npx.c revision 210517
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/i386/isa/npx.c 210517 2010-07-26 21:24:52Z jkim $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58
59#include <machine/asmacros.h>
60#include <machine/cputypes.h>
61#include <machine/frame.h>
62#include <machine/md_var.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/resource.h>
66#include <machine/specialreg.h>
67#include <machine/segments.h>
68#include <machine/ucontext.h>
69
70#include <machine/intr_machdep.h>
71#ifdef XEN
72#include <machine/xen/xen-os.h>
73#include <xen/hypervisor.h>
74#endif
75
76#ifdef DEV_ISA
77#include <isa/isavar.h>
78#endif
79
80#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
81#define CPU_ENABLE_SSE
82#endif
83
84/*
85 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
86 */
87
88#if defined(__GNUCLIKE_ASM) && !defined(lint)
89
90#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
91#define	fnclex()		__asm("fnclex")
92#define	fninit()		__asm("fninit")
93#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
94#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
95#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
96#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
97#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
98#ifdef CPU_ENABLE_SSE
99#define	fxrstor(addr)		__asm("fxrstor %0" : : "m" (*(addr)))
100#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
101#define	ldmxcsr(__csr)		__asm __volatile("ldmxcsr %0" : : "m" (__csr))
102#endif
103#ifdef XEN
104#define start_emulating()	(HYPERVISOR_fpu_taskswitch(1))
105#define stop_emulating()	(HYPERVISOR_fpu_taskswitch(0))
106#else
107#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
108				      : : "n" (CR0_TS) : "ax")
109#define	stop_emulating()	__asm("clts")
110#endif
111#else	/* !(__GNUCLIKE_ASM && !lint) */
112
113void	fldcw(caddr_t addr);
114void	fnclex(void);
115void	fninit(void);
116void	fnsave(caddr_t addr);
117void	fnstcw(caddr_t addr);
118void	fnstsw(caddr_t addr);
119void	fp_divide_by_0(void);
120void	frstor(caddr_t addr);
121#ifdef CPU_ENABLE_SSE
122void	fxsave(caddr_t addr);
123void	fxrstor(caddr_t addr);
124#endif
125void	start_emulating(void);
126void	stop_emulating(void);
127
128#endif	/* __GNUCLIKE_ASM && !lint */
129
130#ifdef CPU_ENABLE_SSE
131#define GET_FPU_CW(thread) \
132	(cpu_fxsr ? \
133		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
134		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
135#define GET_FPU_SW(thread) \
136	(cpu_fxsr ? \
137		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
138		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
139#define SET_FPU_CW(savefpu, value) do { \
140	if (cpu_fxsr) \
141		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
142	else \
143		(savefpu)->sv_87.sv_env.en_cw = (value); \
144} while (0)
145#else /* CPU_ENABLE_SSE */
146#define GET_FPU_CW(thread) \
147	(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
148#define GET_FPU_SW(thread) \
149	(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
150#define SET_FPU_CW(savefpu, value) \
151	(savefpu)->sv_87.sv_env.en_cw = (value)
152#endif /* CPU_ENABLE_SSE */
153
154typedef u_char bool_t;
155
156#ifdef CPU_ENABLE_SSE
157static	void	fpu_clean_state(void);
158#endif
159
160static	void	fpusave(union savefpu *);
161static	void	fpurstor(union savefpu *);
162static	int	npx_attach(device_t dev);
163static	void	npx_identify(driver_t *driver, device_t parent);
164static	int	npx_probe(device_t dev);
165
166int	hw_float;
167
168SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
169    &hw_float, 0, "Floating point instructions executed in hardware");
170
171static	volatile u_int		npx_traps_while_probing;
172static	union savefpu		npx_initialstate;
173
174alias_for_inthand_t probetrap;
175__asm("								\n\
176	.text							\n\
177	.p2align 2,0x90						\n\
178	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
179" __XSTRING(CNAME(probetrap)) ":				\n\
180	ss							\n\
181	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
182	fnclex							\n\
183	iret							\n\
184");
185
186/*
187 * Identify routine.  Create a connection point on our parent for probing.
188 */
189static void
190npx_identify(driver, parent)
191	driver_t *driver;
192	device_t parent;
193{
194	device_t child;
195
196	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
197	if (child == NULL)
198		panic("npx_identify");
199}
200
201/*
202 * Probe routine.  Set flags to tell npxattach() what to do.  Set up an
203 * interrupt handler if npx needs to use interrupts.
204 */
205static int
206npx_probe(device_t dev)
207{
208	struct gate_descriptor save_idt_npxtrap;
209	u_short control, status;
210
211	device_set_desc(dev, "math processor");
212
213	/*
214	 * Modern CPUs all have an FPU that uses the INT16 interface
215	 * and provide a simple way to verify that, so handle the
216	 * common case right away.
217	 */
218	if (cpu_feature & CPUID_FPU) {
219		hw_float = 1;
220		device_quiet(dev);
221		return (0);
222	}
223
224	save_idt_npxtrap = idt[IDT_MF];
225	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
226	    GSEL(GCODE_SEL, SEL_KPL));
227
228	/*
229	 * Don't trap while we're probing.
230	 */
231	stop_emulating();
232
233	/*
234	 * Finish resetting the coprocessor, if any.  If there is an error
235	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
236	 * it OK.  Bogus halts have never been observed, but we enabled
237	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
238	 */
239	fninit();
240
241	/*
242	 * Don't use fwait here because it might hang.
243	 * Don't use fnop here because it usually hangs if there is no FPU.
244	 */
245	DELAY(1000);		/* wait for any IRQ13 */
246#ifdef DIAGNOSTIC
247	if (npx_traps_while_probing != 0)
248		printf("fninit caused %u bogus npx trap(s)\n",
249		       npx_traps_while_probing);
250#endif
251	/*
252	 * Check for a status of mostly zero.
253	 */
254	status = 0x5a5a;
255	fnstsw(&status);
256	if ((status & 0xb8ff) == 0) {
257		/*
258		 * Good, now check for a proper control word.
259		 */
260		control = 0x5a5a;
261		fnstcw(&control);
262		if ((control & 0x1f3f) == 0x033f) {
263			/*
264			 * We have an npx, now divide by 0 to see if exception
265			 * 16 works.
266			 */
267			control &= ~(1 << 2);	/* enable divide by 0 trap */
268			fldcw(&control);
269#ifdef FPU_ERROR_BROKEN
270			/*
271			 * FPU error signal doesn't work on some CPU
272			 * accelerator board.
273			 */
274			hw_float = 1;
275			return (0);
276#endif
277			npx_traps_while_probing = 0;
278			fp_divide_by_0();
279			if (npx_traps_while_probing != 0) {
280				/*
281				 * Good, exception 16 works.
282				 */
283				hw_float = 1;
284				goto cleanup;
285			}
286			device_printf(dev,
287	"FPU does not use exception 16 for error reporting\n");
288			goto cleanup;
289		}
290	}
291
292	/*
293	 * Probe failed.  Floating point simply won't work.
294	 * Notify user and disable FPU/MMX/SSE instruction execution.
295	 */
296	device_printf(dev, "WARNING: no FPU!\n");
297	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
298	    "n" (CR0_EM | CR0_MP) : "ax");
299
300cleanup:
301	idt[IDT_MF] = save_idt_npxtrap;
302	return (hw_float ? 0 : ENXIO);
303}
304
305/*
306 * Attach routine - announce which it is, and wire into system
307 */
308static int
309npx_attach(device_t dev)
310{
311
312	npxinit();
313	critical_enter();
314	stop_emulating();
315	fpusave(&npx_initialstate);
316	start_emulating();
317#ifdef CPU_ENABLE_SSE
318	if (cpu_fxsr) {
319		if (npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask)
320			cpu_mxcsr_mask =
321			    npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask;
322		else
323			cpu_mxcsr_mask = 0xFFBF;
324		bzero(npx_initialstate.sv_xmm.sv_fp,
325		    sizeof(npx_initialstate.sv_xmm.sv_fp));
326		bzero(npx_initialstate.sv_xmm.sv_xmm,
327		    sizeof(npx_initialstate.sv_xmm.sv_xmm));
328		/* XXX might need even more zeroing. */
329	} else
330#endif
331		bzero(npx_initialstate.sv_87.sv_ac,
332		    sizeof(npx_initialstate.sv_87.sv_ac));
333	critical_exit();
334
335	return (0);
336}
337
338/*
339 * Initialize floating point unit.
340 */
341void
342npxinit(void)
343{
344	static union savefpu dummy;
345	register_t savecrit;
346	u_short control;
347
348	if (!hw_float)
349		return;
350	/*
351	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
352	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
353	 * the fpu and sets fpcurthread = NULL as important side effects.
354	 *
355	 * It is too early for critical_enter() to work on AP.
356	 */
357	savecrit = intr_disable();
358	npxsave(&dummy);
359	stop_emulating();
360#ifdef CPU_ENABLE_SSE
361	/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
362	if (cpu_fxsr)
363		fninit();
364#endif
365	control = __INITIAL_NPXCW__;
366	fldcw(&control);
367	start_emulating();
368	intr_restore(savecrit);
369}
370
371/*
372 * Free coprocessor (if we have it).
373 */
374void
375npxexit(td)
376	struct thread *td;
377{
378
379	critical_enter();
380	if (curthread == PCPU_GET(fpcurthread))
381		npxsave(PCPU_GET(curpcb)->pcb_save);
382	critical_exit();
383#ifdef NPX_DEBUG
384	if (hw_float) {
385		u_int	masked_exceptions;
386
387		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
388		/*
389		 * Log exceptions that would have trapped with the old
390		 * control word (overflow, divide by 0, and invalid operand).
391		 */
392		if (masked_exceptions & 0x0d)
393			log(LOG_ERR,
394	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
395			    td->td_proc->p_pid, td->td_proc->p_comm,
396			    masked_exceptions);
397	}
398#endif
399}
400
401int
402npxformat()
403{
404
405	if (!hw_float)
406		return (_MC_FPFMT_NODEV);
407#ifdef	CPU_ENABLE_SSE
408	if (cpu_fxsr)
409		return (_MC_FPFMT_XMM);
410#endif
411	return (_MC_FPFMT_387);
412}
413
414/*
415 * The following mechanism is used to ensure that the FPE_... value
416 * that is passed as a trapcode to the signal handler of the user
417 * process does not have more than one bit set.
418 *
419 * Multiple bits may be set if the user process modifies the control
420 * word while a status word bit is already set.  While this is a sign
421 * of bad coding, we have no choise than to narrow them down to one
422 * bit, since we must not send a trapcode that is not exactly one of
423 * the FPE_ macros.
424 *
425 * The mechanism has a static table with 127 entries.  Each combination
426 * of the 7 FPU status word exception bits directly translates to a
427 * position in this table, where a single FPE_... value is stored.
428 * This FPE_... value stored there is considered the "most important"
429 * of the exception bits and will be sent as the signal code.  The
430 * precedence of the bits is based upon Intel Document "Numerical
431 * Applications", Chapter "Special Computational Situations".
432 *
433 * The macro to choose one of these values does these steps: 1) Throw
434 * away status word bits that cannot be masked.  2) Throw away the bits
435 * currently masked in the control word, assuming the user isn't
436 * interested in them anymore.  3) Reinsert status word bit 7 (stack
437 * fault) if it is set, which cannot be masked but must be presered.
438 * 4) Use the remaining bits to point into the trapcode table.
439 *
440 * The 6 maskable bits in order of their preference, as stated in the
441 * above referenced Intel manual:
442 * 1  Invalid operation (FP_X_INV)
443 * 1a   Stack underflow
444 * 1b   Stack overflow
445 * 1c   Operand of unsupported format
446 * 1d   SNaN operand.
447 * 2  QNaN operand (not an exception, irrelavant here)
448 * 3  Any other invalid-operation not mentioned above or zero divide
449 *      (FP_X_INV, FP_X_DZ)
450 * 4  Denormal operand (FP_X_DNML)
451 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
452 * 6  Inexact result (FP_X_IMP)
453 */
454static char fpetable[128] = {
455	0,
456	FPE_FLTINV,	/*  1 - INV */
457	FPE_FLTUND,	/*  2 - DNML */
458	FPE_FLTINV,	/*  3 - INV | DNML */
459	FPE_FLTDIV,	/*  4 - DZ */
460	FPE_FLTINV,	/*  5 - INV | DZ */
461	FPE_FLTDIV,	/*  6 - DNML | DZ */
462	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
463	FPE_FLTOVF,	/*  8 - OFL */
464	FPE_FLTINV,	/*  9 - INV | OFL */
465	FPE_FLTUND,	/*  A - DNML | OFL */
466	FPE_FLTINV,	/*  B - INV | DNML | OFL */
467	FPE_FLTDIV,	/*  C - DZ | OFL */
468	FPE_FLTINV,	/*  D - INV | DZ | OFL */
469	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
470	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
471	FPE_FLTUND,	/* 10 - UFL */
472	FPE_FLTINV,	/* 11 - INV | UFL */
473	FPE_FLTUND,	/* 12 - DNML | UFL */
474	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
475	FPE_FLTDIV,	/* 14 - DZ | UFL */
476	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
477	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
478	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
479	FPE_FLTOVF,	/* 18 - OFL | UFL */
480	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
481	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
482	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
483	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
484	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
485	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
486	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
487	FPE_FLTRES,	/* 20 - IMP */
488	FPE_FLTINV,	/* 21 - INV | IMP */
489	FPE_FLTUND,	/* 22 - DNML | IMP */
490	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
491	FPE_FLTDIV,	/* 24 - DZ | IMP */
492	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
493	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
494	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
495	FPE_FLTOVF,	/* 28 - OFL | IMP */
496	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
497	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
498	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
499	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
500	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
501	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
502	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
503	FPE_FLTUND,	/* 30 - UFL | IMP */
504	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
505	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
506	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
507	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
508	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
509	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
510	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
511	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
512	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
513	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
514	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
515	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
516	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
517	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
518	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
519	FPE_FLTSUB,	/* 40 - STK */
520	FPE_FLTSUB,	/* 41 - INV | STK */
521	FPE_FLTUND,	/* 42 - DNML | STK */
522	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
523	FPE_FLTDIV,	/* 44 - DZ | STK */
524	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
525	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
526	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
527	FPE_FLTOVF,	/* 48 - OFL | STK */
528	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
529	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
530	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
531	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
532	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
533	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
534	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
535	FPE_FLTUND,	/* 50 - UFL | STK */
536	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
537	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
538	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
539	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
540	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
541	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
542	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
543	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
544	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
545	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
546	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
547	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
548	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
549	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
550	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
551	FPE_FLTRES,	/* 60 - IMP | STK */
552	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
553	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
554	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
555	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
556	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
557	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
558	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
559	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
560	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
561	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
562	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
563	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
564	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
565	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
566	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
567	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
568	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
569	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
570	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
571	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
572	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
573	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
574	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
575	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
576	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
577	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
578	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
579	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
580	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
581	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
582	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
583};
584
585/*
586 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
587 *
588 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
589 * depend on longjmp() restoring a usable state.  Restoring the state
590 * or examining it might fail if we didn't clear exceptions.
591 *
592 * The error code chosen will be one of the FPE_... macros. It will be
593 * sent as the second argument to old BSD-style signal handlers and as
594 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
595 *
596 * XXX the FP state is not preserved across signal handlers.  So signal
597 * handlers cannot afford to do FP unless they preserve the state or
598 * longjmp() out.  Both preserving the state and longjmp()ing may be
599 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
600 * solution for signals other than SIGFPE.
601 */
602int
603npxtrap()
604{
605	u_short control, status;
606
607	if (!hw_float) {
608		printf("npxtrap: fpcurthread = %p, curthread = %p, hw_float = %d\n",
609		       PCPU_GET(fpcurthread), curthread, hw_float);
610		panic("npxtrap from nowhere");
611	}
612	critical_enter();
613
614	/*
615	 * Interrupt handling (for another interrupt) may have pushed the
616	 * state to memory.  Fetch the relevant parts of the state from
617	 * wherever they are.
618	 */
619	if (PCPU_GET(fpcurthread) != curthread) {
620		control = GET_FPU_CW(curthread);
621		status = GET_FPU_SW(curthread);
622	} else {
623		fnstcw(&control);
624		fnstsw(&status);
625	}
626
627	if (PCPU_GET(fpcurthread) == curthread)
628		fnclex();
629	critical_exit();
630	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
631}
632
633/*
634 * Implement device not available (DNA) exception
635 *
636 * It would be better to switch FP context here (if curthread != fpcurthread)
637 * and not necessarily for every context switch, but it is too hard to
638 * access foreign pcb's.
639 */
640
641static int err_count = 0;
642
643int
644npxdna(void)
645{
646	struct pcb *pcb;
647
648	if (!hw_float)
649		return (0);
650	critical_enter();
651	if (PCPU_GET(fpcurthread) == curthread) {
652		printf("npxdna: fpcurthread == curthread %d times\n",
653		    ++err_count);
654		stop_emulating();
655		critical_exit();
656		return (1);
657	}
658	if (PCPU_GET(fpcurthread) != NULL) {
659		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
660		       PCPU_GET(fpcurthread),
661		       PCPU_GET(fpcurthread)->td_proc->p_pid,
662		       curthread, curthread->td_proc->p_pid);
663		panic("npxdna");
664	}
665	stop_emulating();
666	/*
667	 * Record new context early in case frstor causes an IRQ13.
668	 */
669	PCPU_SET(fpcurthread, curthread);
670	pcb = PCPU_GET(curpcb);
671
672#ifdef CPU_ENABLE_SSE
673	if (cpu_fxsr)
674		fpu_clean_state();
675#endif
676
677	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
678		/*
679		 * This is the first time this thread has used the FPU or
680		 * the PCB doesn't contain a clean FPU state.  Explicitly
681		 * load an initial state.
682		 */
683		fpurstor(&npx_initialstate);
684		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
685			fldcw(&pcb->pcb_initial_npxcw);
686		pcb->pcb_flags |= PCB_NPXINITDONE;
687		if (PCB_USER_FPU(pcb))
688			pcb->pcb_flags |= PCB_NPXUSERINITDONE;
689	} else {
690		/*
691		 * The following fpurstor() may cause an IRQ13 when the
692		 * state being restored has a pending error.  The error will
693		 * appear to have been triggered by the current (npx) user
694		 * instruction even when that instruction is a no-wait
695		 * instruction that should not trigger an error (e.g.,
696		 * fnclex).  On at least one 486 system all of the no-wait
697		 * instructions are broken the same as frstor, so our
698		 * treatment does not amplify the breakage.  On at least
699		 * one 386/Cyrix 387 system, fnclex works correctly while
700		 * frstor and fnsave are broken, so our treatment breaks
701		 * fnclex if it is the first FPU instruction after a context
702		 * switch.
703		 */
704		fpurstor(pcb->pcb_save);
705	}
706	critical_exit();
707
708	return (1);
709}
710
711/*
712 * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
713 * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
714 * no-wait npx instructions.  See the Intel application note AP-578 for
715 * details.  This doesn't cause any additional complications here.  IRQ13's
716 * are inherently asynchronous unless the CPU is frozen to deliver them --
717 * one that started in userland may be delivered many instructions later,
718 * after the process has entered the kernel.  It may even be delivered after
719 * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
720 * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
721 * it is normally ignored at first because we set fpcurthread to NULL; it is
722 * normally retriggered in npxdna() after return to user mode.
723 *
724 * npxsave() must be called with interrupts disabled, so that it clears
725 * fpcurthread atomically with saving the state.  We require callers to do the
726 * disabling, since most callers need to disable interrupts anyway to call
727 * npxsave() atomically with checking fpcurthread.
728 *
729 * A previous version of npxsave() went to great lengths to excecute fnsave
730 * with interrupts enabled in case executing it froze the CPU.  This case
731 * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
732 * spurious freezes.
733 */
734void
735npxsave(addr)
736	union savefpu *addr;
737{
738
739	stop_emulating();
740	fpusave(addr);
741
742	start_emulating();
743	PCPU_SET(fpcurthread, NULL);
744}
745
746void
747npxdrop()
748{
749	struct thread *td;
750
751	/*
752	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
753	 * ones don't cause a panic on the next frstor.
754	 */
755#ifdef CPU_ENABLE_SSE
756	if (!cpu_fxsr)
757#endif
758		fnclex();
759
760	td = PCPU_GET(fpcurthread);
761	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
762	CRITICAL_ASSERT(td);
763	PCPU_SET(fpcurthread, NULL);
764	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
765	start_emulating();
766}
767
768/*
769 * Get the state of the FPU without dropping ownership (if possible).
770 * It returns the FPU ownership status.
771 */
772int
773npxgetregs(struct thread *td, union savefpu *addr)
774{
775	struct pcb *pcb;
776
777	if (!hw_float)
778		return (_MC_FPOWNED_NONE);
779
780	pcb = td->td_pcb;
781	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
782		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
783		SET_FPU_CW(addr, pcb->pcb_initial_npxcw);
784		return (_MC_FPOWNED_NONE);
785	}
786	critical_enter();
787	if (td == PCPU_GET(fpcurthread)) {
788		fpusave(addr);
789#ifdef CPU_ENABLE_SSE
790		if (!cpu_fxsr)
791#endif
792			/*
793			 * fnsave initializes the FPU and destroys whatever
794			 * context it contains.  Make sure the FPU owner
795			 * starts with a clean state next time.
796			 */
797			npxdrop();
798		critical_exit();
799		return (_MC_FPOWNED_FPU);
800	} else {
801		critical_exit();
802		bcopy(pcb->pcb_save, addr, sizeof(*addr));
803		return (_MC_FPOWNED_PCB);
804	}
805}
806
807int
808npxgetuserregs(struct thread *td, union savefpu *addr)
809{
810	struct pcb *pcb;
811
812	if (!hw_float)
813		return (_MC_FPOWNED_NONE);
814
815	pcb = td->td_pcb;
816	if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) == 0) {
817		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
818		SET_FPU_CW(addr, pcb->pcb_initial_npxcw);
819		return (_MC_FPOWNED_NONE);
820	}
821	critical_enter();
822	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
823		fpusave(addr);
824#ifdef CPU_ENABLE_SSE
825		if (!cpu_fxsr)
826#endif
827			/*
828			 * fnsave initializes the FPU and destroys whatever
829			 * context it contains.  Make sure the FPU owner
830			 * starts with a clean state next time.
831			 */
832			npxdrop();
833		critical_exit();
834		return (_MC_FPOWNED_FPU);
835	} else {
836		critical_exit();
837		bcopy(&pcb->pcb_user_save, addr, sizeof(*addr));
838		return (_MC_FPOWNED_PCB);
839	}
840}
841
842/*
843 * Set the state of the FPU.
844 */
845void
846npxsetregs(struct thread *td, union savefpu *addr)
847{
848	struct pcb *pcb;
849
850	if (!hw_float)
851		return;
852
853	pcb = td->td_pcb;
854	critical_enter();
855	if (td == PCPU_GET(fpcurthread)) {
856#ifdef CPU_ENABLE_SSE
857		if (!cpu_fxsr)
858#endif
859			fnclex();	/* As in npxdrop(). */
860		fpurstor(addr);
861		critical_exit();
862	} else {
863		critical_exit();
864		bcopy(addr, pcb->pcb_save, sizeof(*addr));
865	}
866	if (PCB_USER_FPU(pcb))
867		pcb->pcb_flags |= PCB_NPXUSERINITDONE;
868	pcb->pcb_flags |= PCB_NPXINITDONE;
869}
870
871void
872npxsetuserregs(struct thread *td, union savefpu *addr)
873{
874	struct pcb *pcb;
875
876	if (!hw_float)
877		return;
878
879	pcb = td->td_pcb;
880	critical_enter();
881	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
882#ifdef CPU_ENABLE_SSE
883		if (!cpu_fxsr)
884#endif
885			fnclex();	/* As in npxdrop(). */
886		fpurstor(addr);
887		critical_exit();
888		pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
889	} else {
890		critical_exit();
891		bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
892		if (PCB_USER_FPU(pcb))
893			pcb->pcb_flags |= PCB_NPXINITDONE;
894		pcb->pcb_flags |= PCB_NPXUSERINITDONE;
895	}
896}
897
898static void
899fpusave(addr)
900	union savefpu *addr;
901{
902
903#ifdef CPU_ENABLE_SSE
904	if (cpu_fxsr)
905		fxsave(addr);
906	else
907#endif
908		fnsave(addr);
909}
910
911#ifdef CPU_ENABLE_SSE
912/*
913 * On AuthenticAMD processors, the fxrstor instruction does not restore
914 * the x87's stored last instruction pointer, last data pointer, and last
915 * opcode values, except in the rare case in which the exception summary
916 * (ES) bit in the x87 status word is set to 1.
917 *
918 * In order to avoid leaking this information across processes, we clean
919 * these values by performing a dummy load before executing fxrstor().
920 */
921static void
922fpu_clean_state(void)
923{
924	static float dummy_variable = 0.0;
925	u_short status;
926
927	/*
928	 * Clear the ES bit in the x87 status word if it is currently
929	 * set, in order to avoid causing a fault in the upcoming load.
930	 */
931	fnstsw(&status);
932	if (status & 0x80)
933		fnclex();
934
935	/*
936	 * Load the dummy variable into the x87 stack.  This mangles
937	 * the x87 stack, but we don't care since we're about to call
938	 * fxrstor() anyway.
939	 */
940	__asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
941}
942#endif /* CPU_ENABLE_SSE */
943
944static void
945fpurstor(addr)
946	union savefpu *addr;
947{
948
949#ifdef CPU_ENABLE_SSE
950	if (cpu_fxsr)
951		fxrstor(addr);
952	else
953#endif
954		frstor(addr);
955}
956
957static device_method_t npx_methods[] = {
958	/* Device interface */
959	DEVMETHOD(device_identify,	npx_identify),
960	DEVMETHOD(device_probe,		npx_probe),
961	DEVMETHOD(device_attach,	npx_attach),
962	DEVMETHOD(device_detach,	bus_generic_detach),
963	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
964	DEVMETHOD(device_suspend,	bus_generic_suspend),
965	DEVMETHOD(device_resume,	bus_generic_resume),
966
967	{ 0, 0 }
968};
969
970static driver_t npx_driver = {
971	"npx",
972	npx_methods,
973	1,			/* no softc */
974};
975
976static devclass_t npx_devclass;
977
978/*
979 * We prefer to attach to the root nexus so that the usual case (exception 16)
980 * doesn't describe the processor as being `on isa'.
981 */
982DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
983
984#ifdef DEV_ISA
985/*
986 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
987 */
988static struct isa_pnp_id npxisa_ids[] = {
989	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
990	{ 0 }
991};
992
993static int
994npxisa_probe(device_t dev)
995{
996	int result;
997	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
998		device_quiet(dev);
999	}
1000	return(result);
1001}
1002
1003static int
1004npxisa_attach(device_t dev)
1005{
1006	return (0);
1007}
1008
1009static device_method_t npxisa_methods[] = {
1010	/* Device interface */
1011	DEVMETHOD(device_probe,		npxisa_probe),
1012	DEVMETHOD(device_attach,	npxisa_attach),
1013	DEVMETHOD(device_detach,	bus_generic_detach),
1014	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1015	DEVMETHOD(device_suspend,	bus_generic_suspend),
1016	DEVMETHOD(device_resume,	bus_generic_resume),
1017
1018	{ 0, 0 }
1019};
1020
1021static driver_t npxisa_driver = {
1022	"npxisa",
1023	npxisa_methods,
1024	1,			/* no softc */
1025};
1026
1027static devclass_t npxisa_devclass;
1028
1029DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1030#ifndef PC98
1031DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1032#endif
1033#endif /* DEV_ISA */
1034
1035int
1036fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1037{
1038	struct pcb *pcb;
1039
1040	pcb = td->td_pcb;
1041	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == &pcb->pcb_user_save,
1042	    ("mangled pcb_save"));
1043	ctx->flags = 0;
1044	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1045		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1046	npxexit(td);
1047	ctx->prev = pcb->pcb_save;
1048	pcb->pcb_save = &ctx->hwstate;
1049	pcb->pcb_flags |= PCB_KERNNPX;
1050	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1051	return (0);
1052}
1053
1054int
1055fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1056{
1057	struct pcb *pcb;
1058
1059	pcb = td->td_pcb;
1060	critical_enter();
1061	if (curthread == PCPU_GET(fpcurthread))
1062		npxdrop();
1063	critical_exit();
1064	pcb->pcb_save = ctx->prev;
1065	if (pcb->pcb_save == &pcb->pcb_user_save) {
1066		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1067			pcb->pcb_flags |= PCB_NPXINITDONE;
1068		else
1069			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1070		pcb->pcb_flags &= ~PCB_KERNNPX;
1071	} else {
1072		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1073			pcb->pcb_flags |= PCB_NPXINITDONE;
1074		else
1075			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1076		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1077	}
1078	return (0);
1079}
1080
1081int
1082fpu_kern_thread(u_int flags)
1083{
1084	struct pcb *pcb;
1085
1086	pcb = PCPU_GET(curpcb);
1087	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1088	    ("Only kthread may use fpu_kern_thread"));
1089	KASSERT(pcb->pcb_save == &pcb->pcb_user_save, ("mangled pcb_save"));
1090	KASSERT(PCB_USER_FPU(pcb), ("recursive call"));
1091
1092	pcb->pcb_flags |= PCB_KERNNPX;
1093	return (0);
1094}
1095
1096int
1097is_fpu_kern_thread(u_int flags)
1098{
1099
1100	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1101		return (0);
1102	return ((PCPU_GET(curpcb)->pcb_flags & PCB_KERNNPX) != 0);
1103}
1104