mp_machdep.c revision 278325
1/*-
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 *    derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/i386/i386/mp_machdep.c 278325 2015-02-06 18:19:59Z jhb $");
28
29#include "opt_apic.h"
30#include "opt_cpu.h"
31#include "opt_kstack_pages.h"
32#include "opt_pmap.h"
33#include "opt_sched.h"
34#include "opt_smp.h"
35
36#if !defined(lint)
37#if !defined(SMP)
38#error How did you get here?
39#endif
40
41#ifndef DEV_APIC
42#error The apic device is required for SMP, add "device apic" to your config file.
43#endif
44#if defined(CPU_DISABLE_CMPXCHG) && !defined(COMPILING_LINT)
45#error SMP not supported with CPU_DISABLE_CMPXCHG
46#endif
47#endif /* not lint */
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/cons.h>	/* cngetc() */
53#include <sys/cpuset.h>
54#ifdef GPROF
55#include <sys/gmon.h>
56#endif
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/memrange.h>
62#include <sys/mutex.h>
63#include <sys/pcpu.h>
64#include <sys/proc.h>
65#include <sys/sched.h>
66#include <sys/smp.h>
67#include <sys/sysctl.h>
68
69#include <vm/vm.h>
70#include <vm/vm_param.h>
71#include <vm/pmap.h>
72#include <vm/vm_kern.h>
73#include <vm/vm_extern.h>
74
75#include <x86/apicreg.h>
76#include <machine/clock.h>
77#include <machine/cputypes.h>
78#include <x86/mca.h>
79#include <machine/md_var.h>
80#include <machine/pcb.h>
81#include <machine/psl.h>
82#include <machine/smp.h>
83#include <machine/specialreg.h>
84#include <machine/cpu.h>
85
86#define WARMBOOT_TARGET		0
87#define WARMBOOT_OFF		(KERNBASE + 0x0467)
88#define WARMBOOT_SEG		(KERNBASE + 0x0469)
89
90#define CMOS_REG		(0x70)
91#define CMOS_DATA		(0x71)
92#define BIOS_RESET		(0x0f)
93#define BIOS_WARM		(0x0a)
94
95/*
96 * this code MUST be enabled here and in mpboot.s.
97 * it follows the very early stages of AP boot by placing values in CMOS ram.
98 * it NORMALLY will never be needed and thus the primitive method for enabling.
99 *
100#define CHECK_POINTS
101 */
102
103#if defined(CHECK_POINTS) && !defined(PC98)
104#define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
105#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
106
107#define CHECK_INIT(D);				\
108	CHECK_WRITE(0x34, (D));			\
109	CHECK_WRITE(0x35, (D));			\
110	CHECK_WRITE(0x36, (D));			\
111	CHECK_WRITE(0x37, (D));			\
112	CHECK_WRITE(0x38, (D));			\
113	CHECK_WRITE(0x39, (D));
114
115#define CHECK_PRINT(S);				\
116	printf("%s: %d, %d, %d, %d, %d, %d\n",	\
117	   (S),					\
118	   CHECK_READ(0x34),			\
119	   CHECK_READ(0x35),			\
120	   CHECK_READ(0x36),			\
121	   CHECK_READ(0x37),			\
122	   CHECK_READ(0x38),			\
123	   CHECK_READ(0x39));
124
125#else				/* CHECK_POINTS */
126
127#define CHECK_INIT(D)
128#define CHECK_PRINT(S)
129#define CHECK_WRITE(A, D)
130
131#endif				/* CHECK_POINTS */
132
133/* lock region used by kernel profiling */
134int	mcount_lock;
135
136int	mp_naps;		/* # of Applications processors */
137int	boot_cpu_id = -1;	/* designated BSP */
138
139extern	struct pcpu __pcpu[];
140
141/* AP uses this during bootstrap.  Do not staticize.  */
142char *bootSTK;
143static int bootAP;
144
145/* Free these after use */
146void *bootstacks[MAXCPU];
147static void *dpcpu;
148
149struct pcb stoppcbs[MAXCPU];
150struct susppcb **susppcbs;
151
152/* Variables needed for SMP tlb shootdown. */
153vm_offset_t smp_tlb_addr1;
154vm_offset_t smp_tlb_addr2;
155volatile int smp_tlb_wait;
156
157#ifdef COUNT_IPIS
158/* Interrupt counts. */
159static u_long *ipi_preempt_counts[MAXCPU];
160static u_long *ipi_ast_counts[MAXCPU];
161u_long *ipi_invltlb_counts[MAXCPU];
162u_long *ipi_invlrng_counts[MAXCPU];
163u_long *ipi_invlpg_counts[MAXCPU];
164u_long *ipi_invlcache_counts[MAXCPU];
165u_long *ipi_rendezvous_counts[MAXCPU];
166u_long *ipi_lazypmap_counts[MAXCPU];
167static u_long *ipi_hardclock_counts[MAXCPU];
168#endif
169
170/* Default cpu_ops implementation. */
171struct cpu_ops cpu_ops;
172
173/*
174 * Local data and functions.
175 */
176
177static volatile cpuset_t ipi_nmi_pending;
178
179/* used to hold the AP's until we are ready to release them */
180static struct mtx ap_boot_mtx;
181
182/* Set to 1 once we're ready to let the APs out of the pen. */
183static volatile int aps_ready = 0;
184
185/*
186 * Store data from cpu_add() until later in the boot when we actually setup
187 * the APs.
188 */
189struct cpu_info {
190	int	cpu_present:1;
191	int	cpu_bsp:1;
192	int	cpu_disabled:1;
193	int	cpu_hyperthread:1;
194} static cpu_info[MAX_APIC_ID + 1];
195int cpu_apic_ids[MAXCPU];
196int apic_cpuids[MAX_APIC_ID + 1];
197
198/* Holds pending bitmap based IPIs per CPU */
199volatile u_int cpu_ipi_pending[MAXCPU];
200
201static u_int boot_address;
202static int cpu_logical;			/* logical cpus per core */
203static int cpu_cores;			/* cores per package */
204
205static void	assign_cpu_ids(void);
206static void	install_ap_tramp(void);
207static void	set_interrupt_apic_ids(void);
208static int	start_all_aps(void);
209static int	start_ap(int apic_id);
210static void	release_aps(void *dummy);
211
212static u_int	hyperthreading_cpus;	/* logical cpus sharing L1 cache */
213static int	hyperthreading_allowed = 1;
214
215static void
216mem_range_AP_init(void)
217{
218	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
219		mem_range_softc.mr_op->initAP(&mem_range_softc);
220}
221
222static void
223topo_probe_amd(void)
224{
225	int core_id_bits;
226	int id;
227
228	/* AMD processors do not support HTT. */
229	cpu_logical = 1;
230
231	if ((amd_feature2 & AMDID2_CMP) == 0) {
232		cpu_cores = 1;
233		return;
234	}
235
236	core_id_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
237	    AMDID_COREID_SIZE_SHIFT;
238	if (core_id_bits == 0) {
239		cpu_cores = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
240		return;
241	}
242
243	/* Fam 10h and newer should get here. */
244	for (id = 0; id <= MAX_APIC_ID; id++) {
245		/* Check logical CPU availability. */
246		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
247			continue;
248		/* Check if logical CPU has the same package ID. */
249		if ((id >> core_id_bits) != (boot_cpu_id >> core_id_bits))
250			continue;
251		cpu_cores++;
252	}
253}
254
255/*
256 * Round up to the next power of two, if necessary, and then
257 * take log2.
258 * Returns -1 if argument is zero.
259 */
260static __inline int
261mask_width(u_int x)
262{
263
264	return (fls(x << (1 - powerof2(x))) - 1);
265}
266
267static void
268topo_probe_0x4(void)
269{
270	u_int p[4];
271	int pkg_id_bits;
272	int core_id_bits;
273	int max_cores;
274	int max_logical;
275	int id;
276
277	/* Both zero and one here mean one logical processor per package. */
278	max_logical = (cpu_feature & CPUID_HTT) != 0 ?
279	    (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1;
280	if (max_logical <= 1)
281		return;
282
283	/*
284	 * Because of uniformity assumption we examine only
285	 * those logical processors that belong to the same
286	 * package as BSP.  Further, we count number of
287	 * logical processors that belong to the same core
288	 * as BSP thus deducing number of threads per core.
289	 */
290	if (cpu_high >= 0x4) {
291		cpuid_count(0x04, 0, p);
292		max_cores = ((p[0] >> 26) & 0x3f) + 1;
293	} else
294		max_cores = 1;
295	core_id_bits = mask_width(max_logical/max_cores);
296	if (core_id_bits < 0)
297		return;
298	pkg_id_bits = core_id_bits + mask_width(max_cores);
299
300	for (id = 0; id <= MAX_APIC_ID; id++) {
301		/* Check logical CPU availability. */
302		if (!cpu_info[id].cpu_present || cpu_info[id].cpu_disabled)
303			continue;
304		/* Check if logical CPU has the same package ID. */
305		if ((id >> pkg_id_bits) != (boot_cpu_id >> pkg_id_bits))
306			continue;
307		cpu_cores++;
308		/* Check if logical CPU has the same package and core IDs. */
309		if ((id >> core_id_bits) == (boot_cpu_id >> core_id_bits))
310			cpu_logical++;
311	}
312
313	KASSERT(cpu_cores >= 1 && cpu_logical >= 1,
314	    ("topo_probe_0x4 couldn't find BSP"));
315
316	cpu_cores /= cpu_logical;
317	hyperthreading_cpus = cpu_logical;
318}
319
320static void
321topo_probe_0xb(void)
322{
323	u_int p[4];
324	int bits;
325	int cnt;
326	int i;
327	int logical;
328	int type;
329	int x;
330
331	/* We only support three levels for now. */
332	for (i = 0; i < 3; i++) {
333		cpuid_count(0x0b, i, p);
334
335		/* Fall back if CPU leaf 11 doesn't really exist. */
336		if (i == 0 && p[1] == 0) {
337			topo_probe_0x4();
338			return;
339		}
340
341		bits = p[0] & 0x1f;
342		logical = p[1] &= 0xffff;
343		type = (p[2] >> 8) & 0xff;
344		if (type == 0 || logical == 0)
345			break;
346		/*
347		 * Because of uniformity assumption we examine only
348		 * those logical processors that belong to the same
349		 * package as BSP.
350		 */
351		for (cnt = 0, x = 0; x <= MAX_APIC_ID; x++) {
352			if (!cpu_info[x].cpu_present ||
353			    cpu_info[x].cpu_disabled)
354				continue;
355			if (x >> bits == boot_cpu_id >> bits)
356				cnt++;
357		}
358		if (type == CPUID_TYPE_SMT)
359			cpu_logical = cnt;
360		else if (type == CPUID_TYPE_CORE)
361			cpu_cores = cnt;
362	}
363	if (cpu_logical == 0)
364		cpu_logical = 1;
365	cpu_cores /= cpu_logical;
366}
367
368/*
369 * Both topology discovery code and code that consumes topology
370 * information assume top-down uniformity of the topology.
371 * That is, all physical packages must be identical and each
372 * core in a package must have the same number of threads.
373 * Topology information is queried only on BSP, on which this
374 * code runs and for which it can query CPUID information.
375 * Then topology is extrapolated on all packages using the
376 * uniformity assumption.
377 */
378static void
379topo_probe(void)
380{
381	static int cpu_topo_probed = 0;
382
383	if (cpu_topo_probed)
384		return;
385
386	CPU_ZERO(&logical_cpus_mask);
387	if (mp_ncpus <= 1)
388		cpu_cores = cpu_logical = 1;
389	else if (cpu_vendor_id == CPU_VENDOR_AMD)
390		topo_probe_amd();
391	else if (cpu_vendor_id == CPU_VENDOR_INTEL) {
392		/*
393		 * See Intel(R) 64 Architecture Processor
394		 * Topology Enumeration article for details.
395		 *
396		 * Note that 0x1 <= cpu_high < 4 case should be
397		 * compatible with topo_probe_0x4() logic when
398		 * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1)
399		 * or it should trigger the fallback otherwise.
400		 */
401		if (cpu_high >= 0xb)
402			topo_probe_0xb();
403		else if (cpu_high >= 0x1)
404			topo_probe_0x4();
405	}
406
407	/*
408	 * Fallback: assume each logical CPU is in separate
409	 * physical package.  That is, no multi-core, no SMT.
410	 */
411	if (cpu_cores == 0 || cpu_logical == 0)
412		cpu_cores = cpu_logical = 1;
413	cpu_topo_probed = 1;
414}
415
416struct cpu_group *
417cpu_topo(void)
418{
419	int cg_flags;
420
421	/*
422	 * Determine whether any threading flags are
423	 * necessry.
424	 */
425	topo_probe();
426	if (cpu_logical > 1 && hyperthreading_cpus)
427		cg_flags = CG_FLAG_HTT;
428	else if (cpu_logical > 1)
429		cg_flags = CG_FLAG_SMT;
430	else
431		cg_flags = 0;
432	if (mp_ncpus % (cpu_cores * cpu_logical) != 0) {
433		printf("WARNING: Non-uniform processors.\n");
434		printf("WARNING: Using suboptimal topology.\n");
435		return (smp_topo_none());
436	}
437	/*
438	 * No multi-core or hyper-threaded.
439	 */
440	if (cpu_logical * cpu_cores == 1)
441		return (smp_topo_none());
442	/*
443	 * Only HTT no multi-core.
444	 */
445	if (cpu_logical > 1 && cpu_cores == 1)
446		return (smp_topo_1level(CG_SHARE_L1, cpu_logical, cg_flags));
447	/*
448	 * Only multi-core no HTT.
449	 */
450	if (cpu_cores > 1 && cpu_logical == 1)
451		return (smp_topo_1level(CG_SHARE_L2, cpu_cores, cg_flags));
452	/*
453	 * Both HTT and multi-core.
454	 */
455	return (smp_topo_2level(CG_SHARE_L2, cpu_cores,
456	    CG_SHARE_L1, cpu_logical, cg_flags));
457}
458
459
460/*
461 * Calculate usable address in base memory for AP trampoline code.
462 */
463u_int
464mp_bootaddress(u_int basemem)
465{
466
467	boot_address = trunc_page(basemem);	/* round down to 4k boundary */
468	if ((basemem - boot_address) < bootMP_size)
469		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
470
471	return boot_address;
472}
473
474void
475cpu_add(u_int apic_id, char boot_cpu)
476{
477
478	if (apic_id > MAX_APIC_ID) {
479		panic("SMP: APIC ID %d too high", apic_id);
480		return;
481	}
482	KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %d added twice",
483	    apic_id));
484	cpu_info[apic_id].cpu_present = 1;
485	if (boot_cpu) {
486		KASSERT(boot_cpu_id == -1,
487		    ("CPU %d claims to be BSP, but CPU %d already is", apic_id,
488		    boot_cpu_id));
489		boot_cpu_id = apic_id;
490		cpu_info[apic_id].cpu_bsp = 1;
491	}
492	if (mp_ncpus < MAXCPU) {
493		mp_ncpus++;
494		mp_maxid = mp_ncpus - 1;
495	}
496	if (bootverbose)
497		printf("SMP: Added CPU %d (%s)\n", apic_id, boot_cpu ? "BSP" :
498		    "AP");
499}
500
501void
502cpu_mp_setmaxid(void)
503{
504
505	/*
506	 * mp_maxid should be already set by calls to cpu_add().
507	 * Just sanity check its value here.
508	 */
509	if (mp_ncpus == 0)
510		KASSERT(mp_maxid == 0,
511		    ("%s: mp_ncpus is zero, but mp_maxid is not", __func__));
512	else if (mp_ncpus == 1)
513		mp_maxid = 0;
514	else
515		KASSERT(mp_maxid >= mp_ncpus - 1,
516		    ("%s: counters out of sync: max %d, count %d", __func__,
517			mp_maxid, mp_ncpus));
518}
519
520int
521cpu_mp_probe(void)
522{
523
524	/*
525	 * Always record BSP in CPU map so that the mbuf init code works
526	 * correctly.
527	 */
528	CPU_SETOF(0, &all_cpus);
529	if (mp_ncpus == 0) {
530		/*
531		 * No CPUs were found, so this must be a UP system.  Setup
532		 * the variables to represent a system with a single CPU
533		 * with an id of 0.
534		 */
535		mp_ncpus = 1;
536		return (0);
537	}
538
539	/* At least one CPU was found. */
540	if (mp_ncpus == 1) {
541		/*
542		 * One CPU was found, so this must be a UP system with
543		 * an I/O APIC.
544		 */
545		mp_maxid = 0;
546		return (0);
547	}
548
549	/* At least two CPUs were found. */
550	return (1);
551}
552
553/*
554 * Initialize the IPI handlers and start up the AP's.
555 */
556void
557cpu_mp_start(void)
558{
559	int i;
560
561	/* Initialize the logical ID to APIC ID table. */
562	for (i = 0; i < MAXCPU; i++) {
563		cpu_apic_ids[i] = -1;
564		cpu_ipi_pending[i] = 0;
565	}
566
567	/* Install an inter-CPU IPI for TLB invalidation */
568	setidt(IPI_INVLTLB, IDTVEC(invltlb),
569	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
570	setidt(IPI_INVLPG, IDTVEC(invlpg),
571	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
572	setidt(IPI_INVLRNG, IDTVEC(invlrng),
573	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
574
575	/* Install an inter-CPU IPI for cache invalidation. */
576	setidt(IPI_INVLCACHE, IDTVEC(invlcache),
577	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
578
579	/* Install an inter-CPU IPI for lazy pmap release */
580	setidt(IPI_LAZYPMAP, IDTVEC(lazypmap),
581	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
582
583	/* Install an inter-CPU IPI for all-CPU rendezvous */
584	setidt(IPI_RENDEZVOUS, IDTVEC(rendezvous),
585	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
586
587	/* Install generic inter-CPU IPI handler */
588	setidt(IPI_BITMAP_VECTOR, IDTVEC(ipi_intr_bitmap_handler),
589	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
590
591	/* Install an inter-CPU IPI for CPU stop/restart */
592	setidt(IPI_STOP, IDTVEC(cpustop),
593	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
594
595	/* Install an inter-CPU IPI for CPU suspend/resume */
596	setidt(IPI_SUSPEND, IDTVEC(cpususpend),
597	       SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
598
599	/* Set boot_cpu_id if needed. */
600	if (boot_cpu_id == -1) {
601		boot_cpu_id = PCPU_GET(apic_id);
602		cpu_info[boot_cpu_id].cpu_bsp = 1;
603	} else
604		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
605		    ("BSP's APIC ID doesn't match boot_cpu_id"));
606
607	/* Probe logical/physical core configuration. */
608	topo_probe();
609
610	assign_cpu_ids();
611
612	/* Start each Application Processor */
613	start_all_aps();
614
615	set_interrupt_apic_ids();
616}
617
618
619/*
620 * Print various information about the SMP system hardware and setup.
621 */
622void
623cpu_mp_announce(void)
624{
625	const char *hyperthread;
626	int i;
627
628	printf("FreeBSD/SMP: %d package(s) x %d core(s)",
629	    mp_ncpus / (cpu_cores * cpu_logical), cpu_cores);
630	if (hyperthreading_cpus > 1)
631	    printf(" x %d HTT threads", cpu_logical);
632	else if (cpu_logical > 1)
633	    printf(" x %d SMT threads", cpu_logical);
634	printf("\n");
635
636	/* List active CPUs first. */
637	printf(" cpu0 (BSP): APIC ID: %2d\n", boot_cpu_id);
638	for (i = 1; i < mp_ncpus; i++) {
639		if (cpu_info[cpu_apic_ids[i]].cpu_hyperthread)
640			hyperthread = "/HT";
641		else
642			hyperthread = "";
643		printf(" cpu%d (AP%s): APIC ID: %2d\n", i, hyperthread,
644		    cpu_apic_ids[i]);
645	}
646
647	/* List disabled CPUs last. */
648	for (i = 0; i <= MAX_APIC_ID; i++) {
649		if (!cpu_info[i].cpu_present || !cpu_info[i].cpu_disabled)
650			continue;
651		if (cpu_info[i].cpu_hyperthread)
652			hyperthread = "/HT";
653		else
654			hyperthread = "";
655		printf("  cpu (AP%s): APIC ID: %2d (disabled)\n", hyperthread,
656		    i);
657	}
658}
659
660/*
661 * AP CPU's call this to initialize themselves.
662 */
663void
664init_secondary(void)
665{
666	struct pcpu *pc;
667	vm_offset_t addr;
668	int	gsel_tss;
669	int	x, myid;
670	u_int	cpuid, cr0;
671
672	/* bootAP is set in start_ap() to our ID. */
673	myid = bootAP;
674
675	/* Get per-cpu data */
676	pc = &__pcpu[myid];
677
678	/* prime data page for it to use */
679	pcpu_init(pc, myid, sizeof(struct pcpu));
680	dpcpu_init(dpcpu, myid);
681	pc->pc_apic_id = cpu_apic_ids[myid];
682	pc->pc_prvspace = pc;
683	pc->pc_curthread = 0;
684
685	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
686	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
687
688	for (x = 0; x < NGDT; x++) {
689		ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
690	}
691
692	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
693	r_gdt.rd_base = (int) &gdt[myid * NGDT];
694	lgdt(&r_gdt);			/* does magic intra-segment return */
695
696	lidt(&r_idt);
697
698	lldt(_default_ldt);
699	PCPU_SET(currentldt, _default_ldt);
700
701	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
702	gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
703	PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
704	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
705	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
706	PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
707	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
708	ltr(gsel_tss);
709
710	PCPU_SET(fsgs_gdt, &gdt[myid * NGDT + GUFS_SEL].sd);
711
712	/*
713	 * Set to a known state:
714	 * Set by mpboot.s: CR0_PG, CR0_PE
715	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
716	 */
717	cr0 = rcr0();
718	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
719	load_cr0(cr0);
720	CHECK_WRITE(0x38, 5);
721
722	/* Disable local APIC just to be sure. */
723	lapic_disable();
724
725	/* signal our startup to the BSP. */
726	mp_naps++;
727	CHECK_WRITE(0x39, 6);
728
729	/* Spin until the BSP releases the AP's. */
730	while (!aps_ready)
731		ia32_pause();
732
733	/* BSP may have changed PTD while we were waiting */
734	invltlb();
735	for (addr = 0; addr < NKPT * NBPDR - 1; addr += PAGE_SIZE)
736		invlpg(addr);
737
738#if defined(I586_CPU) && !defined(NO_F00F_HACK)
739	lidt(&r_idt);
740#endif
741
742	/* Initialize the PAT MSR if present. */
743	pmap_init_pat();
744
745	/* set up CPU registers and state */
746	cpu_setregs();
747
748	/* set up SSE/NX */
749	initializecpu();
750
751	/* set up FPU state on the AP */
752	npxinit(false);
753
754	if (cpu_ops.cpu_init)
755		cpu_ops.cpu_init();
756
757	/* A quick check from sanity claus */
758	cpuid = PCPU_GET(cpuid);
759	if (PCPU_GET(apic_id) != lapic_id()) {
760		printf("SMP: cpuid = %d\n", cpuid);
761		printf("SMP: actual apic_id = %d\n", lapic_id());
762		printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id));
763		panic("cpuid mismatch! boom!!");
764	}
765
766	/* Initialize curthread. */
767	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
768	PCPU_SET(curthread, PCPU_GET(idlethread));
769
770	mca_init();
771
772	mtx_lock_spin(&ap_boot_mtx);
773
774	/* Init local apic for irq's */
775	lapic_setup(1);
776
777	/* Set memory range attributes for this CPU to match the BSP */
778	mem_range_AP_init();
779
780	smp_cpus++;
781
782	CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid);
783	printf("SMP: AP CPU #%d Launched!\n", cpuid);
784
785	/* Determine if we are a logical CPU. */
786	/* XXX Calculation depends on cpu_logical being a power of 2, e.g. 2 */
787	if (cpu_logical > 1 && PCPU_GET(apic_id) % cpu_logical != 0)
788		CPU_SET(cpuid, &logical_cpus_mask);
789
790	if (bootverbose)
791		lapic_dump("AP");
792
793	if (smp_cpus == mp_ncpus) {
794		/* enable IPI's, tlb shootdown, freezes etc */
795		atomic_store_rel_int(&smp_started, 1);
796	}
797
798	mtx_unlock_spin(&ap_boot_mtx);
799
800	/* Wait until all the AP's are up. */
801	while (smp_started == 0)
802		ia32_pause();
803
804	/* Start per-CPU event timers. */
805	cpu_initclocks_ap();
806
807	/* Enter the scheduler. */
808	sched_throw(NULL);
809
810	panic("scheduler returned us to %s", __func__);
811	/* NOTREACHED */
812}
813
814/*******************************************************************
815 * local functions and data
816 */
817
818/*
819 * We tell the I/O APIC code about all the CPUs we want to receive
820 * interrupts.  If we don't want certain CPUs to receive IRQs we
821 * can simply not tell the I/O APIC code about them in this function.
822 * We also do not tell it about the BSP since it tells itself about
823 * the BSP internally to work with UP kernels and on UP machines.
824 */
825static void
826set_interrupt_apic_ids(void)
827{
828	u_int i, apic_id;
829
830	for (i = 0; i < MAXCPU; i++) {
831		apic_id = cpu_apic_ids[i];
832		if (apic_id == -1)
833			continue;
834		if (cpu_info[apic_id].cpu_bsp)
835			continue;
836		if (cpu_info[apic_id].cpu_disabled)
837			continue;
838
839		/* Don't let hyperthreads service interrupts. */
840		if (hyperthreading_cpus > 1 &&
841		    apic_id % hyperthreading_cpus != 0)
842			continue;
843
844		intr_add_cpu(i);
845	}
846}
847
848/*
849 * Assign logical CPU IDs to local APICs.
850 */
851static void
852assign_cpu_ids(void)
853{
854	u_int i;
855
856	TUNABLE_INT_FETCH("machdep.hyperthreading_allowed",
857	    &hyperthreading_allowed);
858
859	/* Check for explicitly disabled CPUs. */
860	for (i = 0; i <= MAX_APIC_ID; i++) {
861		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp)
862			continue;
863
864		if (hyperthreading_cpus > 1 && i % hyperthreading_cpus != 0) {
865			cpu_info[i].cpu_hyperthread = 1;
866
867			/*
868			 * Don't use HT CPU if it has been disabled by a
869			 * tunable.
870			 */
871			if (hyperthreading_allowed == 0) {
872				cpu_info[i].cpu_disabled = 1;
873				continue;
874			}
875		}
876
877		/* Don't use this CPU if it has been disabled by a tunable. */
878		if (resource_disabled("lapic", i)) {
879			cpu_info[i].cpu_disabled = 1;
880			continue;
881		}
882	}
883
884	if (hyperthreading_allowed == 0 && hyperthreading_cpus > 1) {
885		hyperthreading_cpus = 0;
886		cpu_logical = 1;
887	}
888
889	/*
890	 * Assign CPU IDs to local APIC IDs and disable any CPUs
891	 * beyond MAXCPU.  CPU 0 is always assigned to the BSP.
892	 *
893	 * To minimize confusion for userland, we attempt to number
894	 * CPUs such that all threads and cores in a package are
895	 * grouped together.  For now we assume that the BSP is always
896	 * the first thread in a package and just start adding APs
897	 * starting with the BSP's APIC ID.
898	 */
899	mp_ncpus = 1;
900	cpu_apic_ids[0] = boot_cpu_id;
901	apic_cpuids[boot_cpu_id] = 0;
902	for (i = boot_cpu_id + 1; i != boot_cpu_id;
903	     i == MAX_APIC_ID ? i = 0 : i++) {
904		if (!cpu_info[i].cpu_present || cpu_info[i].cpu_bsp ||
905		    cpu_info[i].cpu_disabled)
906			continue;
907
908		if (mp_ncpus < MAXCPU) {
909			cpu_apic_ids[mp_ncpus] = i;
910			apic_cpuids[i] = mp_ncpus;
911			mp_ncpus++;
912		} else
913			cpu_info[i].cpu_disabled = 1;
914	}
915	KASSERT(mp_maxid >= mp_ncpus - 1,
916	    ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid,
917	    mp_ncpus));
918}
919
920/*
921 * start each AP in our list
922 */
923/* Lowest 1MB is already mapped: don't touch*/
924#define TMPMAP_START 1
925static int
926start_all_aps(void)
927{
928#ifndef PC98
929	u_char mpbiosreason;
930#endif
931	u_int32_t mpbioswarmvec;
932	int apic_id, cpu, i;
933
934	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
935
936	/* install the AP 1st level boot code */
937	install_ap_tramp();
938
939	/* save the current value of the warm-start vector */
940	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
941#ifndef PC98
942	outb(CMOS_REG, BIOS_RESET);
943	mpbiosreason = inb(CMOS_DATA);
944#endif
945
946	/* set up temporary P==V mapping for AP boot */
947	/* XXX this is a hack, we should boot the AP on its own stack/PTD */
948	for (i = TMPMAP_START; i < NKPT; i++)
949		PTD[i] = PTD[KPTDI + i];
950	invltlb();
951
952	/* start each AP */
953	for (cpu = 1; cpu < mp_ncpus; cpu++) {
954		apic_id = cpu_apic_ids[cpu];
955
956		/* allocate and set up a boot stack data page */
957		bootstacks[cpu] =
958		    (char *)kmem_malloc(kernel_arena, KSTACK_PAGES * PAGE_SIZE,
959		    M_WAITOK | M_ZERO);
960		dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
961		    M_WAITOK | M_ZERO);
962		/* setup a vector to our boot code */
963		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
964		*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
965#ifndef PC98
966		outb(CMOS_REG, BIOS_RESET);
967		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
968#endif
969
970		bootSTK = (char *)bootstacks[cpu] + KSTACK_PAGES * PAGE_SIZE - 4;
971		bootAP = cpu;
972
973		/* attempt to start the Application Processor */
974		CHECK_INIT(99);	/* setup checkpoints */
975		if (!start_ap(apic_id)) {
976			printf("AP #%d (PHY# %d) failed!\n", cpu, apic_id);
977			CHECK_PRINT("trace");	/* show checkpoints */
978			/* better panic as the AP may be running loose */
979			printf("panic y/n? [y] ");
980			if (cngetc() != 'n')
981				panic("bye-bye");
982		}
983		CHECK_PRINT("trace");		/* show checkpoints */
984
985		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
986	}
987
988	/* restore the warmstart vector */
989	*(u_int32_t *) WARMBOOT_OFF = mpbioswarmvec;
990
991#ifndef PC98
992	outb(CMOS_REG, BIOS_RESET);
993	outb(CMOS_DATA, mpbiosreason);
994#endif
995
996	/* Undo V==P hack from above */
997	for (i = TMPMAP_START; i < NKPT; i++)
998		PTD[i] = 0;
999	pmap_invalidate_range(kernel_pmap, 0, NKPT * NBPDR - 1);
1000
1001	/* number of APs actually started */
1002	return mp_naps;
1003}
1004
1005/*
1006 * load the 1st level AP boot code into base memory.
1007 */
1008
1009/* targets for relocation */
1010extern void bigJump(void);
1011extern void bootCodeSeg(void);
1012extern void bootDataSeg(void);
1013extern void MPentry(void);
1014extern u_int MP_GDT;
1015extern u_int mp_gdtbase;
1016
1017static void
1018install_ap_tramp(void)
1019{
1020	int     x;
1021	int     size = *(int *) ((u_long) & bootMP_size);
1022	vm_offset_t va = boot_address + KERNBASE;
1023	u_char *src = (u_char *) ((u_long) bootMP);
1024	u_char *dst = (u_char *) va;
1025	u_int   boot_base = (u_int) bootMP;
1026	u_int8_t *dst8;
1027	u_int16_t *dst16;
1028	u_int32_t *dst32;
1029
1030	KASSERT (size <= PAGE_SIZE,
1031	    ("'size' do not fit into PAGE_SIZE, as expected."));
1032	pmap_kenter(va, boot_address);
1033	pmap_invalidate_page (kernel_pmap, va);
1034	for (x = 0; x < size; ++x)
1035		*dst++ = *src++;
1036
1037	/*
1038	 * modify addresses in code we just moved to basemem. unfortunately we
1039	 * need fairly detailed info about mpboot.s for this to work.  changes
1040	 * to mpboot.s might require changes here.
1041	 */
1042
1043	/* boot code is located in KERNEL space */
1044	dst = (u_char *) va;
1045
1046	/* modify the lgdt arg */
1047	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
1048	*dst32 = boot_address + ((u_int) & MP_GDT - boot_base);
1049
1050	/* modify the ljmp target for MPentry() */
1051	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
1052	*dst32 = ((u_int) MPentry - KERNBASE);
1053
1054	/* modify the target for boot code segment */
1055	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
1056	dst8 = (u_int8_t *) (dst16 + 1);
1057	*dst16 = (u_int) boot_address & 0xffff;
1058	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1059
1060	/* modify the target for boot data segment */
1061	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
1062	dst8 = (u_int8_t *) (dst16 + 1);
1063	*dst16 = (u_int) boot_address & 0xffff;
1064	*dst8 = ((u_int) boot_address >> 16) & 0xff;
1065}
1066
1067/*
1068 * This function starts the AP (application processor) identified
1069 * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
1070 * to accomplish this.  This is necessary because of the nuances
1071 * of the different hardware we might encounter.  It isn't pretty,
1072 * but it seems to work.
1073 */
1074static int
1075start_ap(int apic_id)
1076{
1077	int vector, ms;
1078	int cpus;
1079
1080	/* calculate the vector */
1081	vector = (boot_address >> 12) & 0xff;
1082
1083	/* used as a watchpoint to signal AP startup */
1084	cpus = mp_naps;
1085
1086	ipi_startup(apic_id, vector);
1087
1088	/* Wait up to 5 seconds for it to start. */
1089	for (ms = 0; ms < 5000; ms++) {
1090		if (mp_naps > cpus)
1091			return 1;	/* return SUCCESS */
1092		DELAY(1000);
1093	}
1094	return 0;		/* return FAILURE */
1095}
1096
1097#ifdef COUNT_XINVLTLB_HITS
1098u_int xhits_gbl[MAXCPU];
1099u_int xhits_pg[MAXCPU];
1100u_int xhits_rng[MAXCPU];
1101static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, "");
1102SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl,
1103    sizeof(xhits_gbl), "IU", "");
1104SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg,
1105    sizeof(xhits_pg), "IU", "");
1106SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng,
1107    sizeof(xhits_rng), "IU", "");
1108
1109u_int ipi_global;
1110u_int ipi_page;
1111u_int ipi_range;
1112u_int ipi_range_size;
1113SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, "");
1114SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, "");
1115SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, "");
1116SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size,
1117    0, "");
1118
1119u_int ipi_masked_global;
1120u_int ipi_masked_page;
1121u_int ipi_masked_range;
1122u_int ipi_masked_range_size;
1123SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_global, CTLFLAG_RW,
1124    &ipi_masked_global, 0, "");
1125SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_page, CTLFLAG_RW,
1126    &ipi_masked_page, 0, "");
1127SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range, CTLFLAG_RW,
1128    &ipi_masked_range, 0, "");
1129SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_masked_range_size, CTLFLAG_RW,
1130    &ipi_masked_range_size, 0, "");
1131#endif /* COUNT_XINVLTLB_HITS */
1132
1133/*
1134 * Init and startup IPI.
1135 */
1136void
1137ipi_startup(int apic_id, int vector)
1138{
1139
1140	/*
1141	 * This attempts to follow the algorithm described in the
1142	 * Intel Multiprocessor Specification v1.4 in section B.4.
1143	 * For each IPI, we allow the local APIC ~20us to deliver the
1144	 * IPI.  If that times out, we panic.
1145	 */
1146
1147	/*
1148	 * first we do an INIT IPI: this INIT IPI might be run, resetting
1149	 * and running the target CPU. OR this INIT IPI might be latched (P5
1150	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
1151	 * ignored.
1152	 */
1153	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
1154	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id);
1155	lapic_ipi_wait(20);
1156
1157	/* Explicitly deassert the INIT IPI. */
1158	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL |
1159	    APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT,
1160	    apic_id);
1161
1162	DELAY(10000);		/* wait ~10mS */
1163
1164	/*
1165	 * next we do a STARTUP IPI: the previous INIT IPI might still be
1166	 * latched, (P5 bug) this 1st STARTUP would then terminate
1167	 * immediately, and the previously started INIT IPI would continue. OR
1168	 * the previous INIT IPI has already run. and this STARTUP IPI will
1169	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
1170	 * will run.
1171	 */
1172	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1173	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1174	    vector, apic_id);
1175	if (!lapic_ipi_wait(20))
1176		panic("Failed to deliver first STARTUP IPI to APIC %d",
1177		    apic_id);
1178	DELAY(200);		/* wait ~200uS */
1179
1180	/*
1181	 * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
1182	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
1183	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
1184	 * recognized after hardware RESET or INIT IPI.
1185	 */
1186	lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE |
1187	    APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP |
1188	    vector, apic_id);
1189	if (!lapic_ipi_wait(20))
1190		panic("Failed to deliver second STARTUP IPI to APIC %d",
1191		    apic_id);
1192
1193	DELAY(200);		/* wait ~200uS */
1194}
1195
1196/*
1197 * Send an IPI to specified CPU handling the bitmap logic.
1198 */
1199static void
1200ipi_send_cpu(int cpu, u_int ipi)
1201{
1202	u_int bitmap, old_pending, new_pending;
1203
1204	KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu));
1205
1206	if (IPI_IS_BITMAPED(ipi)) {
1207		bitmap = 1 << ipi;
1208		ipi = IPI_BITMAP_VECTOR;
1209		do {
1210			old_pending = cpu_ipi_pending[cpu];
1211			new_pending = old_pending | bitmap;
1212		} while  (!atomic_cmpset_int(&cpu_ipi_pending[cpu],
1213		    old_pending, new_pending));
1214		if (old_pending)
1215			return;
1216	}
1217	lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]);
1218}
1219
1220/*
1221 * Flush the TLB on all other CPU's
1222 */
1223static void
1224smp_tlb_shootdown(u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1225{
1226	u_int ncpu;
1227
1228	ncpu = mp_ncpus - 1;	/* does not shootdown self */
1229	if (ncpu < 1)
1230		return;		/* no other cpus */
1231	if (!(read_eflags() & PSL_I))
1232		panic("%s: interrupts disabled", __func__);
1233	mtx_lock_spin(&smp_ipi_mtx);
1234	smp_tlb_addr1 = addr1;
1235	smp_tlb_addr2 = addr2;
1236	atomic_store_rel_int(&smp_tlb_wait, 0);
1237	ipi_all_but_self(vector);
1238	while (smp_tlb_wait < ncpu)
1239		ia32_pause();
1240	mtx_unlock_spin(&smp_ipi_mtx);
1241}
1242
1243static void
1244smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, vm_offset_t addr1, vm_offset_t addr2)
1245{
1246	int cpu, ncpu, othercpus;
1247
1248	othercpus = mp_ncpus - 1;
1249	if (CPU_ISFULLSET(&mask)) {
1250		if (othercpus < 1)
1251			return;
1252	} else {
1253		CPU_CLR(PCPU_GET(cpuid), &mask);
1254		if (CPU_EMPTY(&mask))
1255			return;
1256	}
1257	if (!(read_eflags() & PSL_I))
1258		panic("%s: interrupts disabled", __func__);
1259	mtx_lock_spin(&smp_ipi_mtx);
1260	smp_tlb_addr1 = addr1;
1261	smp_tlb_addr2 = addr2;
1262	atomic_store_rel_int(&smp_tlb_wait, 0);
1263	if (CPU_ISFULLSET(&mask)) {
1264		ncpu = othercpus;
1265		ipi_all_but_self(vector);
1266	} else {
1267		ncpu = 0;
1268		while ((cpu = CPU_FFS(&mask)) != 0) {
1269			cpu--;
1270			CPU_CLR(cpu, &mask);
1271			CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu,
1272			    vector);
1273			ipi_send_cpu(cpu, vector);
1274			ncpu++;
1275		}
1276	}
1277	while (smp_tlb_wait < ncpu)
1278		ia32_pause();
1279	mtx_unlock_spin(&smp_ipi_mtx);
1280}
1281
1282void
1283smp_cache_flush(void)
1284{
1285
1286	if (smp_started)
1287		smp_tlb_shootdown(IPI_INVLCACHE, 0, 0);
1288}
1289
1290void
1291smp_invltlb(void)
1292{
1293
1294	if (smp_started) {
1295		smp_tlb_shootdown(IPI_INVLTLB, 0, 0);
1296#ifdef COUNT_XINVLTLB_HITS
1297		ipi_global++;
1298#endif
1299	}
1300}
1301
1302void
1303smp_invlpg(vm_offset_t addr)
1304{
1305
1306	if (smp_started) {
1307		smp_tlb_shootdown(IPI_INVLPG, addr, 0);
1308#ifdef COUNT_XINVLTLB_HITS
1309		ipi_page++;
1310#endif
1311	}
1312}
1313
1314void
1315smp_invlpg_range(vm_offset_t addr1, vm_offset_t addr2)
1316{
1317
1318	if (smp_started) {
1319		smp_tlb_shootdown(IPI_INVLRNG, addr1, addr2);
1320#ifdef COUNT_XINVLTLB_HITS
1321		ipi_range++;
1322		ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
1323#endif
1324	}
1325}
1326
1327void
1328smp_masked_invltlb(cpuset_t mask)
1329{
1330
1331	if (smp_started) {
1332		smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, 0, 0);
1333#ifdef COUNT_XINVLTLB_HITS
1334		ipi_masked_global++;
1335#endif
1336	}
1337}
1338
1339void
1340smp_masked_invlpg(cpuset_t mask, vm_offset_t addr)
1341{
1342
1343	if (smp_started) {
1344		smp_targeted_tlb_shootdown(mask, IPI_INVLPG, addr, 0);
1345#ifdef COUNT_XINVLTLB_HITS
1346		ipi_masked_page++;
1347#endif
1348	}
1349}
1350
1351void
1352smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2)
1353{
1354
1355	if (smp_started) {
1356		smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, addr1, addr2);
1357#ifdef COUNT_XINVLTLB_HITS
1358		ipi_masked_range++;
1359		ipi_masked_range_size += (addr2 - addr1) / PAGE_SIZE;
1360#endif
1361	}
1362}
1363
1364void
1365ipi_bitmap_handler(struct trapframe frame)
1366{
1367	struct trapframe *oldframe;
1368	struct thread *td;
1369	int cpu = PCPU_GET(cpuid);
1370	u_int ipi_bitmap;
1371
1372	critical_enter();
1373	td = curthread;
1374	td->td_intr_nesting_level++;
1375	oldframe = td->td_intr_frame;
1376	td->td_intr_frame = &frame;
1377	ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]);
1378	if (ipi_bitmap & (1 << IPI_PREEMPT)) {
1379#ifdef COUNT_IPIS
1380		(*ipi_preempt_counts[cpu])++;
1381#endif
1382		sched_preempt(td);
1383	}
1384	if (ipi_bitmap & (1 << IPI_AST)) {
1385#ifdef COUNT_IPIS
1386		(*ipi_ast_counts[cpu])++;
1387#endif
1388		/* Nothing to do for AST */
1389	}
1390	if (ipi_bitmap & (1 << IPI_HARDCLOCK)) {
1391#ifdef COUNT_IPIS
1392		(*ipi_hardclock_counts[cpu])++;
1393#endif
1394		hardclockintr();
1395	}
1396	td->td_intr_frame = oldframe;
1397	td->td_intr_nesting_level--;
1398	critical_exit();
1399}
1400
1401/*
1402 * send an IPI to a set of cpus.
1403 */
1404void
1405ipi_selected(cpuset_t cpus, u_int ipi)
1406{
1407	int cpu;
1408
1409	/*
1410	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1411	 * of help in order to understand what is the source.
1412	 * Set the mask of receiving CPUs for this purpose.
1413	 */
1414	if (ipi == IPI_STOP_HARD)
1415		CPU_OR_ATOMIC(&ipi_nmi_pending, &cpus);
1416
1417	while ((cpu = CPU_FFS(&cpus)) != 0) {
1418		cpu--;
1419		CPU_CLR(cpu, &cpus);
1420		CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1421		ipi_send_cpu(cpu, ipi);
1422	}
1423}
1424
1425/*
1426 * send an IPI to a specific CPU.
1427 */
1428void
1429ipi_cpu(int cpu, u_int ipi)
1430{
1431
1432	/*
1433	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1434	 * of help in order to understand what is the source.
1435	 * Set the mask of receiving CPUs for this purpose.
1436	 */
1437	if (ipi == IPI_STOP_HARD)
1438		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);
1439
1440	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
1441	ipi_send_cpu(cpu, ipi);
1442}
1443
1444/*
1445 * send an IPI to all CPUs EXCEPT myself
1446 */
1447void
1448ipi_all_but_self(u_int ipi)
1449{
1450	cpuset_t other_cpus;
1451
1452	other_cpus = all_cpus;
1453	CPU_CLR(PCPU_GET(cpuid), &other_cpus);
1454	if (IPI_IS_BITMAPED(ipi)) {
1455		ipi_selected(other_cpus, ipi);
1456		return;
1457	}
1458
1459	/*
1460	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
1461	 * of help in order to understand what is the source.
1462	 * Set the mask of receiving CPUs for this purpose.
1463	 */
1464	if (ipi == IPI_STOP_HARD)
1465		CPU_OR_ATOMIC(&ipi_nmi_pending, &other_cpus);
1466
1467	CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi);
1468	lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS);
1469}
1470
1471int
1472ipi_nmi_handler()
1473{
1474	u_int cpuid;
1475
1476	/*
1477	 * As long as there is not a simple way to know about a NMI's
1478	 * source, if the bitmask for the current CPU is present in
1479	 * the global pending bitword an IPI_STOP_HARD has been issued
1480	 * and should be handled.
1481	 */
1482	cpuid = PCPU_GET(cpuid);
1483	if (!CPU_ISSET(cpuid, &ipi_nmi_pending))
1484		return (1);
1485
1486	CPU_CLR_ATOMIC(cpuid, &ipi_nmi_pending);
1487	cpustop_handler();
1488	return (0);
1489}
1490
1491/*
1492 * Handle an IPI_STOP by saving our current context and spinning until we
1493 * are resumed.
1494 */
1495void
1496cpustop_handler(void)
1497{
1498	u_int cpu;
1499
1500	cpu = PCPU_GET(cpuid);
1501
1502	savectx(&stoppcbs[cpu]);
1503
1504	/* Indicate that we are stopped */
1505	CPU_SET_ATOMIC(cpu, &stopped_cpus);
1506
1507	/* Wait for restart */
1508	while (!CPU_ISSET(cpu, &started_cpus))
1509	    ia32_pause();
1510
1511	CPU_CLR_ATOMIC(cpu, &started_cpus);
1512	CPU_CLR_ATOMIC(cpu, &stopped_cpus);
1513
1514	if (cpu == 0 && cpustop_restartfunc != NULL) {
1515		cpustop_restartfunc();
1516		cpustop_restartfunc = NULL;
1517	}
1518}
1519
1520/*
1521 * Handle an IPI_SUSPEND by saving our current context and spinning until we
1522 * are resumed.
1523 */
1524void
1525cpususpend_handler(void)
1526{
1527	u_int cpu;
1528
1529	mtx_assert(&smp_ipi_mtx, MA_NOTOWNED);
1530
1531	cpu = PCPU_GET(cpuid);
1532	if (savectx(&susppcbs[cpu]->sp_pcb)) {
1533		npxsuspend(susppcbs[cpu]->sp_fpususpend);
1534		wbinvd();
1535		CPU_SET_ATOMIC(cpu, &suspended_cpus);
1536	} else {
1537		npxresume(susppcbs[cpu]->sp_fpususpend);
1538		pmap_init_pat();
1539		initializecpu();
1540		PCPU_SET(switchtime, 0);
1541		PCPU_SET(switchticks, ticks);
1542
1543		/* Indicate that we are resumed */
1544		CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1545	}
1546
1547	/* Wait for resume */
1548	while (!CPU_ISSET(cpu, &started_cpus))
1549		ia32_pause();
1550
1551	if (cpu_ops.cpu_resume)
1552		cpu_ops.cpu_resume();
1553
1554	/* Resume MCA and local APIC */
1555	mca_resume();
1556	lapic_setup(0);
1557
1558	/* Indicate that we are resumed */
1559	CPU_CLR_ATOMIC(cpu, &suspended_cpus);
1560	CPU_CLR_ATOMIC(cpu, &started_cpus);
1561}
1562
1563/*
1564 * Handlers for TLB related IPIs
1565 */
1566void
1567invltlb_handler(void)
1568{
1569	uint64_t cr3;
1570#ifdef COUNT_XINVLTLB_HITS
1571	xhits_gbl[PCPU_GET(cpuid)]++;
1572#endif /* COUNT_XINVLTLB_HITS */
1573#ifdef COUNT_IPIS
1574	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
1575#endif /* COUNT_IPIS */
1576
1577	cr3 = rcr3();
1578	load_cr3(cr3);
1579	atomic_add_int(&smp_tlb_wait, 1);
1580}
1581
1582void
1583invlpg_handler(void)
1584{
1585#ifdef COUNT_XINVLTLB_HITS
1586	xhits_pg[PCPU_GET(cpuid)]++;
1587#endif /* COUNT_XINVLTLB_HITS */
1588#ifdef COUNT_IPIS
1589	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
1590#endif /* COUNT_IPIS */
1591
1592	invlpg(smp_tlb_addr1);
1593
1594	atomic_add_int(&smp_tlb_wait, 1);
1595}
1596
1597void
1598invlrng_handler(void)
1599{
1600	vm_offset_t addr;
1601#ifdef COUNT_XINVLTLB_HITS
1602	xhits_rng[PCPU_GET(cpuid)]++;
1603#endif /* COUNT_XINVLTLB_HITS */
1604#ifdef COUNT_IPIS
1605	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
1606#endif /* COUNT_IPIS */
1607
1608	addr = smp_tlb_addr1;
1609	do {
1610		invlpg(addr);
1611		addr += PAGE_SIZE;
1612	} while (addr < smp_tlb_addr2);
1613
1614	atomic_add_int(&smp_tlb_wait, 1);
1615}
1616
1617void
1618invlcache_handler(void)
1619{
1620#ifdef COUNT_IPIS
1621	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
1622#endif /* COUNT_IPIS */
1623
1624	wbinvd();
1625	atomic_add_int(&smp_tlb_wait, 1);
1626}
1627
1628/*
1629 * This is called once the rest of the system is up and running and we're
1630 * ready to let the AP's out of the pen.
1631 */
1632static void
1633release_aps(void *dummy __unused)
1634{
1635
1636	if (mp_ncpus == 1)
1637		return;
1638	atomic_store_rel_int(&aps_ready, 1);
1639	while (smp_started == 0)
1640		ia32_pause();
1641}
1642SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
1643
1644#ifdef COUNT_IPIS
1645/*
1646 * Setup interrupt counters for IPI handlers.
1647 */
1648static void
1649mp_ipi_intrcnt(void *dummy)
1650{
1651	char buf[64];
1652	int i;
1653
1654	CPU_FOREACH(i) {
1655		snprintf(buf, sizeof(buf), "cpu%d:invltlb", i);
1656		intrcnt_add(buf, &ipi_invltlb_counts[i]);
1657		snprintf(buf, sizeof(buf), "cpu%d:invlrng", i);
1658		intrcnt_add(buf, &ipi_invlrng_counts[i]);
1659		snprintf(buf, sizeof(buf), "cpu%d:invlpg", i);
1660		intrcnt_add(buf, &ipi_invlpg_counts[i]);
1661		snprintf(buf, sizeof(buf), "cpu%d:invlcache", i);
1662		intrcnt_add(buf, &ipi_invlcache_counts[i]);
1663		snprintf(buf, sizeof(buf), "cpu%d:preempt", i);
1664		intrcnt_add(buf, &ipi_preempt_counts[i]);
1665		snprintf(buf, sizeof(buf), "cpu%d:ast", i);
1666		intrcnt_add(buf, &ipi_ast_counts[i]);
1667		snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i);
1668		intrcnt_add(buf, &ipi_rendezvous_counts[i]);
1669		snprintf(buf, sizeof(buf), "cpu%d:lazypmap", i);
1670		intrcnt_add(buf, &ipi_lazypmap_counts[i]);
1671		snprintf(buf, sizeof(buf), "cpu%d:hardclock", i);
1672		intrcnt_add(buf, &ipi_hardclock_counts[i]);
1673	}
1674}
1675SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL);
1676#endif
1677