npx.c revision 159087
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/i386/isa/npx.c 159087 2006-05-30 23:44:21Z davidxu $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58
59#include <machine/asmacros.h>
60#include <machine/cputypes.h>
61#include <machine/frame.h>
62#include <machine/md_var.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/resource.h>
66#include <machine/specialreg.h>
67#include <machine/segments.h>
68#include <machine/ucontext.h>
69
70#include <machine/intr_machdep.h>
71#ifdef DEV_ISA
72#include <isa/isavar.h>
73#endif
74
75#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
76#define CPU_ENABLE_SSE
77#endif
78
79/*
80 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
81 */
82
83/* Configuration flags. */
84#define	NPX_DISABLE_I586_OPTIMIZED_BCOPY	(1 << 0)
85#define	NPX_DISABLE_I586_OPTIMIZED_BZERO	(1 << 1)
86#define	NPX_DISABLE_I586_OPTIMIZED_COPYIO	(1 << 2)
87
88#if defined(__GNUCLIKE_ASM) && !defined(lint)
89
90#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
91#define	fnclex()		__asm("fnclex")
92#define	fninit()		__asm("fninit")
93#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
94#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
95#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
96#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
97#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
98#ifdef CPU_ENABLE_SSE
99#define	fxrstor(addr)		__asm("fxrstor %0" : : "m" (*(addr)))
100#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
101#define	ldmxcsr(__csr)		__asm __volatile("ldmxcsr %0" : : "m" (__csr))
102#endif
103#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
104				      : : "n" (CR0_TS) : "ax")
105#define	stop_emulating()	__asm("clts")
106
107#else	/* !(__GNUCLIKE_ASM && !lint) */
108
109void	fldcw(caddr_t addr);
110void	fnclex(void);
111void	fninit(void);
112void	fnsave(caddr_t addr);
113void	fnstcw(caddr_t addr);
114void	fnstsw(caddr_t addr);
115void	fp_divide_by_0(void);
116void	frstor(caddr_t addr);
117#ifdef CPU_ENABLE_SSE
118void	fxsave(caddr_t addr);
119void	fxrstor(caddr_t addr);
120#endif
121void	start_emulating(void);
122void	stop_emulating(void);
123
124#endif	/* __GNUCLIKE_ASM && !lint */
125
126#ifdef CPU_ENABLE_SSE
127#define GET_FPU_CW(thread) \
128	(cpu_fxsr ? \
129		(thread)->td_pcb->pcb_save.sv_xmm.sv_env.en_cw : \
130		(thread)->td_pcb->pcb_save.sv_87.sv_env.en_cw)
131#define GET_FPU_SW(thread) \
132	(cpu_fxsr ? \
133		(thread)->td_pcb->pcb_save.sv_xmm.sv_env.en_sw : \
134		(thread)->td_pcb->pcb_save.sv_87.sv_env.en_sw)
135#else /* CPU_ENABLE_SSE */
136#define GET_FPU_CW(thread) \
137	(thread->td_pcb->pcb_save.sv_87.sv_env.en_cw)
138#define GET_FPU_SW(thread) \
139	(thread->td_pcb->pcb_save.sv_87.sv_env.en_sw)
140#endif /* CPU_ENABLE_SSE */
141
142typedef u_char bool_t;
143
144#ifdef CPU_ENABLE_SSE
145static	void	fpu_clean_state(void);
146#endif
147
148static	void	fpusave(union savefpu *);
149static	void	fpurstor(union savefpu *);
150static	int	npx_attach(device_t dev);
151static	void	npx_identify(driver_t *driver, device_t parent);
152static	void	npx_intr(void *);
153static	int	npx_probe(device_t dev);
154#ifdef I586_CPU_XXX
155static	long	timezero(const char *funcname,
156		    void (*func)(void *buf, size_t len));
157#endif /* I586_CPU */
158
159int	hw_float;		/* XXX currently just alias for npx_exists */
160
161SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
162	CTLFLAG_RD, &hw_float, 0,
163	"Floatingpoint instructions executed in hardware");
164
165static	volatile u_int		npx_intrs_while_probing;
166static	volatile u_int		npx_traps_while_probing;
167
168static	union savefpu		npx_cleanstate;
169static	bool_t			npx_cleanstate_ready;
170static	bool_t			npx_ex16;
171static	bool_t			npx_exists;
172static	bool_t			npx_irq13;
173
174alias_for_inthand_t probetrap;
175__asm("								\n\
176	.text							\n\
177	.p2align 2,0x90						\n\
178	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
179" __XSTRING(CNAME(probetrap)) ":				\n\
180	ss							\n\
181	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
182	fnclex							\n\
183	iret							\n\
184");
185
186/*
187 * Identify routine.  Create a connection point on our parent for probing.
188 */
189static void
190npx_identify(driver, parent)
191	driver_t *driver;
192	device_t parent;
193{
194	device_t child;
195
196	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
197	if (child == NULL)
198		panic("npx_identify");
199}
200
201/*
202 * Do minimal handling of npx interrupts to convert them to traps.
203 */
204static void
205npx_intr(dummy)
206	void *dummy;
207{
208	struct thread *td;
209
210	npx_intrs_while_probing++;
211
212	/*
213	 * The BUSY# latch must be cleared in all cases so that the next
214	 * unmasked npx exception causes an interrupt.
215	 */
216	outb(IO_NPX, 0);
217
218	/*
219	 * fpcurthread is normally non-null here.  In that case, schedule an
220	 * AST to finish the exception handling in the correct context
221	 * (this interrupt may occur after the thread has entered the
222	 * kernel via a syscall or an interrupt).  Otherwise, the npx
223	 * state of the thread that caused this interrupt must have been
224	 * pushed to the thread's pcb, and clearing of the busy latch
225	 * above has finished the (essentially null) handling of this
226	 * interrupt.  Control will eventually return to the instruction
227	 * that caused it and it will repeat.  We will eventually (usually
228	 * soon) win the race to handle the interrupt properly.
229	 */
230	td = PCPU_GET(fpcurthread);
231	if (td != NULL) {
232		td->td_pcb->pcb_flags |= PCB_NPXTRAP;
233		mtx_lock_spin(&sched_lock);
234		td->td_flags |= TDF_ASTPENDING;
235		mtx_unlock_spin(&sched_lock);
236	}
237}
238
239/*
240 * Probe routine.  Set flags to tell npxattach() what to do.  Set up an
241 * interrupt handler if npx needs to use interrupts.
242 */
243static int
244npx_probe(dev)
245	device_t dev;
246{
247	struct gate_descriptor save_idt_npxtrap;
248	struct resource *ioport_res, *irq_res;
249	void *irq_cookie;
250	int ioport_rid, irq_num, irq_rid;
251	u_short control;
252	u_short status;
253
254	device_set_desc(dev, "math processor");
255
256	/*
257	 * Modern CPUs all have an FPU that uses the INT16 interface
258	 * and provide a simple way to verify that, so handle the
259	 * common case right away.
260	 */
261	if (cpu_feature & CPUID_FPU) {
262		hw_float = npx_exists = 1;
263		npx_ex16 = 1;
264		device_quiet(dev);
265		return (0);
266	}
267
268	save_idt_npxtrap = idt[IDT_MF];
269	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
270	    GSEL(GCODE_SEL, SEL_KPL));
271	ioport_rid = 0;
272	ioport_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &ioport_rid,
273	    IO_NPX, IO_NPX + IO_NPXSIZE - 1, IO_NPXSIZE, RF_ACTIVE);
274	if (ioport_res == NULL)
275		panic("npx: can't get ports");
276	if (resource_int_value("npx", 0, "irq", &irq_num) != 0)
277		irq_num = IRQ_NPX;
278	irq_rid = 0;
279	irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &irq_rid, irq_num,
280	    irq_num, 1, RF_ACTIVE);
281	if (irq_res != NULL) {
282		if (bus_setup_intr(dev, irq_res, INTR_TYPE_MISC | INTR_FAST,
283			npx_intr, NULL, &irq_cookie) != 0)
284			panic("npx: can't create intr");
285	}
286
287	/*
288	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
289	 * it after a warm boot.
290	 */
291	npx_full_reset();
292	outb(IO_NPX, 0);
293
294	/*
295	 * Don't trap while we're probing.
296	 */
297	stop_emulating();
298
299	/*
300	 * Finish resetting the coprocessor, if any.  If there is an error
301	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
302	 * it OK.  Bogus halts have never been observed, but we enabled
303	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
304	 */
305	fninit();
306
307	/*
308	 * Don't use fwait here because it might hang.
309	 * Don't use fnop here because it usually hangs if there is no FPU.
310	 */
311	DELAY(1000);		/* wait for any IRQ13 */
312#ifdef DIAGNOSTIC
313	if (npx_intrs_while_probing != 0)
314		printf("fninit caused %u bogus npx interrupt(s)\n",
315		       npx_intrs_while_probing);
316	if (npx_traps_while_probing != 0)
317		printf("fninit caused %u bogus npx trap(s)\n",
318		       npx_traps_while_probing);
319#endif
320	/*
321	 * Check for a status of mostly zero.
322	 */
323	status = 0x5a5a;
324	fnstsw(&status);
325	if ((status & 0xb8ff) == 0) {
326		/*
327		 * Good, now check for a proper control word.
328		 */
329		control = 0x5a5a;
330		fnstcw(&control);
331		if ((control & 0x1f3f) == 0x033f) {
332			hw_float = npx_exists = 1;
333			/*
334			 * We have an npx, now divide by 0 to see if exception
335			 * 16 works.
336			 */
337			control &= ~(1 << 2);	/* enable divide by 0 trap */
338			fldcw(&control);
339#ifdef FPU_ERROR_BROKEN
340			/*
341			 * FPU error signal doesn't work on some CPU
342			 * accelerator board.
343			 */
344			npx_ex16 = 1;
345			return (0);
346#endif
347			npx_traps_while_probing = npx_intrs_while_probing = 0;
348			fp_divide_by_0();
349			DELAY(1000);	/* wait for any IRQ13 */
350			if (npx_traps_while_probing != 0) {
351				/*
352				 * Good, exception 16 works.
353				 */
354				npx_ex16 = 1;
355				goto no_irq13;
356			}
357			if (npx_intrs_while_probing != 0) {
358				/*
359				 * Bad, we are stuck with IRQ13.
360				 */
361				npx_irq13 = 1;
362				idt[IDT_MF] = save_idt_npxtrap;
363#ifdef SMP
364				if (mp_ncpus > 1)
365					panic("npx0 cannot use IRQ 13 on an SMP system");
366#endif
367				return (0);
368			}
369			/*
370			 * Worse, even IRQ13 is broken.  Use emulator.
371			 */
372		}
373	}
374	/*
375	 * Probe failed, but we want to get to npxattach to initialize the
376	 * emulator and say that it has been installed.  XXX handle devices
377	 * that aren't really devices better.
378	 */
379#ifdef SMP
380	if (mp_ncpus > 1)
381		panic("npx0 cannot be emulated on an SMP system");
382#endif
383	/* FALLTHROUGH */
384no_irq13:
385	idt[IDT_MF] = save_idt_npxtrap;
386	if (irq_res != NULL) {
387		bus_teardown_intr(dev, irq_res, irq_cookie);
388		bus_release_resource(dev, SYS_RES_IRQ, irq_rid, irq_res);
389	}
390	bus_release_resource(dev, SYS_RES_IOPORT, ioport_rid, ioport_res);
391	return (0);
392}
393
394/*
395 * Attach routine - announce which it is, and wire into system
396 */
397static int
398npx_attach(dev)
399	device_t dev;
400{
401	int flags;
402	register_t s;
403
404	flags = device_get_flags(dev);
405
406	if (npx_irq13)
407		device_printf(dev, "IRQ 13 interface\n");
408	else if (!npx_ex16)
409		device_printf(dev, "WARNING: no FPU!\n");
410	else if (!device_is_quiet(dev) || bootverbose)
411		device_printf(dev, "INT 16 interface\n");
412
413	npxinit(__INITIAL_NPXCW__);
414
415	if (npx_cleanstate_ready == 0) {
416		s = intr_disable();
417		stop_emulating();
418		fpusave(&npx_cleanstate);
419		start_emulating();
420#ifdef CPU_ENABLE_SSE
421		if (cpu_fxsr) {
422			if (npx_cleanstate.sv_xmm.sv_env.en_mxcsr_mask)
423				cpu_mxcsr_mask =
424			    	    npx_cleanstate.sv_xmm.sv_env.en_mxcsr_mask;
425			else
426				cpu_mxcsr_mask = 0xFFBF;
427		}
428#endif
429		npx_cleanstate_ready = 1;
430		intr_restore(s);
431	}
432#ifdef I586_CPU_XXX
433	if (cpu_class == CPUCLASS_586 && npx_ex16 && npx_exists &&
434	    timezero("i586_bzero()", i586_bzero) <
435	    timezero("bzero()", bzero) * 4 / 5) {
436		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY))
437			bcopy_vector = i586_bcopy;
438		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BZERO))
439			bzero_vector = i586_bzero;
440		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_COPYIO)) {
441			copyin_vector = i586_copyin;
442			copyout_vector = i586_copyout;
443		}
444	}
445#endif
446
447	return (0);		/* XXX unused */
448}
449
450/*
451 * Initialize floating point unit.
452 */
453void
454npxinit(control)
455	u_short control;
456{
457	static union savefpu dummy;
458	register_t savecrit;
459
460	if (!npx_exists)
461		return;
462	/*
463	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
464	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
465	 * the fpu and sets fpcurthread = NULL as important side effects.
466	 */
467	savecrit = intr_disable();
468	npxsave(&dummy);
469	stop_emulating();
470#ifdef CPU_ENABLE_SSE
471	/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
472	if (cpu_fxsr)
473		fninit();
474#endif
475	fldcw(&control);
476	start_emulating();
477	intr_restore(savecrit);
478}
479
480/*
481 * Free coprocessor (if we have it).
482 */
483void
484npxexit(td)
485	struct thread *td;
486{
487	register_t savecrit;
488
489	savecrit = intr_disable();
490	if (curthread == PCPU_GET(fpcurthread))
491		npxsave(&PCPU_GET(curpcb)->pcb_save);
492	intr_restore(savecrit);
493#ifdef NPX_DEBUG
494	if (npx_exists) {
495		u_int	masked_exceptions;
496
497		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
498		/*
499		 * Log exceptions that would have trapped with the old
500		 * control word (overflow, divide by 0, and invalid operand).
501		 */
502		if (masked_exceptions & 0x0d)
503			log(LOG_ERR,
504	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
505			    td->td_proc->p_pid, td->td_proc->p_comm,
506			    masked_exceptions);
507	}
508#endif
509}
510
511int
512npxformat()
513{
514
515	if (!npx_exists)
516		return (_MC_FPFMT_NODEV);
517#ifdef	CPU_ENABLE_SSE
518	if (cpu_fxsr)
519		return (_MC_FPFMT_XMM);
520#endif
521	return (_MC_FPFMT_387);
522}
523
524/*
525 * The following mechanism is used to ensure that the FPE_... value
526 * that is passed as a trapcode to the signal handler of the user
527 * process does not have more than one bit set.
528 *
529 * Multiple bits may be set if the user process modifies the control
530 * word while a status word bit is already set.  While this is a sign
531 * of bad coding, we have no choise than to narrow them down to one
532 * bit, since we must not send a trapcode that is not exactly one of
533 * the FPE_ macros.
534 *
535 * The mechanism has a static table with 127 entries.  Each combination
536 * of the 7 FPU status word exception bits directly translates to a
537 * position in this table, where a single FPE_... value is stored.
538 * This FPE_... value stored there is considered the "most important"
539 * of the exception bits and will be sent as the signal code.  The
540 * precedence of the bits is based upon Intel Document "Numerical
541 * Applications", Chapter "Special Computational Situations".
542 *
543 * The macro to choose one of these values does these steps: 1) Throw
544 * away status word bits that cannot be masked.  2) Throw away the bits
545 * currently masked in the control word, assuming the user isn't
546 * interested in them anymore.  3) Reinsert status word bit 7 (stack
547 * fault) if it is set, which cannot be masked but must be presered.
548 * 4) Use the remaining bits to point into the trapcode table.
549 *
550 * The 6 maskable bits in order of their preference, as stated in the
551 * above referenced Intel manual:
552 * 1  Invalid operation (FP_X_INV)
553 * 1a   Stack underflow
554 * 1b   Stack overflow
555 * 1c   Operand of unsupported format
556 * 1d   SNaN operand.
557 * 2  QNaN operand (not an exception, irrelavant here)
558 * 3  Any other invalid-operation not mentioned above or zero divide
559 *      (FP_X_INV, FP_X_DZ)
560 * 4  Denormal operand (FP_X_DNML)
561 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
562 * 6  Inexact result (FP_X_IMP)
563 */
564static char fpetable[128] = {
565	0,
566	FPE_FLTINV,	/*  1 - INV */
567	FPE_FLTUND,	/*  2 - DNML */
568	FPE_FLTINV,	/*  3 - INV | DNML */
569	FPE_FLTDIV,	/*  4 - DZ */
570	FPE_FLTINV,	/*  5 - INV | DZ */
571	FPE_FLTDIV,	/*  6 - DNML | DZ */
572	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
573	FPE_FLTOVF,	/*  8 - OFL */
574	FPE_FLTINV,	/*  9 - INV | OFL */
575	FPE_FLTUND,	/*  A - DNML | OFL */
576	FPE_FLTINV,	/*  B - INV | DNML | OFL */
577	FPE_FLTDIV,	/*  C - DZ | OFL */
578	FPE_FLTINV,	/*  D - INV | DZ | OFL */
579	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
580	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
581	FPE_FLTUND,	/* 10 - UFL */
582	FPE_FLTINV,	/* 11 - INV | UFL */
583	FPE_FLTUND,	/* 12 - DNML | UFL */
584	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
585	FPE_FLTDIV,	/* 14 - DZ | UFL */
586	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
587	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
588	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
589	FPE_FLTOVF,	/* 18 - OFL | UFL */
590	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
591	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
592	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
593	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
594	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
595	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
596	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
597	FPE_FLTRES,	/* 20 - IMP */
598	FPE_FLTINV,	/* 21 - INV | IMP */
599	FPE_FLTUND,	/* 22 - DNML | IMP */
600	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
601	FPE_FLTDIV,	/* 24 - DZ | IMP */
602	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
603	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
604	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
605	FPE_FLTOVF,	/* 28 - OFL | IMP */
606	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
607	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
608	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
609	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
610	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
611	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
612	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
613	FPE_FLTUND,	/* 30 - UFL | IMP */
614	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
615	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
616	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
617	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
618	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
619	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
620	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
621	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
622	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
623	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
624	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
625	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
626	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
627	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
628	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
629	FPE_FLTSUB,	/* 40 - STK */
630	FPE_FLTSUB,	/* 41 - INV | STK */
631	FPE_FLTUND,	/* 42 - DNML | STK */
632	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
633	FPE_FLTDIV,	/* 44 - DZ | STK */
634	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
635	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
636	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
637	FPE_FLTOVF,	/* 48 - OFL | STK */
638	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
639	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
640	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
641	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
642	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
643	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
644	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
645	FPE_FLTUND,	/* 50 - UFL | STK */
646	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
647	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
648	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
649	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
650	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
651	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
652	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
653	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
654	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
655	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
656	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
657	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
658	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
659	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
660	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
661	FPE_FLTRES,	/* 60 - IMP | STK */
662	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
663	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
664	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
665	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
666	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
667	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
668	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
669	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
670	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
671	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
672	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
673	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
674	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
675	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
676	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
677	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
678	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
679	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
680	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
681	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
682	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
683	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
684	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
685	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
686	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
687	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
688	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
689	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
690	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
691	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
692	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
693};
694
695/*
696 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
697 *
698 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
699 * depend on longjmp() restoring a usable state.  Restoring the state
700 * or examining it might fail if we didn't clear exceptions.
701 *
702 * The error code chosen will be one of the FPE_... macros. It will be
703 * sent as the second argument to old BSD-style signal handlers and as
704 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
705 *
706 * XXX the FP state is not preserved across signal handlers.  So signal
707 * handlers cannot afford to do FP unless they preserve the state or
708 * longjmp() out.  Both preserving the state and longjmp()ing may be
709 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
710 * solution for signals other than SIGFPE.
711 */
712int
713npxtrap()
714{
715	register_t savecrit;
716	u_short control, status;
717
718	if (!npx_exists) {
719		printf("npxtrap: fpcurthread = %p, curthread = %p, npx_exists = %d\n",
720		       PCPU_GET(fpcurthread), curthread, npx_exists);
721		panic("npxtrap from nowhere");
722	}
723	savecrit = intr_disable();
724
725	/*
726	 * Interrupt handling (for another interrupt) may have pushed the
727	 * state to memory.  Fetch the relevant parts of the state from
728	 * wherever they are.
729	 */
730	if (PCPU_GET(fpcurthread) != curthread) {
731		control = GET_FPU_CW(curthread);
732		status = GET_FPU_SW(curthread);
733	} else {
734		fnstcw(&control);
735		fnstsw(&status);
736	}
737
738	if (PCPU_GET(fpcurthread) == curthread)
739		fnclex();
740	intr_restore(savecrit);
741	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
742}
743
744/*
745 * Implement device not available (DNA) exception
746 *
747 * It would be better to switch FP context here (if curthread != fpcurthread)
748 * and not necessarily for every context switch, but it is too hard to
749 * access foreign pcb's.
750 */
751
752static int err_count = 0;
753
754int
755npxdna()
756{
757	struct pcb *pcb;
758	register_t s;
759#ifdef CPU_ENABLE_SSE
760	int mxcsr;
761#endif
762	u_short control;
763
764	if (!npx_exists)
765		return (0);
766	if (PCPU_GET(fpcurthread) == curthread) {
767		printf("npxdna: fpcurthread == curthread %d times\n",
768		    ++err_count);
769		stop_emulating();
770		return (1);
771	}
772	if (PCPU_GET(fpcurthread) != NULL) {
773		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
774		       PCPU_GET(fpcurthread),
775		       PCPU_GET(fpcurthread)->td_proc->p_pid,
776		       curthread, curthread->td_proc->p_pid);
777		panic("npxdna");
778	}
779	s = intr_disable();
780	stop_emulating();
781	/*
782	 * Record new context early in case frstor causes an IRQ13.
783	 */
784	PCPU_SET(fpcurthread, curthread);
785	pcb = PCPU_GET(curpcb);
786
787	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
788		/*
789		 * This is the first time this thread has used the FPU or
790		 * the PCB doesn't contain a clean FPU state.  Explicitly
791		 * initialize the FPU and load the default control word.
792		 */
793		fninit();
794		control = __INITIAL_NPXCW__;
795		fldcw(&control);
796#ifdef CPU_ENABLE_SSE
797		if (cpu_fxsr) {
798			mxcsr = __INITIAL_MXCSR__;
799			ldmxcsr(mxcsr);
800		}
801#endif
802		pcb->pcb_flags |= PCB_NPXINITDONE;
803	} else {
804		/*
805		 * The following frstor may cause an IRQ13 when the state
806		 * being restored has a pending error.  The error will
807		 * appear to have been triggered by the current (npx) user
808		 * instruction even when that instruction is a no-wait
809		 * instruction that should not trigger an error (e.g.,
810		 * fnclex).  On at least one 486 system all of the no-wait
811		 * instructions are broken the same as frstor, so our
812		 * treatment does not amplify the breakage.  On at least
813		 * one 386/Cyrix 387 system, fnclex works correctly while
814		 * frstor and fnsave are broken, so our treatment breaks
815		 * fnclex if it is the first FPU instruction after a context
816		 * switch.
817		 */
818		fpurstor(&pcb->pcb_save);
819	}
820	intr_restore(s);
821
822	return (1);
823}
824
825/*
826 * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
827 * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
828 * no-wait npx instructions.  See the Intel application note AP-578 for
829 * details.  This doesn't cause any additional complications here.  IRQ13's
830 * are inherently asynchronous unless the CPU is frozen to deliver them --
831 * one that started in userland may be delivered many instructions later,
832 * after the process has entered the kernel.  It may even be delivered after
833 * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
834 * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
835 * it is normally ignored at first because we set fpcurthread to NULL; it is
836 * normally retriggered in npxdna() after return to user mode.
837 *
838 * npxsave() must be called with interrupts disabled, so that it clears
839 * fpcurthread atomically with saving the state.  We require callers to do the
840 * disabling, since most callers need to disable interrupts anyway to call
841 * npxsave() atomically with checking fpcurthread.
842 *
843 * A previous version of npxsave() went to great lengths to excecute fnsave
844 * with interrupts enabled in case executing it froze the CPU.  This case
845 * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
846 * spurious freezes.
847 */
848void
849npxsave(addr)
850	union savefpu *addr;
851{
852
853	stop_emulating();
854	fpusave(addr);
855
856	start_emulating();
857	PCPU_SET(fpcurthread, NULL);
858}
859
860/*
861 * This should be called with interrupts disabled and only when the owning
862 * FPU thread is non-null.
863 */
864void
865npxdrop()
866{
867	struct thread *td;
868
869	/*
870	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
871	 * ones don't cause a panic on the next frstor.
872	 */
873#ifdef CPU_ENABLE_SSE
874	if (!cpu_fxsr)
875#endif
876		fnclex();
877
878	td = PCPU_GET(fpcurthread);
879	PCPU_SET(fpcurthread, NULL);
880	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
881	start_emulating();
882}
883
884/*
885 * Get the state of the FPU without dropping ownership (if possible).
886 * It returns the FPU ownership status.
887 */
888int
889npxgetregs(td, addr)
890	struct thread *td;
891	union savefpu *addr;
892{
893	register_t s;
894
895	if (!npx_exists)
896		return (_MC_FPOWNED_NONE);
897
898	if ((td->td_pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
899		if (npx_cleanstate_ready)
900			bcopy(&npx_cleanstate, addr, sizeof(npx_cleanstate));
901		else
902			bzero(addr, sizeof(*addr));
903		return (_MC_FPOWNED_NONE);
904	}
905	s = intr_disable();
906	if (td == PCPU_GET(fpcurthread)) {
907		fpusave(addr);
908#ifdef CPU_ENABLE_SSE
909		if (!cpu_fxsr)
910#endif
911			/*
912			 * fnsave initializes the FPU and destroys whatever
913			 * context it contains.  Make sure the FPU owner
914			 * starts with a clean state next time.
915			 */
916			npxdrop();
917		intr_restore(s);
918		return (_MC_FPOWNED_FPU);
919	} else {
920		intr_restore(s);
921		bcopy(&td->td_pcb->pcb_save, addr, sizeof(*addr));
922		return (_MC_FPOWNED_PCB);
923	}
924}
925
926/*
927 * Set the state of the FPU.
928 */
929void
930npxsetregs(td, addr)
931	struct thread *td;
932	union savefpu *addr;
933{
934	register_t s;
935
936	if (!npx_exists)
937		return;
938
939	s = intr_disable();
940	if (td == PCPU_GET(fpcurthread)) {
941#ifdef CPU_ENABLE_SSE
942		if (!cpu_fxsr)
943#endif
944			fnclex();	/* As in npxdrop(). */
945		fpurstor(addr);
946		intr_restore(s);
947	} else {
948		intr_restore(s);
949		bcopy(addr, &td->td_pcb->pcb_save, sizeof(*addr));
950	}
951	curthread->td_pcb->pcb_flags |= PCB_NPXINITDONE;
952}
953
954static void
955fpusave(addr)
956	union savefpu *addr;
957{
958
959#ifdef CPU_ENABLE_SSE
960	if (cpu_fxsr)
961		fxsave(addr);
962	else
963#endif
964		fnsave(addr);
965}
966
967#ifdef CPU_ENABLE_SSE
968/*
969 * On AuthenticAMD processors, the fxrstor instruction does not restore
970 * the x87's stored last instruction pointer, last data pointer, and last
971 * opcode values, except in the rare case in which the exception summary
972 * (ES) bit in the x87 status word is set to 1.
973 *
974 * In order to avoid leaking this information across processes, we clean
975 * these values by performing a dummy load before executing fxrstor().
976 */
977static	double	dummy_variable = 0.0;
978static void
979fpu_clean_state(void)
980{
981	u_short status;
982
983	/*
984	 * Clear the ES bit in the x87 status word if it is currently
985	 * set, in order to avoid causing a fault in the upcoming load.
986	 */
987	fnstsw(&status);
988	if (status & 0x80)
989		fnclex();
990
991	/*
992	 * Load the dummy variable into the x87 stack.  This mangles
993	 * the x87 stack, but we don't care since we're about to call
994	 * fxrstor() anyway.
995	 */
996	__asm __volatile("ffree %%st(7); fld %0" : : "m" (dummy_variable));
997}
998#endif /* CPU_ENABLE_SSE */
999
1000static void
1001fpurstor(addr)
1002	union savefpu *addr;
1003{
1004
1005#ifdef CPU_ENABLE_SSE
1006	if (cpu_fxsr) {
1007		fpu_clean_state();
1008		fxrstor(addr);
1009	} else
1010#endif
1011		frstor(addr);
1012}
1013
1014#ifdef I586_CPU_XXX
1015static long
1016timezero(funcname, func)
1017	const char *funcname;
1018	void (*func)(void *buf, size_t len);
1019
1020{
1021	void *buf;
1022#define	BUFSIZE		1048576
1023	long usec;
1024	struct timeval finish, start;
1025
1026	buf = malloc(BUFSIZE, M_TEMP, M_NOWAIT);
1027	if (buf == NULL)
1028		return (BUFSIZE);
1029	microtime(&start);
1030	(*func)(buf, BUFSIZE);
1031	microtime(&finish);
1032	usec = 1000000 * (finish.tv_sec - start.tv_sec) +
1033	    finish.tv_usec - start.tv_usec;
1034	if (usec <= 0)
1035		usec = 1;
1036	if (bootverbose)
1037		printf("%s bandwidth = %u kBps\n", funcname,
1038		    (u_int32_t)(((BUFSIZE >> 10) * 1000000) / usec));
1039	free(buf, M_TEMP);
1040	return (usec);
1041}
1042#endif /* I586_CPU */
1043
1044static device_method_t npx_methods[] = {
1045	/* Device interface */
1046	DEVMETHOD(device_identify,	npx_identify),
1047	DEVMETHOD(device_probe,		npx_probe),
1048	DEVMETHOD(device_attach,	npx_attach),
1049	DEVMETHOD(device_detach,	bus_generic_detach),
1050	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1051	DEVMETHOD(device_suspend,	bus_generic_suspend),
1052	DEVMETHOD(device_resume,	bus_generic_resume),
1053
1054	{ 0, 0 }
1055};
1056
1057static driver_t npx_driver = {
1058	"npx",
1059	npx_methods,
1060	1,			/* no softc */
1061};
1062
1063static devclass_t npx_devclass;
1064
1065/*
1066 * We prefer to attach to the root nexus so that the usual case (exception 16)
1067 * doesn't describe the processor as being `on isa'.
1068 */
1069DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
1070
1071#ifdef DEV_ISA
1072/*
1073 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1074 */
1075static struct isa_pnp_id npxisa_ids[] = {
1076	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1077	{ 0 }
1078};
1079
1080static int
1081npxisa_probe(device_t dev)
1082{
1083	int result;
1084	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1085		device_quiet(dev);
1086	}
1087	return(result);
1088}
1089
1090static int
1091npxisa_attach(device_t dev)
1092{
1093	return (0);
1094}
1095
1096static device_method_t npxisa_methods[] = {
1097	/* Device interface */
1098	DEVMETHOD(device_probe,		npxisa_probe),
1099	DEVMETHOD(device_attach,	npxisa_attach),
1100	DEVMETHOD(device_detach,	bus_generic_detach),
1101	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1102	DEVMETHOD(device_suspend,	bus_generic_suspend),
1103	DEVMETHOD(device_resume,	bus_generic_resume),
1104
1105	{ 0, 0 }
1106};
1107
1108static driver_t npxisa_driver = {
1109	"npxisa",
1110	npxisa_methods,
1111	1,			/* no softc */
1112};
1113
1114static devclass_t npxisa_devclass;
1115
1116DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1117#ifndef PC98
1118DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1119#endif
1120#endif /* DEV_ISA */
1121