npx.c revision 146137
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/i386/isa/npx.c 146137 2005-05-12 12:47:41Z nyan $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58
59#include <machine/asmacros.h>
60#include <machine/cputypes.h>
61#include <machine/frame.h>
62#include <machine/md_var.h>
63#include <machine/pcb.h>
64#include <machine/psl.h>
65#include <machine/clock.h>
66#include <machine/resource.h>
67#include <machine/specialreg.h>
68#include <machine/segments.h>
69#include <machine/ucontext.h>
70
71#include <machine/intr_machdep.h>
72#ifdef DEV_ISA
73#include <isa/isavar.h>
74#endif
75
76#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
77#define CPU_ENABLE_SSE
78#endif
79#if defined(CPU_DISABLE_SSE)
80#undef CPU_ENABLE_SSE
81#endif
82
83/*
84 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
85 */
86
87/* Configuration flags. */
88#define	NPX_DISABLE_I586_OPTIMIZED_BCOPY	(1 << 0)
89#define	NPX_DISABLE_I586_OPTIMIZED_BZERO	(1 << 1)
90#define	NPX_DISABLE_I586_OPTIMIZED_COPYIO	(1 << 2)
91
92#if defined(__GNUCLIKE_ASM) && !defined(lint)
93
94#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
95#define	fnclex()		__asm("fnclex")
96#define	fninit()		__asm("fninit")
97#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
98#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
99#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
100#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
101#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
102#ifdef CPU_ENABLE_SSE
103#define	fxrstor(addr)		__asm("fxrstor %0" : : "m" (*(addr)))
104#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
105#define	ldmxcsr(__csr)		__asm __volatile("ldmxcsr %0" : : "m" (__csr))
106#endif
107#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
108				      : : "n" (CR0_TS) : "ax")
109#define	stop_emulating()	__asm("clts")
110
111#else	/* !(__GNUCLIKE_ASM && !lint) */
112
113void	fldcw(caddr_t addr);
114void	fnclex(void);
115void	fninit(void);
116void	fnsave(caddr_t addr);
117void	fnstcw(caddr_t addr);
118void	fnstsw(caddr_t addr);
119void	fp_divide_by_0(void);
120void	frstor(caddr_t addr);
121#ifdef CPU_ENABLE_SSE
122void	fxsave(caddr_t addr);
123void	fxrstor(caddr_t addr);
124#endif
125void	start_emulating(void);
126void	stop_emulating(void);
127
128#endif	/* __GNUCLIKE_ASM && !lint */
129
130#ifdef CPU_ENABLE_SSE
131#define GET_FPU_CW(thread) \
132	(cpu_fxsr ? \
133		(thread)->td_pcb->pcb_save.sv_xmm.sv_env.en_cw : \
134		(thread)->td_pcb->pcb_save.sv_87.sv_env.en_cw)
135#define GET_FPU_SW(thread) \
136	(cpu_fxsr ? \
137		(thread)->td_pcb->pcb_save.sv_xmm.sv_env.en_sw : \
138		(thread)->td_pcb->pcb_save.sv_87.sv_env.en_sw)
139#else /* CPU_ENABLE_SSE */
140#define GET_FPU_CW(thread) \
141	(thread->td_pcb->pcb_save.sv_87.sv_env.en_cw)
142#define GET_FPU_SW(thread) \
143	(thread->td_pcb->pcb_save.sv_87.sv_env.en_sw)
144#endif /* CPU_ENABLE_SSE */
145
146typedef u_char bool_t;
147
148static	void	fpusave(union savefpu *);
149static	void	fpurstor(union savefpu *);
150static	int	npx_attach(device_t dev);
151static	void	npx_identify(driver_t *driver, device_t parent);
152static	void	npx_intr(void *);
153static	int	npx_probe(device_t dev);
154#ifdef I586_CPU_XXX
155static	long	timezero(const char *funcname,
156		    void (*func)(void *buf, size_t len));
157#endif /* I586_CPU */
158
159int	hw_float;		/* XXX currently just alias for npx_exists */
160
161SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
162	CTLFLAG_RD, &hw_float, 0,
163	"Floatingpoint instructions executed in hardware");
164
165static	volatile u_int		npx_intrs_while_probing;
166static	volatile u_int		npx_traps_while_probing;
167
168static	union savefpu		npx_cleanstate;
169static	bool_t			npx_cleanstate_ready;
170static	bool_t			npx_ex16;
171static	bool_t			npx_exists;
172static	bool_t			npx_irq13;
173
174alias_for_inthand_t probetrap;
175__asm("								\n\
176	.text							\n\
177	.p2align 2,0x90						\n\
178	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
179" __XSTRING(CNAME(probetrap)) ":				\n\
180	ss							\n\
181	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
182	fnclex							\n\
183	iret							\n\
184");
185
186/*
187 * Identify routine.  Create a connection point on our parent for probing.
188 */
189static void
190npx_identify(driver, parent)
191	driver_t *driver;
192	device_t parent;
193{
194	device_t child;
195
196	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
197	if (child == NULL)
198		panic("npx_identify");
199}
200
201/*
202 * Do minimal handling of npx interrupts to convert them to traps.
203 */
204static void
205npx_intr(dummy)
206	void *dummy;
207{
208	struct thread *td;
209
210	npx_intrs_while_probing++;
211
212	/*
213	 * The BUSY# latch must be cleared in all cases so that the next
214	 * unmasked npx exception causes an interrupt.
215	 */
216	outb(IO_NPX, 0);
217
218	/*
219	 * fpcurthread is normally non-null here.  In that case, schedule an
220	 * AST to finish the exception handling in the correct context
221	 * (this interrupt may occur after the thread has entered the
222	 * kernel via a syscall or an interrupt).  Otherwise, the npx
223	 * state of the thread that caused this interrupt must have been
224	 * pushed to the thread's pcb, and clearing of the busy latch
225	 * above has finished the (essentially null) handling of this
226	 * interrupt.  Control will eventually return to the instruction
227	 * that caused it and it will repeat.  We will eventually (usually
228	 * soon) win the race to handle the interrupt properly.
229	 */
230	td = PCPU_GET(fpcurthread);
231	if (td != NULL) {
232		td->td_pcb->pcb_flags |= PCB_NPXTRAP;
233		mtx_lock_spin(&sched_lock);
234		td->td_flags |= TDF_ASTPENDING;
235		mtx_unlock_spin(&sched_lock);
236	}
237}
238
239/*
240 * Probe routine.  Initialize cr0 to give correct behaviour for [f]wait
241 * whether the device exists or not (XXX should be elsewhere).  Set flags
242 * to tell npxattach() what to do.  Modify device struct if npx doesn't
243 * need to use interrupts.  Return 0 if device exists.
244 */
245static int
246npx_probe(dev)
247	device_t dev;
248{
249	struct gate_descriptor save_idt_npxtrap;
250	struct resource *ioport_res, *irq_res;
251	void *irq_cookie;
252	int ioport_rid, irq_num, irq_rid;
253	u_short control;
254	u_short status;
255
256	save_idt_npxtrap = idt[IDT_MF];
257	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
258	    GSEL(GCODE_SEL, SEL_KPL));
259	ioport_rid = 0;
260	ioport_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &ioport_rid,
261	    IO_NPX, IO_NPX + IO_NPXSIZE - 1, IO_NPXSIZE, RF_ACTIVE);
262	if (ioport_res == NULL)
263		panic("npx: can't get ports");
264	if (resource_int_value("npx", 0, "irq", &irq_num) != 0)
265		irq_num = IRQ_NPX;
266	irq_rid = 0;
267	irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &irq_rid, irq_num,
268	    irq_num, 1, RF_ACTIVE);
269	if (irq_res == NULL)
270		panic("npx: can't get IRQ");
271	if (bus_setup_intr(dev, irq_res, INTR_TYPE_MISC | INTR_FAST, npx_intr,
272	    NULL, &irq_cookie) != 0)
273		panic("npx: can't create intr");
274
275	/*
276	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
277	 * it after a warm boot.
278	 */
279	npx_full_reset();
280	outb(IO_NPX, 0);
281
282	/*
283	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
284	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
285	 * bit to control the trap, because setting the CR0_EM bit does
286	 * not cause WAIT instructions to trap.  It's important to trap
287	 * WAIT instructions - otherwise the "wait" variants of no-wait
288	 * control instructions would degenerate to the "no-wait" variants
289	 * after FP context switches but work correctly otherwise.  It's
290	 * particularly important to trap WAITs when there is no NPX -
291	 * otherwise the "wait" variants would always degenerate.
292	 *
293	 * Try setting CR0_NE to get correct error reporting on 486DX's.
294	 * Setting it should fail or do nothing on lesser processors.
295	 */
296	load_cr0(rcr0() | CR0_MP | CR0_NE);
297	/*
298	 * But don't trap while we're probing.
299	 */
300	stop_emulating();
301	/*
302	 * Finish resetting the coprocessor, if any.  If there is an error
303	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
304	 * it OK.  Bogus halts have never been observed, but we enabled
305	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
306	 */
307	fninit();
308
309	device_set_desc(dev, "math processor");
310
311	/*
312	 * Don't use fwait here because it might hang.
313	 * Don't use fnop here because it usually hangs if there is no FPU.
314	 */
315	DELAY(1000);		/* wait for any IRQ13 */
316#ifdef DIAGNOSTIC
317	if (npx_intrs_while_probing != 0)
318		printf("fninit caused %u bogus npx interrupt(s)\n",
319		       npx_intrs_while_probing);
320	if (npx_traps_while_probing != 0)
321		printf("fninit caused %u bogus npx trap(s)\n",
322		       npx_traps_while_probing);
323#endif
324	/*
325	 * Check for a status of mostly zero.
326	 */
327	status = 0x5a5a;
328	fnstsw(&status);
329	if ((status & 0xb8ff) == 0) {
330		/*
331		 * Good, now check for a proper control word.
332		 */
333		control = 0x5a5a;
334		fnstcw(&control);
335		if ((control & 0x1f3f) == 0x033f) {
336			hw_float = npx_exists = 1;
337			/*
338			 * We have an npx, now divide by 0 to see if exception
339			 * 16 works.
340			 */
341			control &= ~(1 << 2);	/* enable divide by 0 trap */
342			fldcw(&control);
343#ifdef FPU_ERROR_BROKEN
344			/*
345			 * FPU error signal doesn't work on some CPU
346			 * accelerator board.
347			 */
348			npx_ex16 = 1;
349			return (0);
350#endif
351			npx_traps_while_probing = npx_intrs_while_probing = 0;
352			fp_divide_by_0();
353			DELAY(1000);	/* wait for any IRQ13 */
354			if (npx_traps_while_probing != 0) {
355				/*
356				 * Good, exception 16 works.
357				 */
358				npx_ex16 = 1;
359				goto no_irq13;
360			}
361			if (npx_intrs_while_probing != 0) {
362				/*
363				 * Bad, we are stuck with IRQ13.
364				 */
365				npx_irq13 = 1;
366				idt[IDT_MF] = save_idt_npxtrap;
367#ifdef SMP
368				if (mp_ncpus > 1)
369					panic("npx0 cannot use IRQ 13 on an SMP system");
370#endif
371				return (0);
372			}
373			/*
374			 * Worse, even IRQ13 is broken.  Use emulator.
375			 */
376		}
377	}
378	/*
379	 * Probe failed, but we want to get to npxattach to initialize the
380	 * emulator and say that it has been installed.  XXX handle devices
381	 * that aren't really devices better.
382	 */
383#ifdef SMP
384	if (mp_ncpus > 1)
385		panic("npx0 cannot be emulated on an SMP system");
386#endif
387	/* FALLTHROUGH */
388no_irq13:
389	idt[IDT_MF] = save_idt_npxtrap;
390	bus_teardown_intr(dev, irq_res, irq_cookie);
391	bus_release_resource(dev, SYS_RES_IRQ, irq_rid, irq_res);
392	bus_release_resource(dev, SYS_RES_IOPORT, ioport_rid, ioport_res);
393	return (0);
394}
395
396/*
397 * Attach routine - announce which it is, and wire into system
398 */
399static int
400npx_attach(dev)
401	device_t dev;
402{
403	int flags;
404	register_t s;
405
406	flags = device_get_flags(dev);
407
408	if (npx_irq13)
409		device_printf(dev, "IRQ 13 interface\n");
410	else if (npx_ex16)
411		device_printf(dev, "INT 16 interface\n");
412	else
413		device_printf(dev, "WARNING: no FPU!\n");
414
415	npxinit(__INITIAL_NPXCW__);
416
417	if (npx_cleanstate_ready == 0) {
418		s = intr_disable();
419		stop_emulating();
420		fpusave(&npx_cleanstate);
421		start_emulating();
422		npx_cleanstate_ready = 1;
423		intr_restore(s);
424	}
425#ifdef I586_CPU_XXX
426	if (cpu_class == CPUCLASS_586 && npx_ex16 && npx_exists &&
427	    timezero("i586_bzero()", i586_bzero) <
428	    timezero("bzero()", bzero) * 4 / 5) {
429		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY))
430			bcopy_vector = i586_bcopy;
431		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BZERO))
432			bzero_vector = i586_bzero;
433		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_COPYIO)) {
434			copyin_vector = i586_copyin;
435			copyout_vector = i586_copyout;
436		}
437	}
438#endif
439
440	return (0);		/* XXX unused */
441}
442
443/*
444 * Initialize floating point unit.
445 */
446void
447npxinit(control)
448	u_short control;
449{
450	static union savefpu dummy;
451	register_t savecrit;
452
453	if (!npx_exists)
454		return;
455	/*
456	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
457	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
458	 * the fpu and sets fpcurthread = NULL as important side effects.
459	 */
460	savecrit = intr_disable();
461	npxsave(&dummy);
462	stop_emulating();
463#ifdef CPU_ENABLE_SSE
464	/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
465	if (cpu_fxsr)
466		fninit();
467#endif
468	fldcw(&control);
469	start_emulating();
470	intr_restore(savecrit);
471}
472
473/*
474 * Free coprocessor (if we have it).
475 */
476void
477npxexit(td)
478	struct thread *td;
479{
480	register_t savecrit;
481
482	savecrit = intr_disable();
483	if (curthread == PCPU_GET(fpcurthread))
484		npxsave(&PCPU_GET(curpcb)->pcb_save);
485	intr_restore(savecrit);
486#ifdef NPX_DEBUG
487	if (npx_exists) {
488		u_int	masked_exceptions;
489
490		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
491		/*
492		 * Log exceptions that would have trapped with the old
493		 * control word (overflow, divide by 0, and invalid operand).
494		 */
495		if (masked_exceptions & 0x0d)
496			log(LOG_ERR,
497	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
498			    td->td_proc->p_pid, td->td_proc->p_comm,
499			    masked_exceptions);
500	}
501#endif
502}
503
504int
505npxformat()
506{
507
508	if (!npx_exists)
509		return (_MC_FPFMT_NODEV);
510#ifdef	CPU_ENABLE_SSE
511	if (cpu_fxsr)
512		return (_MC_FPFMT_XMM);
513#endif
514	return (_MC_FPFMT_387);
515}
516
517/*
518 * The following mechanism is used to ensure that the FPE_... value
519 * that is passed as a trapcode to the signal handler of the user
520 * process does not have more than one bit set.
521 *
522 * Multiple bits may be set if the user process modifies the control
523 * word while a status word bit is already set.  While this is a sign
524 * of bad coding, we have no choise than to narrow them down to one
525 * bit, since we must not send a trapcode that is not exactly one of
526 * the FPE_ macros.
527 *
528 * The mechanism has a static table with 127 entries.  Each combination
529 * of the 7 FPU status word exception bits directly translates to a
530 * position in this table, where a single FPE_... value is stored.
531 * This FPE_... value stored there is considered the "most important"
532 * of the exception bits and will be sent as the signal code.  The
533 * precedence of the bits is based upon Intel Document "Numerical
534 * Applications", Chapter "Special Computational Situations".
535 *
536 * The macro to choose one of these values does these steps: 1) Throw
537 * away status word bits that cannot be masked.  2) Throw away the bits
538 * currently masked in the control word, assuming the user isn't
539 * interested in them anymore.  3) Reinsert status word bit 7 (stack
540 * fault) if it is set, which cannot be masked but must be presered.
541 * 4) Use the remaining bits to point into the trapcode table.
542 *
543 * The 6 maskable bits in order of their preference, as stated in the
544 * above referenced Intel manual:
545 * 1  Invalid operation (FP_X_INV)
546 * 1a   Stack underflow
547 * 1b   Stack overflow
548 * 1c   Operand of unsupported format
549 * 1d   SNaN operand.
550 * 2  QNaN operand (not an exception, irrelavant here)
551 * 3  Any other invalid-operation not mentioned above or zero divide
552 *      (FP_X_INV, FP_X_DZ)
553 * 4  Denormal operand (FP_X_DNML)
554 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
555 * 6  Inexact result (FP_X_IMP)
556 */
557static char fpetable[128] = {
558	0,
559	FPE_FLTINV,	/*  1 - INV */
560	FPE_FLTUND,	/*  2 - DNML */
561	FPE_FLTINV,	/*  3 - INV | DNML */
562	FPE_FLTDIV,	/*  4 - DZ */
563	FPE_FLTINV,	/*  5 - INV | DZ */
564	FPE_FLTDIV,	/*  6 - DNML | DZ */
565	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
566	FPE_FLTOVF,	/*  8 - OFL */
567	FPE_FLTINV,	/*  9 - INV | OFL */
568	FPE_FLTUND,	/*  A - DNML | OFL */
569	FPE_FLTINV,	/*  B - INV | DNML | OFL */
570	FPE_FLTDIV,	/*  C - DZ | OFL */
571	FPE_FLTINV,	/*  D - INV | DZ | OFL */
572	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
573	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
574	FPE_FLTUND,	/* 10 - UFL */
575	FPE_FLTINV,	/* 11 - INV | UFL */
576	FPE_FLTUND,	/* 12 - DNML | UFL */
577	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
578	FPE_FLTDIV,	/* 14 - DZ | UFL */
579	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
580	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
581	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
582	FPE_FLTOVF,	/* 18 - OFL | UFL */
583	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
584	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
585	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
586	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
587	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
588	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
589	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
590	FPE_FLTRES,	/* 20 - IMP */
591	FPE_FLTINV,	/* 21 - INV | IMP */
592	FPE_FLTUND,	/* 22 - DNML | IMP */
593	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
594	FPE_FLTDIV,	/* 24 - DZ | IMP */
595	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
596	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
597	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
598	FPE_FLTOVF,	/* 28 - OFL | IMP */
599	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
600	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
601	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
602	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
603	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
604	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
605	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
606	FPE_FLTUND,	/* 30 - UFL | IMP */
607	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
608	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
609	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
610	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
611	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
612	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
613	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
614	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
615	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
616	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
617	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
618	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
619	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
620	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
621	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
622	FPE_FLTSUB,	/* 40 - STK */
623	FPE_FLTSUB,	/* 41 - INV | STK */
624	FPE_FLTUND,	/* 42 - DNML | STK */
625	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
626	FPE_FLTDIV,	/* 44 - DZ | STK */
627	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
628	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
629	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
630	FPE_FLTOVF,	/* 48 - OFL | STK */
631	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
632	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
633	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
634	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
635	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
636	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
637	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
638	FPE_FLTUND,	/* 50 - UFL | STK */
639	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
640	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
641	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
642	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
643	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
644	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
645	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
646	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
647	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
648	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
649	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
650	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
651	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
652	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
653	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
654	FPE_FLTRES,	/* 60 - IMP | STK */
655	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
656	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
657	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
658	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
659	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
660	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
661	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
662	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
663	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
664	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
665	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
666	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
667	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
668	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
669	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
670	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
671	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
672	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
673	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
674	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
675	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
676	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
677	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
678	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
679	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
680	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
681	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
682	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
683	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
684	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
685	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
686};
687
688/*
689 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
690 *
691 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
692 * depend on longjmp() restoring a usable state.  Restoring the state
693 * or examining it might fail if we didn't clear exceptions.
694 *
695 * The error code chosen will be one of the FPE_... macros. It will be
696 * sent as the second argument to old BSD-style signal handlers and as
697 * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
698 *
699 * XXX the FP state is not preserved across signal handlers.  So signal
700 * handlers cannot afford to do FP unless they preserve the state or
701 * longjmp() out.  Both preserving the state and longjmp()ing may be
702 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
703 * solution for signals other than SIGFPE.
704 */
705int
706npxtrap()
707{
708	register_t savecrit;
709	u_short control, status;
710
711	if (!npx_exists) {
712		printf("npxtrap: fpcurthread = %p, curthread = %p, npx_exists = %d\n",
713		       PCPU_GET(fpcurthread), curthread, npx_exists);
714		panic("npxtrap from nowhere");
715	}
716	savecrit = intr_disable();
717
718	/*
719	 * Interrupt handling (for another interrupt) may have pushed the
720	 * state to memory.  Fetch the relevant parts of the state from
721	 * wherever they are.
722	 */
723	if (PCPU_GET(fpcurthread) != curthread) {
724		control = GET_FPU_CW(curthread);
725		status = GET_FPU_SW(curthread);
726	} else {
727		fnstcw(&control);
728		fnstsw(&status);
729	}
730
731	if (PCPU_GET(fpcurthread) == curthread)
732		fnclex();
733	intr_restore(savecrit);
734	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
735}
736
737/*
738 * Implement device not available (DNA) exception
739 *
740 * It would be better to switch FP context here (if curthread != fpcurthread)
741 * and not necessarily for every context switch, but it is too hard to
742 * access foreign pcb's.
743 */
744
745static int err_count = 0;
746
747int
748npxdna()
749{
750	struct pcb *pcb;
751	register_t s;
752#ifdef CPU_ENABLE_SSE
753	int mxcsr;
754#endif
755	u_short control;
756
757	if (!npx_exists)
758		return (0);
759	if (PCPU_GET(fpcurthread) == curthread) {
760		printf("npxdna: fpcurthread == curthread %d times\n",
761		    ++err_count);
762		stop_emulating();
763		return (1);
764	}
765	if (PCPU_GET(fpcurthread) != NULL) {
766		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
767		       PCPU_GET(fpcurthread),
768		       PCPU_GET(fpcurthread)->td_proc->p_pid,
769		       curthread, curthread->td_proc->p_pid);
770		panic("npxdna");
771	}
772	s = intr_disable();
773	stop_emulating();
774	/*
775	 * Record new context early in case frstor causes an IRQ13.
776	 */
777	PCPU_SET(fpcurthread, curthread);
778	pcb = PCPU_GET(curpcb);
779
780	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
781		/*
782		 * This is the first time this thread has used the FPU or
783		 * the PCB doesn't contain a clean FPU state.  Explicitly
784		 * initialize the FPU and load the default control word.
785		 */
786		fninit();
787		control = __INITIAL_NPXCW__;
788		fldcw(&control);
789#ifdef CPU_ENABLE_SSE
790		if (cpu_fxsr) {
791			mxcsr = __INITIAL_MXCSR__;
792			ldmxcsr(mxcsr);
793		}
794#endif
795		pcb->pcb_flags |= PCB_NPXINITDONE;
796	} else {
797		/*
798		 * The following frstor may cause an IRQ13 when the state
799		 * being restored has a pending error.  The error will
800		 * appear to have been triggered by the current (npx) user
801		 * instruction even when that instruction is a no-wait
802		 * instruction that should not trigger an error (e.g.,
803		 * fnclex).  On at least one 486 system all of the no-wait
804		 * instructions are broken the same as frstor, so our
805		 * treatment does not amplify the breakage.  On at least
806		 * one 386/Cyrix 387 system, fnclex works correctly while
807		 * frstor and fnsave are broken, so our treatment breaks
808		 * fnclex if it is the first FPU instruction after a context
809		 * switch.
810		 */
811		fpurstor(&pcb->pcb_save);
812	}
813	intr_restore(s);
814
815	return (1);
816}
817
818/*
819 * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
820 * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
821 * no-wait npx instructions.  See the Intel application note AP-578 for
822 * details.  This doesn't cause any additional complications here.  IRQ13's
823 * are inherently asynchronous unless the CPU is frozen to deliver them --
824 * one that started in userland may be delivered many instructions later,
825 * after the process has entered the kernel.  It may even be delivered after
826 * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
827 * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
828 * it is normally ignored at first because we set fpcurthread to NULL; it is
829 * normally retriggered in npxdna() after return to user mode.
830 *
831 * npxsave() must be called with interrupts disabled, so that it clears
832 * fpcurthread atomically with saving the state.  We require callers to do the
833 * disabling, since most callers need to disable interrupts anyway to call
834 * npxsave() atomically with checking fpcurthread.
835 *
836 * A previous version of npxsave() went to great lengths to excecute fnsave
837 * with interrupts enabled in case executing it froze the CPU.  This case
838 * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
839 * spurious freezes.
840 */
841void
842npxsave(addr)
843	union savefpu *addr;
844{
845
846	stop_emulating();
847	fpusave(addr);
848
849	start_emulating();
850	PCPU_SET(fpcurthread, NULL);
851}
852
853/*
854 * This should be called with interrupts disabled and only when the owning
855 * FPU thread is non-null.
856 */
857void
858npxdrop()
859{
860	struct thread *td;
861
862	/*
863	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
864	 * ones don't cause a panic on the next frstor.
865	 */
866#ifdef CPU_ENABLE_SSE
867	if (!cpu_fxsr)
868#endif
869		fnclex();
870
871	td = PCPU_GET(fpcurthread);
872	PCPU_SET(fpcurthread, NULL);
873	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
874	start_emulating();
875}
876
877/*
878 * Get the state of the FPU without dropping ownership (if possible).
879 * It returns the FPU ownership status.
880 */
881int
882npxgetregs(td, addr)
883	struct thread *td;
884	union savefpu *addr;
885{
886	register_t s;
887
888	if (!npx_exists)
889		return (_MC_FPOWNED_NONE);
890
891	if ((td->td_pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
892		if (npx_cleanstate_ready)
893			bcopy(&npx_cleanstate, addr, sizeof(npx_cleanstate));
894		else
895			bzero(addr, sizeof(*addr));
896		return (_MC_FPOWNED_NONE);
897	}
898	s = intr_disable();
899	if (td == PCPU_GET(fpcurthread)) {
900		fpusave(addr);
901#ifdef CPU_ENABLE_SSE
902		if (!cpu_fxsr)
903#endif
904			/*
905			 * fnsave initializes the FPU and destroys whatever
906			 * context it contains.  Make sure the FPU owner
907			 * starts with a clean state next time.
908			 */
909			npxdrop();
910		intr_restore(s);
911		return (_MC_FPOWNED_FPU);
912	} else {
913		intr_restore(s);
914		bcopy(&td->td_pcb->pcb_save, addr, sizeof(*addr));
915		return (_MC_FPOWNED_PCB);
916	}
917}
918
919/*
920 * Set the state of the FPU.
921 */
922void
923npxsetregs(td, addr)
924	struct thread *td;
925	union savefpu *addr;
926{
927	register_t s;
928
929	if (!npx_exists)
930		return;
931
932	s = intr_disable();
933	if (td == PCPU_GET(fpcurthread)) {
934#ifdef CPU_ENABLE_SSE
935		if (!cpu_fxsr)
936#endif
937			fnclex();	/* As in npxdrop(). */
938		fpurstor(addr);
939		intr_restore(s);
940	} else {
941		intr_restore(s);
942		bcopy(addr, &td->td_pcb->pcb_save, sizeof(*addr));
943	}
944	curthread->td_pcb->pcb_flags |= PCB_NPXINITDONE;
945}
946
947static void
948fpusave(addr)
949	union savefpu *addr;
950{
951
952#ifdef CPU_ENABLE_SSE
953	if (cpu_fxsr)
954		fxsave(addr);
955	else
956#endif
957		fnsave(addr);
958}
959
960static void
961fpurstor(addr)
962	union savefpu *addr;
963{
964
965#ifdef CPU_ENABLE_SSE
966	if (cpu_fxsr)
967		fxrstor(addr);
968	else
969#endif
970		frstor(addr);
971}
972
973#ifdef I586_CPU_XXX
974static long
975timezero(funcname, func)
976	const char *funcname;
977	void (*func)(void *buf, size_t len);
978
979{
980	void *buf;
981#define	BUFSIZE		1048576
982	long usec;
983	struct timeval finish, start;
984
985	buf = malloc(BUFSIZE, M_TEMP, M_NOWAIT);
986	if (buf == NULL)
987		return (BUFSIZE);
988	microtime(&start);
989	(*func)(buf, BUFSIZE);
990	microtime(&finish);
991	usec = 1000000 * (finish.tv_sec - start.tv_sec) +
992	    finish.tv_usec - start.tv_usec;
993	if (usec <= 0)
994		usec = 1;
995	if (bootverbose)
996		printf("%s bandwidth = %u kBps\n", funcname,
997		    (u_int32_t)(((BUFSIZE >> 10) * 1000000) / usec));
998	free(buf, M_TEMP);
999	return (usec);
1000}
1001#endif /* I586_CPU */
1002
1003static device_method_t npx_methods[] = {
1004	/* Device interface */
1005	DEVMETHOD(device_identify,	npx_identify),
1006	DEVMETHOD(device_probe,		npx_probe),
1007	DEVMETHOD(device_attach,	npx_attach),
1008	DEVMETHOD(device_detach,	bus_generic_detach),
1009	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1010	DEVMETHOD(device_suspend,	bus_generic_suspend),
1011	DEVMETHOD(device_resume,	bus_generic_resume),
1012
1013	{ 0, 0 }
1014};
1015
1016static driver_t npx_driver = {
1017	"npx",
1018	npx_methods,
1019	1,			/* no softc */
1020};
1021
1022static devclass_t npx_devclass;
1023
1024/*
1025 * We prefer to attach to the root nexus so that the usual case (exception 16)
1026 * doesn't describe the processor as being `on isa'.
1027 */
1028DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
1029
1030#ifdef DEV_ISA
1031/*
1032 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1033 */
1034static struct isa_pnp_id npxisa_ids[] = {
1035	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1036	{ 0 }
1037};
1038
1039static int
1040npxisa_probe(device_t dev)
1041{
1042	int result;
1043	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1044		device_quiet(dev);
1045	}
1046	return(result);
1047}
1048
1049static int
1050npxisa_attach(device_t dev)
1051{
1052	return (0);
1053}
1054
1055static device_method_t npxisa_methods[] = {
1056	/* Device interface */
1057	DEVMETHOD(device_probe,		npxisa_probe),
1058	DEVMETHOD(device_attach,	npxisa_attach),
1059	DEVMETHOD(device_detach,	bus_generic_detach),
1060	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1061	DEVMETHOD(device_suspend,	bus_generic_suspend),
1062	DEVMETHOD(device_resume,	bus_generic_resume),
1063
1064	{ 0, 0 }
1065};
1066
1067static driver_t npxisa_driver = {
1068	"npxisa",
1069	npxisa_methods,
1070	1,			/* no softc */
1071};
1072
1073static devclass_t npxisa_devclass;
1074
1075DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1076#ifndef PC98
1077DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1078#endif
1079#endif /* DEV_ISA */
1080