npx.c revision 13225
198184Sgordon/*-
298184Sgordon * Copyright (c) 1990 William Jolitz.
398184Sgordon * Copyright (c) 1991 The Regents of the University of California.
498184Sgordon * All rights reserved.
598184Sgordon *
698184Sgordon * Redistribution and use in source and binary forms, with or without
7197139Shrs * modification, are permitted provided that the following conditions
8225684Shrs * are met:
9226786Smm * 1. Redistributions of source code must retain the above copyright
1098184Sgordon *    notice, this list of conditions and the following disclaimer.
11104985Sschweikh * 2. Redistributions in binary form must reproduce the above copyright
1298184Sgordon *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by the University of
17 *	California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
35 *	$Id: npx.c,v 1.27 1995/12/19 14:30:50 davidg Exp $
36 */
37
38#include "npx.h"
39#if NNPX > 0
40
41#include "math_emulate.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/conf.h>
48#include <sys/file.h>
49#include <sys/proc.h>
50#include <sys/devconf.h>
51#include <sys/ioctl.h>
52#include <sys/syslog.h>
53#include <sys/signalvar.h>
54
55#include <machine/cpu.h>
56#include <machine/pcb.h>
57#include <machine/trap.h>
58#include <machine/clock.h>
59#include <machine/specialreg.h>
60
61#include <i386/isa/icu.h>
62#include <i386/isa/isa_device.h>
63#include <i386/isa/isa.h>
64
65/*
66 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
67 */
68
69#ifdef	__GNUC__
70
71#define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
72#define	fnclex()		__asm("fnclex")
73#define	fninit()		__asm("fninit")
74#define	fnop()			__asm("fnop")
75#define	fnsave(addr)		__asm("fnsave %0" : "=m" (*(addr)))
76#define	fnstcw(addr)		__asm("fnstcw %0" : "=m" (*(addr)))
77#define	fnstsw(addr)		__asm("fnstsw %0" : "=m" (*(addr)))
78#define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
79#define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
80#define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
81				      : : "n" (CR0_TS) : "ax")
82#define	stop_emulating()	__asm("clts")
83
84#else	/* not __GNUC__ */
85
86void	fldcw		__P((caddr_t addr));
87void	fnclex		__P((void));
88void	fninit		__P((void));
89void	fnop		__P((void));
90void	fnsave		__P((caddr_t addr));
91void	fnstcw		__P((caddr_t addr));
92void	fnstsw		__P((caddr_t addr));
93void	fp_divide_by_0	__P((void));
94void	frstor		__P((caddr_t addr));
95void	start_emulating	__P((void));
96void	stop_emulating	__P((void));
97
98#endif	/* __GNUC__ */
99
100typedef u_char bool_t;
101
102static	int	npxattach	__P((struct isa_device *dvp));
103static	int	npxprobe	__P((struct isa_device *dvp));
104static	int	npxprobe1	__P((struct isa_device *dvp));
105
106struct	isa_driver npxdriver = {
107	npxprobe, npxattach, "npx",
108};
109
110int	hw_float;		/* XXX currently just alias for npx_exists */
111
112SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
113	CTLFLAG_RD, &hw_float, 0,
114	"Floatingpoint instructions executed in hardware");
115
116static u_int	npx0_imask = SWI_CLOCK_MASK;
117struct proc	*npxproc;
118
119static	bool_t			npx_ex16;
120static	bool_t			npx_exists;
121static	struct gate_descriptor	npx_idt_probeintr;
122static	int			npx_intrno;
123static	volatile u_int		npx_intrs_while_probing;
124static	bool_t			npx_irq13;
125static	volatile u_int		npx_traps_while_probing;
126
127/*
128 * Special interrupt handlers.  Someday intr0-intr15 will be used to count
129 * interrupts.  We'll still need a special exception 16 handler.  The busy
130 * latch stuff in probeintr() can be moved to npxprobe().
131 */
132inthand_t probeintr;
133asm
134("
135	.text
136_probeintr:
137	ss
138	incl	_npx_intrs_while_probing
139	pushl	%eax
140	movb	$0x20,%al	# EOI (asm in strings loses cpp features)
141	outb	%al,$0xa0	# IO_ICU2
142	outb	%al,$0x20	# IO_ICU1
143	movb	$0,%al
144	outb	%al,$0xf0	# clear BUSY# latch
145	popl	%eax
146	iret
147");
148
149inthand_t probetrap;
150asm
151("
152	.text
153_probetrap:
154	ss
155	incl	_npx_traps_while_probing
156	fnclex
157	iret
158");
159
160static struct kern_devconf kdc_npx[NNPX] = { {
161	0, 0, 0,		/* filled in by dev_attach */
162	"npx", 0, { MDDT_ISA, 0 },
163	isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
164	&kdc_isa0,		/* parent */
165	0,			/* parentdata */
166	DC_UNCONFIGURED,	/* state */
167	"Floating-point unit",
168	DC_CLS_MISC		/* class */
169} };
170
171static inline void
172npx_registerdev(struct isa_device *id)
173{
174	int	unit;
175
176	unit = id->id_unit;
177	if (unit != 0)
178		kdc_npx[unit] = kdc_npx[0];
179	kdc_npx[unit].kdc_unit = unit;
180	kdc_npx[unit].kdc_isa = id;
181	dev_attach(&kdc_npx[unit]);
182}
183
184/*
185 * Probe routine.  Initialize cr0 to give correct behaviour for [f]wait
186 * whether the device exists or not (XXX should be elsewhere).  Set flags
187 * to tell npxattach() what to do.  Modify device struct if npx doesn't
188 * need to use interrupts.  Return 1 if device exists.
189 */
190static int
191npxprobe(dvp)
192	struct isa_device *dvp;
193{
194	int	result;
195	u_long	save_eflags;
196	u_char	save_icu1_mask;
197	u_char	save_icu2_mask;
198	struct	gate_descriptor save_idt_npxintr;
199	struct	gate_descriptor save_idt_npxtrap;
200	/*
201	 * This routine is now just a wrapper for npxprobe1(), to install
202	 * special npx interrupt and trap handlers, to enable npx interrupts
203	 * and to disable other interrupts.  Someday isa_configure() will
204	 * install suitable handlers and run with interrupts enabled so we
205	 * won't need to do so much here.
206	 */
207	npx_registerdev(dvp);
208	npx_intrno = NRSVIDT + ffs(dvp->id_irq) - 1;
209	save_eflags = read_eflags();
210	disable_intr();
211	save_icu1_mask = inb(IO_ICU1 + 1);
212	save_icu2_mask = inb(IO_ICU2 + 1);
213	save_idt_npxintr = idt[npx_intrno];
214	save_idt_npxtrap = idt[16];
215	outb(IO_ICU1 + 1, ~(IRQ_SLAVE | dvp->id_irq));
216	outb(IO_ICU2 + 1, ~(dvp->id_irq >> 8));
217	setidt(16, probetrap, SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
218	setidt(npx_intrno, probeintr, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
219	npx_idt_probeintr = idt[npx_intrno];
220	enable_intr();
221	result = npxprobe1(dvp);
222	disable_intr();
223	outb(IO_ICU1 + 1, save_icu1_mask);
224	outb(IO_ICU2 + 1, save_icu2_mask);
225	idt[npx_intrno] = save_idt_npxintr;
226	idt[16] = save_idt_npxtrap;
227	write_eflags(save_eflags);
228	return (result);
229}
230
231static int
232npxprobe1(dvp)
233	struct isa_device *dvp;
234{
235	u_short control;
236	u_short status;
237
238	/*
239	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
240	 * it after a warm boot.
241	 */
242	outb(0xf1, 0);		/* full reset on some systems, NOP on others */
243	outb(0xf0, 0);		/* clear BUSY# latch */
244	/*
245	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
246	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
247	 * bit to control the trap, because setting the CR0_EM bit does
248	 * not cause WAIT instructions to trap.  It's important to trap
249	 * WAIT instructions - otherwise the "wait" variants of no-wait
250	 * control instructions would degenerate to the "no-wait" variants
251	 * after FP context switches but work correctly otherwise.  It's
252	 * particularly important to trap WAITs when there is no NPX -
253	 * otherwise the "wait" variants would always degenerate.
254	 *
255	 * Try setting CR0_NE to get correct error reporting on 486DX's.
256	 * Setting it should fail or do nothing on lesser processors.
257	 */
258	load_cr0(rcr0() | CR0_MP | CR0_NE);
259	/*
260	 * But don't trap while we're probing.
261	 */
262	stop_emulating();
263	/*
264	 * Finish resetting the coprocessor, if any.  If there is an error
265	 * pending, then we may get a bogus IRQ13, but probeintr() will handle
266	 * it OK.  Bogus halts have never been observed, but we enabled
267	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
268	 */
269	fninit();
270	/*
271	 * Don't use fwait here because it might hang.
272	 * Don't use fnop here because it usually hangs if there is no FPU.
273	 */
274	DELAY(1000);		/* wait for any IRQ13 */
275#ifdef DIAGNOSTIC
276	if (npx_intrs_while_probing != 0)
277		printf("fninit caused %u bogus npx interrupt(s)\n",
278		       npx_intrs_while_probing);
279	if (npx_traps_while_probing != 0)
280		printf("fninit caused %u bogus npx trap(s)\n",
281		       npx_traps_while_probing);
282#endif
283	/*
284	 * Check for a status of mostly zero.
285	 */
286	status = 0x5a5a;
287	fnstsw(&status);
288	if ((status & 0xb8ff) == 0) {
289		/*
290		 * Good, now check for a proper control word.
291		 */
292		control = 0x5a5a;
293		fnstcw(&control);
294		if ((control & 0x1f3f) == 0x033f) {
295			hw_float = npx_exists = 1;
296			/*
297			 * We have an npx, now divide by 0 to see if exception
298			 * 16 works.
299			 */
300			control &= ~(1 << 2);	/* enable divide by 0 trap */
301			fldcw(&control);
302			npx_traps_while_probing = npx_intrs_while_probing = 0;
303			fp_divide_by_0();
304			if (npx_traps_while_probing != 0) {
305				/*
306				 * Good, exception 16 works.
307				 */
308				npx_ex16 = 1;
309				dvp->id_irq = 0;	/* zap the interrupt */
310				/*
311				 * special return value to flag that we do not
312				 * actually use any I/O registers
313				 */
314				return (-1);
315			}
316			if (npx_intrs_while_probing != 0) {
317				/*
318				 * Bad, we are stuck with IRQ13.
319				 */
320				npx_irq13 = 1;
321				/*
322				 * npxattach would be too late to set npx0_imask.
323				 */
324				npx0_imask |= dvp->id_irq;
325				return (IO_NPXSIZE);
326			}
327			/*
328			 * Worse, even IRQ13 is broken.  Use emulator.
329			 */
330		}
331	}
332	/*
333	 * Probe failed, but we want to get to npxattach to initialize the
334	 * emulator and say that it has been installed.  XXX handle devices
335	 * that aren't really devices better.
336	 */
337	dvp->id_irq = 0;
338	/*
339	 * special return value to flag that we do not
340	 * actually use any I/O registers
341	 */
342	return (-1);
343}
344
345/*
346 * Attach routine - announce which it is, and wire into system
347 */
348int
349npxattach(dvp)
350	struct isa_device *dvp;
351{
352	if (npx_ex16)
353		printf("npx%d: INT 16 interface\n", dvp->id_unit);
354	else if (npx_irq13)
355		;		/* higher level has printed "irq 13" */
356#if defined(MATH_EMULATE) || defined(GPL_MATH_EMULATE)
357	else if (npx_exists) {
358		printf("npx%d: error reporting broken; using 387 emulator\n",
359			dvp->id_unit);
360		npx_exists = 0;
361	} else
362		printf("npx%d: 387 emulator\n",dvp->id_unit);
363#else
364	else
365		printf("npx%d: no 387 emulator in kernel!\n", dvp->id_unit);
366#endif
367	npxinit(__INITIAL_NPXCW__);
368	if (npx_exists) {
369		kdc_npx[dvp->id_unit].kdc_state = DC_BUSY;
370	}
371	return (1);		/* XXX unused */
372}
373
374/*
375 * Initialize floating point unit.
376 */
377void
378npxinit(control)
379	u_short control;
380{
381	struct save87 dummy;
382
383	if (!npx_exists)
384		return;
385	/*
386	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
387	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
388	 * the fpu and sets npxproc = NULL as important side effects.
389	 */
390	npxsave(&dummy);
391	stop_emulating();
392	fldcw(&control);
393	if (curpcb != NULL)
394		fnsave(&curpcb->pcb_savefpu);
395	start_emulating();
396}
397
398/*
399 * Free coprocessor (if we have it).
400 */
401void
402npxexit(p)
403	struct proc *p;
404{
405
406	if (p == npxproc)
407		npxsave(&curpcb->pcb_savefpu);
408	if (npx_exists) {
409		u_int	masked_exceptions;
410
411		masked_exceptions = curpcb->pcb_savefpu.sv_env.en_cw
412				    & curpcb->pcb_savefpu.sv_env.en_sw & 0x7f;
413		/*
414		 * Overflow, divde by 0, and invalid operand would have
415		 * caused a trap in 1.1.5.
416		 */
417		if (masked_exceptions & 0x0d)
418			log(LOG_ERR,
419	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
420			    p->p_pid, p->p_comm, masked_exceptions);
421	}
422}
423
424/*
425 * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
426 *
427 * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
428 * depend on longjmp() restoring a usable state.  Restoring the state
429 * or examining it might fail if we didn't clear exceptions.
430 *
431 * XXX there is no standard way to tell SIGFPE handlers about the error
432 * state.  The old interface:
433 *
434 *	void handler(int sig, int code, struct sigcontext *scp);
435 *
436 * is broken because it is non-ANSI and because the FP state is not in
437 * struct sigcontext.
438 *
439 * XXX the FP state is not preserved across signal handlers.  So signal
440 * handlers cannot afford to do FP unless they preserve the state or
441 * longjmp() out.  Both preserving the state and longjmp()ing may be
442 * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
443 * solution for signals other than SIGFPE.
444 */
445void
446npxintr(unit)
447	int unit;
448{
449	int code;
450	struct intrframe *frame;
451
452	if (npxproc == NULL || !npx_exists) {
453		printf("npxintr: npxproc = %p, curproc = %p, npx_exists = %d\n",
454		       npxproc, curproc, npx_exists);
455		panic("npxintr from nowhere");
456	}
457	if (npxproc != curproc) {
458		printf("npxintr: npxproc = %p, curproc = %p, npx_exists = %d\n",
459		       npxproc, curproc, npx_exists);
460		panic("npxintr from non-current process");
461	}
462
463	outb(0xf0, 0);
464	fnstsw(&curpcb->pcb_savefpu.sv_ex_sw);
465	fnclex();
466	fnop();
467
468	/*
469	 * Pass exception to process.
470	 */
471	frame = (struct intrframe *)&unit;	/* XXX */
472	if (ISPL(frame->if_cs) == SEL_UPL) {
473		/*
474		 * Interrupt is essentially a trap, so we can afford to call
475		 * the SIGFPE handler (if any) as soon as the interrupt
476		 * returns.
477		 *
478		 * XXX little or nothing is gained from this, and plenty is
479		 * lost - the interrupt frame has to contain the trap frame
480		 * (this is otherwise only necessary for the rescheduling trap
481		 * in doreti, and the frame for that could easily be set up
482		 * just before it is used).
483		 */
484		curproc->p_md.md_regs = &frame->if_es;
485#ifdef notyet
486		/*
487		 * Encode the appropriate code for detailed information on
488		 * this exception.
489		 */
490		code = XXX_ENCODE(curpcb->pcb_savefpu.sv_ex_sw);
491#else
492		code = 0;	/* XXX */
493#endif
494		trapsignal(curproc, SIGFPE, code);
495	} else {
496		/*
497		 * Nested interrupt.  These losers occur when:
498		 *	o an IRQ13 is bogusly generated at a bogus time, e.g.:
499		 *		o immediately after an fnsave or frstor of an
500		 *		  error state.
501		 *		o a couple of 386 instructions after
502		 *		  "fstpl _memvar" causes a stack overflow.
503		 *	  These are especially nasty when combined with a
504		 *	  trace trap.
505		 *	o an IRQ13 occurs at the same time as another higher-
506		 *	  priority interrupt.
507		 *
508		 * Treat them like a true async interrupt.
509		 */
510		psignal(curproc, SIGFPE);
511	}
512}
513
514/*
515 * Implement device not available (DNA) exception
516 *
517 * It would be better to switch FP context here (if curproc != npxproc)
518 * and not necessarily for every context switch, but it is too hard to
519 * access foreign pcb's.
520 */
521int
522npxdna()
523{
524	if (!npx_exists)
525		return (0);
526	if (npxproc != NULL) {
527		printf("npxdna: npxproc = %p, curproc = %p\n",
528		       npxproc, curproc);
529		panic("npxdna");
530	}
531	stop_emulating();
532	/*
533	 * Record new context early in case frstor causes an IRQ13.
534	 */
535	npxproc = curproc;
536	curpcb->pcb_savefpu.sv_ex_sw = 0;
537	/*
538	 * The following frstor may cause an IRQ13 when the state being
539	 * restored has a pending error.  The error will appear to have been
540	 * triggered by the current (npx) user instruction even when that
541	 * instruction is a no-wait instruction that should not trigger an
542	 * error (e.g., fnclex).  On at least one 486 system all of the
543	 * no-wait instructions are broken the same as frstor, so our
544	 * treatment does not amplify the breakage.  On at least one
545	 * 386/Cyrix 387 system, fnclex works correctly while frstor and
546	 * fnsave are broken, so our treatment breaks fnclex if it is the
547	 * first FPU instruction after a context switch.
548	 */
549	frstor(&curpcb->pcb_savefpu);
550
551	return (1);
552}
553
554/*
555 * Wrapper for fnsave instruction to handle h/w bugs.  If there is an error
556 * pending, then fnsave generates a bogus IRQ13 on some systems.  Force
557 * any IRQ13 to be handled immediately, and then ignore it.  This routine is
558 * often called at splhigh so it must not use many system services.  In
559 * particular, it's much easier to install a special handler than to
560 * guarantee that it's safe to use npxintr() and its supporting code.
561 */
562void
563npxsave(addr)
564	struct save87 *addr;
565{
566	u_char	icu1_mask;
567	u_char	icu2_mask;
568	u_char	old_icu1_mask;
569	u_char	old_icu2_mask;
570	struct gate_descriptor	save_idt_npxintr;
571
572	disable_intr();
573	old_icu1_mask = inb(IO_ICU1 + 1);
574	old_icu2_mask = inb(IO_ICU2 + 1);
575	save_idt_npxintr = idt[npx_intrno];
576	outb(IO_ICU1 + 1, old_icu1_mask & ~(IRQ_SLAVE | npx0_imask));
577	outb(IO_ICU2 + 1, old_icu2_mask & ~(npx0_imask >> 8));
578	idt[npx_intrno] = npx_idt_probeintr;
579	enable_intr();
580	stop_emulating();
581	fnsave(addr);
582	fnop();
583	start_emulating();
584	npxproc = NULL;
585	disable_intr();
586	icu1_mask = inb(IO_ICU1 + 1);	/* masks may have changed */
587	icu2_mask = inb(IO_ICU2 + 1);
588	outb(IO_ICU1 + 1,
589	     (icu1_mask & ~npx0_imask) | (old_icu1_mask & npx0_imask));
590	outb(IO_ICU2 + 1,
591	     (icu2_mask & ~(npx0_imask >> 8))
592	     | (old_icu2_mask & (npx0_imask >> 8)));
593	idt[npx_intrno] = save_idt_npxintr;
594	enable_intr();		/* back to usual state */
595}
596
597#endif /* NNPX > 0 */
598