npx.c revision 214347
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/i386/isa/npx.c 214347 2010-10-25 15:31:13Z jhb $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58
59#include <machine/asmacros.h>
60#include <machine/cputypes.h>
61#include <machine/frame.h>
62#include <machine/md_var.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/resource.h>
66#include <machine/specialreg.h>
67#include <machine/segments.h>
68#include <machine/ucontext.h>
69
70#include <machine/intr_machdep.h>
71#ifdef XEN
72#include <machine/xen/xen-os.h>
73#include <xen/hypervisor.h>
74#endif
75
76#ifdef DEV_ISA
77#include <isa/isavar.h>
78#endif
79
80#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
81#define CPU_ENABLE_SSE
82#endif
83
84/*
85 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
86 */
87
88#if defined(__GNUCLIKE_ASM) && !defined(lint)
89
90#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
91#define	fnclex()		__asm __volatile("fnclex")
92#define	fninit()		__asm __volatile("fninit")
93#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
94#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
95#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
96#define	fp_divide_by_0()	__asm __volatile( \
97				    "fldz; fld1; fdiv %st,%st(1); fnop")
98#define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
99#ifdef CPU_ENABLE_SSE
100#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
101#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
102#endif
103#ifdef XEN
104#define	start_emulating()	(HYPERVISOR_fpu_taskswitch(1))
105#define	stop_emulating()	(HYPERVISOR_fpu_taskswitch(0))
106#else
107#define	start_emulating()	__asm __volatile( \
108				    "smsw %%ax; orb %0,%%al; lmsw %%ax" \
109				    : : "n" (CR0_TS) : "ax")
110#define	stop_emulating()	__asm __volatile("clts")
111#endif
112#else	/* !(__GNUCLIKE_ASM && !lint) */
113
114void	fldcw(u_short cw);
115void	fnclex(void);
116void	fninit(void);
117void	fnsave(caddr_t addr);
118void	fnstcw(caddr_t addr);
119void	fnstsw(caddr_t addr);
120void	fp_divide_by_0(void);
121void	frstor(caddr_t addr);
122#ifdef CPU_ENABLE_SSE
123void	fxsave(caddr_t addr);
124void	fxrstor(caddr_t addr);
125#endif
126void	start_emulating(void);
127void	stop_emulating(void);
128
129#endif	/* __GNUCLIKE_ASM && !lint */
130
131#ifdef CPU_ENABLE_SSE
132#define GET_FPU_CW(thread) \
133	(cpu_fxsr ? \
134		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
135		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
136#define GET_FPU_SW(thread) \
137	(cpu_fxsr ? \
138		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
139		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
140#define SET_FPU_CW(savefpu, value) do { \
141	if (cpu_fxsr) \
142		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
143	else \
144		(savefpu)->sv_87.sv_env.en_cw = (value); \
145} while (0)
146#else /* CPU_ENABLE_SSE */
147#define GET_FPU_CW(thread) \
148	(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
149#define GET_FPU_SW(thread) \
150	(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
151#define SET_FPU_CW(savefpu, value) \
152	(savefpu)->sv_87.sv_env.en_cw = (value)
153#endif /* CPU_ENABLE_SSE */
154
155typedef u_char bool_t;
156
157#ifdef CPU_ENABLE_SSE
158static	void	fpu_clean_state(void);
159#endif
160
161static	void	fpusave(union savefpu *);
162static	void	fpurstor(union savefpu *);
163static	int	npx_attach(device_t dev);
164static	void	npx_identify(driver_t *driver, device_t parent);
165static	int	npx_probe(device_t dev);
166
167int	hw_float;
168
169SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
170    &hw_float, 0, "Floating point instructions executed in hardware");
171
172static	volatile u_int		npx_traps_while_probing;
173static	union savefpu		npx_initialstate;
174
175alias_for_inthand_t probetrap;
176__asm("								\n\
177	.text							\n\
178	.p2align 2,0x90						\n\
179	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
180" __XSTRING(CNAME(probetrap)) ":				\n\
181	ss							\n\
182	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
183	fnclex							\n\
184	iret							\n\
185");
186
187/*
188 * Identify routine.  Create a connection point on our parent for probing.
189 */
190static void
191npx_identify(driver, parent)
192	driver_t *driver;
193	device_t parent;
194{
195	device_t child;
196
197	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
198	if (child == NULL)
199		panic("npx_identify");
200}
201
202/*
203 * Probe routine.  Set flags to tell npxattach() what to do.  Set up an
204 * interrupt handler if npx needs to use interrupts.
205 */
206static int
207npx_probe(device_t dev)
208{
209	struct gate_descriptor save_idt_npxtrap;
210	u_short control, status;
211
212	device_set_desc(dev, "math processor");
213
214	/*
215	 * Modern CPUs all have an FPU that uses the INT16 interface
216	 * and provide a simple way to verify that, so handle the
217	 * common case right away.
218	 */
219	if (cpu_feature & CPUID_FPU) {
220		hw_float = 1;
221		device_quiet(dev);
222		return (0);
223	}
224
225	save_idt_npxtrap = idt[IDT_MF];
226	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
227	    GSEL(GCODE_SEL, SEL_KPL));
228
229	/*
230	 * Don't trap while we're probing.
231	 */
232	stop_emulating();
233
234	/*
235	 * Finish resetting the coprocessor, if any.  If there is an error
236	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
237	 * it OK.  Bogus halts have never been observed, but we enabled
238	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
239	 */
240	fninit();
241
242	/*
243	 * Don't use fwait here because it might hang.
244	 * Don't use fnop here because it usually hangs if there is no FPU.
245	 */
246	DELAY(1000);		/* wait for any IRQ13 */
247#ifdef DIAGNOSTIC
248	if (npx_traps_while_probing != 0)
249		printf("fninit caused %u bogus npx trap(s)\n",
250		       npx_traps_while_probing);
251#endif
252	/*
253	 * Check for a status of mostly zero.
254	 */
255	status = 0x5a5a;
256	fnstsw(&status);
257	if ((status & 0xb8ff) == 0) {
258		/*
259		 * Good, now check for a proper control word.
260		 */
261		control = 0x5a5a;
262		fnstcw(&control);
263		if ((control & 0x1f3f) == 0x033f) {
264			/*
265			 * We have an npx, now divide by 0 to see if exception
266			 * 16 works.
267			 */
268			control &= ~(1 << 2);	/* enable divide by 0 trap */
269			fldcw(control);
270#ifdef FPU_ERROR_BROKEN
271			/*
272			 * FPU error signal doesn't work on some CPU
273			 * accelerator board.
274			 */
275			hw_float = 1;
276			return (0);
277#endif
278			npx_traps_while_probing = 0;
279			fp_divide_by_0();
280			if (npx_traps_while_probing != 0) {
281				/*
282				 * Good, exception 16 works.
283				 */
284				hw_float = 1;
285				goto cleanup;
286			}
287			device_printf(dev,
288	"FPU does not use exception 16 for error reporting\n");
289			goto cleanup;
290		}
291	}
292
293	/*
294	 * Probe failed.  Floating point simply won't work.
295	 * Notify user and disable FPU/MMX/SSE instruction execution.
296	 */
297	device_printf(dev, "WARNING: no FPU!\n");
298	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
299	    "n" (CR0_EM | CR0_MP) : "ax");
300
301cleanup:
302	idt[IDT_MF] = save_idt_npxtrap;
303	return (hw_float ? 0 : ENXIO);
304}
305
306/*
307 * Attach routine - announce which it is, and wire into system
308 */
309static int
310npx_attach(device_t dev)
311{
312
313	npxinit();
314	critical_enter();
315	stop_emulating();
316	fpusave(&npx_initialstate);
317	start_emulating();
318#ifdef CPU_ENABLE_SSE
319	if (cpu_fxsr) {
320		if (npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask)
321			cpu_mxcsr_mask =
322			    npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask;
323		else
324			cpu_mxcsr_mask = 0xFFBF;
325		bzero(npx_initialstate.sv_xmm.sv_fp,
326		    sizeof(npx_initialstate.sv_xmm.sv_fp));
327		bzero(npx_initialstate.sv_xmm.sv_xmm,
328		    sizeof(npx_initialstate.sv_xmm.sv_xmm));
329		/* XXX might need even more zeroing. */
330	} else
331#endif
332		bzero(npx_initialstate.sv_87.sv_ac,
333		    sizeof(npx_initialstate.sv_87.sv_ac));
334	critical_exit();
335
336	return (0);
337}
338
339/*
340 * Initialize floating point unit.
341 */
342void
343npxinit(void)
344{
345	static union savefpu dummy;
346	register_t saveintr;
347	u_short control;
348
349	if (!hw_float)
350		return;
351	/*
352	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
353	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
354	 * the fpu and sets fpcurthread = NULL as important side effects.
355	 *
356	 * It is too early for critical_enter() to work on AP.
357	 */
358	saveintr = intr_disable();
359	npxsave(&dummy);
360	stop_emulating();
361#ifdef CPU_ENABLE_SSE
362	/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
363	if (cpu_fxsr)
364		fninit();
365#endif
366	control = __INITIAL_NPXCW__;
367	fldcw(control);
368	start_emulating();
369	intr_restore(saveintr);
370}
371
372/*
373 * Free coprocessor (if we have it).
374 */
375void
376npxexit(td)
377	struct thread *td;
378{
379
380	critical_enter();
381	if (curthread == PCPU_GET(fpcurthread))
382		npxsave(PCPU_GET(curpcb)->pcb_save);
383	critical_exit();
384#ifdef NPX_DEBUG
385	if (hw_float) {
386		u_int	masked_exceptions;
387
388		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
389		/*
390		 * Log exceptions that would have trapped with the old
391		 * control word (overflow, divide by 0, and invalid operand).
392		 */
393		if (masked_exceptions & 0x0d)
394			log(LOG_ERR,
395	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
396			    td->td_proc->p_pid, td->td_proc->p_comm,
397			    masked_exceptions);
398	}
399#endif
400}
401
402int
403npxformat()
404{
405
406	if (!hw_float)
407		return (_MC_FPFMT_NODEV);
408#ifdef	CPU_ENABLE_SSE
409	if (cpu_fxsr)
410		return (_MC_FPFMT_XMM);
411#endif
412	return (_MC_FPFMT_387);
413}
414
415/*
416 * The following mechanism is used to ensure that the FPE_... value
417 * that is passed as a trapcode to the signal handler of the user
418 * process does not have more than one bit set.
419 *
420 * Multiple bits may be set if the user process modifies the control
421 * word while a status word bit is already set.  While this is a sign
422 * of bad coding, we have no choise than to narrow them down to one
423 * bit, since we must not send a trapcode that is not exactly one of
424 * the FPE_ macros.
425 *
426 * The mechanism has a static table with 127 entries.  Each combination
427 * of the 7 FPU status word exception bits directly translates to a
428 * position in this table, where a single FPE_... value is stored.
429 * This FPE_... value stored there is considered the "most important"
430 * of the exception bits and will be sent as the signal code.  The
431 * precedence of the bits is based upon Intel Document "Numerical
432 * Applications", Chapter "Special Computational Situations".
433 *
434 * The macro to choose one of these values does these steps: 1) Throw
435 * away status word bits that cannot be masked.  2) Throw away the bits
436 * currently masked in the control word, assuming the user isn't
437 * interested in them anymore.  3) Reinsert status word bit 7 (stack
438 * fault) if it is set, which cannot be masked but must be presered.
439 * 4) Use the remaining bits to point into the trapcode table.
440 *
441 * The 6 maskable bits in order of their preference, as stated in the
442 * above referenced Intel manual:
443 * 1  Invalid operation (FP_X_INV)
444 * 1a   Stack underflow
445 * 1b   Stack overflow
446 * 1c   Operand of unsupported format
447 * 1d   SNaN operand.
448 * 2  QNaN operand (not an exception, irrelavant here)
449 * 3  Any other invalid-operation not mentioned above or zero divide
450 *      (FP_X_INV, FP_X_DZ)
451 * 4  Denormal operand (FP_X_DNML)
452 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
453 * 6  Inexact result (FP_X_IMP)
454 */
455static char fpetable[128] = {
456	0,
457	FPE_FLTINV,	/*  1 - INV */
458	FPE_FLTUND,	/*  2 - DNML */
459	FPE_FLTINV,	/*  3 - INV | DNML */
460	FPE_FLTDIV,	/*  4 - DZ */
461	FPE_FLTINV,	/*  5 - INV | DZ */
462	FPE_FLTDIV,	/*  6 - DNML | DZ */
463	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
464	FPE_FLTOVF,	/*  8 - OFL */
465	FPE_FLTINV,	/*  9 - INV | OFL */
466	FPE_FLTUND,	/*  A - DNML | OFL */
467	FPE_FLTINV,	/*  B - INV | DNML | OFL */
468	FPE_FLTDIV,	/*  C - DZ | OFL */
469	FPE_FLTINV,	/*  D - INV | DZ | OFL */
470	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
471	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
472	FPE_FLTUND,	/* 10 - UFL */
473	FPE_FLTINV,	/* 11 - INV | UFL */
474	FPE_FLTUND,	/* 12 - DNML | UFL */
475	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
476	FPE_FLTDIV,	/* 14 - DZ | UFL */
477	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
478	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
479	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
480	FPE_FLTOVF,	/* 18 - OFL | UFL */
481	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
482	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
483	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
484	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
485	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
486	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
487	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
488	FPE_FLTRES,	/* 20 - IMP */
489	FPE_FLTINV,	/* 21 - INV | IMP */
490	FPE_FLTUND,	/* 22 - DNML | IMP */
491	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
492	FPE_FLTDIV,	/* 24 - DZ | IMP */
493	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
494	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
495	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
496	FPE_FLTOVF,	/* 28 - OFL | IMP */
497	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
498	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
499	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
500	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
501	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
502	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
503	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
504	FPE_FLTUND,	/* 30 - UFL | IMP */
505	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
506	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
507	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
508	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
509	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
510	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
511	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
512	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
513	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
514	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
515	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
516	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
517	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
518	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
519	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
520	FPE_FLTSUB,	/* 40 - STK */
521	FPE_FLTSUB,	/* 41 - INV | STK */
522	FPE_FLTUND,	/* 42 - DNML | STK */
523	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
524	FPE_FLTDIV,	/* 44 - DZ | STK */
525	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
526	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
527	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
528	FPE_FLTOVF,	/* 48 - OFL | STK */
529	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
530	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
531	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
532	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
533	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
534	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
535	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
536	FPE_FLTUND,	/* 50 - UFL | STK */
537	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
538	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
539	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
540	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
541	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
542	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
543	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
544	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
545	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
546	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
547	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
548	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
549	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
550	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
551	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
552	FPE_FLTRES,	/* 60 - IMP | STK */
553	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
554	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
555	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
556	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
557	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
558	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
559	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
560	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
561	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
562	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
563	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
564	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
565	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
566	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
567	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
568	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
569	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
570	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
571	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
572	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
573	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
574	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
575	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
576	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
577	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
578	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
579	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
580	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
581	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
582	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
583	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
584};
585
586/*
587 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
588 *
589 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
590 * depend on longjmp() restoring a usable state.  Restoring the state
591 * or examining it might fail if we didn't clear exceptions.
592 *
593 * The error code chosen will be one of the FPE_... macros. It will be
594 * sent as the second argument to old BSD-style signal handlers and as
595 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
596 *
597 * XXX the FP state is not preserved across signal handlers.  So signal
598 * handlers cannot afford to do FP unless they preserve the state or
599 * longjmp() out.  Both preserving the state and longjmp()ing may be
600 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
601 * solution for signals other than SIGFPE.
602 */
603int
604npxtrap()
605{
606	u_short control, status;
607
608	if (!hw_float) {
609		printf("npxtrap: fpcurthread = %p, curthread = %p, hw_float = %d\n",
610		       PCPU_GET(fpcurthread), curthread, hw_float);
611		panic("npxtrap from nowhere");
612	}
613	critical_enter();
614
615	/*
616	 * Interrupt handling (for another interrupt) may have pushed the
617	 * state to memory.  Fetch the relevant parts of the state from
618	 * wherever they are.
619	 */
620	if (PCPU_GET(fpcurthread) != curthread) {
621		control = GET_FPU_CW(curthread);
622		status = GET_FPU_SW(curthread);
623	} else {
624		fnstcw(&control);
625		fnstsw(&status);
626	}
627
628	if (PCPU_GET(fpcurthread) == curthread)
629		fnclex();
630	critical_exit();
631	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
632}
633
634/*
635 * Implement device not available (DNA) exception
636 *
637 * It would be better to switch FP context here (if curthread != fpcurthread)
638 * and not necessarily for every context switch, but it is too hard to
639 * access foreign pcb's.
640 */
641
642static int err_count = 0;
643
644int
645npxdna(void)
646{
647	struct pcb *pcb;
648
649	if (!hw_float)
650		return (0);
651	critical_enter();
652	if (PCPU_GET(fpcurthread) == curthread) {
653		printf("npxdna: fpcurthread == curthread %d times\n",
654		    ++err_count);
655		stop_emulating();
656		critical_exit();
657		return (1);
658	}
659	if (PCPU_GET(fpcurthread) != NULL) {
660		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
661		       PCPU_GET(fpcurthread),
662		       PCPU_GET(fpcurthread)->td_proc->p_pid,
663		       curthread, curthread->td_proc->p_pid);
664		panic("npxdna");
665	}
666	stop_emulating();
667	/*
668	 * Record new context early in case frstor causes an IRQ13.
669	 */
670	PCPU_SET(fpcurthread, curthread);
671	pcb = PCPU_GET(curpcb);
672
673#ifdef CPU_ENABLE_SSE
674	if (cpu_fxsr)
675		fpu_clean_state();
676#endif
677
678	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
679		/*
680		 * This is the first time this thread has used the FPU or
681		 * the PCB doesn't contain a clean FPU state.  Explicitly
682		 * load an initial state.
683		 */
684		fpurstor(&npx_initialstate);
685		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
686			fldcw(pcb->pcb_initial_npxcw);
687		pcb->pcb_flags |= PCB_NPXINITDONE;
688		if (PCB_USER_FPU(pcb))
689			pcb->pcb_flags |= PCB_NPXUSERINITDONE;
690	} else {
691		/*
692		 * The following fpurstor() may cause an IRQ13 when the
693		 * state being restored has a pending error.  The error will
694		 * appear to have been triggered by the current (npx) user
695		 * instruction even when that instruction is a no-wait
696		 * instruction that should not trigger an error (e.g.,
697		 * fnclex).  On at least one 486 system all of the no-wait
698		 * instructions are broken the same as frstor, so our
699		 * treatment does not amplify the breakage.  On at least
700		 * one 386/Cyrix 387 system, fnclex works correctly while
701		 * frstor and fnsave are broken, so our treatment breaks
702		 * fnclex if it is the first FPU instruction after a context
703		 * switch.
704		 */
705		fpurstor(pcb->pcb_save);
706	}
707	critical_exit();
708
709	return (1);
710}
711
712/*
713 * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
714 * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
715 * no-wait npx instructions.  See the Intel application note AP-578 for
716 * details.  This doesn't cause any additional complications here.  IRQ13's
717 * are inherently asynchronous unless the CPU is frozen to deliver them --
718 * one that started in userland may be delivered many instructions later,
719 * after the process has entered the kernel.  It may even be delivered after
720 * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
721 * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
722 * it is normally ignored at first because we set fpcurthread to NULL; it is
723 * normally retriggered in npxdna() after return to user mode.
724 *
725 * npxsave() must be called with interrupts disabled, so that it clears
726 * fpcurthread atomically with saving the state.  We require callers to do the
727 * disabling, since most callers need to disable interrupts anyway to call
728 * npxsave() atomically with checking fpcurthread.
729 *
730 * A previous version of npxsave() went to great lengths to excecute fnsave
731 * with interrupts enabled in case executing it froze the CPU.  This case
732 * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
733 * spurious freezes.
734 */
735void
736npxsave(addr)
737	union savefpu *addr;
738{
739
740	stop_emulating();
741	fpusave(addr);
742
743	start_emulating();
744	PCPU_SET(fpcurthread, NULL);
745}
746
747void
748npxdrop()
749{
750	struct thread *td;
751
752	/*
753	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
754	 * ones don't cause a panic on the next frstor.
755	 */
756#ifdef CPU_ENABLE_SSE
757	if (!cpu_fxsr)
758#endif
759		fnclex();
760
761	td = PCPU_GET(fpcurthread);
762	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
763	CRITICAL_ASSERT(td);
764	PCPU_SET(fpcurthread, NULL);
765	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
766	start_emulating();
767}
768
769/*
770 * Get the state of the FPU without dropping ownership (if possible).
771 * It returns the FPU ownership status.
772 */
773int
774npxgetregs(struct thread *td, union savefpu *addr)
775{
776	struct pcb *pcb;
777
778	if (!hw_float)
779		return (_MC_FPOWNED_NONE);
780
781	pcb = td->td_pcb;
782	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
783		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
784		SET_FPU_CW(addr, pcb->pcb_initial_npxcw);
785		return (_MC_FPOWNED_NONE);
786	}
787	critical_enter();
788	if (td == PCPU_GET(fpcurthread)) {
789		fpusave(addr);
790#ifdef CPU_ENABLE_SSE
791		if (!cpu_fxsr)
792#endif
793			/*
794			 * fnsave initializes the FPU and destroys whatever
795			 * context it contains.  Make sure the FPU owner
796			 * starts with a clean state next time.
797			 */
798			npxdrop();
799		critical_exit();
800		return (_MC_FPOWNED_FPU);
801	} else {
802		critical_exit();
803		bcopy(pcb->pcb_save, addr, sizeof(*addr));
804		return (_MC_FPOWNED_PCB);
805	}
806}
807
808int
809npxgetuserregs(struct thread *td, union savefpu *addr)
810{
811	struct pcb *pcb;
812
813	if (!hw_float)
814		return (_MC_FPOWNED_NONE);
815
816	pcb = td->td_pcb;
817	if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) == 0) {
818		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
819		SET_FPU_CW(addr, pcb->pcb_initial_npxcw);
820		return (_MC_FPOWNED_NONE);
821	}
822	critical_enter();
823	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
824		fpusave(addr);
825#ifdef CPU_ENABLE_SSE
826		if (!cpu_fxsr)
827#endif
828			/*
829			 * fnsave initializes the FPU and destroys whatever
830			 * context it contains.  Make sure the FPU owner
831			 * starts with a clean state next time.
832			 */
833			npxdrop();
834		critical_exit();
835		return (_MC_FPOWNED_FPU);
836	} else {
837		critical_exit();
838		bcopy(&pcb->pcb_user_save, addr, sizeof(*addr));
839		return (_MC_FPOWNED_PCB);
840	}
841}
842
843/*
844 * Set the state of the FPU.
845 */
846void
847npxsetregs(struct thread *td, union savefpu *addr)
848{
849	struct pcb *pcb;
850
851	if (!hw_float)
852		return;
853
854	pcb = td->td_pcb;
855	critical_enter();
856	if (td == PCPU_GET(fpcurthread)) {
857#ifdef CPU_ENABLE_SSE
858		if (!cpu_fxsr)
859#endif
860			fnclex();	/* As in npxdrop(). */
861		fpurstor(addr);
862		critical_exit();
863	} else {
864		critical_exit();
865		bcopy(addr, pcb->pcb_save, sizeof(*addr));
866	}
867	if (PCB_USER_FPU(pcb))
868		pcb->pcb_flags |= PCB_NPXUSERINITDONE;
869	pcb->pcb_flags |= PCB_NPXINITDONE;
870}
871
872void
873npxsetuserregs(struct thread *td, union savefpu *addr)
874{
875	struct pcb *pcb;
876
877	if (!hw_float)
878		return;
879
880	pcb = td->td_pcb;
881	critical_enter();
882	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
883#ifdef CPU_ENABLE_SSE
884		if (!cpu_fxsr)
885#endif
886			fnclex();	/* As in npxdrop(). */
887		fpurstor(addr);
888		critical_exit();
889		pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
890	} else {
891		critical_exit();
892		bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
893		if (PCB_USER_FPU(pcb))
894			pcb->pcb_flags |= PCB_NPXINITDONE;
895		pcb->pcb_flags |= PCB_NPXUSERINITDONE;
896	}
897}
898
899static void
900fpusave(addr)
901	union savefpu *addr;
902{
903
904#ifdef CPU_ENABLE_SSE
905	if (cpu_fxsr)
906		fxsave(addr);
907	else
908#endif
909		fnsave(addr);
910}
911
912#ifdef CPU_ENABLE_SSE
913/*
914 * On AuthenticAMD processors, the fxrstor instruction does not restore
915 * the x87's stored last instruction pointer, last data pointer, and last
916 * opcode values, except in the rare case in which the exception summary
917 * (ES) bit in the x87 status word is set to 1.
918 *
919 * In order to avoid leaking this information across processes, we clean
920 * these values by performing a dummy load before executing fxrstor().
921 */
922static void
923fpu_clean_state(void)
924{
925	static float dummy_variable = 0.0;
926	u_short status;
927
928	/*
929	 * Clear the ES bit in the x87 status word if it is currently
930	 * set, in order to avoid causing a fault in the upcoming load.
931	 */
932	fnstsw(&status);
933	if (status & 0x80)
934		fnclex();
935
936	/*
937	 * Load the dummy variable into the x87 stack.  This mangles
938	 * the x87 stack, but we don't care since we're about to call
939	 * fxrstor() anyway.
940	 */
941	__asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
942}
943#endif /* CPU_ENABLE_SSE */
944
945static void
946fpurstor(addr)
947	union savefpu *addr;
948{
949
950#ifdef CPU_ENABLE_SSE
951	if (cpu_fxsr)
952		fxrstor(addr);
953	else
954#endif
955		frstor(addr);
956}
957
958static device_method_t npx_methods[] = {
959	/* Device interface */
960	DEVMETHOD(device_identify,	npx_identify),
961	DEVMETHOD(device_probe,		npx_probe),
962	DEVMETHOD(device_attach,	npx_attach),
963	DEVMETHOD(device_detach,	bus_generic_detach),
964	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
965	DEVMETHOD(device_suspend,	bus_generic_suspend),
966	DEVMETHOD(device_resume,	bus_generic_resume),
967
968	{ 0, 0 }
969};
970
971static driver_t npx_driver = {
972	"npx",
973	npx_methods,
974	1,			/* no softc */
975};
976
977static devclass_t npx_devclass;
978
979/*
980 * We prefer to attach to the root nexus so that the usual case (exception 16)
981 * doesn't describe the processor as being `on isa'.
982 */
983DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
984
985#ifdef DEV_ISA
986/*
987 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
988 */
989static struct isa_pnp_id npxisa_ids[] = {
990	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
991	{ 0 }
992};
993
994static int
995npxisa_probe(device_t dev)
996{
997	int result;
998	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
999		device_quiet(dev);
1000	}
1001	return(result);
1002}
1003
1004static int
1005npxisa_attach(device_t dev)
1006{
1007	return (0);
1008}
1009
1010static device_method_t npxisa_methods[] = {
1011	/* Device interface */
1012	DEVMETHOD(device_probe,		npxisa_probe),
1013	DEVMETHOD(device_attach,	npxisa_attach),
1014	DEVMETHOD(device_detach,	bus_generic_detach),
1015	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1016	DEVMETHOD(device_suspend,	bus_generic_suspend),
1017	DEVMETHOD(device_resume,	bus_generic_resume),
1018
1019	{ 0, 0 }
1020};
1021
1022static driver_t npxisa_driver = {
1023	"npxisa",
1024	npxisa_methods,
1025	1,			/* no softc */
1026};
1027
1028static devclass_t npxisa_devclass;
1029
1030DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1031#ifndef PC98
1032DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1033#endif
1034#endif /* DEV_ISA */
1035
1036int
1037fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1038{
1039	struct pcb *pcb;
1040
1041	pcb = td->td_pcb;
1042	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == &pcb->pcb_user_save,
1043	    ("mangled pcb_save"));
1044	ctx->flags = 0;
1045	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1046		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1047	npxexit(td);
1048	ctx->prev = pcb->pcb_save;
1049	pcb->pcb_save = &ctx->hwstate;
1050	pcb->pcb_flags |= PCB_KERNNPX;
1051	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1052	return (0);
1053}
1054
1055int
1056fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1057{
1058	struct pcb *pcb;
1059
1060	pcb = td->td_pcb;
1061	critical_enter();
1062	if (curthread == PCPU_GET(fpcurthread))
1063		npxdrop();
1064	critical_exit();
1065	pcb->pcb_save = ctx->prev;
1066	if (pcb->pcb_save == &pcb->pcb_user_save) {
1067		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1068			pcb->pcb_flags |= PCB_NPXINITDONE;
1069		else
1070			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1071		pcb->pcb_flags &= ~PCB_KERNNPX;
1072	} else {
1073		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1074			pcb->pcb_flags |= PCB_NPXINITDONE;
1075		else
1076			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1077		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1078	}
1079	return (0);
1080}
1081
1082int
1083fpu_kern_thread(u_int flags)
1084{
1085	struct pcb *pcb;
1086
1087	pcb = PCPU_GET(curpcb);
1088	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1089	    ("Only kthread may use fpu_kern_thread"));
1090	KASSERT(pcb->pcb_save == &pcb->pcb_user_save, ("mangled pcb_save"));
1091	KASSERT(PCB_USER_FPU(pcb), ("recursive call"));
1092
1093	pcb->pcb_flags |= PCB_KERNNPX;
1094	return (0);
1095}
1096
1097int
1098is_fpu_kern_thread(u_int flags)
1099{
1100
1101	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1102		return (0);
1103	return ((PCPU_GET(curpcb)->pcb_flags & PCB_KERNNPX) != 0);
1104}
1105