npx.c revision 209461
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/i386/isa/npx.c 209461 2010-06-23 11:12:58Z kib $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58
59#include <machine/asmacros.h>
60#include <machine/cputypes.h>
61#include <machine/frame.h>
62#include <machine/md_var.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/resource.h>
66#include <machine/specialreg.h>
67#include <machine/segments.h>
68#include <machine/ucontext.h>
69
70#include <machine/intr_machdep.h>
71#ifdef XEN
72#include <machine/xen/xen-os.h>
73#include <xen/hypervisor.h>
74#endif
75
76#ifdef DEV_ISA
77#include <isa/isavar.h>
78#endif
79
80#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
81#define CPU_ENABLE_SSE
82#endif
83
84/*
85 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
86 */
87
88#if defined(__GNUCLIKE_ASM) && !defined(lint)
89
90#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
91#define	fnclex()		__asm("fnclex")
92#define	fninit()		__asm("fninit")
93#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
94#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
95#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
96#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
97#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
98#ifdef CPU_ENABLE_SSE
99#define	fxrstor(addr)		__asm("fxrstor %0" : : "m" (*(addr)))
100#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
101#define	ldmxcsr(__csr)		__asm __volatile("ldmxcsr %0" : : "m" (__csr))
102#endif
103#ifdef XEN
104#define start_emulating()	(HYPERVISOR_fpu_taskswitch(1))
105#define stop_emulating()	(HYPERVISOR_fpu_taskswitch(0))
106#else
107#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
108				      : : "n" (CR0_TS) : "ax")
109#define	stop_emulating()	__asm("clts")
110#endif
111#else	/* !(__GNUCLIKE_ASM && !lint) */
112
113void	fldcw(caddr_t addr);
114void	fnclex(void);
115void	fninit(void);
116void	fnsave(caddr_t addr);
117void	fnstcw(caddr_t addr);
118void	fnstsw(caddr_t addr);
119void	fp_divide_by_0(void);
120void	frstor(caddr_t addr);
121#ifdef CPU_ENABLE_SSE
122void	fxsave(caddr_t addr);
123void	fxrstor(caddr_t addr);
124#endif
125void	start_emulating(void);
126void	stop_emulating(void);
127
128#endif	/* __GNUCLIKE_ASM && !lint */
129
130#ifdef CPU_ENABLE_SSE
131#define GET_FPU_CW(thread) \
132	(cpu_fxsr ? \
133		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
134		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
135#define GET_FPU_SW(thread) \
136	(cpu_fxsr ? \
137		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
138		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
139#define SET_FPU_CW(savefpu, value) do { \
140	if (cpu_fxsr) \
141		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
142	else \
143		(savefpu)->sv_87.sv_env.en_cw = (value); \
144} while (0)
145#else /* CPU_ENABLE_SSE */
146#define GET_FPU_CW(thread) \
147	(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
148#define GET_FPU_SW(thread) \
149	(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
150#define SET_FPU_CW(savefpu, value) \
151	(savefpu)->sv_87.sv_env.en_cw = (value)
152#endif /* CPU_ENABLE_SSE */
153
154typedef u_char bool_t;
155
156#ifdef CPU_ENABLE_SSE
157static	void	fpu_clean_state(void);
158#endif
159
160static	void	fpusave(union savefpu *);
161static	void	fpurstor(union savefpu *);
162static	int	npx_attach(device_t dev);
163static	void	npx_identify(driver_t *driver, device_t parent);
164static	int	npx_probe(device_t dev);
165
166int	hw_float;
167
168SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
169    &hw_float, 0, "Floating point instructions executed in hardware");
170
171static	volatile u_int		npx_traps_while_probing;
172static	union savefpu		npx_initialstate;
173
174alias_for_inthand_t probetrap;
175__asm("								\n\
176	.text							\n\
177	.p2align 2,0x90						\n\
178	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
179" __XSTRING(CNAME(probetrap)) ":				\n\
180	ss							\n\
181	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
182	fnclex							\n\
183	iret							\n\
184");
185
186/*
187 * Identify routine.  Create a connection point on our parent for probing.
188 */
189static void
190npx_identify(driver, parent)
191	driver_t *driver;
192	device_t parent;
193{
194	device_t child;
195
196	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
197	if (child == NULL)
198		panic("npx_identify");
199}
200
201/*
202 * Probe routine.  Set flags to tell npxattach() what to do.  Set up an
203 * interrupt handler if npx needs to use interrupts.
204 */
205static int
206npx_probe(device_t dev)
207{
208	struct gate_descriptor save_idt_npxtrap;
209	u_short control, status;
210
211	device_set_desc(dev, "math processor");
212
213	/*
214	 * Modern CPUs all have an FPU that uses the INT16 interface
215	 * and provide a simple way to verify that, so handle the
216	 * common case right away.
217	 */
218	if (cpu_feature & CPUID_FPU) {
219		hw_float = 1;
220		device_quiet(dev);
221		return (0);
222	}
223
224	save_idt_npxtrap = idt[IDT_MF];
225	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
226	    GSEL(GCODE_SEL, SEL_KPL));
227
228	/*
229	 * Don't trap while we're probing.
230	 */
231	stop_emulating();
232
233	/*
234	 * Finish resetting the coprocessor, if any.  If there is an error
235	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
236	 * it OK.  Bogus halts have never been observed, but we enabled
237	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
238	 */
239	fninit();
240
241	/*
242	 * Don't use fwait here because it might hang.
243	 * Don't use fnop here because it usually hangs if there is no FPU.
244	 */
245	DELAY(1000);		/* wait for any IRQ13 */
246#ifdef DIAGNOSTIC
247	if (npx_traps_while_probing != 0)
248		printf("fninit caused %u bogus npx trap(s)\n",
249		       npx_traps_while_probing);
250#endif
251	/*
252	 * Check for a status of mostly zero.
253	 */
254	status = 0x5a5a;
255	fnstsw(&status);
256	if ((status & 0xb8ff) == 0) {
257		/*
258		 * Good, now check for a proper control word.
259		 */
260		control = 0x5a5a;
261		fnstcw(&control);
262		if ((control & 0x1f3f) == 0x033f) {
263			/*
264			 * We have an npx, now divide by 0 to see if exception
265			 * 16 works.
266			 */
267			control &= ~(1 << 2);	/* enable divide by 0 trap */
268			fldcw(&control);
269#ifdef FPU_ERROR_BROKEN
270			/*
271			 * FPU error signal doesn't work on some CPU
272			 * accelerator board.
273			 */
274			hw_float = 1;
275			return (0);
276#endif
277			npx_traps_while_probing = 0;
278			fp_divide_by_0();
279			if (npx_traps_while_probing != 0) {
280				/*
281				 * Good, exception 16 works.
282				 */
283				hw_float = 1;
284				goto cleanup;
285			}
286			device_printf(dev,
287	"FPU does not use exception 16 for error reporting\n");
288			goto cleanup;
289		}
290	}
291
292	/*
293	 * Probe failed.  Floating point simply won't work.
294	 * Notify user and disable FPU/MMX/SSE instruction execution.
295	 */
296	device_printf(dev, "WARNING: no FPU!\n");
297	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
298	    "n" (CR0_EM | CR0_MP) : "ax");
299
300cleanup:
301	idt[IDT_MF] = save_idt_npxtrap;
302	return (hw_float ? 0 : ENXIO);
303}
304
305/*
306 * Attach routine - announce which it is, and wire into system
307 */
308static int
309npx_attach(device_t dev)
310{
311	register_t s;
312
313	npxinit();
314	s = intr_disable();
315	stop_emulating();
316	fpusave(&npx_initialstate);
317	start_emulating();
318#ifdef CPU_ENABLE_SSE
319	if (cpu_fxsr) {
320		if (npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask)
321			cpu_mxcsr_mask =
322			    npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask;
323		else
324			cpu_mxcsr_mask = 0xFFBF;
325		bzero(npx_initialstate.sv_xmm.sv_fp,
326		    sizeof(npx_initialstate.sv_xmm.sv_fp));
327		bzero(npx_initialstate.sv_xmm.sv_xmm,
328		    sizeof(npx_initialstate.sv_xmm.sv_xmm));
329		/* XXX might need even more zeroing. */
330	} else
331#endif
332		bzero(npx_initialstate.sv_87.sv_ac,
333		    sizeof(npx_initialstate.sv_87.sv_ac));
334	intr_restore(s);
335
336	return (0);
337}
338
339/*
340 * Initialize floating point unit.
341 */
342void
343npxinit(void)
344{
345	static union savefpu dummy;
346	register_t savecrit;
347	u_short control;
348
349	if (!hw_float)
350		return;
351	/*
352	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
353	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
354	 * the fpu and sets fpcurthread = NULL as important side effects.
355	 */
356	savecrit = intr_disable();
357	npxsave(&dummy);
358	stop_emulating();
359#ifdef CPU_ENABLE_SSE
360	/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
361	if (cpu_fxsr)
362		fninit();
363#endif
364	control = __INITIAL_NPXCW__;
365	fldcw(&control);
366	start_emulating();
367	intr_restore(savecrit);
368}
369
370/*
371 * Free coprocessor (if we have it).
372 */
373void
374npxexit(td)
375	struct thread *td;
376{
377	register_t savecrit;
378
379	savecrit = intr_disable();
380	if (curthread == PCPU_GET(fpcurthread))
381		npxsave(PCPU_GET(curpcb)->pcb_save);
382	intr_restore(savecrit);
383#ifdef NPX_DEBUG
384	if (hw_float) {
385		u_int	masked_exceptions;
386
387		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
388		/*
389		 * Log exceptions that would have trapped with the old
390		 * control word (overflow, divide by 0, and invalid operand).
391		 */
392		if (masked_exceptions & 0x0d)
393			log(LOG_ERR,
394	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
395			    td->td_proc->p_pid, td->td_proc->p_comm,
396			    masked_exceptions);
397	}
398#endif
399}
400
401int
402npxformat()
403{
404
405	if (!hw_float)
406		return (_MC_FPFMT_NODEV);
407#ifdef	CPU_ENABLE_SSE
408	if (cpu_fxsr)
409		return (_MC_FPFMT_XMM);
410#endif
411	return (_MC_FPFMT_387);
412}
413
414/*
415 * The following mechanism is used to ensure that the FPE_... value
416 * that is passed as a trapcode to the signal handler of the user
417 * process does not have more than one bit set.
418 *
419 * Multiple bits may be set if the user process modifies the control
420 * word while a status word bit is already set.  While this is a sign
421 * of bad coding, we have no choise than to narrow them down to one
422 * bit, since we must not send a trapcode that is not exactly one of
423 * the FPE_ macros.
424 *
425 * The mechanism has a static table with 127 entries.  Each combination
426 * of the 7 FPU status word exception bits directly translates to a
427 * position in this table, where a single FPE_... value is stored.
428 * This FPE_... value stored there is considered the "most important"
429 * of the exception bits and will be sent as the signal code.  The
430 * precedence of the bits is based upon Intel Document "Numerical
431 * Applications", Chapter "Special Computational Situations".
432 *
433 * The macro to choose one of these values does these steps: 1) Throw
434 * away status word bits that cannot be masked.  2) Throw away the bits
435 * currently masked in the control word, assuming the user isn't
436 * interested in them anymore.  3) Reinsert status word bit 7 (stack
437 * fault) if it is set, which cannot be masked but must be presered.
438 * 4) Use the remaining bits to point into the trapcode table.
439 *
440 * The 6 maskable bits in order of their preference, as stated in the
441 * above referenced Intel manual:
442 * 1  Invalid operation (FP_X_INV)
443 * 1a   Stack underflow
444 * 1b   Stack overflow
445 * 1c   Operand of unsupported format
446 * 1d   SNaN operand.
447 * 2  QNaN operand (not an exception, irrelavant here)
448 * 3  Any other invalid-operation not mentioned above or zero divide
449 *      (FP_X_INV, FP_X_DZ)
450 * 4  Denormal operand (FP_X_DNML)
451 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
452 * 6  Inexact result (FP_X_IMP)
453 */
454static char fpetable[128] = {
455	0,
456	FPE_FLTINV,	/*  1 - INV */
457	FPE_FLTUND,	/*  2 - DNML */
458	FPE_FLTINV,	/*  3 - INV | DNML */
459	FPE_FLTDIV,	/*  4 - DZ */
460	FPE_FLTINV,	/*  5 - INV | DZ */
461	FPE_FLTDIV,	/*  6 - DNML | DZ */
462	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
463	FPE_FLTOVF,	/*  8 - OFL */
464	FPE_FLTINV,	/*  9 - INV | OFL */
465	FPE_FLTUND,	/*  A - DNML | OFL */
466	FPE_FLTINV,	/*  B - INV | DNML | OFL */
467	FPE_FLTDIV,	/*  C - DZ | OFL */
468	FPE_FLTINV,	/*  D - INV | DZ | OFL */
469	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
470	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
471	FPE_FLTUND,	/* 10 - UFL */
472	FPE_FLTINV,	/* 11 - INV | UFL */
473	FPE_FLTUND,	/* 12 - DNML | UFL */
474	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
475	FPE_FLTDIV,	/* 14 - DZ | UFL */
476	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
477	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
478	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
479	FPE_FLTOVF,	/* 18 - OFL | UFL */
480	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
481	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
482	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
483	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
484	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
485	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
486	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
487	FPE_FLTRES,	/* 20 - IMP */
488	FPE_FLTINV,	/* 21 - INV | IMP */
489	FPE_FLTUND,	/* 22 - DNML | IMP */
490	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
491	FPE_FLTDIV,	/* 24 - DZ | IMP */
492	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
493	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
494	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
495	FPE_FLTOVF,	/* 28 - OFL | IMP */
496	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
497	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
498	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
499	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
500	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
501	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
502	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
503	FPE_FLTUND,	/* 30 - UFL | IMP */
504	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
505	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
506	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
507	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
508	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
509	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
510	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
511	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
512	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
513	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
514	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
515	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
516	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
517	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
518	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
519	FPE_FLTSUB,	/* 40 - STK */
520	FPE_FLTSUB,	/* 41 - INV | STK */
521	FPE_FLTUND,	/* 42 - DNML | STK */
522	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
523	FPE_FLTDIV,	/* 44 - DZ | STK */
524	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
525	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
526	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
527	FPE_FLTOVF,	/* 48 - OFL | STK */
528	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
529	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
530	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
531	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
532	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
533	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
534	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
535	FPE_FLTUND,	/* 50 - UFL | STK */
536	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
537	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
538	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
539	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
540	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
541	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
542	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
543	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
544	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
545	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
546	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
547	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
548	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
549	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
550	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
551	FPE_FLTRES,	/* 60 - IMP | STK */
552	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
553	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
554	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
555	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
556	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
557	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
558	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
559	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
560	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
561	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
562	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
563	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
564	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
565	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
566	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
567	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
568	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
569	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
570	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
571	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
572	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
573	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
574	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
575	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
576	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
577	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
578	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
579	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
580	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
581	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
582	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
583};
584
585/*
586 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
587 *
588 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
589 * depend on longjmp() restoring a usable state.  Restoring the state
590 * or examining it might fail if we didn't clear exceptions.
591 *
592 * The error code chosen will be one of the FPE_... macros. It will be
593 * sent as the second argument to old BSD-style signal handlers and as
594 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
595 *
596 * XXX the FP state is not preserved across signal handlers.  So signal
597 * handlers cannot afford to do FP unless they preserve the state or
598 * longjmp() out.  Both preserving the state and longjmp()ing may be
599 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
600 * solution for signals other than SIGFPE.
601 */
602int
603npxtrap()
604{
605	register_t savecrit;
606	u_short control, status;
607
608	if (!hw_float) {
609		printf("npxtrap: fpcurthread = %p, curthread = %p, hw_float = %d\n",
610		       PCPU_GET(fpcurthread), curthread, hw_float);
611		panic("npxtrap from nowhere");
612	}
613	savecrit = intr_disable();
614
615	/*
616	 * Interrupt handling (for another interrupt) may have pushed the
617	 * state to memory.  Fetch the relevant parts of the state from
618	 * wherever they are.
619	 */
620	if (PCPU_GET(fpcurthread) != curthread) {
621		control = GET_FPU_CW(curthread);
622		status = GET_FPU_SW(curthread);
623	} else {
624		fnstcw(&control);
625		fnstsw(&status);
626	}
627
628	if (PCPU_GET(fpcurthread) == curthread)
629		fnclex();
630	intr_restore(savecrit);
631	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
632}
633
634/*
635 * Implement device not available (DNA) exception
636 *
637 * It would be better to switch FP context here (if curthread != fpcurthread)
638 * and not necessarily for every context switch, but it is too hard to
639 * access foreign pcb's.
640 */
641
642static int err_count = 0;
643
644int
645npxdna(void)
646{
647	struct pcb *pcb;
648	register_t s;
649
650	if (!hw_float)
651		return (0);
652	if (PCPU_GET(fpcurthread) == curthread) {
653		printf("npxdna: fpcurthread == curthread %d times\n",
654		    ++err_count);
655		stop_emulating();
656		return (1);
657	}
658	if (PCPU_GET(fpcurthread) != NULL) {
659		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
660		       PCPU_GET(fpcurthread),
661		       PCPU_GET(fpcurthread)->td_proc->p_pid,
662		       curthread, curthread->td_proc->p_pid);
663		panic("npxdna");
664	}
665	s = intr_disable();
666	stop_emulating();
667	/*
668	 * Record new context early in case frstor causes an IRQ13.
669	 */
670	PCPU_SET(fpcurthread, curthread);
671	pcb = PCPU_GET(curpcb);
672
673#ifdef CPU_ENABLE_SSE
674	if (cpu_fxsr)
675		fpu_clean_state();
676#endif
677
678	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
679		/*
680		 * This is the first time this thread has used the FPU or
681		 * the PCB doesn't contain a clean FPU state.  Explicitly
682		 * load an initial state.
683		 */
684		fpurstor(&npx_initialstate);
685		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
686			fldcw(&pcb->pcb_initial_npxcw);
687		pcb->pcb_flags |= PCB_NPXINITDONE;
688		if (PCB_USER_FPU(pcb))
689			pcb->pcb_flags |= PCB_NPXUSERINITDONE;
690	} else {
691		/*
692		 * The following fpurstor() may cause an IRQ13 when the
693		 * state being restored has a pending error.  The error will
694		 * appear to have been triggered by the current (npx) user
695		 * instruction even when that instruction is a no-wait
696		 * instruction that should not trigger an error (e.g.,
697		 * fnclex).  On at least one 486 system all of the no-wait
698		 * instructions are broken the same as frstor, so our
699		 * treatment does not amplify the breakage.  On at least
700		 * one 386/Cyrix 387 system, fnclex works correctly while
701		 * frstor and fnsave are broken, so our treatment breaks
702		 * fnclex if it is the first FPU instruction after a context
703		 * switch.
704		 */
705		fpurstor(pcb->pcb_save);
706	}
707	intr_restore(s);
708
709	return (1);
710}
711
712/*
713 * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
714 * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
715 * no-wait npx instructions.  See the Intel application note AP-578 for
716 * details.  This doesn't cause any additional complications here.  IRQ13's
717 * are inherently asynchronous unless the CPU is frozen to deliver them --
718 * one that started in userland may be delivered many instructions later,
719 * after the process has entered the kernel.  It may even be delivered after
720 * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
721 * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
722 * it is normally ignored at first because we set fpcurthread to NULL; it is
723 * normally retriggered in npxdna() after return to user mode.
724 *
725 * npxsave() must be called with interrupts disabled, so that it clears
726 * fpcurthread atomically with saving the state.  We require callers to do the
727 * disabling, since most callers need to disable interrupts anyway to call
728 * npxsave() atomically with checking fpcurthread.
729 *
730 * A previous version of npxsave() went to great lengths to excecute fnsave
731 * with interrupts enabled in case executing it froze the CPU.  This case
732 * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
733 * spurious freezes.
734 */
735void
736npxsave(addr)
737	union savefpu *addr;
738{
739
740	stop_emulating();
741	fpusave(addr);
742
743	start_emulating();
744	PCPU_SET(fpcurthread, NULL);
745}
746
747/*
748 * This should be called with interrupts disabled and only when the owning
749 * FPU thread is non-null.
750 */
751void
752npxdrop()
753{
754	struct thread *td;
755
756	/*
757	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
758	 * ones don't cause a panic on the next frstor.
759	 */
760#ifdef CPU_ENABLE_SSE
761	if (!cpu_fxsr)
762#endif
763		fnclex();
764
765	td = PCPU_GET(fpcurthread);
766	PCPU_SET(fpcurthread, NULL);
767	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
768	start_emulating();
769}
770
771/*
772 * Get the state of the FPU without dropping ownership (if possible).
773 * It returns the FPU ownership status.
774 */
775int
776npxgetregs(struct thread *td, union savefpu *addr)
777{
778	struct pcb *pcb;
779	register_t s;
780
781	if (!hw_float)
782		return (_MC_FPOWNED_NONE);
783
784	pcb = td->td_pcb;
785	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
786		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
787		SET_FPU_CW(addr, pcb->pcb_initial_npxcw);
788		return (_MC_FPOWNED_NONE);
789	}
790	s = intr_disable();
791	if (td == PCPU_GET(fpcurthread)) {
792		fpusave(addr);
793#ifdef CPU_ENABLE_SSE
794		if (!cpu_fxsr)
795#endif
796			/*
797			 * fnsave initializes the FPU and destroys whatever
798			 * context it contains.  Make sure the FPU owner
799			 * starts with a clean state next time.
800			 */
801			npxdrop();
802		intr_restore(s);
803		return (_MC_FPOWNED_FPU);
804	} else {
805		intr_restore(s);
806		bcopy(pcb->pcb_save, addr, sizeof(*addr));
807		return (_MC_FPOWNED_PCB);
808	}
809}
810
811int
812npxgetuserregs(struct thread *td, union savefpu *addr)
813{
814	struct pcb *pcb;
815	register_t s;
816
817	if (!hw_float)
818		return (_MC_FPOWNED_NONE);
819
820	pcb = td->td_pcb;
821	if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) == 0) {
822		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
823		SET_FPU_CW(addr, pcb->pcb_initial_npxcw);
824		return (_MC_FPOWNED_NONE);
825	}
826	s = intr_disable();
827	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
828		fpusave(addr);
829#ifdef CPU_ENABLE_SSE
830		if (!cpu_fxsr)
831#endif
832			/*
833			 * fnsave initializes the FPU and destroys whatever
834			 * context it contains.  Make sure the FPU owner
835			 * starts with a clean state next time.
836			 */
837			npxdrop();
838		intr_restore(s);
839		return (_MC_FPOWNED_FPU);
840	} else {
841		intr_restore(s);
842		bcopy(&pcb->pcb_user_save, addr, sizeof(*addr));
843		return (_MC_FPOWNED_PCB);
844	}
845}
846
847/*
848 * Set the state of the FPU.
849 */
850void
851npxsetregs(struct thread *td, union savefpu *addr)
852{
853	struct pcb *pcb;
854	register_t s;
855
856	if (!hw_float)
857		return;
858
859	pcb = td->td_pcb;
860	s = intr_disable();
861	if (td == PCPU_GET(fpcurthread)) {
862#ifdef CPU_ENABLE_SSE
863		if (!cpu_fxsr)
864#endif
865			fnclex();	/* As in npxdrop(). */
866		fpurstor(addr);
867		intr_restore(s);
868	} else {
869		intr_restore(s);
870		bcopy(addr, pcb->pcb_save, sizeof(*addr));
871	}
872	if (PCB_USER_FPU(pcb))
873		pcb->pcb_flags |= PCB_NPXUSERINITDONE;
874	pcb->pcb_flags |= PCB_NPXINITDONE;
875}
876
877void
878npxsetuserregs(struct thread *td, union savefpu *addr)
879{
880	struct pcb *pcb;
881	register_t s;
882
883	if (!hw_float)
884		return;
885
886	pcb = td->td_pcb;
887	s = intr_disable();
888	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
889#ifdef CPU_ENABLE_SSE
890		if (!cpu_fxsr)
891#endif
892			fnclex();	/* As in npxdrop(). */
893		fpurstor(addr);
894		intr_restore(s);
895		pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
896	} else {
897		intr_restore(s);
898		bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
899		if (PCB_USER_FPU(pcb))
900			pcb->pcb_flags |= PCB_NPXINITDONE;
901		pcb->pcb_flags |= PCB_NPXUSERINITDONE;
902	}
903}
904
905static void
906fpusave(addr)
907	union savefpu *addr;
908{
909
910#ifdef CPU_ENABLE_SSE
911	if (cpu_fxsr)
912		fxsave(addr);
913	else
914#endif
915		fnsave(addr);
916}
917
918#ifdef CPU_ENABLE_SSE
919/*
920 * On AuthenticAMD processors, the fxrstor instruction does not restore
921 * the x87's stored last instruction pointer, last data pointer, and last
922 * opcode values, except in the rare case in which the exception summary
923 * (ES) bit in the x87 status word is set to 1.
924 *
925 * In order to avoid leaking this information across processes, we clean
926 * these values by performing a dummy load before executing fxrstor().
927 */
928static void
929fpu_clean_state(void)
930{
931	static float dummy_variable = 0.0;
932	u_short status;
933
934	/*
935	 * Clear the ES bit in the x87 status word if it is currently
936	 * set, in order to avoid causing a fault in the upcoming load.
937	 */
938	fnstsw(&status);
939	if (status & 0x80)
940		fnclex();
941
942	/*
943	 * Load the dummy variable into the x87 stack.  This mangles
944	 * the x87 stack, but we don't care since we're about to call
945	 * fxrstor() anyway.
946	 */
947	__asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
948}
949#endif /* CPU_ENABLE_SSE */
950
951static void
952fpurstor(addr)
953	union savefpu *addr;
954{
955
956#ifdef CPU_ENABLE_SSE
957	if (cpu_fxsr)
958		fxrstor(addr);
959	else
960#endif
961		frstor(addr);
962}
963
964static device_method_t npx_methods[] = {
965	/* Device interface */
966	DEVMETHOD(device_identify,	npx_identify),
967	DEVMETHOD(device_probe,		npx_probe),
968	DEVMETHOD(device_attach,	npx_attach),
969	DEVMETHOD(device_detach,	bus_generic_detach),
970	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
971	DEVMETHOD(device_suspend,	bus_generic_suspend),
972	DEVMETHOD(device_resume,	bus_generic_resume),
973
974	{ 0, 0 }
975};
976
977static driver_t npx_driver = {
978	"npx",
979	npx_methods,
980	1,			/* no softc */
981};
982
983static devclass_t npx_devclass;
984
985/*
986 * We prefer to attach to the root nexus so that the usual case (exception 16)
987 * doesn't describe the processor as being `on isa'.
988 */
989DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
990
991#ifdef DEV_ISA
992/*
993 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
994 */
995static struct isa_pnp_id npxisa_ids[] = {
996	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
997	{ 0 }
998};
999
1000static int
1001npxisa_probe(device_t dev)
1002{
1003	int result;
1004	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1005		device_quiet(dev);
1006	}
1007	return(result);
1008}
1009
1010static int
1011npxisa_attach(device_t dev)
1012{
1013	return (0);
1014}
1015
1016static device_method_t npxisa_methods[] = {
1017	/* Device interface */
1018	DEVMETHOD(device_probe,		npxisa_probe),
1019	DEVMETHOD(device_attach,	npxisa_attach),
1020	DEVMETHOD(device_detach,	bus_generic_detach),
1021	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1022	DEVMETHOD(device_suspend,	bus_generic_suspend),
1023	DEVMETHOD(device_resume,	bus_generic_resume),
1024
1025	{ 0, 0 }
1026};
1027
1028static driver_t npxisa_driver = {
1029	"npxisa",
1030	npxisa_methods,
1031	1,			/* no softc */
1032};
1033
1034static devclass_t npxisa_devclass;
1035
1036DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1037#ifndef PC98
1038DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1039#endif
1040#endif /* DEV_ISA */
1041
1042int
1043fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1044{
1045	struct pcb *pcb;
1046
1047	pcb = td->td_pcb;
1048	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == &pcb->pcb_user_save,
1049	    ("mangled pcb_save"));
1050	ctx->flags = 0;
1051	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1052		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1053	npxexit(td);
1054	ctx->prev = pcb->pcb_save;
1055	pcb->pcb_save = &ctx->hwstate;
1056	pcb->pcb_flags |= PCB_KERNNPX;
1057	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1058	return (0);
1059}
1060
1061int
1062fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1063{
1064	struct pcb *pcb;
1065	register_t savecrit;
1066
1067	pcb = td->td_pcb;
1068	savecrit = intr_disable();
1069	if (curthread == PCPU_GET(fpcurthread))
1070		npxdrop();
1071	intr_restore(savecrit);
1072	pcb->pcb_save = ctx->prev;
1073	if (pcb->pcb_save == &pcb->pcb_user_save) {
1074		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1075			pcb->pcb_flags |= PCB_NPXINITDONE;
1076		else
1077			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1078		pcb->pcb_flags &= ~PCB_KERNNPX;
1079	} else {
1080		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1081			pcb->pcb_flags |= PCB_NPXINITDONE;
1082		else
1083			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1084		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1085	}
1086	return (0);
1087}
1088
1089int
1090fpu_kern_thread(u_int flags)
1091{
1092	struct pcb *pcb;
1093
1094	pcb = PCPU_GET(curpcb);
1095	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1096	    ("Only kthread may use fpu_kern_thread"));
1097	KASSERT(pcb->pcb_save == &pcb->pcb_user_save, ("mangled pcb_save"));
1098	KASSERT(PCB_USER_FPU(pcb), ("recursive call"));
1099
1100	pcb->pcb_flags |= PCB_KERNNPX;
1101	return (0);
1102}
1103
1104int
1105is_fpu_kern_thread(u_int flags)
1106{
1107
1108	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1109		return (0);
1110	return ((PCPU_GET(curpcb)->pcb_flags & PCB_KERNNPX) != 0);
1111}
1112