npx.c revision 190426
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/i386/isa/npx.c 190426 2009-03-25 22:08:30Z jhb $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58
59#include <machine/asmacros.h>
60#include <machine/cputypes.h>
61#include <machine/frame.h>
62#include <machine/md_var.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/resource.h>
66#include <machine/specialreg.h>
67#include <machine/segments.h>
68#include <machine/ucontext.h>
69
70#include <machine/intr_machdep.h>
71#ifdef XEN
72#include <machine/xen/xen-os.h>
73#include <xen/hypervisor.h>
74#endif
75
76#ifdef DEV_ISA
77#include <isa/isavar.h>
78#endif
79
80#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
81#define CPU_ENABLE_SSE
82#endif
83
84/*
85 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
86 */
87
88/* Configuration flags. */
89#define	NPX_DISABLE_I586_OPTIMIZED_BCOPY	(1 << 0)
90#define	NPX_DISABLE_I586_OPTIMIZED_BZERO	(1 << 1)
91#define	NPX_DISABLE_I586_OPTIMIZED_COPYIO	(1 << 2)
92
93#if defined(__GNUCLIKE_ASM) && !defined(lint)
94
95#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
96#define	fnclex()		__asm("fnclex")
97#define	fninit()		__asm("fninit")
98#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
99#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
100#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
101#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
102#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
103#ifdef CPU_ENABLE_SSE
104#define	fxrstor(addr)		__asm("fxrstor %0" : : "m" (*(addr)))
105#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
106#define	ldmxcsr(__csr)		__asm __volatile("ldmxcsr %0" : : "m" (__csr))
107#endif
108#ifdef XEN
109#define start_emulating()	(HYPERVISOR_fpu_taskswitch(1))
110#define stop_emulating()	(HYPERVISOR_fpu_taskswitch(0))
111#else
112#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
113				      : : "n" (CR0_TS) : "ax")
114#define	stop_emulating()	__asm("clts")
115#endif
116#else	/* !(__GNUCLIKE_ASM && !lint) */
117
118void	fldcw(caddr_t addr);
119void	fnclex(void);
120void	fninit(void);
121void	fnsave(caddr_t addr);
122void	fnstcw(caddr_t addr);
123void	fnstsw(caddr_t addr);
124void	fp_divide_by_0(void);
125void	frstor(caddr_t addr);
126#ifdef CPU_ENABLE_SSE
127void	fxsave(caddr_t addr);
128void	fxrstor(caddr_t addr);
129#endif
130void	start_emulating(void);
131void	stop_emulating(void);
132
133#endif	/* __GNUCLIKE_ASM && !lint */
134
135#ifdef CPU_ENABLE_SSE
136#define GET_FPU_CW(thread) \
137	(cpu_fxsr ? \
138		(thread)->td_pcb->pcb_save.sv_xmm.sv_env.en_cw : \
139		(thread)->td_pcb->pcb_save.sv_87.sv_env.en_cw)
140#define GET_FPU_SW(thread) \
141	(cpu_fxsr ? \
142		(thread)->td_pcb->pcb_save.sv_xmm.sv_env.en_sw : \
143		(thread)->td_pcb->pcb_save.sv_87.sv_env.en_sw)
144#define SET_FPU_CW(savefpu, value) do { \
145	if (cpu_fxsr) \
146		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
147	else \
148		(savefpu)->sv_87.sv_env.en_cw = (value); \
149} while (0)
150#else /* CPU_ENABLE_SSE */
151#define GET_FPU_CW(thread) \
152	(thread->td_pcb->pcb_save.sv_87.sv_env.en_cw)
153#define GET_FPU_SW(thread) \
154	(thread->td_pcb->pcb_save.sv_87.sv_env.en_sw)
155#define SET_FPU_CW(savefpu, value) \
156	(savefpu)->sv_87.sv_env.en_cw = (value)
157#endif /* CPU_ENABLE_SSE */
158
159typedef u_char bool_t;
160
161#ifdef CPU_ENABLE_SSE
162static	void	fpu_clean_state(void);
163#endif
164
165static	void	fpusave(union savefpu *);
166static	void	fpurstor(union savefpu *);
167static	int	npx_attach(device_t dev);
168static	void	npx_identify(driver_t *driver, device_t parent);
169static	int	npx_intr(void *);
170static	int	npx_probe(device_t dev);
171#ifdef I586_CPU_XXX
172static	long	timezero(const char *funcname,
173		    void (*func)(void *buf, size_t len));
174#endif /* I586_CPU */
175
176int	hw_float;		/* XXX currently just alias for npx_exists */
177
178SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
179    &hw_float, 0, "Floating point instructions executed in hardware");
180
181static	volatile u_int		npx_intrs_while_probing;
182static	volatile u_int		npx_traps_while_probing;
183
184static	union savefpu		npx_initialstate;
185static	bool_t			npx_ex16;
186static	bool_t			npx_exists;
187static	bool_t			npx_irq13;
188
189alias_for_inthand_t probetrap;
190__asm("								\n\
191	.text							\n\
192	.p2align 2,0x90						\n\
193	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
194" __XSTRING(CNAME(probetrap)) ":				\n\
195	ss							\n\
196	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
197	fnclex							\n\
198	iret							\n\
199");
200
201/*
202 * Identify routine.  Create a connection point on our parent for probing.
203 */
204static void
205npx_identify(driver, parent)
206	driver_t *driver;
207	device_t parent;
208{
209	device_t child;
210
211	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
212	if (child == NULL)
213		panic("npx_identify");
214}
215
216/*
217 * Do minimal handling of npx interrupts to convert them to traps.
218 */
219static int
220npx_intr(dummy)
221	void *dummy;
222{
223	struct thread *td;
224
225	npx_intrs_while_probing++;
226
227	/*
228	 * The BUSY# latch must be cleared in all cases so that the next
229	 * unmasked npx exception causes an interrupt.
230	 */
231	outb(IO_NPX, 0);
232
233	/*
234	 * fpcurthread is normally non-null here.  In that case, schedule an
235	 * AST to finish the exception handling in the correct context
236	 * (this interrupt may occur after the thread has entered the
237	 * kernel via a syscall or an interrupt).  Otherwise, the npx
238	 * state of the thread that caused this interrupt must have been
239	 * pushed to the thread's pcb, and clearing of the busy latch
240	 * above has finished the (essentially null) handling of this
241	 * interrupt.  Control will eventually return to the instruction
242	 * that caused it and it will repeat.  We will eventually (usually
243	 * soon) win the race to handle the interrupt properly.
244	 */
245	td = PCPU_GET(fpcurthread);
246	if (td != NULL) {
247		td->td_pcb->pcb_flags |= PCB_NPXTRAP;
248		thread_lock(td);
249		td->td_flags |= TDF_ASTPENDING;
250		thread_unlock(td);
251	}
252	return (FILTER_HANDLED);
253}
254
255/*
256 * Probe routine.  Set flags to tell npxattach() what to do.  Set up an
257 * interrupt handler if npx needs to use interrupts.
258 */
259static int
260npx_probe(dev)
261	device_t dev;
262{
263	struct gate_descriptor save_idt_npxtrap;
264	struct resource *ioport_res, *irq_res;
265	void *irq_cookie;
266	int ioport_rid, irq_num, irq_rid;
267	u_short control;
268	u_short status;
269
270	device_set_desc(dev, "math processor");
271
272	/*
273	 * Modern CPUs all have an FPU that uses the INT16 interface
274	 * and provide a simple way to verify that, so handle the
275	 * common case right away.
276	 */
277	if (cpu_feature & CPUID_FPU) {
278		hw_float = npx_exists = 1;
279		npx_ex16 = 1;
280		device_quiet(dev);
281		return (0);
282	}
283
284	save_idt_npxtrap = idt[IDT_MF];
285	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
286	    GSEL(GCODE_SEL, SEL_KPL));
287	ioport_rid = 0;
288	ioport_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &ioport_rid,
289	    IO_NPX, IO_NPX + IO_NPXSIZE - 1, IO_NPXSIZE, RF_ACTIVE);
290	if (ioport_res == NULL)
291		panic("npx: can't get ports");
292	if (resource_int_value("npx", 0, "irq", &irq_num) != 0)
293		irq_num = IRQ_NPX;
294	irq_rid = 0;
295	irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &irq_rid, irq_num,
296	    irq_num, 1, RF_ACTIVE);
297	if (irq_res != NULL) {
298		if (bus_setup_intr(dev, irq_res, INTR_TYPE_MISC,
299			npx_intr, NULL, NULL, &irq_cookie) != 0)
300			panic("npx: can't create intr");
301	}
302
303	/*
304	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
305	 * it after a warm boot.
306	 */
307	npx_full_reset();
308	outb(IO_NPX, 0);
309
310	/*
311	 * Don't trap while we're probing.
312	 */
313	stop_emulating();
314
315	/*
316	 * Finish resetting the coprocessor, if any.  If there is an error
317	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
318	 * it OK.  Bogus halts have never been observed, but we enabled
319	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
320	 */
321	fninit();
322
323	/*
324	 * Don't use fwait here because it might hang.
325	 * Don't use fnop here because it usually hangs if there is no FPU.
326	 */
327	DELAY(1000);		/* wait for any IRQ13 */
328#ifdef DIAGNOSTIC
329	if (npx_intrs_while_probing != 0)
330		printf("fninit caused %u bogus npx interrupt(s)\n",
331		       npx_intrs_while_probing);
332	if (npx_traps_while_probing != 0)
333		printf("fninit caused %u bogus npx trap(s)\n",
334		       npx_traps_while_probing);
335#endif
336	/*
337	 * Check for a status of mostly zero.
338	 */
339	status = 0x5a5a;
340	fnstsw(&status);
341	if ((status & 0xb8ff) == 0) {
342		/*
343		 * Good, now check for a proper control word.
344		 */
345		control = 0x5a5a;
346		fnstcw(&control);
347		if ((control & 0x1f3f) == 0x033f) {
348			hw_float = npx_exists = 1;
349			/*
350			 * We have an npx, now divide by 0 to see if exception
351			 * 16 works.
352			 */
353			control &= ~(1 << 2);	/* enable divide by 0 trap */
354			fldcw(&control);
355#ifdef FPU_ERROR_BROKEN
356			/*
357			 * FPU error signal doesn't work on some CPU
358			 * accelerator board.
359			 */
360			npx_ex16 = 1;
361			return (0);
362#endif
363			npx_traps_while_probing = npx_intrs_while_probing = 0;
364			fp_divide_by_0();
365			DELAY(1000);	/* wait for any IRQ13 */
366			if (npx_traps_while_probing != 0) {
367				/*
368				 * Good, exception 16 works.
369				 */
370				npx_ex16 = 1;
371				goto no_irq13;
372			}
373			if (npx_intrs_while_probing != 0) {
374				/*
375				 * Bad, we are stuck with IRQ13.
376				 */
377				npx_irq13 = 1;
378				idt[IDT_MF] = save_idt_npxtrap;
379#ifdef SMP
380				if (mp_ncpus > 1)
381					panic("npx0 cannot use IRQ 13 on an SMP system");
382#endif
383				return (0);
384			}
385			/*
386			 * Worse, even IRQ13 is broken.
387			 */
388		}
389	}
390
391	/* Probe failed.  Floating point simply won't work. */
392	device_printf(dev, "WARNING: no FPU!\n");
393
394	/* FALLTHROUGH */
395no_irq13:
396	idt[IDT_MF] = save_idt_npxtrap;
397	if (irq_res != NULL) {
398		bus_teardown_intr(dev, irq_res, irq_cookie);
399		bus_release_resource(dev, SYS_RES_IRQ, irq_rid, irq_res);
400	}
401	bus_release_resource(dev, SYS_RES_IOPORT, ioport_rid, ioport_res);
402	return (npx_exists ? 0 : ENXIO);
403}
404
405/*
406 * Attach routine - announce which it is, and wire into system
407 */
408static int
409npx_attach(dev)
410	device_t dev;
411{
412	int flags;
413	register_t s;
414
415	flags = device_get_flags(dev);
416
417	if (npx_irq13)
418		device_printf(dev, "IRQ 13 interface\n");
419	else if (!device_is_quiet(dev) || bootverbose)
420		device_printf(dev, "INT 16 interface\n");
421
422	npxinit();
423
424	s = intr_disable();
425	stop_emulating();
426	fpusave(&npx_initialstate);
427	start_emulating();
428#ifdef CPU_ENABLE_SSE
429	if (cpu_fxsr) {
430		if (npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask)
431			cpu_mxcsr_mask =
432			    npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask;
433		else
434			cpu_mxcsr_mask = 0xFFBF;
435		bzero(npx_initialstate.sv_xmm.sv_fp,
436		    sizeof(npx_initialstate.sv_xmm.sv_fp));
437		bzero(npx_initialstate.sv_xmm.sv_xmm,
438		    sizeof(npx_initialstate.sv_xmm.sv_xmm));
439		/* XXX might need even more zeroing. */
440	} else
441#endif
442		bzero(npx_initialstate.sv_87.sv_ac,
443		    sizeof(npx_initialstate.sv_87.sv_ac));
444	intr_restore(s);
445#ifdef I586_CPU_XXX
446	if (cpu_class == CPUCLASS_586 && npx_ex16 &&
447	    timezero("i586_bzero()", i586_bzero) <
448	    timezero("bzero()", bzero) * 4 / 5) {
449		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY))
450			bcopy_vector = i586_bcopy;
451		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BZERO))
452			bzero_vector = i586_bzero;
453		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_COPYIO)) {
454			copyin_vector = i586_copyin;
455			copyout_vector = i586_copyout;
456		}
457	}
458#endif
459
460	return (0);		/* XXX unused */
461}
462
463/*
464 * Initialize floating point unit.
465 */
466void
467npxinit(void)
468{
469	static union savefpu dummy;
470	register_t savecrit;
471	u_short control;
472
473	if (!npx_exists)
474		return;
475	/*
476	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
477	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
478	 * the fpu and sets fpcurthread = NULL as important side effects.
479	 */
480	savecrit = intr_disable();
481	npxsave(&dummy);
482	stop_emulating();
483#ifdef CPU_ENABLE_SSE
484	/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
485	if (cpu_fxsr)
486		fninit();
487#endif
488	control = __INITIAL_NPXCW__;
489	fldcw(&control);
490	start_emulating();
491	intr_restore(savecrit);
492}
493
494/*
495 * Free coprocessor (if we have it).
496 */
497void
498npxexit(td)
499	struct thread *td;
500{
501	register_t savecrit;
502
503	savecrit = intr_disable();
504	if (curthread == PCPU_GET(fpcurthread))
505		npxsave(&PCPU_GET(curpcb)->pcb_save);
506	intr_restore(savecrit);
507#ifdef NPX_DEBUG
508	if (npx_exists) {
509		u_int	masked_exceptions;
510
511		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
512		/*
513		 * Log exceptions that would have trapped with the old
514		 * control word (overflow, divide by 0, and invalid operand).
515		 */
516		if (masked_exceptions & 0x0d)
517			log(LOG_ERR,
518	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
519			    td->td_proc->p_pid, td->td_proc->p_comm,
520			    masked_exceptions);
521	}
522#endif
523}
524
525int
526npxformat()
527{
528
529	if (!npx_exists)
530		return (_MC_FPFMT_NODEV);
531#ifdef	CPU_ENABLE_SSE
532	if (cpu_fxsr)
533		return (_MC_FPFMT_XMM);
534#endif
535	return (_MC_FPFMT_387);
536}
537
538/*
539 * The following mechanism is used to ensure that the FPE_... value
540 * that is passed as a trapcode to the signal handler of the user
541 * process does not have more than one bit set.
542 *
543 * Multiple bits may be set if the user process modifies the control
544 * word while a status word bit is already set.  While this is a sign
545 * of bad coding, we have no choise than to narrow them down to one
546 * bit, since we must not send a trapcode that is not exactly one of
547 * the FPE_ macros.
548 *
549 * The mechanism has a static table with 127 entries.  Each combination
550 * of the 7 FPU status word exception bits directly translates to a
551 * position in this table, where a single FPE_... value is stored.
552 * This FPE_... value stored there is considered the "most important"
553 * of the exception bits and will be sent as the signal code.  The
554 * precedence of the bits is based upon Intel Document "Numerical
555 * Applications", Chapter "Special Computational Situations".
556 *
557 * The macro to choose one of these values does these steps: 1) Throw
558 * away status word bits that cannot be masked.  2) Throw away the bits
559 * currently masked in the control word, assuming the user isn't
560 * interested in them anymore.  3) Reinsert status word bit 7 (stack
561 * fault) if it is set, which cannot be masked but must be presered.
562 * 4) Use the remaining bits to point into the trapcode table.
563 *
564 * The 6 maskable bits in order of their preference, as stated in the
565 * above referenced Intel manual:
566 * 1  Invalid operation (FP_X_INV)
567 * 1a   Stack underflow
568 * 1b   Stack overflow
569 * 1c   Operand of unsupported format
570 * 1d   SNaN operand.
571 * 2  QNaN operand (not an exception, irrelavant here)
572 * 3  Any other invalid-operation not mentioned above or zero divide
573 *      (FP_X_INV, FP_X_DZ)
574 * 4  Denormal operand (FP_X_DNML)
575 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
576 * 6  Inexact result (FP_X_IMP)
577 */
578static char fpetable[128] = {
579	0,
580	FPE_FLTINV,	/*  1 - INV */
581	FPE_FLTUND,	/*  2 - DNML */
582	FPE_FLTINV,	/*  3 - INV | DNML */
583	FPE_FLTDIV,	/*  4 - DZ */
584	FPE_FLTINV,	/*  5 - INV | DZ */
585	FPE_FLTDIV,	/*  6 - DNML | DZ */
586	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
587	FPE_FLTOVF,	/*  8 - OFL */
588	FPE_FLTINV,	/*  9 - INV | OFL */
589	FPE_FLTUND,	/*  A - DNML | OFL */
590	FPE_FLTINV,	/*  B - INV | DNML | OFL */
591	FPE_FLTDIV,	/*  C - DZ | OFL */
592	FPE_FLTINV,	/*  D - INV | DZ | OFL */
593	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
594	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
595	FPE_FLTUND,	/* 10 - UFL */
596	FPE_FLTINV,	/* 11 - INV | UFL */
597	FPE_FLTUND,	/* 12 - DNML | UFL */
598	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
599	FPE_FLTDIV,	/* 14 - DZ | UFL */
600	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
601	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
602	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
603	FPE_FLTOVF,	/* 18 - OFL | UFL */
604	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
605	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
606	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
607	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
608	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
609	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
610	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
611	FPE_FLTRES,	/* 20 - IMP */
612	FPE_FLTINV,	/* 21 - INV | IMP */
613	FPE_FLTUND,	/* 22 - DNML | IMP */
614	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
615	FPE_FLTDIV,	/* 24 - DZ | IMP */
616	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
617	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
618	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
619	FPE_FLTOVF,	/* 28 - OFL | IMP */
620	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
621	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
622	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
623	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
624	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
625	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
626	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
627	FPE_FLTUND,	/* 30 - UFL | IMP */
628	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
629	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
630	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
631	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
632	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
633	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
634	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
635	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
636	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
637	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
638	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
639	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
640	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
641	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
642	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
643	FPE_FLTSUB,	/* 40 - STK */
644	FPE_FLTSUB,	/* 41 - INV | STK */
645	FPE_FLTUND,	/* 42 - DNML | STK */
646	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
647	FPE_FLTDIV,	/* 44 - DZ | STK */
648	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
649	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
650	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
651	FPE_FLTOVF,	/* 48 - OFL | STK */
652	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
653	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
654	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
655	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
656	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
657	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
658	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
659	FPE_FLTUND,	/* 50 - UFL | STK */
660	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
661	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
662	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
663	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
664	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
665	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
666	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
667	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
668	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
669	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
670	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
671	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
672	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
673	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
674	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
675	FPE_FLTRES,	/* 60 - IMP | STK */
676	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
677	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
678	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
679	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
680	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
681	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
682	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
683	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
684	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
685	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
686	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
687	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
688	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
689	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
690	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
691	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
692	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
693	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
694	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
695	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
696	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
697	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
698	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
699	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
700	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
701	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
702	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
703	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
704	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
705	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
706	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
707};
708
709/*
710 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
711 *
712 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
713 * depend on longjmp() restoring a usable state.  Restoring the state
714 * or examining it might fail if we didn't clear exceptions.
715 *
716 * The error code chosen will be one of the FPE_... macros. It will be
717 * sent as the second argument to old BSD-style signal handlers and as
718 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
719 *
720 * XXX the FP state is not preserved across signal handlers.  So signal
721 * handlers cannot afford to do FP unless they preserve the state or
722 * longjmp() out.  Both preserving the state and longjmp()ing may be
723 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
724 * solution for signals other than SIGFPE.
725 */
726int
727npxtrap()
728{
729	register_t savecrit;
730	u_short control, status;
731
732	if (!npx_exists) {
733		printf("npxtrap: fpcurthread = %p, curthread = %p, npx_exists = %d\n",
734		       PCPU_GET(fpcurthread), curthread, npx_exists);
735		panic("npxtrap from nowhere");
736	}
737	savecrit = intr_disable();
738
739	/*
740	 * Interrupt handling (for another interrupt) may have pushed the
741	 * state to memory.  Fetch the relevant parts of the state from
742	 * wherever they are.
743	 */
744	if (PCPU_GET(fpcurthread) != curthread) {
745		control = GET_FPU_CW(curthread);
746		status = GET_FPU_SW(curthread);
747	} else {
748		fnstcw(&control);
749		fnstsw(&status);
750	}
751
752	if (PCPU_GET(fpcurthread) == curthread)
753		fnclex();
754	intr_restore(savecrit);
755	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
756}
757
758/*
759 * Implement device not available (DNA) exception
760 *
761 * It would be better to switch FP context here (if curthread != fpcurthread)
762 * and not necessarily for every context switch, but it is too hard to
763 * access foreign pcb's.
764 */
765
766static int err_count = 0;
767
768int
769npxdna(void)
770{
771	struct pcb *pcb;
772	register_t s;
773
774	if (!npx_exists)
775		return (0);
776	if (PCPU_GET(fpcurthread) == curthread) {
777		printf("npxdna: fpcurthread == curthread %d times\n",
778		    ++err_count);
779		stop_emulating();
780		return (1);
781	}
782	if (PCPU_GET(fpcurthread) != NULL) {
783		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
784		       PCPU_GET(fpcurthread),
785		       PCPU_GET(fpcurthread)->td_proc->p_pid,
786		       curthread, curthread->td_proc->p_pid);
787		panic("npxdna");
788	}
789	s = intr_disable();
790	stop_emulating();
791	/*
792	 * Record new context early in case frstor causes an IRQ13.
793	 */
794	PCPU_SET(fpcurthread, curthread);
795	pcb = PCPU_GET(curpcb);
796
797#ifdef CPU_ENABLE_SSE
798	if (cpu_fxsr)
799		fpu_clean_state();
800#endif
801
802	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
803		/*
804		 * This is the first time this thread has used the FPU or
805		 * the PCB doesn't contain a clean FPU state.  Explicitly
806		 * load an initial state.
807		 */
808		fpurstor(&npx_initialstate);
809		if (pcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
810			fldcw(&pcb->pcb_initial_npxcw);
811		pcb->pcb_flags |= PCB_NPXINITDONE;
812	} else {
813		/*
814		 * The following fpurstor() may cause an IRQ13 when the
815		 * state being restored has a pending error.  The error will
816		 * appear to have been triggered by the current (npx) user
817		 * instruction even when that instruction is a no-wait
818		 * instruction that should not trigger an error (e.g.,
819		 * fnclex).  On at least one 486 system all of the no-wait
820		 * instructions are broken the same as frstor, so our
821		 * treatment does not amplify the breakage.  On at least
822		 * one 386/Cyrix 387 system, fnclex works correctly while
823		 * frstor and fnsave are broken, so our treatment breaks
824		 * fnclex if it is the first FPU instruction after a context
825		 * switch.
826		 */
827		fpurstor(&pcb->pcb_save);
828	}
829	intr_restore(s);
830
831	return (1);
832}
833
834/*
835 * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
836 * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
837 * no-wait npx instructions.  See the Intel application note AP-578 for
838 * details.  This doesn't cause any additional complications here.  IRQ13's
839 * are inherently asynchronous unless the CPU is frozen to deliver them --
840 * one that started in userland may be delivered many instructions later,
841 * after the process has entered the kernel.  It may even be delivered after
842 * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
843 * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
844 * it is normally ignored at first because we set fpcurthread to NULL; it is
845 * normally retriggered in npxdna() after return to user mode.
846 *
847 * npxsave() must be called with interrupts disabled, so that it clears
848 * fpcurthread atomically with saving the state.  We require callers to do the
849 * disabling, since most callers need to disable interrupts anyway to call
850 * npxsave() atomically with checking fpcurthread.
851 *
852 * A previous version of npxsave() went to great lengths to excecute fnsave
853 * with interrupts enabled in case executing it froze the CPU.  This case
854 * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
855 * spurious freezes.
856 */
857void
858npxsave(addr)
859	union savefpu *addr;
860{
861
862	stop_emulating();
863	fpusave(addr);
864
865	start_emulating();
866	PCPU_SET(fpcurthread, NULL);
867}
868
869/*
870 * This should be called with interrupts disabled and only when the owning
871 * FPU thread is non-null.
872 */
873void
874npxdrop()
875{
876	struct thread *td;
877
878	/*
879	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
880	 * ones don't cause a panic on the next frstor.
881	 */
882#ifdef CPU_ENABLE_SSE
883	if (!cpu_fxsr)
884#endif
885		fnclex();
886
887	td = PCPU_GET(fpcurthread);
888	PCPU_SET(fpcurthread, NULL);
889	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
890	start_emulating();
891}
892
893/*
894 * Get the state of the FPU without dropping ownership (if possible).
895 * It returns the FPU ownership status.
896 */
897int
898npxgetregs(td, addr)
899	struct thread *td;
900	union savefpu *addr;
901{
902	register_t s;
903
904	if (!npx_exists)
905		return (_MC_FPOWNED_NONE);
906
907	if ((td->td_pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
908		bcopy(&npx_initialstate, addr, sizeof(npx_initialstate));
909		SET_FPU_CW(addr, td->td_pcb->pcb_initial_npxcw);
910		return (_MC_FPOWNED_NONE);
911	}
912	s = intr_disable();
913	if (td == PCPU_GET(fpcurthread)) {
914		fpusave(addr);
915#ifdef CPU_ENABLE_SSE
916		if (!cpu_fxsr)
917#endif
918			/*
919			 * fnsave initializes the FPU and destroys whatever
920			 * context it contains.  Make sure the FPU owner
921			 * starts with a clean state next time.
922			 */
923			npxdrop();
924		intr_restore(s);
925		return (_MC_FPOWNED_FPU);
926	} else {
927		intr_restore(s);
928		bcopy(&td->td_pcb->pcb_save, addr, sizeof(*addr));
929		return (_MC_FPOWNED_PCB);
930	}
931}
932
933/*
934 * Set the state of the FPU.
935 */
936void
937npxsetregs(td, addr)
938	struct thread *td;
939	union savefpu *addr;
940{
941	register_t s;
942
943	if (!npx_exists)
944		return;
945
946	s = intr_disable();
947	if (td == PCPU_GET(fpcurthread)) {
948#ifdef CPU_ENABLE_SSE
949		if (!cpu_fxsr)
950#endif
951			fnclex();	/* As in npxdrop(). */
952		fpurstor(addr);
953		intr_restore(s);
954	} else {
955		intr_restore(s);
956		bcopy(addr, &td->td_pcb->pcb_save, sizeof(*addr));
957	}
958	curthread->td_pcb->pcb_flags |= PCB_NPXINITDONE;
959}
960
961static void
962fpusave(addr)
963	union savefpu *addr;
964{
965
966#ifdef CPU_ENABLE_SSE
967	if (cpu_fxsr)
968		fxsave(addr);
969	else
970#endif
971		fnsave(addr);
972}
973
974#ifdef CPU_ENABLE_SSE
975/*
976 * On AuthenticAMD processors, the fxrstor instruction does not restore
977 * the x87's stored last instruction pointer, last data pointer, and last
978 * opcode values, except in the rare case in which the exception summary
979 * (ES) bit in the x87 status word is set to 1.
980 *
981 * In order to avoid leaking this information across processes, we clean
982 * these values by performing a dummy load before executing fxrstor().
983 */
984static void
985fpu_clean_state(void)
986{
987	static float dummy_variable = 0.0;
988	u_short status;
989
990	/*
991	 * Clear the ES bit in the x87 status word if it is currently
992	 * set, in order to avoid causing a fault in the upcoming load.
993	 */
994	fnstsw(&status);
995	if (status & 0x80)
996		fnclex();
997
998	/*
999	 * Load the dummy variable into the x87 stack.  This mangles
1000	 * the x87 stack, but we don't care since we're about to call
1001	 * fxrstor() anyway.
1002	 */
1003	__asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
1004}
1005#endif /* CPU_ENABLE_SSE */
1006
1007static void
1008fpurstor(addr)
1009	union savefpu *addr;
1010{
1011
1012#ifdef CPU_ENABLE_SSE
1013	if (cpu_fxsr)
1014		fxrstor(addr);
1015	else
1016#endif
1017		frstor(addr);
1018}
1019
1020#ifdef I586_CPU_XXX
1021static long
1022timezero(funcname, func)
1023	const char *funcname;
1024	void (*func)(void *buf, size_t len);
1025
1026{
1027	void *buf;
1028#define	BUFSIZE		1048576
1029	long usec;
1030	struct timeval finish, start;
1031
1032	buf = malloc(BUFSIZE, M_TEMP, M_NOWAIT);
1033	if (buf == NULL)
1034		return (BUFSIZE);
1035	microtime(&start);
1036	(*func)(buf, BUFSIZE);
1037	microtime(&finish);
1038	usec = 1000000 * (finish.tv_sec - start.tv_sec) +
1039	    finish.tv_usec - start.tv_usec;
1040	if (usec <= 0)
1041		usec = 1;
1042	if (bootverbose)
1043		printf("%s bandwidth = %u kBps\n", funcname,
1044		    (u_int32_t)(((BUFSIZE >> 10) * 1000000) / usec));
1045	free(buf, M_TEMP);
1046	return (usec);
1047}
1048#endif /* I586_CPU */
1049
1050static device_method_t npx_methods[] = {
1051	/* Device interface */
1052	DEVMETHOD(device_identify,	npx_identify),
1053	DEVMETHOD(device_probe,		npx_probe),
1054	DEVMETHOD(device_attach,	npx_attach),
1055	DEVMETHOD(device_detach,	bus_generic_detach),
1056	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1057	DEVMETHOD(device_suspend,	bus_generic_suspend),
1058	DEVMETHOD(device_resume,	bus_generic_resume),
1059
1060	{ 0, 0 }
1061};
1062
1063static driver_t npx_driver = {
1064	"npx",
1065	npx_methods,
1066	1,			/* no softc */
1067};
1068
1069static devclass_t npx_devclass;
1070
1071/*
1072 * We prefer to attach to the root nexus so that the usual case (exception 16)
1073 * doesn't describe the processor as being `on isa'.
1074 */
1075DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
1076
1077#ifdef DEV_ISA
1078/*
1079 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1080 */
1081static struct isa_pnp_id npxisa_ids[] = {
1082	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1083	{ 0 }
1084};
1085
1086static int
1087npxisa_probe(device_t dev)
1088{
1089	int result;
1090	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1091		device_quiet(dev);
1092	}
1093	return(result);
1094}
1095
1096static int
1097npxisa_attach(device_t dev)
1098{
1099	return (0);
1100}
1101
1102static device_method_t npxisa_methods[] = {
1103	/* Device interface */
1104	DEVMETHOD(device_probe,		npxisa_probe),
1105	DEVMETHOD(device_attach,	npxisa_attach),
1106	DEVMETHOD(device_detach,	bus_generic_detach),
1107	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1108	DEVMETHOD(device_suspend,	bus_generic_suspend),
1109	DEVMETHOD(device_resume,	bus_generic_resume),
1110
1111	{ 0, 0 }
1112};
1113
1114static driver_t npxisa_driver = {
1115	"npxisa",
1116	npxisa_methods,
1117	1,			/* no softc */
1118};
1119
1120static devclass_t npxisa_devclass;
1121
1122DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1123#ifndef PC98
1124DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1125#endif
1126#endif /* DEV_ISA */
1127