t fpu_save_area_zone;
218static	union savefpu *npx_initialstate;
219
220#ifdef CPU_ENABLE_SSE
221struct xsave_area_elm_descr {
222	u_int	offset;
223	u_int	size;
224} *xsave_area_desc;
225
226static int use_xsaveopt;
227#endif
228
229static	volatile u_int		npx_traps_while_probing;
230
231alias_for_inthand_t probetrap;
232__asm("								\n\
233	.text							\n\
234	.p2align 2,0x90						\n\
235	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
236" __XSTRING(CNAME(probetrap)) ":				\n\
237	ss							\n\
238	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
239	fnclex							\n\
240	iret							\n\
241");
242
243/*
244 * Determine if an FPU is present and how to use it.
245 */
246static int
247npx_probe(void)
248{
249	struct gate_descriptor save_idt_npxtrap;
250	u_short control, status;
251
252	/*
253	 * Modern CPUs all have an FPU that uses the INT16 interface
254	 * and provide a simple way to verify that, so handle the
255	 * common case right away.
256	 */
257	if (cpu_feature & CPUID_FPU) {
258		hw_float = 1;
259		return (1);
260	}
261
262	save_idt_npxtrap = idt[IDT_MF];
263	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
264	    GSEL(GCODE_SEL, SEL_KPL));
265
266	/*
267	 * Don't trap while we're probing.
268	 */
269	stop_emulating();
270
271	/*
272	 * Finish resetting the coprocessor, if any.  If there is an error
273	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
274	 * it OK.  Bogus halts have never been observed, but we enabled
275	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
276	 */
277	fninit();
278
279	/*
280	 * Don't use fwait here because it might hang.
281	 * Don't use fnop here because it usually hangs if there is no FPU.
282	 */
283	DELAY(1000);		/* wait for any IRQ13 */
284#ifdef DIAGNOSTIC
285	if (npx_traps_while_probing != 0)
286		printf("fninit caused %u bogus npx trap(s)\n",
287		       npx_traps_while_probing);
288#endif
289	/*
290	 * Check for a status of mostly zero.
291	 */
292	status = 0x5a5a;
293	fnstsw(&status);
294	if ((status & 0xb8ff) == 0) {
295		/*
296		 * Good, now check for a proper control word.
297		 */
298		control = 0x5a5a;
299		fnstcw(&control);
300		if ((control & 0x1f3f) == 0x033f) {
301			/*
302			 * We have an npx, now divide by 0 to see if exception
303			 * 16 works.
304			 */
305			control &= ~(1 << 2);	/* enable divide by 0 trap */
306			fldcw(control);
307#ifdef FPU_ERROR_BROKEN
308			/*
309			 * FPU error signal doesn't work on some CPU
310			 * accelerator board.
311			 */
312			hw_float = 1;
313			return (1);
314#endif
315			npx_traps_while_probing = 0;
316			fp_divide_by_0();
317			if (npx_traps_while_probing != 0) {
318				/*
319				 * Good, exception 16 works.
320				 */
321				hw_float = 1;
322				goto cleanup;
323			}
324			printf(
325	"FPU does not use exception 16 for error reporting\n");
326			goto cleanup;
327		}
328	}
329
330	/*
331	 * Probe failed.  Floating point simply won't work.
332	 * Notify user and disable FPU/MMX/SSE instruction execution.
333	 */
334	printf("WARNING: no FPU!\n");
335	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
336	    "n" (CR0_EM | CR0_MP) : "ax");
337
338cleanup:
339	idt[IDT_MF] = save_idt_npxtrap;
340	return (hw_float);
341}
342
343#ifdef CPU_ENABLE_SSE
344/*
345 * Enable XSAVE if supported and allowed by user.
346 * Calculate the xsave_mask.
347 */
348static void
349npxinit_bsp1(void)
350{
351	u_int cp[4];
352	uint64_t xsave_mask_user;
353
354	if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
355		use_xsave = 1;
356		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
357	}
358	if (!use_xsave)
359		return;
360
361	cpuid_count(0xd, 0x0, cp);
362	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
363	if ((cp[0] & xsave_mask) != xsave_mask)
364		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
365	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
366	xsave_mask_user = xsave_mask;
367	TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
368	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
369	xsave_mask &= xsave_mask_user;
370	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
371		xsave_mask &= ~XFEATURE_AVX512;
372	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
373		xsave_mask &= ~XFEATURE_MPX;
374
375	cpuid_count(0xd, 0x1, cp);
376	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
377		use_xsaveopt = 1;
378}
379#endif
380/*
381
382 * Calculate the fpu save area size.
383 */
384static void
385npxinit_bsp2(void)
386{
387#ifdef CPU_ENABLE_SSE
388	u_int cp[4];
389
390	if (use_xsave) {
391		cpuid_count(0xd, 0x0, cp);
392		cpu_max_ext_state_size = cp[1];
393
394		/*
395		 * Reload the cpu_feature2, since we enabled OSXSAVE.
396		 */
397		do_cpuid(1, cp);
398		cpu_feature2 = cp[2];
399	} else
400#endif
401		cpu_max_ext_state_size = sizeof(union savefpu);
402}
403
404/*
405 * Initialize floating point unit.
406 */
407void
408npxinit(bool bsp)
409{
410	static union savefpu dummy;
411	register_t saveintr;
412#ifdef CPU_ENABLE_SSE
413	u_int mxcsr;
414#endif
415	u_short control;
416
417	if (bsp) {
418		if (!npx_probe())
419			return;
420#ifdef CPU_ENABLE_SSE
421		npxinit_bsp1();
422#endif
423	}
424
425#ifdef CPU_ENABLE_SSE
426	if (use_xsave) {
427		load_cr4(rcr4() | CR4_XSAVE);
428		load_xcr(XCR0, xsave_mask);
429	}
430#endif
431
432	/*
433	 * XCR0 shall be set up before CPU can report the save area size.
434	 */
435	if (bsp)
436		npxinit_bsp2();
437
438	/*
439	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
440	 * fnsave to throw away any junk in the fpu.  fpusave() initializes
441	 * the fpu.
442	 *
443	 * It is too early for critical_enter() to work on AP.
444	 */
445	saveintr = intr_disable();
446	stop_emulating();
447#ifdef CPU_ENABLE_SSE
448	if (cpu_fxsr)
449		fninit();
450	else
451#endif
452		fnsave(&dummy);
453	control = __INITIAL_NPXCW__;
454	fldcw(control);
455#ifdef CPU_ENABLE_SSE
456	if (cpu_fxsr) {
457		mxcsr = __INITIAL_MXCSR__;
458		ldmxcsr(mxcsr);
459	}
460#endif
461	start_emulating();
462	intr_restore(saveintr);
463}
464
465/*
466 * On the boot CPU we generate a clean state that is used to
467 * initialize the floating point unit when it is first used by a
468 * process.
469 */
470static void
471npxinitstate(void *arg __unused)
472{
473	register_t saveintr;
474#ifdef CPU_ENABLE_SSE
475	int cp[4], i, max_ext_n;
476#endif
477
478	if (!hw_float)
479		return;
480
481	npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
482	    M_WAITOK | M_ZERO);
483	saveintr = intr_disable();
484	stop_emulating();
485
486	fpusave(npx_initialstate);
487#ifdef CPU_ENABLE_SSE
488	if (cpu_fxsr) {
489		if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
490			cpu_mxcsr_mask =
491			    npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
492		else
493			cpu_mxcsr_mask = 0xFFBF;
494
495		/*
496		 * The fninit instruction does not modify XMM
497		 * registers or x87 registers (MM/ST).  The fpusave
498		 * call dumped the garbage contained in the registers
499		 * after reset to the initial state saved.  Clear XMM
500		 * and x87 registers file image to make the startup
501		 * program state and signal handler XMM/x87 register
502		 * content predictable.
503		 */
504		bzero(npx_initialstate->sv_xmm.sv_fp,
505		    sizeof(npx_initialstate->sv_xmm.sv_fp));
506		bzero(npx_initialstate->sv_xmm.sv_xmm,
507		    sizeof(npx_initialstate->sv_xmm.sv_xmm));
508	} else
509#endif
510		bzero(npx_initialstate->sv_87.sv_ac,
511		    sizeof(npx_initialstate->sv_87.sv_ac));
512
513#ifdef CPU_ENABLE_SSE
514	/*
515	 * Create a table describing the layout of the CPU Extended
516	 * Save Area.
517	 */
518	if (use_xsave) {
519		if (xsave_mask >> 32 != 0)
520			max_ext_n = fls(xsave_mask >> 32) + 32;
521		else
522			max_ext_n = fls(xsave_mask);
523		xsave_area_desc = malloc(max_ext_n * sizeof(struct
524		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
525		/* x87 state */
526		xsave_area_desc[0].offset = 0;
527		xsave_area_desc[0].size = 160;
528		/* XMM */
529		xsave_area_desc[1].offset = 160;
530		xsave_area_desc[1].size = 288 - 160;
531
532		for (i = 2; i < max_ext_n; i++) {
533			cpuid_count(0xd, i, cp);
534			xsave_area_desc[i].offset = cp[1];
535			xsave_area_desc[i].size = cp[0];
536		}
537	}
538#endif
539
540	fpu_save_area_zone = uma_zcreate("FPU_save_area",
541	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
542	    XSAVE_AREA_ALIGN - 1, 0);
543
544	start_emulating();
545	intr_restore(saveintr);
546}
547SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
548
549/*
550 * Free coprocessor (if we have it).
551 */
552void
553npxexit(struct thread *td)
554{
555
556	critical_enter();
557	if (curthread == PCPU_GET(fpcurthread)) {
558		stop_emulating();
559		fpusave(curpcb->pcb_save);
560		start_emulating();
561		PCPU_SET(fpcurthread, NULL);
562	}
563	critical_exit();
564#ifdef NPX_DEBUG
565	if (hw_float) {
566		u_int	masked_exceptions;
567
568		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
569		/*
570		 * Log exceptions that would have trapped with the old
571		 * control word (overflow, divide by 0, and invalid operand).
572		 */
573		if (masked_exceptions & 0x0d)
574			log(LOG_ERR,
575	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
576			    td->td_proc->p_pid, td->td_proc->p_comm,
577			    masked_exceptions);
578	}
579#endif
580}
581
582int
583npxformat(void)
584{
585
586	if (!hw_float)
587		return (_MC_FPFMT_NODEV);
588#ifdef	CPU_ENABLE_SSE
589	if (cpu_fxsr)
590		return (_MC_FPFMT_XMM);
591#endif
592	return (_MC_FPFMT_387);
593}
594
595/*
596 * The following mechanism is used to ensure that the FPE_... value
597 * that is passed as a trapcode to the signal handler of the user
598 * process does not have more than one bit set.
599 *
600 * Multiple bits may be set if the user process modifies the control
601 * word while a status word bit is already set.  While this is a sign
602 * of bad coding, we have no choise than to narrow them down to one
603 * bit, since we must not send a trapcode that is not exactly one of
604 * the FPE_ macros.
605 *
606 * The mechanism has a static table with 127 entries.  Each combination
607 * of the 7 FPU status word exception bits directly translates to a
608 * position in this table, where a single FPE_... value is stored.
609 * This FPE_... value stored there is considered the "most important"
610 * of the exception bits and will be sent as the signal code.  The
611 * precedence of the bits is based upon Intel Document "Numerical
612 * Applications", Chapter "Special Computational Situations".
613 *
614 * The macro to choose one of these values does these steps: 1) Throw
615 * away status word bits that cannot be masked.  2) Throw away the bits
616 * currently masked in the control word, assuming the user isn't
617 * interested in them anymore.  3) Reinsert status word bit 7 (stack
618 * fault) if it is set, which cannot be masked but must be presered.
619 * 4) Use the remaining bits to point into the trapcode table.
620 *
621 * The 6 maskable bits in order of their preference, as stated in the
622 * above referenced Intel manual:
623 * 1  Invalid operation (FP_X_INV)
624 * 1a   Stack underflow
625 * 1b   Stack overflow
626 * 1c   Operand of unsupported format
627 * 1d   SNaN operand.
628 * 2  QNaN operand (not an exception, irrelavant here)
629 * 3  Any other invalid-operation not mentioned above or zero divide
630 *      (FP_X_INV, FP_X_DZ)
631 * 4  Denormal operand (FP_X_DNML)
632 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
633 * 6  Inexact result (FP_X_IMP)
634 */
635static char fpetable[128] = {
636	0,
637	FPE_FLTINV,	/*  1 - INV */
638	FPE_FLTUND,	/*  2 - DNML */
639	FPE_FLTINV,	/*  3 - INV | DNML */
640	FPE_FLTDIV,	/*  4 - DZ */
641	FPE_FLTINV,	/*  5 - INV | DZ */
642	FPE_FLTDIV,	/*  6 - DNML | DZ */
643	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
644	FPE_FLTOVF,	/*  8 - OFL */
645	FPE_FLTINV,	/*  9 - INV | OFL */
646	FPE_FLTUND,	/*  A - DNML | OFL */
647	FPE_FLTINV,	/*  B - INV | DNML | OFL */
648	FPE_FLTDIV,	/*  C - DZ | OFL */
649	FPE_FLTINV,	/*  D - INV | DZ | OFL */
650	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
651	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
652	FPE_FLTUND,	/* 10 - UFL */
653	FPE_FLTINV,	/* 11 - INV | UFL */
654	FPE_FLTUND,	/* 12 - DNML | UFL */
655	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
656	FPE_FLTDIV,	/* 14 - DZ | UFL */
657	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
658	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
659	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
660	FPE_FLTOVF,	/* 18 - OFL | UFL */
661	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
662	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
663	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
664	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
665	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
666	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
667	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
668	FPE_FLTRES,	/* 20 - IMP */
669	FPE_FLTINV,	/* 21 - INV | IMP */
670	FPE_FLTUND,	/* 22 - DNML | IMP */
671	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
672	FPE_FLTDIV,	/* 24 - DZ | IMP */
673	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
674	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
675	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
676	FPE_FLTOVF,	/* 28 - OFL | IMP */
677	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
678	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
679	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
680	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
681	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
682	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
683	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
684	FPE_FLTUND,	/* 30 - UFL | IMP */
685	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
686	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
687	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
688	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
689	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
690	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
691	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
692	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
693	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
694	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
695	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
696	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
697	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
698	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
699	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
700	FPE_FLTSUB,	/* 40 - STK */
701	FPE_FLTSUB,	/* 41 - INV | STK */
702	FPE_FLTUND,	/* 42 - DNML | STK */
703	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
704	FPE_FLTDIV,	/* 44 - DZ | STK */
705	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
706	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
707	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
708	FPE_FLTOVF,	/* 48 - OFL | STK */
709	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
710	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
711	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
712	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
713	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
714	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
715	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
716	FPE_FLTUND,	/* 50 - UFL | STK */
717	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
718	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
719	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
720	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
721	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
722	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
723	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
724	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
725	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
726	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
727	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
728	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
729	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
730	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
731	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
732	FPE_FLTRES,	/* 60 - IMP | STK */
733	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
734	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
735	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
736	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
737	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
738	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
739	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
740	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
741	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
742	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
743	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
744	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
745	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
746	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
747	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
748	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
749	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
750	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
751	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
752	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
753	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
754	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
755	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
756	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
757	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
758	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
759	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
760	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
761	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
762	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
763	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
764};
765
766/*
767 * Read the FP status and control words, then generate si_code value
768 * for SIGFPE.  The error code chosen will be one of the
769 * FPE_... macros.  It will be sent as the second argument to old
770 * BSD-style signal handlers and as "siginfo_t->si_code" (second
771 * argument) to SA_SIGINFO signal handlers.
772 *
773 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
774 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
775 * usermode code which understands the FPU hardware enough to enable
776 * the exceptions, can also handle clearing the exception state in the
777 * handler.  The only consequence of not clearing the exception is the
778 * rethrow of the SIGFPE on return from the signal handler and
779 * reexecution of the corresponding instruction.
780 *
781 * For XMM traps, the exceptions were never cleared.
782 */
783int
784npxtrap_x87(void)
785{
786	u_short control, status;
787
788	if (!hw_float) {
789		printf(
790	"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
791		       PCPU_GET(fpcurthread), curthread, hw_float);
792		panic("npxtrap from nowhere");
793	}
794	critical_enter();
795
796	/*
797	 * Interrupt handling (for another interrupt) may have pushed the
798	 * state to memory.  Fetch the relevant parts of the state from
799	 * wherever they are.
800	 */
801	if (PCPU_GET(fpcurthread) != curthread) {
802		control = GET_FPU_CW(curthread);
803		status = GET_FPU_SW(curthread);
804	} else {
805		fnstcw(&control);
806		fnstsw(&status);
807	}
808	critical_exit();
809	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
810}
811
812#ifdef CPU_ENABLE_SSE
813int
814npxtrap_sse(void)
815{
816	u_int mxcsr;
817
818	if (!hw_float) {
819		printf(
820	"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
821		       PCPU_GET(fpcurthread), curthread, hw_float);
822		panic("npxtrap from nowhere");
823	}
824	critical_enter();
825	if (PCPU_GET(fpcurthread) != curthread)
826		mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
827	else
828		stmxcsr(&mxcsr);
829	critical_exit();
830	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
831}
832#endif
833
834/*
835 * Implement device not available (DNA) exception
836 *
837 * It would be better to switch FP context here (if curthread != fpcurthread)
838 * and not necessarily for every context switch, but it is too hard to
839 * access foreign pcb's.
840 */
841
842static int err_count = 0;
843
844int
845npxdna(void)
846{
847
848	if (!hw_float)
849		return (0);
850	critical_enter();
851	if (PCPU_GET(fpcurthread) == curthread) {
852		printf("npxdna: fpcurthread == curthread %d times\n",
853		    ++err_count);
854		stop_emulating();
855		critical_exit();
856		return (1);
857	}
858	if (PCPU_GET(fpcurthread) != NULL) {
859		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
860		       PCPU_GET(fpcurthread),
861		       PCPU_GET(fpcurthread)->td_proc->p_pid,
862		       curthread, curthread->td_proc->p_pid);
863		panic("npxdna");
864	}
865	stop_emulating();
866	/*
867	 * Record new context early in case frstor causes a trap.
868	 */
869	PCPU_SET(fpcurthread, curthread);
870
871#ifdef CPU_ENABLE_SSE
872	if (cpu_fxsr)
873		fpu_clean_state();
874#endif
875
876	if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
877		/*
878		 * This is the first time this thread has used the FPU or
879		 * the PCB doesn't contain a clean FPU state.  Explicitly
880		 * load an initial state.
881		 *
882		 * We prefer to restore the state from the actual save
883		 * area in PCB instead of directly loading from
884		 * npx_initialstate, to ignite the XSAVEOPT
885		 * tracking engine.
886		 */
887		bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
888		fpurstor(curpcb->pcb_save);
889		if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
890			fldcw(curpcb->pcb_initial_npxcw);
891		curpcb->pcb_flags |= PCB_NPXINITDONE;
892		if (PCB_USER_FPU(curpcb))
893			curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
894	} else {
895		fpurstor(curpcb->pcb_save);
896	}
897	critical_exit();
898
899	return (1);
900}
901
902/*
903 * Wrapper for fpusave() called from context switch routines.
904 *
905 * npxsave() must be called with interrupts disabled, so that it clears
906 * fpcurthread atomically with saving the state.  We require callers to do the
907 * disabling, since most callers need to disable interrupts anyway to call
908 * npxsave() atomically with checking fpcurthread.
909 */
910void
911npxsave(addr)
912	union savefpu *addr;
913{
914
915	stop_emulating();
916#ifdef CPU_ENABLE_SSE
917	if (use_xsaveopt)
918		xsaveopt((char *)addr, xsave_mask);
919	else
920#endif
921		fpusave(addr);
922	start_emulating();
923	PCPU_SET(fpcurthread, NULL);
924}
925
926/*
927 * Unconditionally save the current co-processor state across suspend and
928 * resume.
929 */
930void
931npxsuspend(union savefpu *addr)
932{
933	register_t cr0;
934
935	if (!hw_float)
936		return;
937	if (PCPU_GET(fpcurthread) == NULL) {
938		bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
939		return;
940	}
941	cr0 = rcr0();
942	stop_emulating();
943	fpusave(addr);
944	load_cr0(cr0);
945}
946
947void
948npxresume(union savefpu *addr)
949{
950	register_t cr0;
951
952	if (!hw_float)
953		return;
954
955	cr0 = rcr0();
956	npxinit(false);
957	stop_emulating();
958	fpurstor(addr);
959	load_cr0(cr0);
960}
961
962void
963npxdrop(void)
964{
965	struct thread *td;
966
967	/*
968	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
969	 * ones don't cause a panic on the next frstor.
970	 */
971#ifdef CPU_ENABLE_SSE
972	if (!cpu_fxsr)
973#endif
974		fnclex();
975
976	td = PCPU_GET(fpcurthread);
977	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
978	CRITICAL_ASSERT(td);
979	PCPU_SET(fpcurthread, NULL);
980	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
981	start_emulating();
982}
983
984/*
985 * Get the user state of the FPU into pcb->pcb_user_save without
986 * dropping ownership (if possible).  It returns the FPU ownership
987 * status.
988 */
989int
990npxgetregs(struct thread *td)
991{
992	struct pcb *pcb;
993#ifdef CPU_ENABLE_SSE
994	uint64_t *xstate_bv, bit;
995	char *sa;
996	int max_ext_n, i;
997#endif
998	int owned;
999
1000	if (!hw_float)
1001		return (_MC_FPOWNED_NONE);
1002
1003	pcb = td->td_pcb;
1004	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
1005		bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
1006		    cpu_max_ext_state_size);
1007		SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
1008		npxuserinited(td);
1009		return (_MC_FPOWNED_PCB);
1010	}
1011	critical_enter();
1012	if (td == PCPU_GET(fpcurthread)) {
1013		fpusave(get_pcb_user_save_pcb(pcb));
1014#ifdef CPU_ENABLE_SSE
1015		if (!cpu_fxsr)
1016#endif
1017			/*
1018			 * fnsave initializes the FPU and destroys whatever
1019			 * context it contains.  Make sure the FPU owner
1020			 * starts with a clean state next time.
1021			 */
1022			npxdrop();
1023		owned = _MC_FPOWNED_FPU;
1024	} else {
1025		owned = _MC_FPOWNED_PCB;
1026	}
1027	critical_exit();
1028#ifdef CPU_ENABLE_SSE
1029	if (use_xsave) {
1030		/*
1031		 * Handle partially saved state.
1032		 */
1033		sa = (char *)get_pcb_user_save_pcb(pcb);
1034		xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
1035		    offsetof(struct xstate_hdr, xstate_bv));
1036		if (xsave_mask >> 32 != 0)
1037			max_ext_n = fls(xsave_mask >> 32) + 32;
1038		else
1039			max_ext_n = fls(xsave_mask);
1040		for (i = 0; i < max_ext_n; i++) {
1041			bit = 1ULL << i;
1042			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
1043				continue;
1044			bcopy((char *)npx_initialstate +
1045			    xsave_area_desc[i].offset,
1046			    sa + xsave_area_desc[i].offset,
1047			    xsave_area_desc[i].size);
1048			*xstate_bv |= bit;
1049		}
1050	}
1051#endif
1052	return (owned);
1053}
1054
1055void
1056npxuserinited(struct thread *td)
1057{
1058	struct pcb *pcb;
1059
1060	pcb = td->td_pcb;
1061	if (PCB_USER_FPU(pcb))
1062		pcb->pcb_flags |= PCB_NPXINITDONE;
1063	pcb->pcb_flags |= PCB_NPXUSERINITDONE;
1064}
1065
1066#ifdef CPU_ENABLE_SSE
1067int
1068npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
1069{
1070	struct xstate_hdr *hdr, *ehdr;
1071	size_t len, max_len;
1072	uint64_t bv;
1073
1074	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
1075	if (xfpustate == NULL)
1076		return (0);
1077	if (!use_xsave)
1078		return (EOPNOTSUPP);
1079
1080	len = xfpustate_size;
1081	if (len < sizeof(struct xstate_hdr))
1082		return (EINVAL);
1083	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
1084	if (len > max_len)
1085		return (EINVAL);
1086
1087	ehdr = (struct xstate_hdr *)xfpustate;
1088	bv = ehdr->xstate_bv;
1089
1090	/*
1091	 * Avoid #gp.
1092	 */
1093	if (bv & ~xsave_mask)
1094		return (EINVAL);
1095
1096	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
1097
1098	hdr->xstate_bv = bv;
1099	bcopy(xfpustate + sizeof(struct xstate_hdr),
1100	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
1101
1102	return (0);
1103}
1104#endif
1105
1106int
1107npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
1108	size_t xfpustate_size)
1109{
1110	struct pcb *pcb;
1111#ifdef CPU_ENABLE_SSE
1112	int error;
1113#endif
1114
1115	if (!hw_float)
1116		return (ENXIO);
1117
1118	pcb = td->td_pcb;
1119	critical_enter();
1120	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
1121#ifdef CPU_ENABLE_SSE
1122		error = npxsetxstate(td, xfpustate, xfpustate_size);
1123		if (error != 0) {
1124			critical_exit();
1125			return (error);
1126		}
1127		if (!cpu_fxsr)
1128#endif
1129			fnclex();	/* As in npxdrop(). */
1130		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1131		fpurstor(get_pcb_user_save_td(td));
1132		critical_exit();
1133		pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
1134	} else {
1135		critical_exit();
1136#ifdef CPU_ENABLE_SSE
1137		error = npxsetxstate(td, xfpustate, xfpustate_size);
1138		if (error != 0)
1139			return (error);
1140#endif
1141		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1142		npxuserinited(td);
1143	}
1144	return (0);
1145}
1146
1147static void
1148fpusave(addr)
1149	union savefpu *addr;
1150{
1151
1152#ifdef CPU_ENABLE_SSE
1153	if (use_xsave)
1154		xsave((char *)addr, xsave_mask);
1155	else if (cpu_fxsr)
1156		fxsave(addr);
1157	else
1158#endif
1159		fnsave(addr);
1160}
1161
1162#ifdef CPU_ENABLE_SSE
1163static void
1164npx_fill_fpregs_xmm1(struct savexmm *sv_xmm, struct save87 *sv_87)
1165{
1166	struct env87 *penv_87;
1167	struct envxmm *penv_xmm;
1168	int i;
1169
1170	penv_87 = &sv_87->sv_env;
1171	penv_xmm = &sv_xmm->sv_env;
1172
1173	/* FPU control/status */
1174	penv_87->en_cw = penv_xmm->en_cw;
1175	penv_87->en_sw = penv_xmm->en_sw;
1176	penv_87->en_fip = penv_xmm->en_fip;
1177	penv_87->en_fcs = penv_xmm->en_fcs;
1178	penv_87->en_opcode = penv_xmm->en_opcode;
1179	penv_87->en_foo = penv_xmm->en_foo;
1180	penv_87->en_fos = penv_xmm->en_fos;
1181
1182	/* FPU registers and tags */
1183	penv_87->en_tw = 0xffff;
1184	for (i = 0; i < 8; ++i) {
1185		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1186		if ((penv_xmm->en_tw & (1 << i)) != 0)
1187			/* zero and special are set as valid */
1188			penv_87->en_tw &= ~(3 << i);
1189	}
1190}
1191
1192void
1193npx_fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1194{
1195
1196	bzero(sv_87, sizeof(*sv_87));
1197	npx_fill_fpregs_xmm1(sv_xmm, sv_87);
1198}
1199
1200void
1201npx_set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1202{
1203	struct env87 *penv_87;
1204	struct envxmm *penv_xmm;
1205	int i;
1206
1207	penv_87 = &sv_87->sv_env;
1208	penv_xmm = &sv_xmm->sv_env;
1209
1210	/* FPU control/status */
1211	penv_xmm->en_cw = penv_87->en_cw;
1212	penv_xmm->en_sw = penv_87->en_sw;
1213	penv_xmm->en_fip = penv_87->en_fip;
1214	penv_xmm->en_fcs = penv_87->en_fcs;
1215	penv_xmm->en_opcode = penv_87->en_opcode;
1216	penv_xmm->en_foo = penv_87->en_foo;
1217	penv_xmm->en_fos = penv_87->en_fos;
1218
1219	/* FPU registers and tags */
1220	penv_xmm->en_tw = 0;
1221	for (i = 0; i < 8; ++i) {
1222		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1223		if ((penv_87->en_tw && (3 << i)) != (3 << i))
1224		    penv_xmm->en_tw |= 1 << i;
1225	}
1226}
1227#endif /* CPU_ENABLE_SSE */
1228
1229void
1230npx_get_fsave(void *addr)
1231{
1232	struct thread *td;
1233	union savefpu *sv;
1234
1235	td = curthread;
1236	npxgetregs(td);
1237	sv = get_pcb_user_save_td(td);
1238#ifdef CPU_ENABLE_SSE
1239	if (cpu_fxsr)
1240		npx_fill_fpregs_xmm1(&sv->sv_xmm, addr);
1241	else
1242#endif
1243		bcopy(sv, addr, sizeof(struct env87) +
1244		    sizeof(struct fpacc87[8]));
1245}
1246
1247int
1248npx_set_fsave(void *addr)
1249{
1250	union savefpu sv;
1251	int error;
1252
1253	bzero(&sv, sizeof(sv));
1254#ifdef CPU_ENABLE_SSE
1255	if (cpu_fxsr)
1256		npx_set_fpregs_xmm(addr, &sv.sv_xmm);
1257	else
1258#endif
1259		bcopy(addr, &sv, sizeof(struct env87) +
1260		    sizeof(struct fpacc87[8]));
1261	error = npxsetregs(curthread, &sv, NULL, 0);
1262	return (error);
1263}
1264
1265#ifdef CPU_ENABLE_SSE
1266/*
1267 * On AuthenticAMD processors, the fxrstor instruction does not restore
1268 * the x87's stored last instruction pointer, last data pointer, and last
1269 * opcode values, except in the rare case in which the exception summary
1270 * (ES) bit in the x87 status word is set to 1.
1271 *
1272 * In order to avoid leaking this information across processes, we clean
1273 * these values by performing a dummy load before executing fxrstor().
1274 */
1275static void
1276fpu_clean_state(void)
1277{
1278	static float dummy_variable = 0.0;
1279	u_short status;
1280
1281	/*
1282	 * Clear the ES bit in the x87 status word if it is currently
1283	 * set, in order to avoid causing a fault in the upcoming load.
1284	 */
1285	fnstsw(&status);
1286	if (status & 0x80)
1287		fnclex();
1288
1289	/*
1290	 * Load the dummy variable into the x87 stack.  This mangles
1291	 * the x87 stack, but we don't care since we're about to call
1292	 * fxrstor() anyway.
1293	 */
1294	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1295}
1296#endif /* CPU_ENABLE_SSE */
1297
1298static void
1299fpurstor(union savefpu *addr)
1300{
1301
1302#ifdef CPU_ENABLE_SSE
1303	if (use_xsave)
1304		xrstor((char *)addr, xsave_mask);
1305	else if (cpu_fxsr)
1306		fxrstor(addr);
1307	else
1308#endif
1309		frstor(addr);
1310}
1311
1312#ifdef DEV_ISA
1313/*
1314 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1315 */
1316static struct isa_pnp_id npxisa_ids[] = {
1317	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1318	{ 0 }
1319};
1320
1321static int
1322npxisa_probe(device_t dev)
1323{
1324	int result;
1325	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1326		device_quiet(dev);
1327	}
1328	return(result);
1329}
1330
1331static int
1332npxisa_attach(device_t dev)
1333{
1334	return (0);
1335}
1336
1337static device_method_t npxisa_methods[] = {
1338	/* Device interface */
1339	DEVMETHOD(device_probe,		npxisa_probe),
1340	DEVMETHOD(device_attach,	npxisa_attach),
1341	DEVMETHOD(device_detach,	bus_generic_detach),
1342	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1343	DEVMETHOD(device_suspend,	bus_generic_suspend),
1344	DEVMETHOD(device_resume,	bus_generic_resume),
1345
1346	{ 0, 0 }
1347};
1348
1349static driver_t npxisa_driver = {
1350	"npxisa",
1351	npxisa_methods,
1352	1,			/* no softc */
1353};
1354
1355static devclass_t npxisa_devclass;
1356
1357DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1358#ifndef PC98
1359DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1360#endif
1361#endif /* DEV_ISA */
1362
1363static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1364    "Kernel contexts for FPU state");
1365
1366#define	FPU_KERN_CTX_NPXINITDONE 0x01
1367#define	FPU_KERN_CTX_DUMMY	 0x02
1368#define	FPU_KERN_CTX_INUSE	 0x04
1369
1370struct fpu_kern_ctx {
1371	union savefpu *prev;
1372	uint32_t flags;
1373	char hwstate1[];
1374};
1375
1376struct fpu_kern_ctx *
1377fpu_kern_alloc_ctx(u_int flags)
1378{
1379	struct fpu_kern_ctx *res;
1380	size_t sz;
1381
1382	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1383	    cpu_max_ext_state_size;
1384	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1385	    M_NOWAIT : M_WAITOK) | M_ZERO);
1386	return (res);
1387}
1388
1389void
1390fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1391{
1392
1393	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1394	/* XXXKIB clear the memory ? */
1395	free(ctx, M_FPUKERN_CTX);
1396}
1397
1398static union savefpu *
1399fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1400{
1401	vm_offset_t p;
1402
1403	p = (vm_offset_t)&ctx->hwstate1;
1404	p = roundup2(p, XSAVE_AREA_ALIGN);
1405	return ((union savefpu *)p);
1406}
1407
1408int
1409fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1410{
1411	struct pcb *pcb;
1412
1413	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("using inuse ctx"));
1414
1415	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1416		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1417		return (0);
1418	}
1419	pcb = td->td_pcb;
1420	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1421	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1422	ctx->flags = FPU_KERN_CTX_INUSE;
1423	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1424		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1425	npxexit(td);
1426	ctx->prev = pcb->pcb_save;
1427	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1428	pcb->pcb_flags |= PCB_KERNNPX;
1429	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1430	return (0);
1431}
1432
1433int
1434fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1435{
1436	struct pcb *pcb;
1437
1438	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1439	    ("leaving not inuse ctx"));
1440	ctx->flags &= ~FPU_KERN_CTX_INUSE;
1441
1442	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1443		return (0);
1444	pcb = td->td_pcb;
1445	critical_enter();
1446	if (curthread == PCPU_GET(fpcurthread))
1447		npxdrop();
1448	critical_exit();
1449	pcb->pcb_save = ctx->prev;
1450	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1451		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1452			pcb->pcb_flags |= PCB_NPXINITDONE;
1453		else
1454			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1455		pcb->pcb_flags &= ~PCB_KERNNPX;
1456	} else {
1457		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1458			pcb->pcb_flags |= PCB_NPXINITDONE;
1459		else
1460			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1461		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1462	}
1463	return (0);
1464}
1465
1466int
1467fpu_kern_thread(u_int flags)
1468{
1469
1470	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1471	    ("Only kthread may use fpu_kern_thread"));
1472	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1473	    ("mangled pcb_save"));
1474	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1475
1476	curpcb->pcb_flags |= PCB_KERNNPX;
1477	return (0);
1478}
1479
1480int
1481is_fpu_kern_thread(u_int flags)
1482{
1483
1484	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1485		return (0);
1486	return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
1487}
1488
1489/*
1490 * FPU save area alloc/free/init utility routines
1491 */
1492union savefpu *
1493fpu_save_area_alloc(void)
1494{
1495
1496	return (uma_zalloc(fpu_save_area_zone, 0));
1497}
1498
1499void
1500fpu_save_area_free(union savefpu *fsa)
1501{
1502
1503	uma_zfree(fpu_save_area_zone, fsa);
1504}
1505
1506void
1507fpu_save_area_reset(union savefpu *fsa)
1508{
1509
1510	bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
1511}
1512