pmap.c revision 314210
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/11/sys/i386/i386/pmap.c 314210 2017-02-24 16:02:01Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/smp.h>
122
123#include <vm/vm.h>
124#include <vm/vm_param.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_page.h>
127#include <vm/vm_map.h>
128#include <vm/vm_object.h>
129#include <vm/vm_extern.h>
130#include <vm/vm_pageout.h>
131#include <vm/vm_pager.h>
132#include <vm/vm_phys.h>
133#include <vm/vm_radix.h>
134#include <vm/vm_reserv.h>
135#include <vm/uma.h>
136
137#ifdef DEV_APIC
138#include <sys/bus.h>
139#include <machine/intr_machdep.h>
140#include <x86/apicvar.h>
141#endif
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#ifndef PMAP_SHPGPERPROC
156#define PMAP_SHPGPERPROC 200
157#endif
158
159#if !defined(DIAGNOSTIC)
160#ifdef __GNUC_GNU_INLINE__
161#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
162#else
163#define PMAP_INLINE	extern inline
164#endif
165#else
166#define PMAP_INLINE
167#endif
168
169#ifdef PV_STATS
170#define PV_STAT(x)	do { x ; } while (0)
171#else
172#define PV_STAT(x)	do { } while (0)
173#endif
174
175#define	pa_index(pa)	((pa) >> PDRSHIFT)
176#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
177
178/*
179 * Get PDEs and PTEs for user/kernel address space
180 */
181#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
182#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
183
184#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
185#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
186#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
187#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
188#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
189
190#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
191    atomic_clear_int((u_int *)(pte), PG_W))
192#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
193
194struct pmap kernel_pmap_store;
195LIST_HEAD(pmaplist, pmap);
196static struct pmaplist allpmaps;
197static struct mtx allpmaps_lock;
198
199vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
200vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
201int pgeflag = 0;		/* PG_G or-in */
202int pseflag = 0;		/* PG_PS or-in */
203
204static int nkpt = NKPT;
205vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
206extern u_int32_t KERNend;
207extern u_int32_t KPTphys;
208
209#if defined(PAE) || defined(PAE_TABLES)
210pt_entry_t pg_nx;
211static uma_zone_t pdptzone;
212#endif
213
214static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
215
216static int pat_works = 1;
217SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
218    "Is page attribute table fully functional?");
219
220static int pg_ps_enabled = 1;
221SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
222    &pg_ps_enabled, 0, "Are large page mappings enabled?");
223
224#define	PAT_INDEX_SIZE	8
225static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
226
227/*
228 * pmap_mapdev support pre initialization (i.e. console)
229 */
230#define	PMAP_PREINIT_MAPPING_COUNT	8
231static struct pmap_preinit_mapping {
232	vm_paddr_t	pa;
233	vm_offset_t	va;
234	vm_size_t	sz;
235	int		mode;
236} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
237static int pmap_initialized;
238
239static struct rwlock_padalign pvh_global_lock;
240
241/*
242 * Data for the pv entry allocation mechanism
243 */
244static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
245static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
246static struct md_page *pv_table;
247static int shpgperproc = PMAP_SHPGPERPROC;
248
249struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
250int pv_maxchunks;			/* How many chunks we have KVA for */
251vm_offset_t pv_vafree;			/* freelist stored in the PTE */
252
253/*
254 * All those kernel PT submaps that BSD is so fond of
255 */
256pt_entry_t *CMAP3;
257static pd_entry_t *KPTD;
258caddr_t ptvmmap = 0;
259caddr_t CADDR3;
260struct msgbuf *msgbufp = NULL;
261
262/*
263 * Crashdump maps.
264 */
265static caddr_t crashdumpmap;
266
267static pt_entry_t *PMAP1 = NULL, *PMAP2;
268static pt_entry_t *PADDR1 = NULL, *PADDR2;
269#ifdef SMP
270static int PMAP1cpu;
271static int PMAP1changedcpu;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
273	   &PMAP1changedcpu, 0,
274	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
275#endif
276static int PMAP1changed;
277SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
278	   &PMAP1changed, 0,
279	   "Number of times pmap_pte_quick changed PMAP1");
280static int PMAP1unchanged;
281SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
282	   &PMAP1unchanged, 0,
283	   "Number of times pmap_pte_quick didn't change PMAP1");
284static struct mtx PMAP2mutex;
285
286static void	free_pv_chunk(struct pv_chunk *pc);
287static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
288static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
289static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
290static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
291static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
292static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
293static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
294		    vm_offset_t va);
295static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
296
297static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
298static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
299    vm_prot_t prot);
300static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
301    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
302static void pmap_flush_page(vm_page_t m);
303static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
304static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
305static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
306static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
307static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
308static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
309static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
310static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
311static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
312static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
313    vm_prot_t prot);
314static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
315static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
316    struct spglist *free);
317static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
318    struct spglist *free);
319static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
320static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
321    struct spglist *free);
322static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
323					vm_offset_t va);
324static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
325static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
326    vm_page_t m);
327static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
328    pd_entry_t newpde);
329static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
330
331static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
332
333static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
334static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
335static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
336static void pmap_pte_release(pt_entry_t *pte);
337static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
338#if defined(PAE) || defined(PAE_TABLES)
339static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
340    int wait);
341#endif
342static void pmap_set_pg(void);
343
344static __inline void pagezero(void *page);
345
346CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
347CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
348
349/*
350 * If you get an error here, then you set KVA_PAGES wrong! See the
351 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
352 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
353 */
354CTASSERT(KERNBASE % (1 << 24) == 0);
355
356/*
357 *	Bootstrap the system enough to run with virtual memory.
358 *
359 *	On the i386 this is called after mapping has already been enabled
360 *	and just syncs the pmap module with what has already been done.
361 *	[We can't call it easily with mapping off since the kernel is not
362 *	mapped with PA == VA, hence we would have to relocate every address
363 *	from the linked base (virtual) address "KERNBASE" to the actual
364 *	(physical) address starting relative to 0]
365 */
366void
367pmap_bootstrap(vm_paddr_t firstaddr)
368{
369	vm_offset_t va;
370	pt_entry_t *pte, *unused;
371	struct pcpu *pc;
372	int i;
373
374	/*
375	 * Add a physical memory segment (vm_phys_seg) corresponding to the
376	 * preallocated kernel page table pages so that vm_page structures
377	 * representing these pages will be created.  The vm_page structures
378	 * are required for promotion of the corresponding kernel virtual
379	 * addresses to superpage mappings.
380	 */
381	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
382
383	/*
384	 * Initialize the first available kernel virtual address.  However,
385	 * using "firstaddr" may waste a few pages of the kernel virtual
386	 * address space, because locore may not have mapped every physical
387	 * page that it allocated.  Preferably, locore would provide a first
388	 * unused virtual address in addition to "firstaddr".
389	 */
390	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
391
392	virtual_end = VM_MAX_KERNEL_ADDRESS;
393
394	/*
395	 * Initialize the kernel pmap (which is statically allocated).
396	 */
397	PMAP_LOCK_INIT(kernel_pmap);
398	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
399#if defined(PAE) || defined(PAE_TABLES)
400	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
401#endif
402	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
403	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
404
405 	/*
406	 * Initialize the global pv list lock.
407	 */
408	rw_init(&pvh_global_lock, "pmap pv global");
409
410	LIST_INIT(&allpmaps);
411
412	/*
413	 * Request a spin mutex so that changes to allpmaps cannot be
414	 * preempted by smp_rendezvous_cpus().  Otherwise,
415	 * pmap_update_pde_kernel() could access allpmaps while it is
416	 * being changed.
417	 */
418	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
419	mtx_lock_spin(&allpmaps_lock);
420	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
421	mtx_unlock_spin(&allpmaps_lock);
422
423	/*
424	 * Reserve some special page table entries/VA space for temporary
425	 * mapping of pages.
426	 */
427#define	SYSMAP(c, p, v, n)	\
428	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
429
430	va = virtual_avail;
431	pte = vtopte(va);
432
433
434	/*
435	 * Initialize temporary map objects on the current CPU for use
436	 * during early boot.
437	 * CMAP1/CMAP2 are used for zeroing and copying pages.
438	 * CMAP3 is used for the idle process page zeroing.
439	 */
440	pc = get_pcpu();
441	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
442	SYSMAP(caddr_t, pc->pc_cmap_pte1, pc->pc_cmap_addr1, 1)
443	SYSMAP(caddr_t, pc->pc_cmap_pte2, pc->pc_cmap_addr2, 1)
444	SYSMAP(vm_offset_t, pte, pc->pc_qmap_addr, 1)
445
446	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
447
448	/*
449	 * Crashdump maps.
450	 */
451	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
452
453	/*
454	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
455	 */
456	SYSMAP(caddr_t, unused, ptvmmap, 1)
457
458	/*
459	 * msgbufp is used to map the system message buffer.
460	 */
461	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
462
463	/*
464	 * KPTmap is used by pmap_kextract().
465	 *
466	 * KPTmap is first initialized by locore.  However, that initial
467	 * KPTmap can only support NKPT page table pages.  Here, a larger
468	 * KPTmap is created that can support KVA_PAGES page table pages.
469	 */
470	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
471
472	for (i = 0; i < NKPT; i++)
473		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
474
475	/*
476	 * Adjust the start of the KPTD and KPTmap so that the implementation
477	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
478	 */
479	KPTD -= KPTDI;
480	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
481
482	/*
483	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
484	 * respectively.
485	 */
486	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
487	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
488
489	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
490
491	virtual_avail = va;
492
493	/*
494	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
495	 * physical memory region that is used by the ACPI wakeup code.  This
496	 * mapping must not have PG_G set.
497	 */
498#ifdef XBOX
499	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
500	 * an early stadium, we cannot yet neatly map video memory ... :-(
501	 * Better fixes are very welcome! */
502	if (!arch_i386_is_xbox)
503#endif
504	for (i = 1; i < NKPT; i++)
505		PTD[i] = 0;
506
507	/*
508	 * Initialize the PAT MSR if present.
509	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
510	 * side-effect, invalidates stale PG_G TLB entries that might
511	 * have been created in our pre-boot environment.  We assume
512	 * that PAT support implies PGE and in reverse, PGE presence
513	 * comes with PAT.  Both features were added for Pentium Pro.
514	 */
515	pmap_init_pat();
516
517	/* Turn on PG_G on kernel page(s) */
518	pmap_set_pg();
519}
520
521static void
522pmap_init_reserved_pages(void)
523{
524	struct pcpu *pc;
525	vm_offset_t pages;
526	int i;
527
528	CPU_FOREACH(i) {
529		pc = pcpu_find(i);
530		/*
531		 * Skip if the mapping has already been initialized,
532		 * i.e. this is the BSP.
533		 */
534		if (pc->pc_cmap_addr1 != 0)
535			continue;
536		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
537		pages = kva_alloc(PAGE_SIZE * 3);
538		if (pages == 0)
539			panic("%s: unable to allocate KVA", __func__);
540		pc->pc_cmap_pte1 = vtopte(pages);
541		pc->pc_cmap_pte2 = vtopte(pages + PAGE_SIZE);
542		pc->pc_cmap_addr1 = (caddr_t)pages;
543		pc->pc_cmap_addr2 = (caddr_t)(pages + PAGE_SIZE);
544		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
545	}
546}
547
548SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
549
550/*
551 * Setup the PAT MSR.
552 */
553void
554pmap_init_pat(void)
555{
556	int pat_table[PAT_INDEX_SIZE];
557	uint64_t pat_msr;
558	u_long cr0, cr4;
559	int i;
560
561	/* Set default PAT index table. */
562	for (i = 0; i < PAT_INDEX_SIZE; i++)
563		pat_table[i] = -1;
564	pat_table[PAT_WRITE_BACK] = 0;
565	pat_table[PAT_WRITE_THROUGH] = 1;
566	pat_table[PAT_UNCACHEABLE] = 3;
567	pat_table[PAT_WRITE_COMBINING] = 3;
568	pat_table[PAT_WRITE_PROTECTED] = 3;
569	pat_table[PAT_UNCACHED] = 3;
570
571	/*
572	 * Bail if this CPU doesn't implement PAT.
573	 * We assume that PAT support implies PGE.
574	 */
575	if ((cpu_feature & CPUID_PAT) == 0) {
576		for (i = 0; i < PAT_INDEX_SIZE; i++)
577			pat_index[i] = pat_table[i];
578		pat_works = 0;
579		return;
580	}
581
582	/*
583	 * Due to some Intel errata, we can only safely use the lower 4
584	 * PAT entries.
585	 *
586	 *   Intel Pentium III Processor Specification Update
587	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
588	 * or Mode C Paging)
589	 *
590	 *   Intel Pentium IV  Processor Specification Update
591	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
592	 */
593	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
594	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
595		pat_works = 0;
596
597	/* Initialize default PAT entries. */
598	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
599	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
600	    PAT_VALUE(2, PAT_UNCACHED) |
601	    PAT_VALUE(3, PAT_UNCACHEABLE) |
602	    PAT_VALUE(4, PAT_WRITE_BACK) |
603	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
604	    PAT_VALUE(6, PAT_UNCACHED) |
605	    PAT_VALUE(7, PAT_UNCACHEABLE);
606
607	if (pat_works) {
608		/*
609		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
610		 * Program 5 and 6 as WP and WC.
611		 * Leave 4 and 7 as WB and UC.
612		 */
613		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
614		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
615		    PAT_VALUE(6, PAT_WRITE_COMBINING);
616		pat_table[PAT_UNCACHED] = 2;
617		pat_table[PAT_WRITE_PROTECTED] = 5;
618		pat_table[PAT_WRITE_COMBINING] = 6;
619	} else {
620		/*
621		 * Just replace PAT Index 2 with WC instead of UC-.
622		 */
623		pat_msr &= ~PAT_MASK(2);
624		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
625		pat_table[PAT_WRITE_COMBINING] = 2;
626	}
627
628	/* Disable PGE. */
629	cr4 = rcr4();
630	load_cr4(cr4 & ~CR4_PGE);
631
632	/* Disable caches (CD = 1, NW = 0). */
633	cr0 = rcr0();
634	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
635
636	/* Flushes caches and TLBs. */
637	wbinvd();
638	invltlb();
639
640	/* Update PAT and index table. */
641	wrmsr(MSR_PAT, pat_msr);
642	for (i = 0; i < PAT_INDEX_SIZE; i++)
643		pat_index[i] = pat_table[i];
644
645	/* Flush caches and TLBs again. */
646	wbinvd();
647	invltlb();
648
649	/* Restore caches and PGE. */
650	load_cr0(cr0);
651	load_cr4(cr4);
652}
653
654/*
655 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
656 */
657static void
658pmap_set_pg(void)
659{
660	pt_entry_t *pte;
661	vm_offset_t va, endva;
662
663	if (pgeflag == 0)
664		return;
665
666	endva = KERNBASE + KERNend;
667
668	if (pseflag) {
669		va = KERNBASE + KERNLOAD;
670		while (va  < endva) {
671			pdir_pde(PTD, va) |= pgeflag;
672			invltlb();	/* Flush non-PG_G entries. */
673			va += NBPDR;
674		}
675	} else {
676		va = (vm_offset_t)btext;
677		while (va < endva) {
678			pte = vtopte(va);
679			if (*pte)
680				*pte |= pgeflag;
681			invltlb();	/* Flush non-PG_G entries. */
682			va += PAGE_SIZE;
683		}
684	}
685}
686
687/*
688 * Initialize a vm_page's machine-dependent fields.
689 */
690void
691pmap_page_init(vm_page_t m)
692{
693
694	TAILQ_INIT(&m->md.pv_list);
695	m->md.pat_mode = PAT_WRITE_BACK;
696}
697
698#if defined(PAE) || defined(PAE_TABLES)
699static void *
700pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
701{
702
703	/* Inform UMA that this allocator uses kernel_map/object. */
704	*flags = UMA_SLAB_KERNEL;
705	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
706	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
707}
708#endif
709
710/*
711 * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
712 * Requirements:
713 *  - Must deal with pages in order to ensure that none of the PG_* bits
714 *    are ever set, PG_V in particular.
715 *  - Assumes we can write to ptes without pte_store() atomic ops, even
716 *    on PAE systems.  This should be ok.
717 *  - Assumes nothing will ever test these addresses for 0 to indicate
718 *    no mapping instead of correctly checking PG_V.
719 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
720 * Because PG_V is never set, there can be no mappings to invalidate.
721 */
722static vm_offset_t
723pmap_ptelist_alloc(vm_offset_t *head)
724{
725	pt_entry_t *pte;
726	vm_offset_t va;
727
728	va = *head;
729	if (va == 0)
730		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
731	pte = vtopte(va);
732	*head = *pte;
733	if (*head & PG_V)
734		panic("pmap_ptelist_alloc: va with PG_V set!");
735	*pte = 0;
736	return (va);
737}
738
739static void
740pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
741{
742	pt_entry_t *pte;
743
744	if (va & PG_V)
745		panic("pmap_ptelist_free: freeing va with PG_V set!");
746	pte = vtopte(va);
747	*pte = *head;		/* virtual! PG_V is 0 though */
748	*head = va;
749}
750
751static void
752pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
753{
754	int i;
755	vm_offset_t va;
756
757	*head = 0;
758	for (i = npages - 1; i >= 0; i--) {
759		va = (vm_offset_t)base + i * PAGE_SIZE;
760		pmap_ptelist_free(head, va);
761	}
762}
763
764
765/*
766 *	Initialize the pmap module.
767 *	Called by vm_init, to initialize any structures that the pmap
768 *	system needs to map virtual memory.
769 */
770void
771pmap_init(void)
772{
773	struct pmap_preinit_mapping *ppim;
774	vm_page_t mpte;
775	vm_size_t s;
776	int i, pv_npg;
777
778	/*
779	 * Initialize the vm page array entries for the kernel pmap's
780	 * page table pages.
781	 */
782	for (i = 0; i < NKPT; i++) {
783		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
784		KASSERT(mpte >= vm_page_array &&
785		    mpte < &vm_page_array[vm_page_array_size],
786		    ("pmap_init: page table page is out of range"));
787		mpte->pindex = i + KPTDI;
788		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
789	}
790
791	/*
792	 * Initialize the address space (zone) for the pv entries.  Set a
793	 * high water mark so that the system can recover from excessive
794	 * numbers of pv entries.
795	 */
796	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
797	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
798	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
799	pv_entry_max = roundup(pv_entry_max, _NPCPV);
800	pv_entry_high_water = 9 * (pv_entry_max / 10);
801
802	/*
803	 * If the kernel is running on a virtual machine, then it must assume
804	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
805	 * be prepared for the hypervisor changing the vendor and family that
806	 * are reported by CPUID.  Consequently, the workaround for AMD Family
807	 * 10h Erratum 383 is enabled if the processor's feature set does not
808	 * include at least one feature that is only supported by older Intel
809	 * or newer AMD processors.
810	 */
811	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
812	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
813	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
814	    AMDID2_FMA4)) == 0)
815		workaround_erratum383 = 1;
816
817	/*
818	 * Are large page mappings supported and enabled?
819	 */
820	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
821	if (pseflag == 0)
822		pg_ps_enabled = 0;
823	else if (pg_ps_enabled) {
824		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
825		    ("pmap_init: can't assign to pagesizes[1]"));
826		pagesizes[1] = NBPDR;
827	}
828
829	/*
830	 * Calculate the size of the pv head table for superpages.
831	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
832	 */
833	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
834	    PAGE_SIZE) / NBPDR + 1;
835
836	/*
837	 * Allocate memory for the pv head table for superpages.
838	 */
839	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
840	s = round_page(s);
841	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
842	    M_WAITOK | M_ZERO);
843	for (i = 0; i < pv_npg; i++)
844		TAILQ_INIT(&pv_table[i].pv_list);
845
846	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
847	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
848	if (pv_chunkbase == NULL)
849		panic("pmap_init: not enough kvm for pv chunks");
850	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
851#if defined(PAE) || defined(PAE_TABLES)
852	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
853	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
854	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
855	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
856#endif
857
858	pmap_initialized = 1;
859	if (!bootverbose)
860		return;
861	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
862		ppim = pmap_preinit_mapping + i;
863		if (ppim->va == 0)
864			continue;
865		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
866		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
867	}
868}
869
870
871SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
872	"Max number of PV entries");
873SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
874	"Page share factor per proc");
875
876static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
877    "2/4MB page mapping counters");
878
879static u_long pmap_pde_demotions;
880SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
881    &pmap_pde_demotions, 0, "2/4MB page demotions");
882
883static u_long pmap_pde_mappings;
884SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
885    &pmap_pde_mappings, 0, "2/4MB page mappings");
886
887static u_long pmap_pde_p_failures;
888SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
889    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
890
891static u_long pmap_pde_promotions;
892SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
893    &pmap_pde_promotions, 0, "2/4MB page promotions");
894
895/***************************************************
896 * Low level helper routines.....
897 ***************************************************/
898
899/*
900 * Determine the appropriate bits to set in a PTE or PDE for a specified
901 * caching mode.
902 */
903int
904pmap_cache_bits(int mode, boolean_t is_pde)
905{
906	int cache_bits, pat_flag, pat_idx;
907
908	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
909		panic("Unknown caching mode %d\n", mode);
910
911	/* The PAT bit is different for PTE's and PDE's. */
912	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
913
914	/* Map the caching mode to a PAT index. */
915	pat_idx = pat_index[mode];
916
917	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
918	cache_bits = 0;
919	if (pat_idx & 0x4)
920		cache_bits |= pat_flag;
921	if (pat_idx & 0x2)
922		cache_bits |= PG_NC_PCD;
923	if (pat_idx & 0x1)
924		cache_bits |= PG_NC_PWT;
925	return (cache_bits);
926}
927
928/*
929 * The caller is responsible for maintaining TLB consistency.
930 */
931static void
932pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
933{
934	pd_entry_t *pde;
935	pmap_t pmap;
936	boolean_t PTD_updated;
937
938	PTD_updated = FALSE;
939	mtx_lock_spin(&allpmaps_lock);
940	LIST_FOREACH(pmap, &allpmaps, pm_list) {
941		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
942		    PG_FRAME))
943			PTD_updated = TRUE;
944		pde = pmap_pde(pmap, va);
945		pde_store(pde, newpde);
946	}
947	mtx_unlock_spin(&allpmaps_lock);
948	KASSERT(PTD_updated,
949	    ("pmap_kenter_pde: current page table is not in allpmaps"));
950}
951
952/*
953 * After changing the page size for the specified virtual address in the page
954 * table, flush the corresponding entries from the processor's TLB.  Only the
955 * calling processor's TLB is affected.
956 *
957 * The calling thread must be pinned to a processor.
958 */
959static void
960pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
961{
962	u_long cr4;
963
964	if ((newpde & PG_PS) == 0)
965		/* Demotion: flush a specific 2MB page mapping. */
966		invlpg(va);
967	else if ((newpde & PG_G) == 0)
968		/*
969		 * Promotion: flush every 4KB page mapping from the TLB
970		 * because there are too many to flush individually.
971		 */
972		invltlb();
973	else {
974		/*
975		 * Promotion: flush every 4KB page mapping from the TLB,
976		 * including any global (PG_G) mappings.
977		 */
978		cr4 = rcr4();
979		load_cr4(cr4 & ~CR4_PGE);
980		/*
981		 * Although preemption at this point could be detrimental to
982		 * performance, it would not lead to an error.  PG_G is simply
983		 * ignored if CR4.PGE is clear.  Moreover, in case this block
984		 * is re-entered, the load_cr4() either above or below will
985		 * modify CR4.PGE flushing the TLB.
986		 */
987		load_cr4(cr4 | CR4_PGE);
988	}
989}
990
991void
992invltlb_glob(void)
993{
994	uint64_t cr4;
995
996	if (pgeflag == 0) {
997		invltlb();
998	} else {
999		cr4 = rcr4();
1000		load_cr4(cr4 & ~CR4_PGE);
1001		load_cr4(cr4 | CR4_PGE);
1002	}
1003}
1004
1005
1006#ifdef SMP
1007/*
1008 * For SMP, these functions have to use the IPI mechanism for coherence.
1009 *
1010 * N.B.: Before calling any of the following TLB invalidation functions,
1011 * the calling processor must ensure that all stores updating a non-
1012 * kernel page table are globally performed.  Otherwise, another
1013 * processor could cache an old, pre-update entry without being
1014 * invalidated.  This can happen one of two ways: (1) The pmap becomes
1015 * active on another processor after its pm_active field is checked by
1016 * one of the following functions but before a store updating the page
1017 * table is globally performed. (2) The pmap becomes active on another
1018 * processor before its pm_active field is checked but due to
1019 * speculative loads one of the following functions stills reads the
1020 * pmap as inactive on the other processor.
1021 *
1022 * The kernel page table is exempt because its pm_active field is
1023 * immutable.  The kernel page table is always active on every
1024 * processor.
1025 */
1026void
1027pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1028{
1029	cpuset_t *mask, other_cpus;
1030	u_int cpuid;
1031
1032	sched_pin();
1033	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1034		invlpg(va);
1035		mask = &all_cpus;
1036	} else {
1037		cpuid = PCPU_GET(cpuid);
1038		other_cpus = all_cpus;
1039		CPU_CLR(cpuid, &other_cpus);
1040		if (CPU_ISSET(cpuid, &pmap->pm_active))
1041			invlpg(va);
1042		CPU_AND(&other_cpus, &pmap->pm_active);
1043		mask = &other_cpus;
1044	}
1045	smp_masked_invlpg(*mask, va);
1046	sched_unpin();
1047}
1048
1049/* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
1050#define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
1051
1052void
1053pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1054{
1055	cpuset_t *mask, other_cpus;
1056	vm_offset_t addr;
1057	u_int cpuid;
1058
1059	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
1060		pmap_invalidate_all(pmap);
1061		return;
1062	}
1063
1064	sched_pin();
1065	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1066		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1067			invlpg(addr);
1068		mask = &all_cpus;
1069	} else {
1070		cpuid = PCPU_GET(cpuid);
1071		other_cpus = all_cpus;
1072		CPU_CLR(cpuid, &other_cpus);
1073		if (CPU_ISSET(cpuid, &pmap->pm_active))
1074			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1075				invlpg(addr);
1076		CPU_AND(&other_cpus, &pmap->pm_active);
1077		mask = &other_cpus;
1078	}
1079	smp_masked_invlpg_range(*mask, sva, eva);
1080	sched_unpin();
1081}
1082
1083void
1084pmap_invalidate_all(pmap_t pmap)
1085{
1086	cpuset_t *mask, other_cpus;
1087	u_int cpuid;
1088
1089	sched_pin();
1090	if (pmap == kernel_pmap) {
1091		invltlb_glob();
1092		mask = &all_cpus;
1093	} else if (!CPU_CMP(&pmap->pm_active, &all_cpus)) {
1094		invltlb();
1095		mask = &all_cpus;
1096	} else {
1097		cpuid = PCPU_GET(cpuid);
1098		other_cpus = all_cpus;
1099		CPU_CLR(cpuid, &other_cpus);
1100		if (CPU_ISSET(cpuid, &pmap->pm_active))
1101			invltlb();
1102		CPU_AND(&other_cpus, &pmap->pm_active);
1103		mask = &other_cpus;
1104	}
1105	smp_masked_invltlb(*mask, pmap);
1106	sched_unpin();
1107}
1108
1109void
1110pmap_invalidate_cache(void)
1111{
1112
1113	sched_pin();
1114	wbinvd();
1115	smp_cache_flush();
1116	sched_unpin();
1117}
1118
1119struct pde_action {
1120	cpuset_t invalidate;	/* processors that invalidate their TLB */
1121	vm_offset_t va;
1122	pd_entry_t *pde;
1123	pd_entry_t newpde;
1124	u_int store;		/* processor that updates the PDE */
1125};
1126
1127static void
1128pmap_update_pde_kernel(void *arg)
1129{
1130	struct pde_action *act = arg;
1131	pd_entry_t *pde;
1132	pmap_t pmap;
1133
1134	if (act->store == PCPU_GET(cpuid)) {
1135
1136		/*
1137		 * Elsewhere, this operation requires allpmaps_lock for
1138		 * synchronization.  Here, it does not because it is being
1139		 * performed in the context of an all_cpus rendezvous.
1140		 */
1141		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1142			pde = pmap_pde(pmap, act->va);
1143			pde_store(pde, act->newpde);
1144		}
1145	}
1146}
1147
1148static void
1149pmap_update_pde_user(void *arg)
1150{
1151	struct pde_action *act = arg;
1152
1153	if (act->store == PCPU_GET(cpuid))
1154		pde_store(act->pde, act->newpde);
1155}
1156
1157static void
1158pmap_update_pde_teardown(void *arg)
1159{
1160	struct pde_action *act = arg;
1161
1162	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1163		pmap_update_pde_invalidate(act->va, act->newpde);
1164}
1165
1166/*
1167 * Change the page size for the specified virtual address in a way that
1168 * prevents any possibility of the TLB ever having two entries that map the
1169 * same virtual address using different page sizes.  This is the recommended
1170 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1171 * machine check exception for a TLB state that is improperly diagnosed as a
1172 * hardware error.
1173 */
1174static void
1175pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1176{
1177	struct pde_action act;
1178	cpuset_t active, other_cpus;
1179	u_int cpuid;
1180
1181	sched_pin();
1182	cpuid = PCPU_GET(cpuid);
1183	other_cpus = all_cpus;
1184	CPU_CLR(cpuid, &other_cpus);
1185	if (pmap == kernel_pmap)
1186		active = all_cpus;
1187	else
1188		active = pmap->pm_active;
1189	if (CPU_OVERLAP(&active, &other_cpus)) {
1190		act.store = cpuid;
1191		act.invalidate = active;
1192		act.va = va;
1193		act.pde = pde;
1194		act.newpde = newpde;
1195		CPU_SET(cpuid, &active);
1196		smp_rendezvous_cpus(active,
1197		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1198		    pmap_update_pde_kernel : pmap_update_pde_user,
1199		    pmap_update_pde_teardown, &act);
1200	} else {
1201		if (pmap == kernel_pmap)
1202			pmap_kenter_pde(va, newpde);
1203		else
1204			pde_store(pde, newpde);
1205		if (CPU_ISSET(cpuid, &active))
1206			pmap_update_pde_invalidate(va, newpde);
1207	}
1208	sched_unpin();
1209}
1210#else /* !SMP */
1211/*
1212 * Normal, non-SMP, 486+ invalidation functions.
1213 * We inline these within pmap.c for speed.
1214 */
1215PMAP_INLINE void
1216pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1217{
1218
1219	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1220		invlpg(va);
1221}
1222
1223PMAP_INLINE void
1224pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1225{
1226	vm_offset_t addr;
1227
1228	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1229		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1230			invlpg(addr);
1231}
1232
1233PMAP_INLINE void
1234pmap_invalidate_all(pmap_t pmap)
1235{
1236
1237	if (pmap == kernel_pmap)
1238		invltlb_glob();
1239	else if (!CPU_EMPTY(&pmap->pm_active))
1240		invltlb();
1241}
1242
1243PMAP_INLINE void
1244pmap_invalidate_cache(void)
1245{
1246
1247	wbinvd();
1248}
1249
1250static void
1251pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1252{
1253
1254	if (pmap == kernel_pmap)
1255		pmap_kenter_pde(va, newpde);
1256	else
1257		pde_store(pde, newpde);
1258	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1259		pmap_update_pde_invalidate(va, newpde);
1260}
1261#endif /* !SMP */
1262
1263#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1264
1265void
1266pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1267{
1268
1269	if (force) {
1270		sva &= ~(vm_offset_t)cpu_clflush_line_size;
1271	} else {
1272		KASSERT((sva & PAGE_MASK) == 0,
1273		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1274		KASSERT((eva & PAGE_MASK) == 0,
1275		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1276	}
1277
1278	if ((cpu_feature & CPUID_SS) != 0 && !force)
1279		; /* If "Self Snoop" is supported and allowed, do nothing. */
1280	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
1281	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1282#ifdef DEV_APIC
1283		/*
1284		 * XXX: Some CPUs fault, hang, or trash the local APIC
1285		 * registers if we use CLFLUSH on the local APIC
1286		 * range.  The local APIC is always uncached, so we
1287		 * don't need to flush for that range anyway.
1288		 */
1289		if (pmap_kextract(sva) == lapic_paddr)
1290			return;
1291#endif
1292		/*
1293		 * Otherwise, do per-cache line flush.  Use the sfence
1294		 * instruction to insure that previous stores are
1295		 * included in the write-back.  The processor
1296		 * propagates flush to other processors in the cache
1297		 * coherence domain.
1298		 */
1299		sfence();
1300		for (; sva < eva; sva += cpu_clflush_line_size)
1301			clflushopt(sva);
1302		sfence();
1303	} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1304	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1305#ifdef DEV_APIC
1306		if (pmap_kextract(sva) == lapic_paddr)
1307			return;
1308#endif
1309		/*
1310		 * Writes are ordered by CLFLUSH on Intel CPUs.
1311		 */
1312		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1313			mfence();
1314		for (; sva < eva; sva += cpu_clflush_line_size)
1315			clflush(sva);
1316		if (cpu_vendor_id != CPU_VENDOR_INTEL)
1317			mfence();
1318	} else {
1319
1320		/*
1321		 * No targeted cache flush methods are supported by CPU,
1322		 * or the supplied range is bigger than 2MB.
1323		 * Globally invalidate cache.
1324		 */
1325		pmap_invalidate_cache();
1326	}
1327}
1328
1329void
1330pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1331{
1332	int i;
1333
1334	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1335	    (cpu_feature & CPUID_CLFSH) == 0) {
1336		pmap_invalidate_cache();
1337	} else {
1338		for (i = 0; i < count; i++)
1339			pmap_flush_page(pages[i]);
1340	}
1341}
1342
1343/*
1344 * Are we current address space or kernel?
1345 */
1346static __inline int
1347pmap_is_current(pmap_t pmap)
1348{
1349
1350	return (pmap == kernel_pmap || pmap ==
1351	    vmspace_pmap(curthread->td_proc->p_vmspace));
1352}
1353
1354/*
1355 * If the given pmap is not the current or kernel pmap, the returned pte must
1356 * be released by passing it to pmap_pte_release().
1357 */
1358pt_entry_t *
1359pmap_pte(pmap_t pmap, vm_offset_t va)
1360{
1361	pd_entry_t newpf;
1362	pd_entry_t *pde;
1363
1364	pde = pmap_pde(pmap, va);
1365	if (*pde & PG_PS)
1366		return (pde);
1367	if (*pde != 0) {
1368		/* are we current address space or kernel? */
1369		if (pmap_is_current(pmap))
1370			return (vtopte(va));
1371		mtx_lock(&PMAP2mutex);
1372		newpf = *pde & PG_FRAME;
1373		if ((*PMAP2 & PG_FRAME) != newpf) {
1374			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1375			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1376		}
1377		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1378	}
1379	return (NULL);
1380}
1381
1382/*
1383 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1384 * being NULL.
1385 */
1386static __inline void
1387pmap_pte_release(pt_entry_t *pte)
1388{
1389
1390	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1391		mtx_unlock(&PMAP2mutex);
1392}
1393
1394/*
1395 * NB:  The sequence of updating a page table followed by accesses to the
1396 * corresponding pages is subject to the situation described in the "AMD64
1397 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1398 * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1399 * right after modifying the PTE bits is crucial.
1400 */
1401static __inline void
1402invlcaddr(void *caddr)
1403{
1404
1405	invlpg((u_int)caddr);
1406}
1407
1408/*
1409 * Super fast pmap_pte routine best used when scanning
1410 * the pv lists.  This eliminates many coarse-grained
1411 * invltlb calls.  Note that many of the pv list
1412 * scans are across different pmaps.  It is very wasteful
1413 * to do an entire invltlb for checking a single mapping.
1414 *
1415 * If the given pmap is not the current pmap, pvh_global_lock
1416 * must be held and curthread pinned to a CPU.
1417 */
1418static pt_entry_t *
1419pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1420{
1421	pd_entry_t newpf;
1422	pd_entry_t *pde;
1423
1424	pde = pmap_pde(pmap, va);
1425	if (*pde & PG_PS)
1426		return (pde);
1427	if (*pde != 0) {
1428		/* are we current address space or kernel? */
1429		if (pmap_is_current(pmap))
1430			return (vtopte(va));
1431		rw_assert(&pvh_global_lock, RA_WLOCKED);
1432		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1433		newpf = *pde & PG_FRAME;
1434		if ((*PMAP1 & PG_FRAME) != newpf) {
1435			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1436#ifdef SMP
1437			PMAP1cpu = PCPU_GET(cpuid);
1438#endif
1439			invlcaddr(PADDR1);
1440			PMAP1changed++;
1441		} else
1442#ifdef SMP
1443		if (PMAP1cpu != PCPU_GET(cpuid)) {
1444			PMAP1cpu = PCPU_GET(cpuid);
1445			invlcaddr(PADDR1);
1446			PMAP1changedcpu++;
1447		} else
1448#endif
1449			PMAP1unchanged++;
1450		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1451	}
1452	return (0);
1453}
1454
1455/*
1456 *	Routine:	pmap_extract
1457 *	Function:
1458 *		Extract the physical page address associated
1459 *		with the given map/virtual_address pair.
1460 */
1461vm_paddr_t
1462pmap_extract(pmap_t pmap, vm_offset_t va)
1463{
1464	vm_paddr_t rtval;
1465	pt_entry_t *pte;
1466	pd_entry_t pde;
1467
1468	rtval = 0;
1469	PMAP_LOCK(pmap);
1470	pde = pmap->pm_pdir[va >> PDRSHIFT];
1471	if (pde != 0) {
1472		if ((pde & PG_PS) != 0)
1473			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1474		else {
1475			pte = pmap_pte(pmap, va);
1476			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1477			pmap_pte_release(pte);
1478		}
1479	}
1480	PMAP_UNLOCK(pmap);
1481	return (rtval);
1482}
1483
1484/*
1485 *	Routine:	pmap_extract_and_hold
1486 *	Function:
1487 *		Atomically extract and hold the physical page
1488 *		with the given pmap and virtual address pair
1489 *		if that mapping permits the given protection.
1490 */
1491vm_page_t
1492pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1493{
1494	pd_entry_t pde;
1495	pt_entry_t pte, *ptep;
1496	vm_page_t m;
1497	vm_paddr_t pa;
1498
1499	pa = 0;
1500	m = NULL;
1501	PMAP_LOCK(pmap);
1502retry:
1503	pde = *pmap_pde(pmap, va);
1504	if (pde != 0) {
1505		if (pde & PG_PS) {
1506			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1507				if (vm_page_pa_tryrelock(pmap, (pde &
1508				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1509					goto retry;
1510				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1511				    (va & PDRMASK));
1512				vm_page_hold(m);
1513			}
1514		} else {
1515			ptep = pmap_pte(pmap, va);
1516			pte = *ptep;
1517			pmap_pte_release(ptep);
1518			if (pte != 0 &&
1519			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1520				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1521				    &pa))
1522					goto retry;
1523				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1524				vm_page_hold(m);
1525			}
1526		}
1527	}
1528	PA_UNLOCK_COND(pa);
1529	PMAP_UNLOCK(pmap);
1530	return (m);
1531}
1532
1533/***************************************************
1534 * Low level mapping routines.....
1535 ***************************************************/
1536
1537/*
1538 * Add a wired page to the kva.
1539 * Note: not SMP coherent.
1540 *
1541 * This function may be used before pmap_bootstrap() is called.
1542 */
1543PMAP_INLINE void
1544pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1545{
1546	pt_entry_t *pte;
1547
1548	pte = vtopte(va);
1549	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1550}
1551
1552static __inline void
1553pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1554{
1555	pt_entry_t *pte;
1556
1557	pte = vtopte(va);
1558	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1559}
1560
1561/*
1562 * Remove a page from the kernel pagetables.
1563 * Note: not SMP coherent.
1564 *
1565 * This function may be used before pmap_bootstrap() is called.
1566 */
1567PMAP_INLINE void
1568pmap_kremove(vm_offset_t va)
1569{
1570	pt_entry_t *pte;
1571
1572	pte = vtopte(va);
1573	pte_clear(pte);
1574}
1575
1576/*
1577 *	Used to map a range of physical addresses into kernel
1578 *	virtual address space.
1579 *
1580 *	The value passed in '*virt' is a suggested virtual address for
1581 *	the mapping. Architectures which can support a direct-mapped
1582 *	physical to virtual region can return the appropriate address
1583 *	within that region, leaving '*virt' unchanged. Other
1584 *	architectures should map the pages starting at '*virt' and
1585 *	update '*virt' with the first usable address after the mapped
1586 *	region.
1587 */
1588vm_offset_t
1589pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1590{
1591	vm_offset_t va, sva;
1592	vm_paddr_t superpage_offset;
1593	pd_entry_t newpde;
1594
1595	va = *virt;
1596	/*
1597	 * Does the physical address range's size and alignment permit at
1598	 * least one superpage mapping to be created?
1599	 */
1600	superpage_offset = start & PDRMASK;
1601	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1602		/*
1603		 * Increase the starting virtual address so that its alignment
1604		 * does not preclude the use of superpage mappings.
1605		 */
1606		if ((va & PDRMASK) < superpage_offset)
1607			va = (va & ~PDRMASK) + superpage_offset;
1608		else if ((va & PDRMASK) > superpage_offset)
1609			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1610	}
1611	sva = va;
1612	while (start < end) {
1613		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1614		    pseflag) {
1615			KASSERT((va & PDRMASK) == 0,
1616			    ("pmap_map: misaligned va %#x", va));
1617			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1618			pmap_kenter_pde(va, newpde);
1619			va += NBPDR;
1620			start += NBPDR;
1621		} else {
1622			pmap_kenter(va, start);
1623			va += PAGE_SIZE;
1624			start += PAGE_SIZE;
1625		}
1626	}
1627	pmap_invalidate_range(kernel_pmap, sva, va);
1628	*virt = va;
1629	return (sva);
1630}
1631
1632
1633/*
1634 * Add a list of wired pages to the kva
1635 * this routine is only used for temporary
1636 * kernel mappings that do not need to have
1637 * page modification or references recorded.
1638 * Note that old mappings are simply written
1639 * over.  The page *must* be wired.
1640 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1641 */
1642void
1643pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1644{
1645	pt_entry_t *endpte, oldpte, pa, *pte;
1646	vm_page_t m;
1647
1648	oldpte = 0;
1649	pte = vtopte(sva);
1650	endpte = pte + count;
1651	while (pte < endpte) {
1652		m = *ma++;
1653		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1654		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1655			oldpte |= *pte;
1656			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1657		}
1658		pte++;
1659	}
1660	if (__predict_false((oldpte & PG_V) != 0))
1661		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1662		    PAGE_SIZE);
1663}
1664
1665/*
1666 * This routine tears out page mappings from the
1667 * kernel -- it is meant only for temporary mappings.
1668 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1669 */
1670void
1671pmap_qremove(vm_offset_t sva, int count)
1672{
1673	vm_offset_t va;
1674
1675	va = sva;
1676	while (count-- > 0) {
1677		pmap_kremove(va);
1678		va += PAGE_SIZE;
1679	}
1680	pmap_invalidate_range(kernel_pmap, sva, va);
1681}
1682
1683/***************************************************
1684 * Page table page management routines.....
1685 ***************************************************/
1686static __inline void
1687pmap_free_zero_pages(struct spglist *free)
1688{
1689	vm_page_t m;
1690
1691	while ((m = SLIST_FIRST(free)) != NULL) {
1692		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1693		/* Preserve the page's PG_ZERO setting. */
1694		vm_page_free_toq(m);
1695	}
1696}
1697
1698/*
1699 * Schedule the specified unused page table page to be freed.  Specifically,
1700 * add the page to the specified list of pages that will be released to the
1701 * physical memory manager after the TLB has been updated.
1702 */
1703static __inline void
1704pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1705    boolean_t set_PG_ZERO)
1706{
1707
1708	if (set_PG_ZERO)
1709		m->flags |= PG_ZERO;
1710	else
1711		m->flags &= ~PG_ZERO;
1712	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1713}
1714
1715/*
1716 * Inserts the specified page table page into the specified pmap's collection
1717 * of idle page table pages.  Each of a pmap's page table pages is responsible
1718 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1719 * ordered by this virtual address range.
1720 */
1721static __inline int
1722pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1723{
1724
1725	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1726	return (vm_radix_insert(&pmap->pm_root, mpte));
1727}
1728
1729/*
1730 * Looks for a page table page mapping the specified virtual address in the
1731 * specified pmap's collection of idle page table pages.  Returns NULL if there
1732 * is no page table page corresponding to the specified virtual address.
1733 */
1734static __inline vm_page_t
1735pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1736{
1737
1738	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1739	return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
1740}
1741
1742/*
1743 * Removes the specified page table page from the specified pmap's collection
1744 * of idle page table pages.  The specified page table page must be a member of
1745 * the pmap's collection.
1746 */
1747static __inline void
1748pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1749{
1750
1751	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1752	vm_radix_remove(&pmap->pm_root, mpte->pindex);
1753}
1754
1755/*
1756 * Decrements a page table page's wire count, which is used to record the
1757 * number of valid page table entries within the page.  If the wire count
1758 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1759 * page table page was unmapped and FALSE otherwise.
1760 */
1761static inline boolean_t
1762pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1763{
1764
1765	--m->wire_count;
1766	if (m->wire_count == 0) {
1767		_pmap_unwire_ptp(pmap, m, free);
1768		return (TRUE);
1769	} else
1770		return (FALSE);
1771}
1772
1773static void
1774_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1775{
1776	vm_offset_t pteva;
1777
1778	/*
1779	 * unmap the page table page
1780	 */
1781	pmap->pm_pdir[m->pindex] = 0;
1782	--pmap->pm_stats.resident_count;
1783
1784	/*
1785	 * This is a release store so that the ordinary store unmapping
1786	 * the page table page is globally performed before TLB shoot-
1787	 * down is begun.
1788	 */
1789	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
1790
1791	/*
1792	 * Do an invltlb to make the invalidated mapping
1793	 * take effect immediately.
1794	 */
1795	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1796	pmap_invalidate_page(pmap, pteva);
1797
1798	/*
1799	 * Put page on a list so that it is released after
1800	 * *ALL* TLB shootdown is done
1801	 */
1802	pmap_add_delayed_free_list(m, free, TRUE);
1803}
1804
1805/*
1806 * After removing a page table entry, this routine is used to
1807 * conditionally free the page, and manage the hold/wire counts.
1808 */
1809static int
1810pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1811{
1812	pd_entry_t ptepde;
1813	vm_page_t mpte;
1814
1815	if (va >= VM_MAXUSER_ADDRESS)
1816		return (0);
1817	ptepde = *pmap_pde(pmap, va);
1818	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1819	return (pmap_unwire_ptp(pmap, mpte, free));
1820}
1821
1822/*
1823 * Initialize the pmap for the swapper process.
1824 */
1825void
1826pmap_pinit0(pmap_t pmap)
1827{
1828
1829	PMAP_LOCK_INIT(pmap);
1830	/*
1831	 * Since the page table directory is shared with the kernel pmap,
1832	 * which is already included in the list "allpmaps", this pmap does
1833	 * not need to be inserted into that list.
1834	 */
1835	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1836#if defined(PAE) || defined(PAE_TABLES)
1837	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1838#endif
1839	pmap->pm_root.rt_root = 0;
1840	CPU_ZERO(&pmap->pm_active);
1841	PCPU_SET(curpmap, pmap);
1842	TAILQ_INIT(&pmap->pm_pvchunk);
1843	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1844}
1845
1846/*
1847 * Initialize a preallocated and zeroed pmap structure,
1848 * such as one in a vmspace structure.
1849 */
1850int
1851pmap_pinit(pmap_t pmap)
1852{
1853	vm_page_t m, ptdpg[NPGPTD];
1854	vm_paddr_t pa;
1855	int i;
1856
1857	/*
1858	 * No need to allocate page table space yet but we do need a valid
1859	 * page directory table.
1860	 */
1861	if (pmap->pm_pdir == NULL) {
1862		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1863		if (pmap->pm_pdir == NULL)
1864			return (0);
1865#if defined(PAE) || defined(PAE_TABLES)
1866		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1867		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1868		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1869		    ("pmap_pinit: pdpt misaligned"));
1870		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1871		    ("pmap_pinit: pdpt above 4g"));
1872#endif
1873		pmap->pm_root.rt_root = 0;
1874	}
1875	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1876	    ("pmap_pinit: pmap has reserved page table page(s)"));
1877
1878	/*
1879	 * allocate the page directory page(s)
1880	 */
1881	for (i = 0; i < NPGPTD;) {
1882		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1883		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1884		if (m == NULL)
1885			VM_WAIT;
1886		else {
1887			ptdpg[i++] = m;
1888		}
1889	}
1890
1891	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1892
1893	for (i = 0; i < NPGPTD; i++)
1894		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1895			pagezero(pmap->pm_pdir + (i * NPDEPG));
1896
1897	mtx_lock_spin(&allpmaps_lock);
1898	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1899	/* Copy the kernel page table directory entries. */
1900	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1901	mtx_unlock_spin(&allpmaps_lock);
1902
1903	/* install self-referential address mapping entry(s) */
1904	for (i = 0; i < NPGPTD; i++) {
1905		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1906		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1907#if defined(PAE) || defined(PAE_TABLES)
1908		pmap->pm_pdpt[i] = pa | PG_V;
1909#endif
1910	}
1911
1912	CPU_ZERO(&pmap->pm_active);
1913	TAILQ_INIT(&pmap->pm_pvchunk);
1914	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1915
1916	return (1);
1917}
1918
1919/*
1920 * this routine is called if the page table page is not
1921 * mapped correctly.
1922 */
1923static vm_page_t
1924_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1925{
1926	vm_paddr_t ptepa;
1927	vm_page_t m;
1928
1929	/*
1930	 * Allocate a page table page.
1931	 */
1932	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1933	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1934		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1935			PMAP_UNLOCK(pmap);
1936			rw_wunlock(&pvh_global_lock);
1937			VM_WAIT;
1938			rw_wlock(&pvh_global_lock);
1939			PMAP_LOCK(pmap);
1940		}
1941
1942		/*
1943		 * Indicate the need to retry.  While waiting, the page table
1944		 * page may have been allocated.
1945		 */
1946		return (NULL);
1947	}
1948	if ((m->flags & PG_ZERO) == 0)
1949		pmap_zero_page(m);
1950
1951	/*
1952	 * Map the pagetable page into the process address space, if
1953	 * it isn't already there.
1954	 */
1955
1956	pmap->pm_stats.resident_count++;
1957
1958	ptepa = VM_PAGE_TO_PHYS(m);
1959	pmap->pm_pdir[ptepindex] =
1960		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1961
1962	return (m);
1963}
1964
1965static vm_page_t
1966pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1967{
1968	u_int ptepindex;
1969	pd_entry_t ptepa;
1970	vm_page_t m;
1971
1972	/*
1973	 * Calculate pagetable page index
1974	 */
1975	ptepindex = va >> PDRSHIFT;
1976retry:
1977	/*
1978	 * Get the page directory entry
1979	 */
1980	ptepa = pmap->pm_pdir[ptepindex];
1981
1982	/*
1983	 * This supports switching from a 4MB page to a
1984	 * normal 4K page.
1985	 */
1986	if (ptepa & PG_PS) {
1987		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1988		ptepa = pmap->pm_pdir[ptepindex];
1989	}
1990
1991	/*
1992	 * If the page table page is mapped, we just increment the
1993	 * hold count, and activate it.
1994	 */
1995	if (ptepa) {
1996		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1997		m->wire_count++;
1998	} else {
1999		/*
2000		 * Here if the pte page isn't mapped, or if it has
2001		 * been deallocated.
2002		 */
2003		m = _pmap_allocpte(pmap, ptepindex, flags);
2004		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2005			goto retry;
2006	}
2007	return (m);
2008}
2009
2010
2011/***************************************************
2012* Pmap allocation/deallocation routines.
2013 ***************************************************/
2014
2015/*
2016 * Release any resources held by the given physical map.
2017 * Called when a pmap initialized by pmap_pinit is being released.
2018 * Should only be called if the map contains no valid mappings.
2019 */
2020void
2021pmap_release(pmap_t pmap)
2022{
2023	vm_page_t m, ptdpg[NPGPTD];
2024	int i;
2025
2026	KASSERT(pmap->pm_stats.resident_count == 0,
2027	    ("pmap_release: pmap resident count %ld != 0",
2028	    pmap->pm_stats.resident_count));
2029	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2030	    ("pmap_release: pmap has reserved page table page(s)"));
2031	KASSERT(CPU_EMPTY(&pmap->pm_active),
2032	    ("releasing active pmap %p", pmap));
2033
2034	mtx_lock_spin(&allpmaps_lock);
2035	LIST_REMOVE(pmap, pm_list);
2036	mtx_unlock_spin(&allpmaps_lock);
2037
2038	for (i = 0; i < NPGPTD; i++)
2039		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2040		    PG_FRAME);
2041
2042	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2043	    sizeof(*pmap->pm_pdir));
2044
2045	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2046
2047	for (i = 0; i < NPGPTD; i++) {
2048		m = ptdpg[i];
2049#if defined(PAE) || defined(PAE_TABLES)
2050		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2051		    ("pmap_release: got wrong ptd page"));
2052#endif
2053		m->wire_count--;
2054		atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2055		vm_page_free_zero(m);
2056	}
2057}
2058
2059static int
2060kvm_size(SYSCTL_HANDLER_ARGS)
2061{
2062	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2063
2064	return (sysctl_handle_long(oidp, &ksize, 0, req));
2065}
2066SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2067    0, 0, kvm_size, "IU", "Size of KVM");
2068
2069static int
2070kvm_free(SYSCTL_HANDLER_ARGS)
2071{
2072	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2073
2074	return (sysctl_handle_long(oidp, &kfree, 0, req));
2075}
2076SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2077    0, 0, kvm_free, "IU", "Amount of KVM free");
2078
2079/*
2080 * grow the number of kernel page table entries, if needed
2081 */
2082void
2083pmap_growkernel(vm_offset_t addr)
2084{
2085	vm_paddr_t ptppaddr;
2086	vm_page_t nkpg;
2087	pd_entry_t newpdir;
2088
2089	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2090	addr = roundup2(addr, NBPDR);
2091	if (addr - 1 >= kernel_map->max_offset)
2092		addr = kernel_map->max_offset;
2093	while (kernel_vm_end < addr) {
2094		if (pdir_pde(PTD, kernel_vm_end)) {
2095			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2096			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2097				kernel_vm_end = kernel_map->max_offset;
2098				break;
2099			}
2100			continue;
2101		}
2102
2103		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2104		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2105		    VM_ALLOC_ZERO);
2106		if (nkpg == NULL)
2107			panic("pmap_growkernel: no memory to grow kernel");
2108
2109		nkpt++;
2110
2111		if ((nkpg->flags & PG_ZERO) == 0)
2112			pmap_zero_page(nkpg);
2113		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2114		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2115		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2116
2117		pmap_kenter_pde(kernel_vm_end, newpdir);
2118		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2119		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2120			kernel_vm_end = kernel_map->max_offset;
2121			break;
2122		}
2123	}
2124}
2125
2126
2127/***************************************************
2128 * page management routines.
2129 ***************************************************/
2130
2131CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2132CTASSERT(_NPCM == 11);
2133CTASSERT(_NPCPV == 336);
2134
2135static __inline struct pv_chunk *
2136pv_to_chunk(pv_entry_t pv)
2137{
2138
2139	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2140}
2141
2142#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2143
2144#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2145#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2146
2147static const uint32_t pc_freemask[_NPCM] = {
2148	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2149	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2150	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2151	PC_FREE0_9, PC_FREE10
2152};
2153
2154SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2155	"Current number of pv entries");
2156
2157#ifdef PV_STATS
2158static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2159
2160SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2161	"Current number of pv entry chunks");
2162SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2163	"Current number of pv entry chunks allocated");
2164SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2165	"Current number of pv entry chunks frees");
2166SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2167	"Number of times tried to get a chunk page but failed.");
2168
2169static long pv_entry_frees, pv_entry_allocs;
2170static int pv_entry_spare;
2171
2172SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2173	"Current number of pv entry frees");
2174SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2175	"Current number of pv entry allocs");
2176SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2177	"Current number of spare pv entries");
2178#endif
2179
2180/*
2181 * We are in a serious low memory condition.  Resort to
2182 * drastic measures to free some pages so we can allocate
2183 * another pv entry chunk.
2184 */
2185static vm_page_t
2186pmap_pv_reclaim(pmap_t locked_pmap)
2187{
2188	struct pch newtail;
2189	struct pv_chunk *pc;
2190	struct md_page *pvh;
2191	pd_entry_t *pde;
2192	pmap_t pmap;
2193	pt_entry_t *pte, tpte;
2194	pv_entry_t pv;
2195	vm_offset_t va;
2196	vm_page_t m, m_pc;
2197	struct spglist free;
2198	uint32_t inuse;
2199	int bit, field, freed;
2200
2201	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2202	pmap = NULL;
2203	m_pc = NULL;
2204	SLIST_INIT(&free);
2205	TAILQ_INIT(&newtail);
2206	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2207	    SLIST_EMPTY(&free))) {
2208		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2209		if (pmap != pc->pc_pmap) {
2210			if (pmap != NULL) {
2211				pmap_invalidate_all(pmap);
2212				if (pmap != locked_pmap)
2213					PMAP_UNLOCK(pmap);
2214			}
2215			pmap = pc->pc_pmap;
2216			/* Avoid deadlock and lock recursion. */
2217			if (pmap > locked_pmap)
2218				PMAP_LOCK(pmap);
2219			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2220				pmap = NULL;
2221				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2222				continue;
2223			}
2224		}
2225
2226		/*
2227		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2228		 */
2229		freed = 0;
2230		for (field = 0; field < _NPCM; field++) {
2231			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2232			    inuse != 0; inuse &= ~(1UL << bit)) {
2233				bit = bsfl(inuse);
2234				pv = &pc->pc_pventry[field * 32 + bit];
2235				va = pv->pv_va;
2236				pde = pmap_pde(pmap, va);
2237				if ((*pde & PG_PS) != 0)
2238					continue;
2239				pte = pmap_pte(pmap, va);
2240				tpte = *pte;
2241				if ((tpte & PG_W) == 0)
2242					tpte = pte_load_clear(pte);
2243				pmap_pte_release(pte);
2244				if ((tpte & PG_W) != 0)
2245					continue;
2246				KASSERT(tpte != 0,
2247				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2248				    pmap, va));
2249				if ((tpte & PG_G) != 0)
2250					pmap_invalidate_page(pmap, va);
2251				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2252				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2253					vm_page_dirty(m);
2254				if ((tpte & PG_A) != 0)
2255					vm_page_aflag_set(m, PGA_REFERENCED);
2256				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2257				if (TAILQ_EMPTY(&m->md.pv_list) &&
2258				    (m->flags & PG_FICTITIOUS) == 0) {
2259					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2260					if (TAILQ_EMPTY(&pvh->pv_list)) {
2261						vm_page_aflag_clear(m,
2262						    PGA_WRITEABLE);
2263					}
2264				}
2265				pc->pc_map[field] |= 1UL << bit;
2266				pmap_unuse_pt(pmap, va, &free);
2267				freed++;
2268			}
2269		}
2270		if (freed == 0) {
2271			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2272			continue;
2273		}
2274		/* Every freed mapping is for a 4 KB page. */
2275		pmap->pm_stats.resident_count -= freed;
2276		PV_STAT(pv_entry_frees += freed);
2277		PV_STAT(pv_entry_spare += freed);
2278		pv_entry_count -= freed;
2279		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2280		for (field = 0; field < _NPCM; field++)
2281			if (pc->pc_map[field] != pc_freemask[field]) {
2282				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2283				    pc_list);
2284				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2285
2286				/*
2287				 * One freed pv entry in locked_pmap is
2288				 * sufficient.
2289				 */
2290				if (pmap == locked_pmap)
2291					goto out;
2292				break;
2293			}
2294		if (field == _NPCM) {
2295			PV_STAT(pv_entry_spare -= _NPCPV);
2296			PV_STAT(pc_chunk_count--);
2297			PV_STAT(pc_chunk_frees++);
2298			/* Entire chunk is free; return it. */
2299			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2300			pmap_qremove((vm_offset_t)pc, 1);
2301			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2302			break;
2303		}
2304	}
2305out:
2306	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2307	if (pmap != NULL) {
2308		pmap_invalidate_all(pmap);
2309		if (pmap != locked_pmap)
2310			PMAP_UNLOCK(pmap);
2311	}
2312	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2313		m_pc = SLIST_FIRST(&free);
2314		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2315		/* Recycle a freed page table page. */
2316		m_pc->wire_count = 1;
2317		atomic_add_int(&vm_cnt.v_wire_count, 1);
2318	}
2319	pmap_free_zero_pages(&free);
2320	return (m_pc);
2321}
2322
2323/*
2324 * free the pv_entry back to the free list
2325 */
2326static void
2327free_pv_entry(pmap_t pmap, pv_entry_t pv)
2328{
2329	struct pv_chunk *pc;
2330	int idx, field, bit;
2331
2332	rw_assert(&pvh_global_lock, RA_WLOCKED);
2333	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2334	PV_STAT(pv_entry_frees++);
2335	PV_STAT(pv_entry_spare++);
2336	pv_entry_count--;
2337	pc = pv_to_chunk(pv);
2338	idx = pv - &pc->pc_pventry[0];
2339	field = idx / 32;
2340	bit = idx % 32;
2341	pc->pc_map[field] |= 1ul << bit;
2342	for (idx = 0; idx < _NPCM; idx++)
2343		if (pc->pc_map[idx] != pc_freemask[idx]) {
2344			/*
2345			 * 98% of the time, pc is already at the head of the
2346			 * list.  If it isn't already, move it to the head.
2347			 */
2348			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2349			    pc)) {
2350				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2351				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2352				    pc_list);
2353			}
2354			return;
2355		}
2356	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2357	free_pv_chunk(pc);
2358}
2359
2360static void
2361free_pv_chunk(struct pv_chunk *pc)
2362{
2363	vm_page_t m;
2364
2365 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2366	PV_STAT(pv_entry_spare -= _NPCPV);
2367	PV_STAT(pc_chunk_count--);
2368	PV_STAT(pc_chunk_frees++);
2369	/* entire chunk is free, return it */
2370	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2371	pmap_qremove((vm_offset_t)pc, 1);
2372	vm_page_unwire(m, PQ_NONE);
2373	vm_page_free(m);
2374	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2375}
2376
2377/*
2378 * get a new pv_entry, allocating a block from the system
2379 * when needed.
2380 */
2381static pv_entry_t
2382get_pv_entry(pmap_t pmap, boolean_t try)
2383{
2384	static const struct timeval printinterval = { 60, 0 };
2385	static struct timeval lastprint;
2386	int bit, field;
2387	pv_entry_t pv;
2388	struct pv_chunk *pc;
2389	vm_page_t m;
2390
2391	rw_assert(&pvh_global_lock, RA_WLOCKED);
2392	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2393	PV_STAT(pv_entry_allocs++);
2394	pv_entry_count++;
2395	if (pv_entry_count > pv_entry_high_water)
2396		if (ratecheck(&lastprint, &printinterval))
2397			printf("Approaching the limit on PV entries, consider "
2398			    "increasing either the vm.pmap.shpgperproc or the "
2399			    "vm.pmap.pv_entry_max tunable.\n");
2400retry:
2401	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2402	if (pc != NULL) {
2403		for (field = 0; field < _NPCM; field++) {
2404			if (pc->pc_map[field]) {
2405				bit = bsfl(pc->pc_map[field]);
2406				break;
2407			}
2408		}
2409		if (field < _NPCM) {
2410			pv = &pc->pc_pventry[field * 32 + bit];
2411			pc->pc_map[field] &= ~(1ul << bit);
2412			/* If this was the last item, move it to tail */
2413			for (field = 0; field < _NPCM; field++)
2414				if (pc->pc_map[field] != 0) {
2415					PV_STAT(pv_entry_spare--);
2416					return (pv);	/* not full, return */
2417				}
2418			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2419			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2420			PV_STAT(pv_entry_spare--);
2421			return (pv);
2422		}
2423	}
2424	/*
2425	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2426	 * global lock.  If "pv_vafree" is currently non-empty, it will
2427	 * remain non-empty until pmap_ptelist_alloc() completes.
2428	 */
2429	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2430	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2431		if (try) {
2432			pv_entry_count--;
2433			PV_STAT(pc_chunk_tryfail++);
2434			return (NULL);
2435		}
2436		m = pmap_pv_reclaim(pmap);
2437		if (m == NULL)
2438			goto retry;
2439	}
2440	PV_STAT(pc_chunk_count++);
2441	PV_STAT(pc_chunk_allocs++);
2442	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2443	pmap_qenter((vm_offset_t)pc, &m, 1);
2444	pc->pc_pmap = pmap;
2445	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2446	for (field = 1; field < _NPCM; field++)
2447		pc->pc_map[field] = pc_freemask[field];
2448	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2449	pv = &pc->pc_pventry[0];
2450	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2451	PV_STAT(pv_entry_spare += _NPCPV - 1);
2452	return (pv);
2453}
2454
2455static __inline pv_entry_t
2456pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2457{
2458	pv_entry_t pv;
2459
2460	rw_assert(&pvh_global_lock, RA_WLOCKED);
2461	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2462		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2463			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2464			break;
2465		}
2466	}
2467	return (pv);
2468}
2469
2470static void
2471pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2472{
2473	struct md_page *pvh;
2474	pv_entry_t pv;
2475	vm_offset_t va_last;
2476	vm_page_t m;
2477
2478	rw_assert(&pvh_global_lock, RA_WLOCKED);
2479	KASSERT((pa & PDRMASK) == 0,
2480	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2481
2482	/*
2483	 * Transfer the 4mpage's pv entry for this mapping to the first
2484	 * page's pv list.
2485	 */
2486	pvh = pa_to_pvh(pa);
2487	va = trunc_4mpage(va);
2488	pv = pmap_pvh_remove(pvh, pmap, va);
2489	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2490	m = PHYS_TO_VM_PAGE(pa);
2491	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2492	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2493	va_last = va + NBPDR - PAGE_SIZE;
2494	do {
2495		m++;
2496		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2497		    ("pmap_pv_demote_pde: page %p is not managed", m));
2498		va += PAGE_SIZE;
2499		pmap_insert_entry(pmap, va, m);
2500	} while (va < va_last);
2501}
2502
2503static void
2504pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2505{
2506	struct md_page *pvh;
2507	pv_entry_t pv;
2508	vm_offset_t va_last;
2509	vm_page_t m;
2510
2511	rw_assert(&pvh_global_lock, RA_WLOCKED);
2512	KASSERT((pa & PDRMASK) == 0,
2513	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2514
2515	/*
2516	 * Transfer the first page's pv entry for this mapping to the
2517	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2518	 * to get_pv_entry(), a transfer avoids the possibility that
2519	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2520	 * removes one of the mappings that is being promoted.
2521	 */
2522	m = PHYS_TO_VM_PAGE(pa);
2523	va = trunc_4mpage(va);
2524	pv = pmap_pvh_remove(&m->md, pmap, va);
2525	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2526	pvh = pa_to_pvh(pa);
2527	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2528	/* Free the remaining NPTEPG - 1 pv entries. */
2529	va_last = va + NBPDR - PAGE_SIZE;
2530	do {
2531		m++;
2532		va += PAGE_SIZE;
2533		pmap_pvh_free(&m->md, pmap, va);
2534	} while (va < va_last);
2535}
2536
2537static void
2538pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2539{
2540	pv_entry_t pv;
2541
2542	pv = pmap_pvh_remove(pvh, pmap, va);
2543	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2544	free_pv_entry(pmap, pv);
2545}
2546
2547static void
2548pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2549{
2550	struct md_page *pvh;
2551
2552	rw_assert(&pvh_global_lock, RA_WLOCKED);
2553	pmap_pvh_free(&m->md, pmap, va);
2554	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2555		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2556		if (TAILQ_EMPTY(&pvh->pv_list))
2557			vm_page_aflag_clear(m, PGA_WRITEABLE);
2558	}
2559}
2560
2561/*
2562 * Create a pv entry for page at pa for
2563 * (pmap, va).
2564 */
2565static void
2566pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2567{
2568	pv_entry_t pv;
2569
2570	rw_assert(&pvh_global_lock, RA_WLOCKED);
2571	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2572	pv = get_pv_entry(pmap, FALSE);
2573	pv->pv_va = va;
2574	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2575}
2576
2577/*
2578 * Conditionally create a pv entry.
2579 */
2580static boolean_t
2581pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2582{
2583	pv_entry_t pv;
2584
2585	rw_assert(&pvh_global_lock, RA_WLOCKED);
2586	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2587	if (pv_entry_count < pv_entry_high_water &&
2588	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2589		pv->pv_va = va;
2590		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2591		return (TRUE);
2592	} else
2593		return (FALSE);
2594}
2595
2596/*
2597 * Create the pv entries for each of the pages within a superpage.
2598 */
2599static boolean_t
2600pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2601{
2602	struct md_page *pvh;
2603	pv_entry_t pv;
2604
2605	rw_assert(&pvh_global_lock, RA_WLOCKED);
2606	if (pv_entry_count < pv_entry_high_water &&
2607	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2608		pv->pv_va = va;
2609		pvh = pa_to_pvh(pa);
2610		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2611		return (TRUE);
2612	} else
2613		return (FALSE);
2614}
2615
2616/*
2617 * Fills a page table page with mappings to consecutive physical pages.
2618 */
2619static void
2620pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2621{
2622	pt_entry_t *pte;
2623
2624	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2625		*pte = newpte;
2626		newpte += PAGE_SIZE;
2627	}
2628}
2629
2630/*
2631 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2632 * 2- or 4MB page mapping is invalidated.
2633 */
2634static boolean_t
2635pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2636{
2637	pd_entry_t newpde, oldpde;
2638	pt_entry_t *firstpte, newpte;
2639	vm_paddr_t mptepa;
2640	vm_page_t mpte;
2641	struct spglist free;
2642	vm_offset_t sva;
2643
2644	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2645	oldpde = *pde;
2646	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2647	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2648	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
2649	    NULL)
2650		pmap_remove_pt_page(pmap, mpte);
2651	else {
2652		KASSERT((oldpde & PG_W) == 0,
2653		    ("pmap_demote_pde: page table page for a wired mapping"
2654		    " is missing"));
2655
2656		/*
2657		 * Invalidate the 2- or 4MB page mapping and return
2658		 * "failure" if the mapping was never accessed or the
2659		 * allocation of the new page table page fails.
2660		 */
2661		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2662		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2663		    VM_ALLOC_WIRED)) == NULL) {
2664			SLIST_INIT(&free);
2665			sva = trunc_4mpage(va);
2666			pmap_remove_pde(pmap, pde, sva, &free);
2667			pmap_invalidate_range(pmap, sva, sva + NBPDR - 1);
2668			pmap_free_zero_pages(&free);
2669			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2670			    " in pmap %p", va, pmap);
2671			return (FALSE);
2672		}
2673		if (va < VM_MAXUSER_ADDRESS)
2674			pmap->pm_stats.resident_count++;
2675	}
2676	mptepa = VM_PAGE_TO_PHYS(mpte);
2677
2678	/*
2679	 * If the page mapping is in the kernel's address space, then the
2680	 * KPTmap can provide access to the page table page.  Otherwise,
2681	 * temporarily map the page table page (mpte) into the kernel's
2682	 * address space at either PADDR1 or PADDR2.
2683	 */
2684	if (va >= KERNBASE)
2685		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2686	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2687		if ((*PMAP1 & PG_FRAME) != mptepa) {
2688			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2689#ifdef SMP
2690			PMAP1cpu = PCPU_GET(cpuid);
2691#endif
2692			invlcaddr(PADDR1);
2693			PMAP1changed++;
2694		} else
2695#ifdef SMP
2696		if (PMAP1cpu != PCPU_GET(cpuid)) {
2697			PMAP1cpu = PCPU_GET(cpuid);
2698			invlcaddr(PADDR1);
2699			PMAP1changedcpu++;
2700		} else
2701#endif
2702			PMAP1unchanged++;
2703		firstpte = PADDR1;
2704	} else {
2705		mtx_lock(&PMAP2mutex);
2706		if ((*PMAP2 & PG_FRAME) != mptepa) {
2707			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2708			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2709		}
2710		firstpte = PADDR2;
2711	}
2712	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2713	KASSERT((oldpde & PG_A) != 0,
2714	    ("pmap_demote_pde: oldpde is missing PG_A"));
2715	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2716	    ("pmap_demote_pde: oldpde is missing PG_M"));
2717	newpte = oldpde & ~PG_PS;
2718	if ((newpte & PG_PDE_PAT) != 0)
2719		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2720
2721	/*
2722	 * If the page table page is new, initialize it.
2723	 */
2724	if (mpte->wire_count == 1) {
2725		mpte->wire_count = NPTEPG;
2726		pmap_fill_ptp(firstpte, newpte);
2727	}
2728	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2729	    ("pmap_demote_pde: firstpte and newpte map different physical"
2730	    " addresses"));
2731
2732	/*
2733	 * If the mapping has changed attributes, update the page table
2734	 * entries.
2735	 */
2736	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2737		pmap_fill_ptp(firstpte, newpte);
2738
2739	/*
2740	 * Demote the mapping.  This pmap is locked.  The old PDE has
2741	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2742	 * set.  Thus, there is no danger of a race with another
2743	 * processor changing the setting of PG_A and/or PG_M between
2744	 * the read above and the store below.
2745	 */
2746	if (workaround_erratum383)
2747		pmap_update_pde(pmap, va, pde, newpde);
2748	else if (pmap == kernel_pmap)
2749		pmap_kenter_pde(va, newpde);
2750	else
2751		pde_store(pde, newpde);
2752	if (firstpte == PADDR2)
2753		mtx_unlock(&PMAP2mutex);
2754
2755	/*
2756	 * Invalidate the recursive mapping of the page table page.
2757	 */
2758	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2759
2760	/*
2761	 * Demote the pv entry.  This depends on the earlier demotion
2762	 * of the mapping.  Specifically, the (re)creation of a per-
2763	 * page pv entry might trigger the execution of pmap_collect(),
2764	 * which might reclaim a newly (re)created per-page pv entry
2765	 * and destroy the associated mapping.  In order to destroy
2766	 * the mapping, the PDE must have already changed from mapping
2767	 * the 2mpage to referencing the page table page.
2768	 */
2769	if ((oldpde & PG_MANAGED) != 0)
2770		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2771
2772	pmap_pde_demotions++;
2773	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2774	    " in pmap %p", va, pmap);
2775	return (TRUE);
2776}
2777
2778/*
2779 * Removes a 2- or 4MB page mapping from the kernel pmap.
2780 */
2781static void
2782pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2783{
2784	pd_entry_t newpde;
2785	vm_paddr_t mptepa;
2786	vm_page_t mpte;
2787
2788	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2789	mpte = pmap_lookup_pt_page(pmap, va);
2790	if (mpte == NULL)
2791		panic("pmap_remove_kernel_pde: Missing pt page.");
2792
2793	pmap_remove_pt_page(pmap, mpte);
2794	mptepa = VM_PAGE_TO_PHYS(mpte);
2795	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2796
2797	/*
2798	 * Initialize the page table page.
2799	 */
2800	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2801
2802	/*
2803	 * Remove the mapping.
2804	 */
2805	if (workaround_erratum383)
2806		pmap_update_pde(pmap, va, pde, newpde);
2807	else
2808		pmap_kenter_pde(va, newpde);
2809
2810	/*
2811	 * Invalidate the recursive mapping of the page table page.
2812	 */
2813	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2814}
2815
2816/*
2817 * pmap_remove_pde: do the things to unmap a superpage in a process
2818 */
2819static void
2820pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2821    struct spglist *free)
2822{
2823	struct md_page *pvh;
2824	pd_entry_t oldpde;
2825	vm_offset_t eva, va;
2826	vm_page_t m, mpte;
2827
2828	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2829	KASSERT((sva & PDRMASK) == 0,
2830	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2831	oldpde = pte_load_clear(pdq);
2832	if (oldpde & PG_W)
2833		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2834
2835	/*
2836	 * Machines that don't support invlpg, also don't support
2837	 * PG_G.
2838	 *
2839	 * When workaround_erratum383 is false, a promotion to a 2M/4M
2840	 * page mapping does not invalidate the 512/1024 4K page mappings
2841	 * from the TLB.  Consequently, at this point, the TLB may
2842	 * hold both 4K and 2M/4M page mappings.  Therefore, the entire
2843	 * range of addresses must be invalidated here.  In contrast,
2844	 * when workaround_erratum383 is true, a promotion does
2845	 * invalidate the 512/1024 4K page mappings, and so a single INVLPG
2846	 * suffices to invalidate the 2M/4M page mapping.
2847	 */
2848	if ((oldpde & PG_G) != 0) {
2849		if (workaround_erratum383)
2850			pmap_invalidate_page(kernel_pmap, sva);
2851		else
2852			pmap_invalidate_range(kernel_pmap, sva,
2853			    sva + NBPDR - 1);
2854	}
2855
2856	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2857	if (oldpde & PG_MANAGED) {
2858		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2859		pmap_pvh_free(pvh, pmap, sva);
2860		eva = sva + NBPDR;
2861		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2862		    va < eva; va += PAGE_SIZE, m++) {
2863			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2864				vm_page_dirty(m);
2865			if (oldpde & PG_A)
2866				vm_page_aflag_set(m, PGA_REFERENCED);
2867			if (TAILQ_EMPTY(&m->md.pv_list) &&
2868			    TAILQ_EMPTY(&pvh->pv_list))
2869				vm_page_aflag_clear(m, PGA_WRITEABLE);
2870		}
2871	}
2872	if (pmap == kernel_pmap) {
2873		pmap_remove_kernel_pde(pmap, pdq, sva);
2874	} else {
2875		mpte = pmap_lookup_pt_page(pmap, sva);
2876		if (mpte != NULL) {
2877			pmap_remove_pt_page(pmap, mpte);
2878			pmap->pm_stats.resident_count--;
2879			KASSERT(mpte->wire_count == NPTEPG,
2880			    ("pmap_remove_pde: pte page wire count error"));
2881			mpte->wire_count = 0;
2882			pmap_add_delayed_free_list(mpte, free, FALSE);
2883			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
2884		}
2885	}
2886}
2887
2888/*
2889 * pmap_remove_pte: do the things to unmap a page in a process
2890 */
2891static int
2892pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2893    struct spglist *free)
2894{
2895	pt_entry_t oldpte;
2896	vm_page_t m;
2897
2898	rw_assert(&pvh_global_lock, RA_WLOCKED);
2899	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2900	oldpte = pte_load_clear(ptq);
2901	KASSERT(oldpte != 0,
2902	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2903	if (oldpte & PG_W)
2904		pmap->pm_stats.wired_count -= 1;
2905	/*
2906	 * Machines that don't support invlpg, also don't support
2907	 * PG_G.
2908	 */
2909	if (oldpte & PG_G)
2910		pmap_invalidate_page(kernel_pmap, va);
2911	pmap->pm_stats.resident_count -= 1;
2912	if (oldpte & PG_MANAGED) {
2913		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2914		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2915			vm_page_dirty(m);
2916		if (oldpte & PG_A)
2917			vm_page_aflag_set(m, PGA_REFERENCED);
2918		pmap_remove_entry(pmap, m, va);
2919	}
2920	return (pmap_unuse_pt(pmap, va, free));
2921}
2922
2923/*
2924 * Remove a single page from a process address space
2925 */
2926static void
2927pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2928{
2929	pt_entry_t *pte;
2930
2931	rw_assert(&pvh_global_lock, RA_WLOCKED);
2932	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2933	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2934	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2935		return;
2936	pmap_remove_pte(pmap, pte, va, free);
2937	pmap_invalidate_page(pmap, va);
2938}
2939
2940/*
2941 *	Remove the given range of addresses from the specified map.
2942 *
2943 *	It is assumed that the start and end are properly
2944 *	rounded to the page size.
2945 */
2946void
2947pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2948{
2949	vm_offset_t pdnxt;
2950	pd_entry_t ptpaddr;
2951	pt_entry_t *pte;
2952	struct spglist free;
2953	int anyvalid;
2954
2955	/*
2956	 * Perform an unsynchronized read.  This is, however, safe.
2957	 */
2958	if (pmap->pm_stats.resident_count == 0)
2959		return;
2960
2961	anyvalid = 0;
2962	SLIST_INIT(&free);
2963
2964	rw_wlock(&pvh_global_lock);
2965	sched_pin();
2966	PMAP_LOCK(pmap);
2967
2968	/*
2969	 * special handling of removing one page.  a very
2970	 * common operation and easy to short circuit some
2971	 * code.
2972	 */
2973	if ((sva + PAGE_SIZE == eva) &&
2974	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2975		pmap_remove_page(pmap, sva, &free);
2976		goto out;
2977	}
2978
2979	for (; sva < eva; sva = pdnxt) {
2980		u_int pdirindex;
2981
2982		/*
2983		 * Calculate index for next page table.
2984		 */
2985		pdnxt = (sva + NBPDR) & ~PDRMASK;
2986		if (pdnxt < sva)
2987			pdnxt = eva;
2988		if (pmap->pm_stats.resident_count == 0)
2989			break;
2990
2991		pdirindex = sva >> PDRSHIFT;
2992		ptpaddr = pmap->pm_pdir[pdirindex];
2993
2994		/*
2995		 * Weed out invalid mappings. Note: we assume that the page
2996		 * directory table is always allocated, and in kernel virtual.
2997		 */
2998		if (ptpaddr == 0)
2999			continue;
3000
3001		/*
3002		 * Check for large page.
3003		 */
3004		if ((ptpaddr & PG_PS) != 0) {
3005			/*
3006			 * Are we removing the entire large page?  If not,
3007			 * demote the mapping and fall through.
3008			 */
3009			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3010				/*
3011				 * The TLB entry for a PG_G mapping is
3012				 * invalidated by pmap_remove_pde().
3013				 */
3014				if ((ptpaddr & PG_G) == 0)
3015					anyvalid = 1;
3016				pmap_remove_pde(pmap,
3017				    &pmap->pm_pdir[pdirindex], sva, &free);
3018				continue;
3019			} else if (!pmap_demote_pde(pmap,
3020			    &pmap->pm_pdir[pdirindex], sva)) {
3021				/* The large page mapping was destroyed. */
3022				continue;
3023			}
3024		}
3025
3026		/*
3027		 * Limit our scan to either the end of the va represented
3028		 * by the current page table page, or to the end of the
3029		 * range being removed.
3030		 */
3031		if (pdnxt > eva)
3032			pdnxt = eva;
3033
3034		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3035		    sva += PAGE_SIZE) {
3036			if (*pte == 0)
3037				continue;
3038
3039			/*
3040			 * The TLB entry for a PG_G mapping is invalidated
3041			 * by pmap_remove_pte().
3042			 */
3043			if ((*pte & PG_G) == 0)
3044				anyvalid = 1;
3045			if (pmap_remove_pte(pmap, pte, sva, &free))
3046				break;
3047		}
3048	}
3049out:
3050	sched_unpin();
3051	if (anyvalid)
3052		pmap_invalidate_all(pmap);
3053	rw_wunlock(&pvh_global_lock);
3054	PMAP_UNLOCK(pmap);
3055	pmap_free_zero_pages(&free);
3056}
3057
3058/*
3059 *	Routine:	pmap_remove_all
3060 *	Function:
3061 *		Removes this physical page from
3062 *		all physical maps in which it resides.
3063 *		Reflects back modify bits to the pager.
3064 *
3065 *	Notes:
3066 *		Original versions of this routine were very
3067 *		inefficient because they iteratively called
3068 *		pmap_remove (slow...)
3069 */
3070
3071void
3072pmap_remove_all(vm_page_t m)
3073{
3074	struct md_page *pvh;
3075	pv_entry_t pv;
3076	pmap_t pmap;
3077	pt_entry_t *pte, tpte;
3078	pd_entry_t *pde;
3079	vm_offset_t va;
3080	struct spglist free;
3081
3082	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3083	    ("pmap_remove_all: page %p is not managed", m));
3084	SLIST_INIT(&free);
3085	rw_wlock(&pvh_global_lock);
3086	sched_pin();
3087	if ((m->flags & PG_FICTITIOUS) != 0)
3088		goto small_mappings;
3089	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3090	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3091		va = pv->pv_va;
3092		pmap = PV_PMAP(pv);
3093		PMAP_LOCK(pmap);
3094		pde = pmap_pde(pmap, va);
3095		(void)pmap_demote_pde(pmap, pde, va);
3096		PMAP_UNLOCK(pmap);
3097	}
3098small_mappings:
3099	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3100		pmap = PV_PMAP(pv);
3101		PMAP_LOCK(pmap);
3102		pmap->pm_stats.resident_count--;
3103		pde = pmap_pde(pmap, pv->pv_va);
3104		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3105		    " a 4mpage in page %p's pv list", m));
3106		pte = pmap_pte_quick(pmap, pv->pv_va);
3107		tpte = pte_load_clear(pte);
3108		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3109		    pmap, pv->pv_va));
3110		if (tpte & PG_W)
3111			pmap->pm_stats.wired_count--;
3112		if (tpte & PG_A)
3113			vm_page_aflag_set(m, PGA_REFERENCED);
3114
3115		/*
3116		 * Update the vm_page_t clean and reference bits.
3117		 */
3118		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3119			vm_page_dirty(m);
3120		pmap_unuse_pt(pmap, pv->pv_va, &free);
3121		pmap_invalidate_page(pmap, pv->pv_va);
3122		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3123		free_pv_entry(pmap, pv);
3124		PMAP_UNLOCK(pmap);
3125	}
3126	vm_page_aflag_clear(m, PGA_WRITEABLE);
3127	sched_unpin();
3128	rw_wunlock(&pvh_global_lock);
3129	pmap_free_zero_pages(&free);
3130}
3131
3132/*
3133 * pmap_protect_pde: do the things to protect a 4mpage in a process
3134 */
3135static boolean_t
3136pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3137{
3138	pd_entry_t newpde, oldpde;
3139	vm_offset_t eva, va;
3140	vm_page_t m;
3141	boolean_t anychanged;
3142
3143	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3144	KASSERT((sva & PDRMASK) == 0,
3145	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3146	anychanged = FALSE;
3147retry:
3148	oldpde = newpde = *pde;
3149	if (oldpde & PG_MANAGED) {
3150		eva = sva + NBPDR;
3151		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3152		    va < eva; va += PAGE_SIZE, m++)
3153			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3154				vm_page_dirty(m);
3155	}
3156	if ((prot & VM_PROT_WRITE) == 0)
3157		newpde &= ~(PG_RW | PG_M);
3158#if defined(PAE) || defined(PAE_TABLES)
3159	if ((prot & VM_PROT_EXECUTE) == 0)
3160		newpde |= pg_nx;
3161#endif
3162	if (newpde != oldpde) {
3163		if (!pde_cmpset(pde, oldpde, newpde))
3164			goto retry;
3165		if (oldpde & PG_G) {
3166			/* See pmap_remove_pde() for explanation. */
3167			if (workaround_erratum383)
3168				pmap_invalidate_page(kernel_pmap, sva);
3169			else
3170				pmap_invalidate_range(kernel_pmap, sva,
3171				    sva + NBPDR - 1);
3172		} else
3173			anychanged = TRUE;
3174	}
3175	return (anychanged);
3176}
3177
3178/*
3179 *	Set the physical protection on the
3180 *	specified range of this map as requested.
3181 */
3182void
3183pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3184{
3185	vm_offset_t pdnxt;
3186	pd_entry_t ptpaddr;
3187	pt_entry_t *pte;
3188	boolean_t anychanged, pv_lists_locked;
3189
3190	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3191	if (prot == VM_PROT_NONE) {
3192		pmap_remove(pmap, sva, eva);
3193		return;
3194	}
3195
3196#if defined(PAE) || defined(PAE_TABLES)
3197	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3198	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3199		return;
3200#else
3201	if (prot & VM_PROT_WRITE)
3202		return;
3203#endif
3204
3205	if (pmap_is_current(pmap))
3206		pv_lists_locked = FALSE;
3207	else {
3208		pv_lists_locked = TRUE;
3209resume:
3210		rw_wlock(&pvh_global_lock);
3211		sched_pin();
3212	}
3213	anychanged = FALSE;
3214
3215	PMAP_LOCK(pmap);
3216	for (; sva < eva; sva = pdnxt) {
3217		pt_entry_t obits, pbits;
3218		u_int pdirindex;
3219
3220		pdnxt = (sva + NBPDR) & ~PDRMASK;
3221		if (pdnxt < sva)
3222			pdnxt = eva;
3223
3224		pdirindex = sva >> PDRSHIFT;
3225		ptpaddr = pmap->pm_pdir[pdirindex];
3226
3227		/*
3228		 * Weed out invalid mappings. Note: we assume that the page
3229		 * directory table is always allocated, and in kernel virtual.
3230		 */
3231		if (ptpaddr == 0)
3232			continue;
3233
3234		/*
3235		 * Check for large page.
3236		 */
3237		if ((ptpaddr & PG_PS) != 0) {
3238			/*
3239			 * Are we protecting the entire large page?  If not,
3240			 * demote the mapping and fall through.
3241			 */
3242			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3243				/*
3244				 * The TLB entry for a PG_G mapping is
3245				 * invalidated by pmap_protect_pde().
3246				 */
3247				if (pmap_protect_pde(pmap,
3248				    &pmap->pm_pdir[pdirindex], sva, prot))
3249					anychanged = TRUE;
3250				continue;
3251			} else {
3252				if (!pv_lists_locked) {
3253					pv_lists_locked = TRUE;
3254					if (!rw_try_wlock(&pvh_global_lock)) {
3255						if (anychanged)
3256							pmap_invalidate_all(
3257							    pmap);
3258						PMAP_UNLOCK(pmap);
3259						goto resume;
3260					}
3261					sched_pin();
3262				}
3263				if (!pmap_demote_pde(pmap,
3264				    &pmap->pm_pdir[pdirindex], sva)) {
3265					/*
3266					 * The large page mapping was
3267					 * destroyed.
3268					 */
3269					continue;
3270				}
3271			}
3272		}
3273
3274		if (pdnxt > eva)
3275			pdnxt = eva;
3276
3277		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3278		    sva += PAGE_SIZE) {
3279			vm_page_t m;
3280
3281retry:
3282			/*
3283			 * Regardless of whether a pte is 32 or 64 bits in
3284			 * size, PG_RW, PG_A, and PG_M are among the least
3285			 * significant 32 bits.
3286			 */
3287			obits = pbits = *pte;
3288			if ((pbits & PG_V) == 0)
3289				continue;
3290
3291			if ((prot & VM_PROT_WRITE) == 0) {
3292				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3293				    (PG_MANAGED | PG_M | PG_RW)) {
3294					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3295					vm_page_dirty(m);
3296				}
3297				pbits &= ~(PG_RW | PG_M);
3298			}
3299#if defined(PAE) || defined(PAE_TABLES)
3300			if ((prot & VM_PROT_EXECUTE) == 0)
3301				pbits |= pg_nx;
3302#endif
3303
3304			if (pbits != obits) {
3305#if defined(PAE) || defined(PAE_TABLES)
3306				if (!atomic_cmpset_64(pte, obits, pbits))
3307					goto retry;
3308#else
3309				if (!atomic_cmpset_int((u_int *)pte, obits,
3310				    pbits))
3311					goto retry;
3312#endif
3313				if (obits & PG_G)
3314					pmap_invalidate_page(pmap, sva);
3315				else
3316					anychanged = TRUE;
3317			}
3318		}
3319	}
3320	if (anychanged)
3321		pmap_invalidate_all(pmap);
3322	if (pv_lists_locked) {
3323		sched_unpin();
3324		rw_wunlock(&pvh_global_lock);
3325	}
3326	PMAP_UNLOCK(pmap);
3327}
3328
3329/*
3330 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3331 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3332 * For promotion to occur, two conditions must be met: (1) the 4KB page
3333 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3334 * mappings must have identical characteristics.
3335 *
3336 * Managed (PG_MANAGED) mappings within the kernel address space are not
3337 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3338 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3339 * pmap.
3340 */
3341static void
3342pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3343{
3344	pd_entry_t newpde;
3345	pt_entry_t *firstpte, oldpte, pa, *pte;
3346	vm_offset_t oldpteva;
3347	vm_page_t mpte;
3348
3349	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3350
3351	/*
3352	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3353	 * either invalid, unused, or does not map the first 4KB physical page
3354	 * within a 2- or 4MB page.
3355	 */
3356	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3357setpde:
3358	newpde = *firstpte;
3359	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3360		pmap_pde_p_failures++;
3361		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3362		    " in pmap %p", va, pmap);
3363		return;
3364	}
3365	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3366		pmap_pde_p_failures++;
3367		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3368		    " in pmap %p", va, pmap);
3369		return;
3370	}
3371	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3372		/*
3373		 * When PG_M is already clear, PG_RW can be cleared without
3374		 * a TLB invalidation.
3375		 */
3376		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3377		    ~PG_RW))
3378			goto setpde;
3379		newpde &= ~PG_RW;
3380	}
3381
3382	/*
3383	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3384	 * PTE maps an unexpected 4KB physical page or does not have identical
3385	 * characteristics to the first PTE.
3386	 */
3387	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3388	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3389setpte:
3390		oldpte = *pte;
3391		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3392			pmap_pde_p_failures++;
3393			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3394			    " in pmap %p", va, pmap);
3395			return;
3396		}
3397		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3398			/*
3399			 * When PG_M is already clear, PG_RW can be cleared
3400			 * without a TLB invalidation.
3401			 */
3402			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3403			    oldpte & ~PG_RW))
3404				goto setpte;
3405			oldpte &= ~PG_RW;
3406			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3407			    (va & ~PDRMASK);
3408			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3409			    " in pmap %p", oldpteva, pmap);
3410		}
3411		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3412			pmap_pde_p_failures++;
3413			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3414			    " in pmap %p", va, pmap);
3415			return;
3416		}
3417		pa -= PAGE_SIZE;
3418	}
3419
3420	/*
3421	 * Save the page table page in its current state until the PDE
3422	 * mapping the superpage is demoted by pmap_demote_pde() or
3423	 * destroyed by pmap_remove_pde().
3424	 */
3425	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3426	KASSERT(mpte >= vm_page_array &&
3427	    mpte < &vm_page_array[vm_page_array_size],
3428	    ("pmap_promote_pde: page table page is out of range"));
3429	KASSERT(mpte->pindex == va >> PDRSHIFT,
3430	    ("pmap_promote_pde: page table page's pindex is wrong"));
3431	if (pmap_insert_pt_page(pmap, mpte)) {
3432		pmap_pde_p_failures++;
3433		CTR2(KTR_PMAP,
3434		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3435		    pmap);
3436		return;
3437	}
3438
3439	/*
3440	 * Promote the pv entries.
3441	 */
3442	if ((newpde & PG_MANAGED) != 0)
3443		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3444
3445	/*
3446	 * Propagate the PAT index to its proper position.
3447	 */
3448	if ((newpde & PG_PTE_PAT) != 0)
3449		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3450
3451	/*
3452	 * Map the superpage.
3453	 */
3454	if (workaround_erratum383)
3455		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3456	else if (pmap == kernel_pmap)
3457		pmap_kenter_pde(va, PG_PS | newpde);
3458	else
3459		pde_store(pde, PG_PS | newpde);
3460
3461	pmap_pde_promotions++;
3462	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3463	    " in pmap %p", va, pmap);
3464}
3465
3466/*
3467 *	Insert the given physical page (p) at
3468 *	the specified virtual address (v) in the
3469 *	target physical map with the protection requested.
3470 *
3471 *	If specified, the page will be wired down, meaning
3472 *	that the related pte can not be reclaimed.
3473 *
3474 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3475 *	or lose information.  That is, this routine must actually
3476 *	insert this page into the given map NOW.
3477 */
3478int
3479pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3480    u_int flags, int8_t psind)
3481{
3482	pd_entry_t *pde;
3483	pt_entry_t *pte;
3484	pt_entry_t newpte, origpte;
3485	pv_entry_t pv;
3486	vm_paddr_t opa, pa;
3487	vm_page_t mpte, om;
3488	boolean_t invlva, wired;
3489
3490	va = trunc_page(va);
3491	mpte = NULL;
3492	wired = (flags & PMAP_ENTER_WIRED) != 0;
3493
3494	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3495	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3496	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3497	    va));
3498	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3499		VM_OBJECT_ASSERT_LOCKED(m->object);
3500
3501	rw_wlock(&pvh_global_lock);
3502	PMAP_LOCK(pmap);
3503	sched_pin();
3504
3505	pde = pmap_pde(pmap, va);
3506	if (va < VM_MAXUSER_ADDRESS) {
3507		/*
3508		 * va is for UVA.
3509		 * In the case that a page table page is not resident,
3510		 * we are creating it here.  pmap_allocpte() handles
3511		 * demotion.
3512		 */
3513		mpte = pmap_allocpte(pmap, va, flags);
3514		if (mpte == NULL) {
3515			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3516			    ("pmap_allocpte failed with sleep allowed"));
3517			sched_unpin();
3518			rw_wunlock(&pvh_global_lock);
3519			PMAP_UNLOCK(pmap);
3520			return (KERN_RESOURCE_SHORTAGE);
3521		}
3522	} else {
3523		/*
3524		 * va is for KVA, so pmap_demote_pde() will never fail
3525		 * to install a page table page.  PG_V is also
3526		 * asserted by pmap_demote_pde().
3527		 */
3528		KASSERT(pde != NULL && (*pde & PG_V) != 0,
3529		    ("KVA %#x invalid pde pdir %#jx", va,
3530		    (uintmax_t)pmap->pm_pdir[PTDPTDI]));
3531		if ((*pde & PG_PS) != 0)
3532			pmap_demote_pde(pmap, pde, va);
3533	}
3534	pte = pmap_pte_quick(pmap, va);
3535
3536	/*
3537	 * Page Directory table entry is not valid, which should not
3538	 * happen.  We should have either allocated the page table
3539	 * page or demoted the existing mapping above.
3540	 */
3541	if (pte == NULL) {
3542		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3543		    (uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3544	}
3545
3546	pa = VM_PAGE_TO_PHYS(m);
3547	om = NULL;
3548	origpte = *pte;
3549	opa = origpte & PG_FRAME;
3550
3551	/*
3552	 * Mapping has not changed, must be protection or wiring change.
3553	 */
3554	if (origpte && (opa == pa)) {
3555		/*
3556		 * Wiring change, just update stats. We don't worry about
3557		 * wiring PT pages as they remain resident as long as there
3558		 * are valid mappings in them. Hence, if a user page is wired,
3559		 * the PT page will be also.
3560		 */
3561		if (wired && ((origpte & PG_W) == 0))
3562			pmap->pm_stats.wired_count++;
3563		else if (!wired && (origpte & PG_W))
3564			pmap->pm_stats.wired_count--;
3565
3566		/*
3567		 * Remove extra pte reference
3568		 */
3569		if (mpte)
3570			mpte->wire_count--;
3571
3572		if (origpte & PG_MANAGED) {
3573			om = m;
3574			pa |= PG_MANAGED;
3575		}
3576		goto validate;
3577	}
3578
3579	pv = NULL;
3580
3581	/*
3582	 * Mapping has changed, invalidate old range and fall through to
3583	 * handle validating new mapping.
3584	 */
3585	if (opa) {
3586		if (origpte & PG_W)
3587			pmap->pm_stats.wired_count--;
3588		if (origpte & PG_MANAGED) {
3589			om = PHYS_TO_VM_PAGE(opa);
3590			pv = pmap_pvh_remove(&om->md, pmap, va);
3591		}
3592		if (mpte != NULL) {
3593			mpte->wire_count--;
3594			KASSERT(mpte->wire_count > 0,
3595			    ("pmap_enter: missing reference to page table page,"
3596			     " va: 0x%x", va));
3597		}
3598	} else
3599		pmap->pm_stats.resident_count++;
3600
3601	/*
3602	 * Enter on the PV list if part of our managed memory.
3603	 */
3604	if ((m->oflags & VPO_UNMANAGED) == 0) {
3605		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3606		    ("pmap_enter: managed mapping within the clean submap"));
3607		if (pv == NULL)
3608			pv = get_pv_entry(pmap, FALSE);
3609		pv->pv_va = va;
3610		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3611		pa |= PG_MANAGED;
3612	} else if (pv != NULL)
3613		free_pv_entry(pmap, pv);
3614
3615	/*
3616	 * Increment counters
3617	 */
3618	if (wired)
3619		pmap->pm_stats.wired_count++;
3620
3621validate:
3622	/*
3623	 * Now validate mapping with desired protection/wiring.
3624	 */
3625	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3626	if ((prot & VM_PROT_WRITE) != 0) {
3627		newpte |= PG_RW;
3628		if ((newpte & PG_MANAGED) != 0)
3629			vm_page_aflag_set(m, PGA_WRITEABLE);
3630	}
3631#if defined(PAE) || defined(PAE_TABLES)
3632	if ((prot & VM_PROT_EXECUTE) == 0)
3633		newpte |= pg_nx;
3634#endif
3635	if (wired)
3636		newpte |= PG_W;
3637	if (va < VM_MAXUSER_ADDRESS)
3638		newpte |= PG_U;
3639	if (pmap == kernel_pmap)
3640		newpte |= pgeflag;
3641
3642	/*
3643	 * if the mapping or permission bits are different, we need
3644	 * to update the pte.
3645	 */
3646	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3647		newpte |= PG_A;
3648		if ((flags & VM_PROT_WRITE) != 0)
3649			newpte |= PG_M;
3650		if (origpte & PG_V) {
3651			invlva = FALSE;
3652			origpte = pte_load_store(pte, newpte);
3653			if (origpte & PG_A) {
3654				if (origpte & PG_MANAGED)
3655					vm_page_aflag_set(om, PGA_REFERENCED);
3656				if (opa != VM_PAGE_TO_PHYS(m))
3657					invlva = TRUE;
3658#if defined(PAE) || defined(PAE_TABLES)
3659				if ((origpte & PG_NX) == 0 &&
3660				    (newpte & PG_NX) != 0)
3661					invlva = TRUE;
3662#endif
3663			}
3664			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3665				if ((origpte & PG_MANAGED) != 0)
3666					vm_page_dirty(om);
3667				if ((prot & VM_PROT_WRITE) == 0)
3668					invlva = TRUE;
3669			}
3670			if ((origpte & PG_MANAGED) != 0 &&
3671			    TAILQ_EMPTY(&om->md.pv_list) &&
3672			    ((om->flags & PG_FICTITIOUS) != 0 ||
3673			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3674				vm_page_aflag_clear(om, PGA_WRITEABLE);
3675			if (invlva)
3676				pmap_invalidate_page(pmap, va);
3677		} else
3678			pte_store(pte, newpte);
3679	}
3680
3681	/*
3682	 * If both the page table page and the reservation are fully
3683	 * populated, then attempt promotion.
3684	 */
3685	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3686	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3687	    vm_reserv_level_iffullpop(m) == 0)
3688		pmap_promote_pde(pmap, pde, va);
3689
3690	sched_unpin();
3691	rw_wunlock(&pvh_global_lock);
3692	PMAP_UNLOCK(pmap);
3693	return (KERN_SUCCESS);
3694}
3695
3696/*
3697 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3698 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3699 * blocking, (2) a mapping already exists at the specified virtual address, or
3700 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3701 */
3702static boolean_t
3703pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3704{
3705	pd_entry_t *pde, newpde;
3706
3707	rw_assert(&pvh_global_lock, RA_WLOCKED);
3708	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3709	pde = pmap_pde(pmap, va);
3710	if (*pde != 0) {
3711		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3712		    " in pmap %p", va, pmap);
3713		return (FALSE);
3714	}
3715	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3716	    PG_PS | PG_V;
3717	if ((m->oflags & VPO_UNMANAGED) == 0) {
3718		newpde |= PG_MANAGED;
3719
3720		/*
3721		 * Abort this mapping if its PV entry could not be created.
3722		 */
3723		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3724			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3725			    " in pmap %p", va, pmap);
3726			return (FALSE);
3727		}
3728	}
3729#if defined(PAE) || defined(PAE_TABLES)
3730	if ((prot & VM_PROT_EXECUTE) == 0)
3731		newpde |= pg_nx;
3732#endif
3733	if (va < VM_MAXUSER_ADDRESS)
3734		newpde |= PG_U;
3735
3736	/*
3737	 * Increment counters.
3738	 */
3739	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3740
3741	/*
3742	 * Map the superpage.
3743	 */
3744	pde_store(pde, newpde);
3745
3746	pmap_pde_mappings++;
3747	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3748	    " in pmap %p", va, pmap);
3749	return (TRUE);
3750}
3751
3752/*
3753 * Maps a sequence of resident pages belonging to the same object.
3754 * The sequence begins with the given page m_start.  This page is
3755 * mapped at the given virtual address start.  Each subsequent page is
3756 * mapped at a virtual address that is offset from start by the same
3757 * amount as the page is offset from m_start within the object.  The
3758 * last page in the sequence is the page with the largest offset from
3759 * m_start that can be mapped at a virtual address less than the given
3760 * virtual address end.  Not every virtual page between start and end
3761 * is mapped; only those for which a resident page exists with the
3762 * corresponding offset from m_start are mapped.
3763 */
3764void
3765pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3766    vm_page_t m_start, vm_prot_t prot)
3767{
3768	vm_offset_t va;
3769	vm_page_t m, mpte;
3770	vm_pindex_t diff, psize;
3771
3772	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3773
3774	psize = atop(end - start);
3775	mpte = NULL;
3776	m = m_start;
3777	rw_wlock(&pvh_global_lock);
3778	PMAP_LOCK(pmap);
3779	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3780		va = start + ptoa(diff);
3781		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3782		    m->psind == 1 && pg_ps_enabled &&
3783		    pmap_enter_pde(pmap, va, m, prot))
3784			m = &m[NBPDR / PAGE_SIZE - 1];
3785		else
3786			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3787			    mpte);
3788		m = TAILQ_NEXT(m, listq);
3789	}
3790	rw_wunlock(&pvh_global_lock);
3791	PMAP_UNLOCK(pmap);
3792}
3793
3794/*
3795 * this code makes some *MAJOR* assumptions:
3796 * 1. Current pmap & pmap exists.
3797 * 2. Not wired.
3798 * 3. Read access.
3799 * 4. No page table pages.
3800 * but is *MUCH* faster than pmap_enter...
3801 */
3802
3803void
3804pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3805{
3806
3807	rw_wlock(&pvh_global_lock);
3808	PMAP_LOCK(pmap);
3809	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3810	rw_wunlock(&pvh_global_lock);
3811	PMAP_UNLOCK(pmap);
3812}
3813
3814static vm_page_t
3815pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3816    vm_prot_t prot, vm_page_t mpte)
3817{
3818	pt_entry_t *pte;
3819	vm_paddr_t pa;
3820	struct spglist free;
3821
3822	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3823	    (m->oflags & VPO_UNMANAGED) != 0,
3824	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3825	rw_assert(&pvh_global_lock, RA_WLOCKED);
3826	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3827
3828	/*
3829	 * In the case that a page table page is not
3830	 * resident, we are creating it here.
3831	 */
3832	if (va < VM_MAXUSER_ADDRESS) {
3833		u_int ptepindex;
3834		pd_entry_t ptepa;
3835
3836		/*
3837		 * Calculate pagetable page index
3838		 */
3839		ptepindex = va >> PDRSHIFT;
3840		if (mpte && (mpte->pindex == ptepindex)) {
3841			mpte->wire_count++;
3842		} else {
3843			/*
3844			 * Get the page directory entry
3845			 */
3846			ptepa = pmap->pm_pdir[ptepindex];
3847
3848			/*
3849			 * If the page table page is mapped, we just increment
3850			 * the hold count, and activate it.
3851			 */
3852			if (ptepa) {
3853				if (ptepa & PG_PS)
3854					return (NULL);
3855				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3856				mpte->wire_count++;
3857			} else {
3858				mpte = _pmap_allocpte(pmap, ptepindex,
3859				    PMAP_ENTER_NOSLEEP);
3860				if (mpte == NULL)
3861					return (mpte);
3862			}
3863		}
3864	} else {
3865		mpte = NULL;
3866	}
3867
3868	/*
3869	 * This call to vtopte makes the assumption that we are
3870	 * entering the page into the current pmap.  In order to support
3871	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3872	 * But that isn't as quick as vtopte.
3873	 */
3874	pte = vtopte(va);
3875	if (*pte) {
3876		if (mpte != NULL) {
3877			mpte->wire_count--;
3878			mpte = NULL;
3879		}
3880		return (mpte);
3881	}
3882
3883	/*
3884	 * Enter on the PV list if part of our managed memory.
3885	 */
3886	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3887	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3888		if (mpte != NULL) {
3889			SLIST_INIT(&free);
3890			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3891				pmap_invalidate_page(pmap, va);
3892				pmap_free_zero_pages(&free);
3893			}
3894
3895			mpte = NULL;
3896		}
3897		return (mpte);
3898	}
3899
3900	/*
3901	 * Increment counters
3902	 */
3903	pmap->pm_stats.resident_count++;
3904
3905	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3906#if defined(PAE) || defined(PAE_TABLES)
3907	if ((prot & VM_PROT_EXECUTE) == 0)
3908		pa |= pg_nx;
3909#endif
3910
3911	/*
3912	 * Now validate mapping with RO protection
3913	 */
3914	if ((m->oflags & VPO_UNMANAGED) != 0)
3915		pte_store(pte, pa | PG_V | PG_U);
3916	else
3917		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3918	return (mpte);
3919}
3920
3921/*
3922 * Make a temporary mapping for a physical address.  This is only intended
3923 * to be used for panic dumps.
3924 */
3925void *
3926pmap_kenter_temporary(vm_paddr_t pa, int i)
3927{
3928	vm_offset_t va;
3929
3930	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3931	pmap_kenter(va, pa);
3932	invlpg(va);
3933	return ((void *)crashdumpmap);
3934}
3935
3936/*
3937 * This code maps large physical mmap regions into the
3938 * processor address space.  Note that some shortcuts
3939 * are taken, but the code works.
3940 */
3941void
3942pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3943    vm_pindex_t pindex, vm_size_t size)
3944{
3945	pd_entry_t *pde;
3946	vm_paddr_t pa, ptepa;
3947	vm_page_t p;
3948	int pat_mode;
3949
3950	VM_OBJECT_ASSERT_WLOCKED(object);
3951	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3952	    ("pmap_object_init_pt: non-device object"));
3953	if (pseflag &&
3954	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3955		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3956			return;
3957		p = vm_page_lookup(object, pindex);
3958		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3959		    ("pmap_object_init_pt: invalid page %p", p));
3960		pat_mode = p->md.pat_mode;
3961
3962		/*
3963		 * Abort the mapping if the first page is not physically
3964		 * aligned to a 2/4MB page boundary.
3965		 */
3966		ptepa = VM_PAGE_TO_PHYS(p);
3967		if (ptepa & (NBPDR - 1))
3968			return;
3969
3970		/*
3971		 * Skip the first page.  Abort the mapping if the rest of
3972		 * the pages are not physically contiguous or have differing
3973		 * memory attributes.
3974		 */
3975		p = TAILQ_NEXT(p, listq);
3976		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3977		    pa += PAGE_SIZE) {
3978			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3979			    ("pmap_object_init_pt: invalid page %p", p));
3980			if (pa != VM_PAGE_TO_PHYS(p) ||
3981			    pat_mode != p->md.pat_mode)
3982				return;
3983			p = TAILQ_NEXT(p, listq);
3984		}
3985
3986		/*
3987		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3988		 * "size" is a multiple of 2/4M, adding the PAT setting to
3989		 * "pa" will not affect the termination of this loop.
3990		 */
3991		PMAP_LOCK(pmap);
3992		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3993		    size; pa += NBPDR) {
3994			pde = pmap_pde(pmap, addr);
3995			if (*pde == 0) {
3996				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3997				    PG_U | PG_RW | PG_V);
3998				pmap->pm_stats.resident_count += NBPDR /
3999				    PAGE_SIZE;
4000				pmap_pde_mappings++;
4001			}
4002			/* Else continue on if the PDE is already valid. */
4003			addr += NBPDR;
4004		}
4005		PMAP_UNLOCK(pmap);
4006	}
4007}
4008
4009/*
4010 *	Clear the wired attribute from the mappings for the specified range of
4011 *	addresses in the given pmap.  Every valid mapping within that range
4012 *	must have the wired attribute set.  In contrast, invalid mappings
4013 *	cannot have the wired attribute set, so they are ignored.
4014 *
4015 *	The wired attribute of the page table entry is not a hardware feature,
4016 *	so there is no need to invalidate any TLB entries.
4017 */
4018void
4019pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4020{
4021	vm_offset_t pdnxt;
4022	pd_entry_t *pde;
4023	pt_entry_t *pte;
4024	boolean_t pv_lists_locked;
4025
4026	if (pmap_is_current(pmap))
4027		pv_lists_locked = FALSE;
4028	else {
4029		pv_lists_locked = TRUE;
4030resume:
4031		rw_wlock(&pvh_global_lock);
4032		sched_pin();
4033	}
4034	PMAP_LOCK(pmap);
4035	for (; sva < eva; sva = pdnxt) {
4036		pdnxt = (sva + NBPDR) & ~PDRMASK;
4037		if (pdnxt < sva)
4038			pdnxt = eva;
4039		pde = pmap_pde(pmap, sva);
4040		if ((*pde & PG_V) == 0)
4041			continue;
4042		if ((*pde & PG_PS) != 0) {
4043			if ((*pde & PG_W) == 0)
4044				panic("pmap_unwire: pde %#jx is missing PG_W",
4045				    (uintmax_t)*pde);
4046
4047			/*
4048			 * Are we unwiring the entire large page?  If not,
4049			 * demote the mapping and fall through.
4050			 */
4051			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4052				/*
4053				 * Regardless of whether a pde (or pte) is 32
4054				 * or 64 bits in size, PG_W is among the least
4055				 * significant 32 bits.
4056				 */
4057				atomic_clear_int((u_int *)pde, PG_W);
4058				pmap->pm_stats.wired_count -= NBPDR /
4059				    PAGE_SIZE;
4060				continue;
4061			} else {
4062				if (!pv_lists_locked) {
4063					pv_lists_locked = TRUE;
4064					if (!rw_try_wlock(&pvh_global_lock)) {
4065						PMAP_UNLOCK(pmap);
4066						/* Repeat sva. */
4067						goto resume;
4068					}
4069					sched_pin();
4070				}
4071				if (!pmap_demote_pde(pmap, pde, sva))
4072					panic("pmap_unwire: demotion failed");
4073			}
4074		}
4075		if (pdnxt > eva)
4076			pdnxt = eva;
4077		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4078		    sva += PAGE_SIZE) {
4079			if ((*pte & PG_V) == 0)
4080				continue;
4081			if ((*pte & PG_W) == 0)
4082				panic("pmap_unwire: pte %#jx is missing PG_W",
4083				    (uintmax_t)*pte);
4084
4085			/*
4086			 * PG_W must be cleared atomically.  Although the pmap
4087			 * lock synchronizes access to PG_W, another processor
4088			 * could be setting PG_M and/or PG_A concurrently.
4089			 *
4090			 * PG_W is among the least significant 32 bits.
4091			 */
4092			atomic_clear_int((u_int *)pte, PG_W);
4093			pmap->pm_stats.wired_count--;
4094		}
4095	}
4096	if (pv_lists_locked) {
4097		sched_unpin();
4098		rw_wunlock(&pvh_global_lock);
4099	}
4100	PMAP_UNLOCK(pmap);
4101}
4102
4103
4104/*
4105 *	Copy the range specified by src_addr/len
4106 *	from the source map to the range dst_addr/len
4107 *	in the destination map.
4108 *
4109 *	This routine is only advisory and need not do anything.
4110 */
4111
4112void
4113pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4114    vm_offset_t src_addr)
4115{
4116	struct spglist free;
4117	vm_offset_t addr;
4118	vm_offset_t end_addr = src_addr + len;
4119	vm_offset_t pdnxt;
4120
4121	if (dst_addr != src_addr)
4122		return;
4123
4124	if (!pmap_is_current(src_pmap))
4125		return;
4126
4127	rw_wlock(&pvh_global_lock);
4128	if (dst_pmap < src_pmap) {
4129		PMAP_LOCK(dst_pmap);
4130		PMAP_LOCK(src_pmap);
4131	} else {
4132		PMAP_LOCK(src_pmap);
4133		PMAP_LOCK(dst_pmap);
4134	}
4135	sched_pin();
4136	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4137		pt_entry_t *src_pte, *dst_pte;
4138		vm_page_t dstmpte, srcmpte;
4139		pd_entry_t srcptepaddr;
4140		u_int ptepindex;
4141
4142		KASSERT(addr < UPT_MIN_ADDRESS,
4143		    ("pmap_copy: invalid to pmap_copy page tables"));
4144
4145		pdnxt = (addr + NBPDR) & ~PDRMASK;
4146		if (pdnxt < addr)
4147			pdnxt = end_addr;
4148		ptepindex = addr >> PDRSHIFT;
4149
4150		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4151		if (srcptepaddr == 0)
4152			continue;
4153
4154		if (srcptepaddr & PG_PS) {
4155			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4156				continue;
4157			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4158			    ((srcptepaddr & PG_MANAGED) == 0 ||
4159			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4160			    PG_PS_FRAME))) {
4161				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4162				    ~PG_W;
4163				dst_pmap->pm_stats.resident_count +=
4164				    NBPDR / PAGE_SIZE;
4165				pmap_pde_mappings++;
4166			}
4167			continue;
4168		}
4169
4170		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4171		KASSERT(srcmpte->wire_count > 0,
4172		    ("pmap_copy: source page table page is unused"));
4173
4174		if (pdnxt > end_addr)
4175			pdnxt = end_addr;
4176
4177		src_pte = vtopte(addr);
4178		while (addr < pdnxt) {
4179			pt_entry_t ptetemp;
4180			ptetemp = *src_pte;
4181			/*
4182			 * we only virtual copy managed pages
4183			 */
4184			if ((ptetemp & PG_MANAGED) != 0) {
4185				dstmpte = pmap_allocpte(dst_pmap, addr,
4186				    PMAP_ENTER_NOSLEEP);
4187				if (dstmpte == NULL)
4188					goto out;
4189				dst_pte = pmap_pte_quick(dst_pmap, addr);
4190				if (*dst_pte == 0 &&
4191				    pmap_try_insert_pv_entry(dst_pmap, addr,
4192				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4193					/*
4194					 * Clear the wired, modified, and
4195					 * accessed (referenced) bits
4196					 * during the copy.
4197					 */
4198					*dst_pte = ptetemp & ~(PG_W | PG_M |
4199					    PG_A);
4200					dst_pmap->pm_stats.resident_count++;
4201	 			} else {
4202					SLIST_INIT(&free);
4203					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4204					    &free)) {
4205						pmap_invalidate_page(dst_pmap,
4206						    addr);
4207						pmap_free_zero_pages(&free);
4208					}
4209					goto out;
4210				}
4211				if (dstmpte->wire_count >= srcmpte->wire_count)
4212					break;
4213			}
4214			addr += PAGE_SIZE;
4215			src_pte++;
4216		}
4217	}
4218out:
4219	sched_unpin();
4220	rw_wunlock(&pvh_global_lock);
4221	PMAP_UNLOCK(src_pmap);
4222	PMAP_UNLOCK(dst_pmap);
4223}
4224
4225static __inline void
4226pagezero(void *page)
4227{
4228#if defined(I686_CPU)
4229	if (cpu_class == CPUCLASS_686) {
4230		if (cpu_feature & CPUID_SSE2)
4231			sse2_pagezero(page);
4232		else
4233			i686_pagezero(page);
4234	} else
4235#endif
4236		bzero(page, PAGE_SIZE);
4237}
4238
4239/*
4240 *	pmap_zero_page zeros the specified hardware page by mapping
4241 *	the page into KVM and using bzero to clear its contents.
4242 */
4243void
4244pmap_zero_page(vm_page_t m)
4245{
4246	pt_entry_t *cmap_pte2;
4247	struct pcpu *pc;
4248
4249	sched_pin();
4250	pc = get_pcpu();
4251	cmap_pte2 = pc->pc_cmap_pte2;
4252	mtx_lock(&pc->pc_cmap_lock);
4253	if (*cmap_pte2)
4254		panic("pmap_zero_page: CMAP2 busy");
4255	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4256	    pmap_cache_bits(m->md.pat_mode, 0);
4257	invlcaddr(pc->pc_cmap_addr2);
4258	pagezero(pc->pc_cmap_addr2);
4259	*cmap_pte2 = 0;
4260
4261	/*
4262	 * Unpin the thread before releasing the lock.  Otherwise the thread
4263	 * could be rescheduled while still bound to the current CPU, only
4264	 * to unpin itself immediately upon resuming execution.
4265	 */
4266	sched_unpin();
4267	mtx_unlock(&pc->pc_cmap_lock);
4268}
4269
4270/*
4271 *	pmap_zero_page_area zeros the specified hardware page by mapping
4272 *	the page into KVM and using bzero to clear its contents.
4273 *
4274 *	off and size may not cover an area beyond a single hardware page.
4275 */
4276void
4277pmap_zero_page_area(vm_page_t m, int off, int size)
4278{
4279	pt_entry_t *cmap_pte2;
4280	struct pcpu *pc;
4281
4282	sched_pin();
4283	pc = get_pcpu();
4284	cmap_pte2 = pc->pc_cmap_pte2;
4285	mtx_lock(&pc->pc_cmap_lock);
4286	if (*cmap_pte2)
4287		panic("pmap_zero_page_area: CMAP2 busy");
4288	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4289	    pmap_cache_bits(m->md.pat_mode, 0);
4290	invlcaddr(pc->pc_cmap_addr2);
4291	if (off == 0 && size == PAGE_SIZE)
4292		pagezero(pc->pc_cmap_addr2);
4293	else
4294		bzero(pc->pc_cmap_addr2 + off, size);
4295	*cmap_pte2 = 0;
4296	sched_unpin();
4297	mtx_unlock(&pc->pc_cmap_lock);
4298}
4299
4300/*
4301 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4302 *	the page into KVM and using bzero to clear its contents.  This
4303 *	is intended to be called from the vm_pagezero process only and
4304 *	outside of Giant.
4305 */
4306void
4307pmap_zero_page_idle(vm_page_t m)
4308{
4309
4310	if (*CMAP3)
4311		panic("pmap_zero_page_idle: CMAP3 busy");
4312	sched_pin();
4313	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4314	    pmap_cache_bits(m->md.pat_mode, 0);
4315	invlcaddr(CADDR3);
4316	pagezero(CADDR3);
4317	*CMAP3 = 0;
4318	sched_unpin();
4319}
4320
4321/*
4322 *	pmap_copy_page copies the specified (machine independent)
4323 *	page by mapping the page into virtual memory and using
4324 *	bcopy to copy the page, one machine dependent page at a
4325 *	time.
4326 */
4327void
4328pmap_copy_page(vm_page_t src, vm_page_t dst)
4329{
4330	pt_entry_t *cmap_pte1, *cmap_pte2;
4331	struct pcpu *pc;
4332
4333	sched_pin();
4334	pc = get_pcpu();
4335	cmap_pte1 = pc->pc_cmap_pte1;
4336	cmap_pte2 = pc->pc_cmap_pte2;
4337	mtx_lock(&pc->pc_cmap_lock);
4338	if (*cmap_pte1)
4339		panic("pmap_copy_page: CMAP1 busy");
4340	if (*cmap_pte2)
4341		panic("pmap_copy_page: CMAP2 busy");
4342	*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4343	    pmap_cache_bits(src->md.pat_mode, 0);
4344	invlcaddr(pc->pc_cmap_addr1);
4345	*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4346	    pmap_cache_bits(dst->md.pat_mode, 0);
4347	invlcaddr(pc->pc_cmap_addr2);
4348	bcopy(pc->pc_cmap_addr1, pc->pc_cmap_addr2, PAGE_SIZE);
4349	*cmap_pte1 = 0;
4350	*cmap_pte2 = 0;
4351	sched_unpin();
4352	mtx_unlock(&pc->pc_cmap_lock);
4353}
4354
4355int unmapped_buf_allowed = 1;
4356
4357void
4358pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4359    vm_offset_t b_offset, int xfersize)
4360{
4361	vm_page_t a_pg, b_pg;
4362	char *a_cp, *b_cp;
4363	vm_offset_t a_pg_offset, b_pg_offset;
4364	pt_entry_t *cmap_pte1, *cmap_pte2;
4365	struct pcpu *pc;
4366	int cnt;
4367
4368	sched_pin();
4369	pc = get_pcpu();
4370	cmap_pte1 = pc->pc_cmap_pte1;
4371	cmap_pte2 = pc->pc_cmap_pte2;
4372	mtx_lock(&pc->pc_cmap_lock);
4373	if (*cmap_pte1 != 0)
4374		panic("pmap_copy_pages: CMAP1 busy");
4375	if (*cmap_pte2 != 0)
4376		panic("pmap_copy_pages: CMAP2 busy");
4377	while (xfersize > 0) {
4378		a_pg = ma[a_offset >> PAGE_SHIFT];
4379		a_pg_offset = a_offset & PAGE_MASK;
4380		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4381		b_pg = mb[b_offset >> PAGE_SHIFT];
4382		b_pg_offset = b_offset & PAGE_MASK;
4383		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4384		*cmap_pte1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4385		    pmap_cache_bits(a_pg->md.pat_mode, 0);
4386		invlcaddr(pc->pc_cmap_addr1);
4387		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4388		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4389		invlcaddr(pc->pc_cmap_addr2);
4390		a_cp = pc->pc_cmap_addr1 + a_pg_offset;
4391		b_cp = pc->pc_cmap_addr2 + b_pg_offset;
4392		bcopy(a_cp, b_cp, cnt);
4393		a_offset += cnt;
4394		b_offset += cnt;
4395		xfersize -= cnt;
4396	}
4397	*cmap_pte1 = 0;
4398	*cmap_pte2 = 0;
4399	sched_unpin();
4400	mtx_unlock(&pc->pc_cmap_lock);
4401}
4402
4403/*
4404 * Returns true if the pmap's pv is one of the first
4405 * 16 pvs linked to from this page.  This count may
4406 * be changed upwards or downwards in the future; it
4407 * is only necessary that true be returned for a small
4408 * subset of pmaps for proper page aging.
4409 */
4410boolean_t
4411pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4412{
4413	struct md_page *pvh;
4414	pv_entry_t pv;
4415	int loops = 0;
4416	boolean_t rv;
4417
4418	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4419	    ("pmap_page_exists_quick: page %p is not managed", m));
4420	rv = FALSE;
4421	rw_wlock(&pvh_global_lock);
4422	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4423		if (PV_PMAP(pv) == pmap) {
4424			rv = TRUE;
4425			break;
4426		}
4427		loops++;
4428		if (loops >= 16)
4429			break;
4430	}
4431	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4432		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4433		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4434			if (PV_PMAP(pv) == pmap) {
4435				rv = TRUE;
4436				break;
4437			}
4438			loops++;
4439			if (loops >= 16)
4440				break;
4441		}
4442	}
4443	rw_wunlock(&pvh_global_lock);
4444	return (rv);
4445}
4446
4447/*
4448 *	pmap_page_wired_mappings:
4449 *
4450 *	Return the number of managed mappings to the given physical page
4451 *	that are wired.
4452 */
4453int
4454pmap_page_wired_mappings(vm_page_t m)
4455{
4456	int count;
4457
4458	count = 0;
4459	if ((m->oflags & VPO_UNMANAGED) != 0)
4460		return (count);
4461	rw_wlock(&pvh_global_lock);
4462	count = pmap_pvh_wired_mappings(&m->md, count);
4463	if ((m->flags & PG_FICTITIOUS) == 0) {
4464	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4465	        count);
4466	}
4467	rw_wunlock(&pvh_global_lock);
4468	return (count);
4469}
4470
4471/*
4472 *	pmap_pvh_wired_mappings:
4473 *
4474 *	Return the updated number "count" of managed mappings that are wired.
4475 */
4476static int
4477pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4478{
4479	pmap_t pmap;
4480	pt_entry_t *pte;
4481	pv_entry_t pv;
4482
4483	rw_assert(&pvh_global_lock, RA_WLOCKED);
4484	sched_pin();
4485	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4486		pmap = PV_PMAP(pv);
4487		PMAP_LOCK(pmap);
4488		pte = pmap_pte_quick(pmap, pv->pv_va);
4489		if ((*pte & PG_W) != 0)
4490			count++;
4491		PMAP_UNLOCK(pmap);
4492	}
4493	sched_unpin();
4494	return (count);
4495}
4496
4497/*
4498 * Returns TRUE if the given page is mapped individually or as part of
4499 * a 4mpage.  Otherwise, returns FALSE.
4500 */
4501boolean_t
4502pmap_page_is_mapped(vm_page_t m)
4503{
4504	boolean_t rv;
4505
4506	if ((m->oflags & VPO_UNMANAGED) != 0)
4507		return (FALSE);
4508	rw_wlock(&pvh_global_lock);
4509	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4510	    ((m->flags & PG_FICTITIOUS) == 0 &&
4511	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4512	rw_wunlock(&pvh_global_lock);
4513	return (rv);
4514}
4515
4516/*
4517 * Remove all pages from specified address space
4518 * this aids process exit speeds.  Also, this code
4519 * is special cased for current process only, but
4520 * can have the more generic (and slightly slower)
4521 * mode enabled.  This is much faster than pmap_remove
4522 * in the case of running down an entire address space.
4523 */
4524void
4525pmap_remove_pages(pmap_t pmap)
4526{
4527	pt_entry_t *pte, tpte;
4528	vm_page_t m, mpte, mt;
4529	pv_entry_t pv;
4530	struct md_page *pvh;
4531	struct pv_chunk *pc, *npc;
4532	struct spglist free;
4533	int field, idx;
4534	int32_t bit;
4535	uint32_t inuse, bitmask;
4536	int allfree;
4537
4538	if (pmap != PCPU_GET(curpmap)) {
4539		printf("warning: pmap_remove_pages called with non-current pmap\n");
4540		return;
4541	}
4542	SLIST_INIT(&free);
4543	rw_wlock(&pvh_global_lock);
4544	PMAP_LOCK(pmap);
4545	sched_pin();
4546	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4547		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4548		    pc->pc_pmap));
4549		allfree = 1;
4550		for (field = 0; field < _NPCM; field++) {
4551			inuse = ~pc->pc_map[field] & pc_freemask[field];
4552			while (inuse != 0) {
4553				bit = bsfl(inuse);
4554				bitmask = 1UL << bit;
4555				idx = field * 32 + bit;
4556				pv = &pc->pc_pventry[idx];
4557				inuse &= ~bitmask;
4558
4559				pte = pmap_pde(pmap, pv->pv_va);
4560				tpte = *pte;
4561				if ((tpte & PG_PS) == 0) {
4562					pte = vtopte(pv->pv_va);
4563					tpte = *pte & ~PG_PTE_PAT;
4564				}
4565
4566				if (tpte == 0) {
4567					printf(
4568					    "TPTE at %p  IS ZERO @ VA %08x\n",
4569					    pte, pv->pv_va);
4570					panic("bad pte");
4571				}
4572
4573/*
4574 * We cannot remove wired pages from a process' mapping at this time
4575 */
4576				if (tpte & PG_W) {
4577					allfree = 0;
4578					continue;
4579				}
4580
4581				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4582				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4583				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4584				    m, (uintmax_t)m->phys_addr,
4585				    (uintmax_t)tpte));
4586
4587				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4588				    m < &vm_page_array[vm_page_array_size],
4589				    ("pmap_remove_pages: bad tpte %#jx",
4590				    (uintmax_t)tpte));
4591
4592				pte_clear(pte);
4593
4594				/*
4595				 * Update the vm_page_t clean/reference bits.
4596				 */
4597				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4598					if ((tpte & PG_PS) != 0) {
4599						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4600							vm_page_dirty(mt);
4601					} else
4602						vm_page_dirty(m);
4603				}
4604
4605				/* Mark free */
4606				PV_STAT(pv_entry_frees++);
4607				PV_STAT(pv_entry_spare++);
4608				pv_entry_count--;
4609				pc->pc_map[field] |= bitmask;
4610				if ((tpte & PG_PS) != 0) {
4611					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4612					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4613					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4614					if (TAILQ_EMPTY(&pvh->pv_list)) {
4615						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4616							if (TAILQ_EMPTY(&mt->md.pv_list))
4617								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4618					}
4619					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4620					if (mpte != NULL) {
4621						pmap_remove_pt_page(pmap, mpte);
4622						pmap->pm_stats.resident_count--;
4623						KASSERT(mpte->wire_count == NPTEPG,
4624						    ("pmap_remove_pages: pte page wire count error"));
4625						mpte->wire_count = 0;
4626						pmap_add_delayed_free_list(mpte, &free, FALSE);
4627						atomic_subtract_int(&vm_cnt.v_wire_count, 1);
4628					}
4629				} else {
4630					pmap->pm_stats.resident_count--;
4631					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4632					if (TAILQ_EMPTY(&m->md.pv_list) &&
4633					    (m->flags & PG_FICTITIOUS) == 0) {
4634						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4635						if (TAILQ_EMPTY(&pvh->pv_list))
4636							vm_page_aflag_clear(m, PGA_WRITEABLE);
4637					}
4638					pmap_unuse_pt(pmap, pv->pv_va, &free);
4639				}
4640			}
4641		}
4642		if (allfree) {
4643			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4644			free_pv_chunk(pc);
4645		}
4646	}
4647	sched_unpin();
4648	pmap_invalidate_all(pmap);
4649	rw_wunlock(&pvh_global_lock);
4650	PMAP_UNLOCK(pmap);
4651	pmap_free_zero_pages(&free);
4652}
4653
4654/*
4655 *	pmap_is_modified:
4656 *
4657 *	Return whether or not the specified physical page was modified
4658 *	in any physical maps.
4659 */
4660boolean_t
4661pmap_is_modified(vm_page_t m)
4662{
4663	boolean_t rv;
4664
4665	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4666	    ("pmap_is_modified: page %p is not managed", m));
4667
4668	/*
4669	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4670	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4671	 * is clear, no PTEs can have PG_M set.
4672	 */
4673	VM_OBJECT_ASSERT_WLOCKED(m->object);
4674	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4675		return (FALSE);
4676	rw_wlock(&pvh_global_lock);
4677	rv = pmap_is_modified_pvh(&m->md) ||
4678	    ((m->flags & PG_FICTITIOUS) == 0 &&
4679	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4680	rw_wunlock(&pvh_global_lock);
4681	return (rv);
4682}
4683
4684/*
4685 * Returns TRUE if any of the given mappings were used to modify
4686 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4687 * mappings are supported.
4688 */
4689static boolean_t
4690pmap_is_modified_pvh(struct md_page *pvh)
4691{
4692	pv_entry_t pv;
4693	pt_entry_t *pte;
4694	pmap_t pmap;
4695	boolean_t rv;
4696
4697	rw_assert(&pvh_global_lock, RA_WLOCKED);
4698	rv = FALSE;
4699	sched_pin();
4700	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4701		pmap = PV_PMAP(pv);
4702		PMAP_LOCK(pmap);
4703		pte = pmap_pte_quick(pmap, pv->pv_va);
4704		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4705		PMAP_UNLOCK(pmap);
4706		if (rv)
4707			break;
4708	}
4709	sched_unpin();
4710	return (rv);
4711}
4712
4713/*
4714 *	pmap_is_prefaultable:
4715 *
4716 *	Return whether or not the specified virtual address is elgible
4717 *	for prefault.
4718 */
4719boolean_t
4720pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4721{
4722	pd_entry_t *pde;
4723	pt_entry_t *pte;
4724	boolean_t rv;
4725
4726	rv = FALSE;
4727	PMAP_LOCK(pmap);
4728	pde = pmap_pde(pmap, addr);
4729	if (*pde != 0 && (*pde & PG_PS) == 0) {
4730		pte = vtopte(addr);
4731		rv = *pte == 0;
4732	}
4733	PMAP_UNLOCK(pmap);
4734	return (rv);
4735}
4736
4737/*
4738 *	pmap_is_referenced:
4739 *
4740 *	Return whether or not the specified physical page was referenced
4741 *	in any physical maps.
4742 */
4743boolean_t
4744pmap_is_referenced(vm_page_t m)
4745{
4746	boolean_t rv;
4747
4748	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4749	    ("pmap_is_referenced: page %p is not managed", m));
4750	rw_wlock(&pvh_global_lock);
4751	rv = pmap_is_referenced_pvh(&m->md) ||
4752	    ((m->flags & PG_FICTITIOUS) == 0 &&
4753	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4754	rw_wunlock(&pvh_global_lock);
4755	return (rv);
4756}
4757
4758/*
4759 * Returns TRUE if any of the given mappings were referenced and FALSE
4760 * otherwise.  Both page and 4mpage mappings are supported.
4761 */
4762static boolean_t
4763pmap_is_referenced_pvh(struct md_page *pvh)
4764{
4765	pv_entry_t pv;
4766	pt_entry_t *pte;
4767	pmap_t pmap;
4768	boolean_t rv;
4769
4770	rw_assert(&pvh_global_lock, RA_WLOCKED);
4771	rv = FALSE;
4772	sched_pin();
4773	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4774		pmap = PV_PMAP(pv);
4775		PMAP_LOCK(pmap);
4776		pte = pmap_pte_quick(pmap, pv->pv_va);
4777		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4778		PMAP_UNLOCK(pmap);
4779		if (rv)
4780			break;
4781	}
4782	sched_unpin();
4783	return (rv);
4784}
4785
4786/*
4787 * Clear the write and modified bits in each of the given page's mappings.
4788 */
4789void
4790pmap_remove_write(vm_page_t m)
4791{
4792	struct md_page *pvh;
4793	pv_entry_t next_pv, pv;
4794	pmap_t pmap;
4795	pd_entry_t *pde;
4796	pt_entry_t oldpte, *pte;
4797	vm_offset_t va;
4798
4799	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4800	    ("pmap_remove_write: page %p is not managed", m));
4801
4802	/*
4803	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4804	 * set by another thread while the object is locked.  Thus,
4805	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4806	 */
4807	VM_OBJECT_ASSERT_WLOCKED(m->object);
4808	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4809		return;
4810	rw_wlock(&pvh_global_lock);
4811	sched_pin();
4812	if ((m->flags & PG_FICTITIOUS) != 0)
4813		goto small_mappings;
4814	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4815	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4816		va = pv->pv_va;
4817		pmap = PV_PMAP(pv);
4818		PMAP_LOCK(pmap);
4819		pde = pmap_pde(pmap, va);
4820		if ((*pde & PG_RW) != 0)
4821			(void)pmap_demote_pde(pmap, pde, va);
4822		PMAP_UNLOCK(pmap);
4823	}
4824small_mappings:
4825	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4826		pmap = PV_PMAP(pv);
4827		PMAP_LOCK(pmap);
4828		pde = pmap_pde(pmap, pv->pv_va);
4829		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4830		    " a 4mpage in page %p's pv list", m));
4831		pte = pmap_pte_quick(pmap, pv->pv_va);
4832retry:
4833		oldpte = *pte;
4834		if ((oldpte & PG_RW) != 0) {
4835			/*
4836			 * Regardless of whether a pte is 32 or 64 bits
4837			 * in size, PG_RW and PG_M are among the least
4838			 * significant 32 bits.
4839			 */
4840			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4841			    oldpte & ~(PG_RW | PG_M)))
4842				goto retry;
4843			if ((oldpte & PG_M) != 0)
4844				vm_page_dirty(m);
4845			pmap_invalidate_page(pmap, pv->pv_va);
4846		}
4847		PMAP_UNLOCK(pmap);
4848	}
4849	vm_page_aflag_clear(m, PGA_WRITEABLE);
4850	sched_unpin();
4851	rw_wunlock(&pvh_global_lock);
4852}
4853
4854#define	PMAP_TS_REFERENCED_MAX	5
4855
4856/*
4857 *	pmap_ts_referenced:
4858 *
4859 *	Return a count of reference bits for a page, clearing those bits.
4860 *	It is not necessary for every reference bit to be cleared, but it
4861 *	is necessary that 0 only be returned when there are truly no
4862 *	reference bits set.
4863 *
4864 *	XXX: The exact number of bits to check and clear is a matter that
4865 *	should be tested and standardized at some point in the future for
4866 *	optimal aging of shared pages.
4867 *
4868 *	As an optimization, update the page's dirty field if a modified bit is
4869 *	found while counting reference bits.  This opportunistic update can be
4870 *	performed at low cost and can eliminate the need for some future calls
4871 *	to pmap_is_modified().  However, since this function stops after
4872 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
4873 *	dirty pages.  Those dirty pages will only be detected by a future call
4874 *	to pmap_is_modified().
4875 */
4876int
4877pmap_ts_referenced(vm_page_t m)
4878{
4879	struct md_page *pvh;
4880	pv_entry_t pv, pvf;
4881	pmap_t pmap;
4882	pd_entry_t *pde;
4883	pt_entry_t *pte;
4884	vm_paddr_t pa;
4885	int rtval = 0;
4886
4887	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4888	    ("pmap_ts_referenced: page %p is not managed", m));
4889	pa = VM_PAGE_TO_PHYS(m);
4890	pvh = pa_to_pvh(pa);
4891	rw_wlock(&pvh_global_lock);
4892	sched_pin();
4893	if ((m->flags & PG_FICTITIOUS) != 0 ||
4894	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4895		goto small_mappings;
4896	pv = pvf;
4897	do {
4898		pmap = PV_PMAP(pv);
4899		PMAP_LOCK(pmap);
4900		pde = pmap_pde(pmap, pv->pv_va);
4901		if ((*pde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4902			/*
4903			 * Although "*pde" is mapping a 2/4MB page, because
4904			 * this function is called at a 4KB page granularity,
4905			 * we only update the 4KB page under test.
4906			 */
4907			vm_page_dirty(m);
4908		}
4909		if ((*pde & PG_A) != 0) {
4910			/*
4911			 * Since this reference bit is shared by either 1024
4912			 * or 512 4KB pages, it should not be cleared every
4913			 * time it is tested.  Apply a simple "hash" function
4914			 * on the physical page number, the virtual superpage
4915			 * number, and the pmap address to select one 4KB page
4916			 * out of the 1024 or 512 on which testing the
4917			 * reference bit will result in clearing that bit.
4918			 * This function is designed to avoid the selection of
4919			 * the same 4KB page for every 2- or 4MB page mapping.
4920			 *
4921			 * On demotion, a mapping that hasn't been referenced
4922			 * is simply destroyed.  To avoid the possibility of a
4923			 * subsequent page fault on a demoted wired mapping,
4924			 * always leave its reference bit set.  Moreover,
4925			 * since the superpage is wired, the current state of
4926			 * its reference bit won't affect page replacement.
4927			 */
4928			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4929			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4930			    (*pde & PG_W) == 0) {
4931				atomic_clear_int((u_int *)pde, PG_A);
4932				pmap_invalidate_page(pmap, pv->pv_va);
4933			}
4934			rtval++;
4935		}
4936		PMAP_UNLOCK(pmap);
4937		/* Rotate the PV list if it has more than one entry. */
4938		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4939			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4940			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4941		}
4942		if (rtval >= PMAP_TS_REFERENCED_MAX)
4943			goto out;
4944	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4945small_mappings:
4946	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4947		goto out;
4948	pv = pvf;
4949	do {
4950		pmap = PV_PMAP(pv);
4951		PMAP_LOCK(pmap);
4952		pde = pmap_pde(pmap, pv->pv_va);
4953		KASSERT((*pde & PG_PS) == 0,
4954		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4955		    m));
4956		pte = pmap_pte_quick(pmap, pv->pv_va);
4957		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4958			vm_page_dirty(m);
4959		if ((*pte & PG_A) != 0) {
4960			atomic_clear_int((u_int *)pte, PG_A);
4961			pmap_invalidate_page(pmap, pv->pv_va);
4962			rtval++;
4963		}
4964		PMAP_UNLOCK(pmap);
4965		/* Rotate the PV list if it has more than one entry. */
4966		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4967			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4968			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4969		}
4970	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4971	    PMAP_TS_REFERENCED_MAX);
4972out:
4973	sched_unpin();
4974	rw_wunlock(&pvh_global_lock);
4975	return (rtval);
4976}
4977
4978/*
4979 *	Apply the given advice to the specified range of addresses within the
4980 *	given pmap.  Depending on the advice, clear the referenced and/or
4981 *	modified flags in each mapping and set the mapped page's dirty field.
4982 */
4983void
4984pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4985{
4986	pd_entry_t oldpde, *pde;
4987	pt_entry_t *pte;
4988	vm_offset_t va, pdnxt;
4989	vm_page_t m;
4990	boolean_t anychanged, pv_lists_locked;
4991
4992	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4993		return;
4994	if (pmap_is_current(pmap))
4995		pv_lists_locked = FALSE;
4996	else {
4997		pv_lists_locked = TRUE;
4998resume:
4999		rw_wlock(&pvh_global_lock);
5000		sched_pin();
5001	}
5002	anychanged = FALSE;
5003	PMAP_LOCK(pmap);
5004	for (; sva < eva; sva = pdnxt) {
5005		pdnxt = (sva + NBPDR) & ~PDRMASK;
5006		if (pdnxt < sva)
5007			pdnxt = eva;
5008		pde = pmap_pde(pmap, sva);
5009		oldpde = *pde;
5010		if ((oldpde & PG_V) == 0)
5011			continue;
5012		else if ((oldpde & PG_PS) != 0) {
5013			if ((oldpde & PG_MANAGED) == 0)
5014				continue;
5015			if (!pv_lists_locked) {
5016				pv_lists_locked = TRUE;
5017				if (!rw_try_wlock(&pvh_global_lock)) {
5018					if (anychanged)
5019						pmap_invalidate_all(pmap);
5020					PMAP_UNLOCK(pmap);
5021					goto resume;
5022				}
5023				sched_pin();
5024			}
5025			if (!pmap_demote_pde(pmap, pde, sva)) {
5026				/*
5027				 * The large page mapping was destroyed.
5028				 */
5029				continue;
5030			}
5031
5032			/*
5033			 * Unless the page mappings are wired, remove the
5034			 * mapping to a single page so that a subsequent
5035			 * access may repromote.  Since the underlying page
5036			 * table page is fully populated, this removal never
5037			 * frees a page table page.
5038			 */
5039			if ((oldpde & PG_W) == 0) {
5040				pte = pmap_pte_quick(pmap, sva);
5041				KASSERT((*pte & PG_V) != 0,
5042				    ("pmap_advise: invalid PTE"));
5043				pmap_remove_pte(pmap, pte, sva, NULL);
5044				anychanged = TRUE;
5045			}
5046		}
5047		if (pdnxt > eva)
5048			pdnxt = eva;
5049		va = pdnxt;
5050		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5051		    sva += PAGE_SIZE) {
5052			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
5053				goto maybe_invlrng;
5054			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5055				if (advice == MADV_DONTNEED) {
5056					/*
5057					 * Future calls to pmap_is_modified()
5058					 * can be avoided by making the page
5059					 * dirty now.
5060					 */
5061					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5062					vm_page_dirty(m);
5063				}
5064				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5065			} else if ((*pte & PG_A) != 0)
5066				atomic_clear_int((u_int *)pte, PG_A);
5067			else
5068				goto maybe_invlrng;
5069			if ((*pte & PG_G) != 0) {
5070				if (va == pdnxt)
5071					va = sva;
5072			} else
5073				anychanged = TRUE;
5074			continue;
5075maybe_invlrng:
5076			if (va != pdnxt) {
5077				pmap_invalidate_range(pmap, va, sva);
5078				va = pdnxt;
5079			}
5080		}
5081		if (va != pdnxt)
5082			pmap_invalidate_range(pmap, va, sva);
5083	}
5084	if (anychanged)
5085		pmap_invalidate_all(pmap);
5086	if (pv_lists_locked) {
5087		sched_unpin();
5088		rw_wunlock(&pvh_global_lock);
5089	}
5090	PMAP_UNLOCK(pmap);
5091}
5092
5093/*
5094 *	Clear the modify bits on the specified physical page.
5095 */
5096void
5097pmap_clear_modify(vm_page_t m)
5098{
5099	struct md_page *pvh;
5100	pv_entry_t next_pv, pv;
5101	pmap_t pmap;
5102	pd_entry_t oldpde, *pde;
5103	pt_entry_t oldpte, *pte;
5104	vm_offset_t va;
5105
5106	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5107	    ("pmap_clear_modify: page %p is not managed", m));
5108	VM_OBJECT_ASSERT_WLOCKED(m->object);
5109	KASSERT(!vm_page_xbusied(m),
5110	    ("pmap_clear_modify: page %p is exclusive busied", m));
5111
5112	/*
5113	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
5114	 * If the object containing the page is locked and the page is not
5115	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
5116	 */
5117	if ((m->aflags & PGA_WRITEABLE) == 0)
5118		return;
5119	rw_wlock(&pvh_global_lock);
5120	sched_pin();
5121	if ((m->flags & PG_FICTITIOUS) != 0)
5122		goto small_mappings;
5123	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5124	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5125		va = pv->pv_va;
5126		pmap = PV_PMAP(pv);
5127		PMAP_LOCK(pmap);
5128		pde = pmap_pde(pmap, va);
5129		oldpde = *pde;
5130		if ((oldpde & PG_RW) != 0) {
5131			if (pmap_demote_pde(pmap, pde, va)) {
5132				if ((oldpde & PG_W) == 0) {
5133					/*
5134					 * Write protect the mapping to a
5135					 * single page so that a subsequent
5136					 * write access may repromote.
5137					 */
5138					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5139					    PG_PS_FRAME);
5140					pte = pmap_pte_quick(pmap, va);
5141					oldpte = *pte;
5142					if ((oldpte & PG_V) != 0) {
5143						/*
5144						 * Regardless of whether a pte is 32 or 64 bits
5145						 * in size, PG_RW and PG_M are among the least
5146						 * significant 32 bits.
5147						 */
5148						while (!atomic_cmpset_int((u_int *)pte,
5149						    oldpte,
5150						    oldpte & ~(PG_M | PG_RW)))
5151							oldpte = *pte;
5152						vm_page_dirty(m);
5153						pmap_invalidate_page(pmap, va);
5154					}
5155				}
5156			}
5157		}
5158		PMAP_UNLOCK(pmap);
5159	}
5160small_mappings:
5161	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5162		pmap = PV_PMAP(pv);
5163		PMAP_LOCK(pmap);
5164		pde = pmap_pde(pmap, pv->pv_va);
5165		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5166		    " a 4mpage in page %p's pv list", m));
5167		pte = pmap_pte_quick(pmap, pv->pv_va);
5168		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5169			/*
5170			 * Regardless of whether a pte is 32 or 64 bits
5171			 * in size, PG_M is among the least significant
5172			 * 32 bits.
5173			 */
5174			atomic_clear_int((u_int *)pte, PG_M);
5175			pmap_invalidate_page(pmap, pv->pv_va);
5176		}
5177		PMAP_UNLOCK(pmap);
5178	}
5179	sched_unpin();
5180	rw_wunlock(&pvh_global_lock);
5181}
5182
5183/*
5184 * Miscellaneous support routines follow
5185 */
5186
5187/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5188static __inline void
5189pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5190{
5191	u_int opte, npte;
5192
5193	/*
5194	 * The cache mode bits are all in the low 32-bits of the
5195	 * PTE, so we can just spin on updating the low 32-bits.
5196	 */
5197	do {
5198		opte = *(u_int *)pte;
5199		npte = opte & ~PG_PTE_CACHE;
5200		npte |= cache_bits;
5201	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5202}
5203
5204/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5205static __inline void
5206pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5207{
5208	u_int opde, npde;
5209
5210	/*
5211	 * The cache mode bits are all in the low 32-bits of the
5212	 * PDE, so we can just spin on updating the low 32-bits.
5213	 */
5214	do {
5215		opde = *(u_int *)pde;
5216		npde = opde & ~PG_PDE_CACHE;
5217		npde |= cache_bits;
5218	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5219}
5220
5221/*
5222 * Map a set of physical memory pages into the kernel virtual
5223 * address space. Return a pointer to where it is mapped. This
5224 * routine is intended to be used for mapping device memory,
5225 * NOT real memory.
5226 */
5227void *
5228pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5229{
5230	struct pmap_preinit_mapping *ppim;
5231	vm_offset_t va, offset;
5232	vm_size_t tmpsize;
5233	int i;
5234
5235	offset = pa & PAGE_MASK;
5236	size = round_page(offset + size);
5237	pa = pa & PG_FRAME;
5238
5239	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5240		va = KERNBASE + pa;
5241	else if (!pmap_initialized) {
5242		va = 0;
5243		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5244			ppim = pmap_preinit_mapping + i;
5245			if (ppim->va == 0) {
5246				ppim->pa = pa;
5247				ppim->sz = size;
5248				ppim->mode = mode;
5249				ppim->va = virtual_avail;
5250				virtual_avail += size;
5251				va = ppim->va;
5252				break;
5253			}
5254		}
5255		if (va == 0)
5256			panic("%s: too many preinit mappings", __func__);
5257	} else {
5258		/*
5259		 * If we have a preinit mapping, re-use it.
5260		 */
5261		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5262			ppim = pmap_preinit_mapping + i;
5263			if (ppim->pa == pa && ppim->sz == size &&
5264			    ppim->mode == mode)
5265				return ((void *)(ppim->va + offset));
5266		}
5267		va = kva_alloc(size);
5268		if (va == 0)
5269			panic("%s: Couldn't allocate KVA", __func__);
5270	}
5271	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5272		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5273	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5274	pmap_invalidate_cache_range(va, va + size, FALSE);
5275	return ((void *)(va + offset));
5276}
5277
5278void *
5279pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5280{
5281
5282	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5283}
5284
5285void *
5286pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5287{
5288
5289	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5290}
5291
5292void
5293pmap_unmapdev(vm_offset_t va, vm_size_t size)
5294{
5295	struct pmap_preinit_mapping *ppim;
5296	vm_offset_t offset;
5297	int i;
5298
5299	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5300		return;
5301	offset = va & PAGE_MASK;
5302	size = round_page(offset + size);
5303	va = trunc_page(va);
5304	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5305		ppim = pmap_preinit_mapping + i;
5306		if (ppim->va == va && ppim->sz == size) {
5307			if (pmap_initialized)
5308				return;
5309			ppim->pa = 0;
5310			ppim->va = 0;
5311			ppim->sz = 0;
5312			ppim->mode = 0;
5313			if (va + size == virtual_avail)
5314				virtual_avail = va;
5315			return;
5316		}
5317	}
5318	if (pmap_initialized)
5319		kva_free(va, size);
5320}
5321
5322/*
5323 * Sets the memory attribute for the specified page.
5324 */
5325void
5326pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5327{
5328
5329	m->md.pat_mode = ma;
5330	if ((m->flags & PG_FICTITIOUS) != 0)
5331		return;
5332
5333	/*
5334	 * If "m" is a normal page, flush it from the cache.
5335	 * See pmap_invalidate_cache_range().
5336	 *
5337	 * First, try to find an existing mapping of the page by sf
5338	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5339	 * flushes the cache.
5340	 */
5341	if (sf_buf_invalidate_cache(m))
5342		return;
5343
5344	/*
5345	 * If page is not mapped by sf buffer, but CPU does not
5346	 * support self snoop, map the page transient and do
5347	 * invalidation. In the worst case, whole cache is flushed by
5348	 * pmap_invalidate_cache_range().
5349	 */
5350	if ((cpu_feature & CPUID_SS) == 0)
5351		pmap_flush_page(m);
5352}
5353
5354static void
5355pmap_flush_page(vm_page_t m)
5356{
5357	pt_entry_t *cmap_pte2;
5358	struct pcpu *pc;
5359	vm_offset_t sva, eva;
5360	bool useclflushopt;
5361
5362	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
5363	if (useclflushopt || (cpu_feature & CPUID_CLFSH) != 0) {
5364		sched_pin();
5365		pc = get_pcpu();
5366		cmap_pte2 = pc->pc_cmap_pte2;
5367		mtx_lock(&pc->pc_cmap_lock);
5368		if (*cmap_pte2)
5369			panic("pmap_flush_page: CMAP2 busy");
5370		*cmap_pte2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5371		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5372		invlcaddr(pc->pc_cmap_addr2);
5373		sva = (vm_offset_t)pc->pc_cmap_addr2;
5374		eva = sva + PAGE_SIZE;
5375
5376		/*
5377		 * Use mfence or sfence despite the ordering implied by
5378		 * mtx_{un,}lock() because clflush on non-Intel CPUs
5379		 * and clflushopt are not guaranteed to be ordered by
5380		 * any other instruction.
5381		 */
5382		if (useclflushopt)
5383			sfence();
5384		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5385			mfence();
5386		for (; sva < eva; sva += cpu_clflush_line_size) {
5387			if (useclflushopt)
5388				clflushopt(sva);
5389			else
5390				clflush(sva);
5391		}
5392		if (useclflushopt)
5393			sfence();
5394		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
5395			mfence();
5396		*cmap_pte2 = 0;
5397		sched_unpin();
5398		mtx_unlock(&pc->pc_cmap_lock);
5399	} else
5400		pmap_invalidate_cache();
5401}
5402
5403/*
5404 * Changes the specified virtual address range's memory type to that given by
5405 * the parameter "mode".  The specified virtual address range must be
5406 * completely contained within either the kernel map.
5407 *
5408 * Returns zero if the change completed successfully, and either EINVAL or
5409 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5410 * of the virtual address range was not mapped, and ENOMEM is returned if
5411 * there was insufficient memory available to complete the change.
5412 */
5413int
5414pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5415{
5416	vm_offset_t base, offset, tmpva;
5417	pd_entry_t *pde;
5418	pt_entry_t *pte;
5419	int cache_bits_pte, cache_bits_pde;
5420	boolean_t changed;
5421
5422	base = trunc_page(va);
5423	offset = va & PAGE_MASK;
5424	size = round_page(offset + size);
5425
5426	/*
5427	 * Only supported on kernel virtual addresses above the recursive map.
5428	 */
5429	if (base < VM_MIN_KERNEL_ADDRESS)
5430		return (EINVAL);
5431
5432	cache_bits_pde = pmap_cache_bits(mode, 1);
5433	cache_bits_pte = pmap_cache_bits(mode, 0);
5434	changed = FALSE;
5435
5436	/*
5437	 * Pages that aren't mapped aren't supported.  Also break down
5438	 * 2/4MB pages into 4KB pages if required.
5439	 */
5440	PMAP_LOCK(kernel_pmap);
5441	for (tmpva = base; tmpva < base + size; ) {
5442		pde = pmap_pde(kernel_pmap, tmpva);
5443		if (*pde == 0) {
5444			PMAP_UNLOCK(kernel_pmap);
5445			return (EINVAL);
5446		}
5447		if (*pde & PG_PS) {
5448			/*
5449			 * If the current 2/4MB page already has
5450			 * the required memory type, then we need not
5451			 * demote this page.  Just increment tmpva to
5452			 * the next 2/4MB page frame.
5453			 */
5454			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5455				tmpva = trunc_4mpage(tmpva) + NBPDR;
5456				continue;
5457			}
5458
5459			/*
5460			 * If the current offset aligns with a 2/4MB
5461			 * page frame and there is at least 2/4MB left
5462			 * within the range, then we need not break
5463			 * down this page into 4KB pages.
5464			 */
5465			if ((tmpva & PDRMASK) == 0 &&
5466			    tmpva + PDRMASK < base + size) {
5467				tmpva += NBPDR;
5468				continue;
5469			}
5470			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5471				PMAP_UNLOCK(kernel_pmap);
5472				return (ENOMEM);
5473			}
5474		}
5475		pte = vtopte(tmpva);
5476		if (*pte == 0) {
5477			PMAP_UNLOCK(kernel_pmap);
5478			return (EINVAL);
5479		}
5480		tmpva += PAGE_SIZE;
5481	}
5482	PMAP_UNLOCK(kernel_pmap);
5483
5484	/*
5485	 * Ok, all the pages exist, so run through them updating their
5486	 * cache mode if required.
5487	 */
5488	for (tmpva = base; tmpva < base + size; ) {
5489		pde = pmap_pde(kernel_pmap, tmpva);
5490		if (*pde & PG_PS) {
5491			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5492				pmap_pde_attr(pde, cache_bits_pde);
5493				changed = TRUE;
5494			}
5495			tmpva = trunc_4mpage(tmpva) + NBPDR;
5496		} else {
5497			pte = vtopte(tmpva);
5498			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5499				pmap_pte_attr(pte, cache_bits_pte);
5500				changed = TRUE;
5501			}
5502			tmpva += PAGE_SIZE;
5503		}
5504	}
5505
5506	/*
5507	 * Flush CPU caches to make sure any data isn't cached that
5508	 * shouldn't be, etc.
5509	 */
5510	if (changed) {
5511		pmap_invalidate_range(kernel_pmap, base, tmpva);
5512		pmap_invalidate_cache_range(base, tmpva, FALSE);
5513	}
5514	return (0);
5515}
5516
5517/*
5518 * perform the pmap work for mincore
5519 */
5520int
5521pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5522{
5523	pd_entry_t *pdep;
5524	pt_entry_t *ptep, pte;
5525	vm_paddr_t pa;
5526	int val;
5527
5528	PMAP_LOCK(pmap);
5529retry:
5530	pdep = pmap_pde(pmap, addr);
5531	if (*pdep != 0) {
5532		if (*pdep & PG_PS) {
5533			pte = *pdep;
5534			/* Compute the physical address of the 4KB page. */
5535			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5536			    PG_FRAME;
5537			val = MINCORE_SUPER;
5538		} else {
5539			ptep = pmap_pte(pmap, addr);
5540			pte = *ptep;
5541			pmap_pte_release(ptep);
5542			pa = pte & PG_FRAME;
5543			val = 0;
5544		}
5545	} else {
5546		pte = 0;
5547		pa = 0;
5548		val = 0;
5549	}
5550	if ((pte & PG_V) != 0) {
5551		val |= MINCORE_INCORE;
5552		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5553			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5554		if ((pte & PG_A) != 0)
5555			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5556	}
5557	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5558	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5559	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5560		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5561		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5562			goto retry;
5563	} else
5564		PA_UNLOCK_COND(*locked_pa);
5565	PMAP_UNLOCK(pmap);
5566	return (val);
5567}
5568
5569void
5570pmap_activate(struct thread *td)
5571{
5572	pmap_t	pmap, oldpmap;
5573	u_int	cpuid;
5574	u_int32_t  cr3;
5575
5576	critical_enter();
5577	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5578	oldpmap = PCPU_GET(curpmap);
5579	cpuid = PCPU_GET(cpuid);
5580#if defined(SMP)
5581	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5582	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5583#else
5584	CPU_CLR(cpuid, &oldpmap->pm_active);
5585	CPU_SET(cpuid, &pmap->pm_active);
5586#endif
5587#if defined(PAE) || defined(PAE_TABLES)
5588	cr3 = vtophys(pmap->pm_pdpt);
5589#else
5590	cr3 = vtophys(pmap->pm_pdir);
5591#endif
5592	/*
5593	 * pmap_activate is for the current thread on the current cpu
5594	 */
5595	td->td_pcb->pcb_cr3 = cr3;
5596	load_cr3(cr3);
5597	PCPU_SET(curpmap, pmap);
5598	critical_exit();
5599}
5600
5601void
5602pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5603{
5604}
5605
5606/*
5607 *	Increase the starting virtual address of the given mapping if a
5608 *	different alignment might result in more superpage mappings.
5609 */
5610void
5611pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5612    vm_offset_t *addr, vm_size_t size)
5613{
5614	vm_offset_t superpage_offset;
5615
5616	if (size < NBPDR)
5617		return;
5618	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5619		offset += ptoa(object->pg_color);
5620	superpage_offset = offset & PDRMASK;
5621	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5622	    (*addr & PDRMASK) == superpage_offset)
5623		return;
5624	if ((*addr & PDRMASK) < superpage_offset)
5625		*addr = (*addr & ~PDRMASK) + superpage_offset;
5626	else
5627		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5628}
5629
5630vm_offset_t
5631pmap_quick_enter_page(vm_page_t m)
5632{
5633	vm_offset_t qaddr;
5634	pt_entry_t *pte;
5635
5636	critical_enter();
5637	qaddr = PCPU_GET(qmap_addr);
5638	pte = vtopte(qaddr);
5639
5640	KASSERT(*pte == 0, ("pmap_quick_enter_page: PTE busy"));
5641	*pte = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
5642	    pmap_cache_bits(pmap_page_get_memattr(m), 0);
5643	invlpg(qaddr);
5644
5645	return (qaddr);
5646}
5647
5648void
5649pmap_quick_remove_page(vm_offset_t addr)
5650{
5651	vm_offset_t qaddr;
5652	pt_entry_t *pte;
5653
5654	qaddr = PCPU_GET(qmap_addr);
5655	pte = vtopte(qaddr);
5656
5657	KASSERT(*pte != 0, ("pmap_quick_remove_page: PTE not in use"));
5658	KASSERT(addr == qaddr, ("pmap_quick_remove_page: invalid address"));
5659
5660	*pte = 0;
5661	critical_exit();
5662}
5663
5664#if defined(PMAP_DEBUG)
5665pmap_pid_dump(int pid)
5666{
5667	pmap_t pmap;
5668	struct proc *p;
5669	int npte = 0;
5670	int index;
5671
5672	sx_slock(&allproc_lock);
5673	FOREACH_PROC_IN_SYSTEM(p) {
5674		if (p->p_pid != pid)
5675			continue;
5676
5677		if (p->p_vmspace) {
5678			int i,j;
5679			index = 0;
5680			pmap = vmspace_pmap(p->p_vmspace);
5681			for (i = 0; i < NPDEPTD; i++) {
5682				pd_entry_t *pde;
5683				pt_entry_t *pte;
5684				vm_offset_t base = i << PDRSHIFT;
5685
5686				pde = &pmap->pm_pdir[i];
5687				if (pde && pmap_pde_v(pde)) {
5688					for (j = 0; j < NPTEPG; j++) {
5689						vm_offset_t va = base + (j << PAGE_SHIFT);
5690						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5691							if (index) {
5692								index = 0;
5693								printf("\n");
5694							}
5695							sx_sunlock(&allproc_lock);
5696							return (npte);
5697						}
5698						pte = pmap_pte(pmap, va);
5699						if (pte && pmap_pte_v(pte)) {
5700							pt_entry_t pa;
5701							vm_page_t m;
5702							pa = *pte;
5703							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5704							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5705								va, pa, m->hold_count, m->wire_count, m->flags);
5706							npte++;
5707							index++;
5708							if (index >= 2) {
5709								index = 0;
5710								printf("\n");
5711							} else {
5712								printf(" ");
5713							}
5714						}
5715					}
5716				}
5717			}
5718		}
5719	}
5720	sx_sunlock(&allproc_lock);
5721	return (npte);
5722}
5723#endif
5724