machdep.c revision 347700
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/11/sys/i386/i386/machdep.c 347700 2019-05-16 14:42:16Z markj $");
42
43#include "opt_apic.h"
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kstack_pages.h"
51#include "opt_maxmem.h"
52#include "opt_mp_watchdog.h"
53#include "opt_perfmon.h"
54#include "opt_platform.h"
55#include "opt_xbox.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/eventhandler.h>
67#include <sys/exec.h>
68#include <sys/imgact.h>
69#include <sys/kdb.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/linker.h>
73#include <sys/lock.h>
74#include <sys/malloc.h>
75#include <sys/memrange.h>
76#include <sys/msgbuf.h>
77#include <sys/mutex.h>
78#include <sys/pcpu.h>
79#include <sys/ptrace.h>
80#include <sys/reboot.h>
81#include <sys/rwlock.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#ifdef SMP
85#include <sys/smp.h>
86#endif
87#include <sys/syscallsubr.h>
88#include <sys/sysctl.h>
89#include <sys/sysent.h>
90#include <sys/sysproto.h>
91#include <sys/ucontext.h>
92#include <sys/vmmeter.h>
93
94#include <vm/vm.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_object.h>
100#include <vm/vm_pager.h>
101#include <vm/vm_param.h>
102#include <vm/vm_phys.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#ifdef PC98
113#include <pc98/pc98/pc98_machdep.h>
114#else
115#include <isa/rtc.h>
116#endif
117
118#include <net/netisr.h>
119
120#include <machine/bootinfo.h>
121#include <machine/clock.h>
122#include <machine/cpu.h>
123#include <machine/cputypes.h>
124#include <machine/intr_machdep.h>
125#include <x86/mca.h>
126#include <machine/md_var.h>
127#include <machine/metadata.h>
128#include <machine/mp_watchdog.h>
129#include <machine/pc/bios.h>
130#include <machine/pcb.h>
131#include <machine/pcb_ext.h>
132#include <machine/proc.h>
133#include <machine/reg.h>
134#include <machine/sigframe.h>
135#include <machine/specialreg.h>
136#include <x86/ucode.h>
137#include <machine/vm86.h>
138#include <x86/init.h>
139#ifdef PERFMON
140#include <machine/perfmon.h>
141#endif
142#ifdef SMP
143#include <machine/smp.h>
144#endif
145#ifdef FDT
146#include <x86/fdt.h>
147#endif
148
149#ifdef DEV_APIC
150#include <x86/apicvar.h>
151#endif
152
153#ifdef DEV_ISA
154#include <x86/isa/icu.h>
155#endif
156
157#ifdef XBOX
158#include <machine/xbox.h>
159
160int arch_i386_is_xbox = 0;
161uint32_t arch_i386_xbox_memsize = 0;
162#endif
163
164/* Sanity check for __curthread() */
165CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
166
167extern register_t init386(int first);
168extern void dblfault_handler(void);
169void identify_cpu(void);
170
171static void cpu_startup(void *);
172static void fpstate_drop(struct thread *td);
173static void get_fpcontext(struct thread *td, mcontext_t *mcp,
174    char *xfpusave, size_t xfpusave_len);
175static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
176    char *xfpustate, size_t xfpustate_len);
177SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
178
179/* Intel ICH registers */
180#define ICH_PMBASE	0x400
181#define ICH_SMI_EN	ICH_PMBASE + 0x30
182
183int	_udatasel, _ucodesel;
184u_int	basemem;
185
186#ifdef PC98
187int	need_pre_dma_flush;	/* If 1, use wbinvd befor DMA transfer. */
188int	need_post_dma_flush;	/* If 1, use invd after DMA transfer. */
189
190static int	ispc98 = 1;
191SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
192#endif
193
194int cold = 1;
195
196#ifdef COMPAT_43
197static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
198#endif
199#ifdef COMPAT_FREEBSD4
200static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
201#endif
202
203long Maxmem = 0;
204long realmem = 0;
205
206#ifdef PAE
207FEATURE(pae, "Physical Address Extensions");
208#endif
209
210/*
211 * The number of PHYSMAP entries must be one less than the number of
212 * PHYSSEG entries because the PHYSMAP entry that spans the largest
213 * physical address that is accessible by ISA DMA is split into two
214 * PHYSSEG entries.
215 */
216#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
217
218vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
219vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
220
221/* must be 2 less so 0 0 can signal end of chunks */
222#define	PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
223#define	DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
224
225struct kva_md_info kmi;
226
227static struct trapframe proc0_tf;
228struct pcpu __pcpu[MAXCPU];
229
230struct mtx icu_lock;
231
232struct mem_range_softc mem_range_softc;
233
234 /* Default init_ops implementation. */
235 struct init_ops init_ops = {
236	.early_clock_source_init =	i8254_init,
237	.early_delay =			i8254_delay,
238#ifdef DEV_APIC
239	.msi_init =			msi_init,
240#endif
241 };
242
243static void
244cpu_startup(dummy)
245	void *dummy;
246{
247	uintmax_t memsize;
248	char *sysenv;
249
250#ifndef PC98
251	/*
252	 * On MacBooks, we need to disallow the legacy USB circuit to
253	 * generate an SMI# because this can cause several problems,
254	 * namely: incorrect CPU frequency detection and failure to
255	 * start the APs.
256	 * We do this by disabling a bit in the SMI_EN (SMI Control and
257	 * Enable register) of the Intel ICH LPC Interface Bridge.
258	 */
259	sysenv = kern_getenv("smbios.system.product");
260	if (sysenv != NULL) {
261		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
262		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
263		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
264		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
265		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
266		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
267		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
268		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
269			if (bootverbose)
270				printf("Disabling LEGACY_USB_EN bit on "
271				    "Intel ICH.\n");
272			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
273		}
274		freeenv(sysenv);
275	}
276#endif /* !PC98 */
277
278	/*
279	 * Good {morning,afternoon,evening,night}.
280	 */
281	startrtclock();
282	printcpuinfo();
283	panicifcpuunsupported();
284#ifdef PERFMON
285	perfmon_init();
286#endif
287
288	/*
289	 * Display physical memory if SMBIOS reports reasonable amount.
290	 */
291	memsize = 0;
292	sysenv = kern_getenv("smbios.memory.enabled");
293	if (sysenv != NULL) {
294		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
295		freeenv(sysenv);
296	}
297	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
298		memsize = ptoa((uintmax_t)Maxmem);
299	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
300	realmem = atop(memsize);
301
302	/*
303	 * Display any holes after the first chunk of extended memory.
304	 */
305	if (bootverbose) {
306		int indx;
307
308		printf("Physical memory chunk(s):\n");
309		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
310			vm_paddr_t size;
311
312			size = phys_avail[indx + 1] - phys_avail[indx];
313			printf(
314			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
315			    (uintmax_t)phys_avail[indx],
316			    (uintmax_t)phys_avail[indx + 1] - 1,
317			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
318		}
319	}
320
321	vm_ksubmap_init(&kmi);
322
323	printf("avail memory = %ju (%ju MB)\n",
324	    ptoa((uintmax_t)vm_cnt.v_free_count),
325	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
326
327	/*
328	 * Set up buffers, so they can be used to read disk labels.
329	 */
330	bufinit();
331	vm_pager_bufferinit();
332	cpu_setregs();
333}
334
335/*
336 * Send an interrupt to process.
337 *
338 * Stack is set up to allow sigcode stored
339 * at top to call routine, followed by call
340 * to sigreturn routine below.  After sigreturn
341 * resets the signal mask, the stack, and the
342 * frame pointer, it returns to the user
343 * specified pc, psl.
344 */
345#ifdef COMPAT_43
346static void
347osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
348{
349	struct osigframe sf, *fp;
350	struct proc *p;
351	struct thread *td;
352	struct sigacts *psp;
353	struct trapframe *regs;
354	int sig;
355	int oonstack;
356
357	td = curthread;
358	p = td->td_proc;
359	PROC_LOCK_ASSERT(p, MA_OWNED);
360	sig = ksi->ksi_signo;
361	psp = p->p_sigacts;
362	mtx_assert(&psp->ps_mtx, MA_OWNED);
363	regs = td->td_frame;
364	oonstack = sigonstack(regs->tf_esp);
365
366	/* Allocate space for the signal handler context. */
367	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
368	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
369		fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
370		    td->td_sigstk.ss_size - sizeof(struct osigframe));
371#if defined(COMPAT_43)
372		td->td_sigstk.ss_flags |= SS_ONSTACK;
373#endif
374	} else
375		fp = (struct osigframe *)regs->tf_esp - 1;
376
377	/* Build the argument list for the signal handler. */
378	sf.sf_signum = sig;
379	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
380	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
381	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
382		/* Signal handler installed with SA_SIGINFO. */
383		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
384		sf.sf_siginfo.si_signo = sig;
385		sf.sf_siginfo.si_code = ksi->ksi_code;
386		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
387		sf.sf_addr = 0;
388	} else {
389		/* Old FreeBSD-style arguments. */
390		sf.sf_arg2 = ksi->ksi_code;
391		sf.sf_addr = (register_t)ksi->ksi_addr;
392		sf.sf_ahu.sf_handler = catcher;
393	}
394	mtx_unlock(&psp->ps_mtx);
395	PROC_UNLOCK(p);
396
397	/* Save most if not all of trap frame. */
398	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
399	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
400	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
401	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
402	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
403	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
404	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
405	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
406	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
407	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
408	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
409	sf.sf_siginfo.si_sc.sc_gs = rgs();
410	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
411
412	/* Build the signal context to be used by osigreturn(). */
413	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
414	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
415	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
416	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
417	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
418	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
419	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
420	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
421
422	/*
423	 * If we're a vm86 process, we want to save the segment registers.
424	 * We also change eflags to be our emulated eflags, not the actual
425	 * eflags.
426	 */
427	if (regs->tf_eflags & PSL_VM) {
428		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
429		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
430		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
431
432		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
433		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
434		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
435		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
436
437		if (vm86->vm86_has_vme == 0)
438			sf.sf_siginfo.si_sc.sc_ps =
439			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
440			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
441
442		/* See sendsig() for comments. */
443		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
444	}
445
446	/*
447	 * Copy the sigframe out to the user's stack.
448	 */
449	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
450		PROC_LOCK(p);
451		sigexit(td, SIGILL);
452	}
453
454	regs->tf_esp = (int)fp;
455	if (p->p_sysent->sv_sigcode_base != 0) {
456		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
457		    szosigcode;
458	} else {
459		/* a.out sysentvec does not use shared page */
460		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
461	}
462	regs->tf_eflags &= ~(PSL_T | PSL_D);
463	regs->tf_cs = _ucodesel;
464	regs->tf_ds = _udatasel;
465	regs->tf_es = _udatasel;
466	regs->tf_fs = _udatasel;
467	load_gs(_udatasel);
468	regs->tf_ss = _udatasel;
469	PROC_LOCK(p);
470	mtx_lock(&psp->ps_mtx);
471}
472#endif /* COMPAT_43 */
473
474#ifdef COMPAT_FREEBSD4
475static void
476freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
477{
478	struct sigframe4 sf, *sfp;
479	struct proc *p;
480	struct thread *td;
481	struct sigacts *psp;
482	struct trapframe *regs;
483	int sig;
484	int oonstack;
485
486	td = curthread;
487	p = td->td_proc;
488	PROC_LOCK_ASSERT(p, MA_OWNED);
489	sig = ksi->ksi_signo;
490	psp = p->p_sigacts;
491	mtx_assert(&psp->ps_mtx, MA_OWNED);
492	regs = td->td_frame;
493	oonstack = sigonstack(regs->tf_esp);
494
495	/* Save user context. */
496	bzero(&sf, sizeof(sf));
497	sf.sf_uc.uc_sigmask = *mask;
498	sf.sf_uc.uc_stack = td->td_sigstk;
499	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
500	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
501	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
502	sf.sf_uc.uc_mcontext.mc_gs = rgs();
503	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
504	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
505	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
506	bzero(sf.sf_uc.uc_mcontext.__spare__,
507	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
508	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
509
510	/* Allocate space for the signal handler context. */
511	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
512	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
513		sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
514		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
515#if defined(COMPAT_43)
516		td->td_sigstk.ss_flags |= SS_ONSTACK;
517#endif
518	} else
519		sfp = (struct sigframe4 *)regs->tf_esp - 1;
520
521	/* Build the argument list for the signal handler. */
522	sf.sf_signum = sig;
523	sf.sf_ucontext = (register_t)&sfp->sf_uc;
524	bzero(&sf.sf_si, sizeof(sf.sf_si));
525	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
526		/* Signal handler installed with SA_SIGINFO. */
527		sf.sf_siginfo = (register_t)&sfp->sf_si;
528		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
529
530		/* Fill in POSIX parts */
531		sf.sf_si.si_signo = sig;
532		sf.sf_si.si_code = ksi->ksi_code;
533		sf.sf_si.si_addr = ksi->ksi_addr;
534	} else {
535		/* Old FreeBSD-style arguments. */
536		sf.sf_siginfo = ksi->ksi_code;
537		sf.sf_addr = (register_t)ksi->ksi_addr;
538		sf.sf_ahu.sf_handler = catcher;
539	}
540	mtx_unlock(&psp->ps_mtx);
541	PROC_UNLOCK(p);
542
543	/*
544	 * If we're a vm86 process, we want to save the segment registers.
545	 * We also change eflags to be our emulated eflags, not the actual
546	 * eflags.
547	 */
548	if (regs->tf_eflags & PSL_VM) {
549		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
550		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
551
552		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
553		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
554		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
555		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
556
557		if (vm86->vm86_has_vme == 0)
558			sf.sf_uc.uc_mcontext.mc_eflags =
559			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
560			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
561
562		/*
563		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
564		 * syscalls made by the signal handler.  This just avoids
565		 * wasting time for our lazy fixup of such faults.  PSL_NT
566		 * does nothing in vm86 mode, but vm86 programs can set it
567		 * almost legitimately in probes for old cpu types.
568		 */
569		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
570	}
571
572	/*
573	 * Copy the sigframe out to the user's stack.
574	 */
575	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
576		PROC_LOCK(p);
577		sigexit(td, SIGILL);
578	}
579
580	regs->tf_esp = (int)sfp;
581	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
582	    szfreebsd4_sigcode;
583	regs->tf_eflags &= ~(PSL_T | PSL_D);
584	regs->tf_cs = _ucodesel;
585	regs->tf_ds = _udatasel;
586	regs->tf_es = _udatasel;
587	regs->tf_fs = _udatasel;
588	regs->tf_ss = _udatasel;
589	PROC_LOCK(p);
590	mtx_lock(&psp->ps_mtx);
591}
592#endif	/* COMPAT_FREEBSD4 */
593
594void
595sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
596{
597	struct sigframe sf, *sfp;
598	struct proc *p;
599	struct thread *td;
600	struct sigacts *psp;
601	char *sp;
602	struct trapframe *regs;
603	struct segment_descriptor *sdp;
604	char *xfpusave;
605	size_t xfpusave_len;
606	int sig;
607	int oonstack;
608
609	td = curthread;
610	p = td->td_proc;
611	PROC_LOCK_ASSERT(p, MA_OWNED);
612	sig = ksi->ksi_signo;
613	psp = p->p_sigacts;
614	mtx_assert(&psp->ps_mtx, MA_OWNED);
615#ifdef COMPAT_FREEBSD4
616	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
617		freebsd4_sendsig(catcher, ksi, mask);
618		return;
619	}
620#endif
621#ifdef COMPAT_43
622	if (SIGISMEMBER(psp->ps_osigset, sig)) {
623		osendsig(catcher, ksi, mask);
624		return;
625	}
626#endif
627	regs = td->td_frame;
628	oonstack = sigonstack(regs->tf_esp);
629
630	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
631		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
632		xfpusave = __builtin_alloca(xfpusave_len);
633	} else {
634		xfpusave_len = 0;
635		xfpusave = NULL;
636	}
637
638	/* Save user context. */
639	bzero(&sf, sizeof(sf));
640	sf.sf_uc.uc_sigmask = *mask;
641	sf.sf_uc.uc_stack = td->td_sigstk;
642	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
643	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
644	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
645	sf.sf_uc.uc_mcontext.mc_gs = rgs();
646	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
647	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
648	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
649	fpstate_drop(td);
650	/*
651	 * Unconditionally fill the fsbase and gsbase into the mcontext.
652	 */
653	sdp = &td->td_pcb->pcb_fsd;
654	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
655	    sdp->sd_lobase;
656	sdp = &td->td_pcb->pcb_gsd;
657	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
658	    sdp->sd_lobase;
659	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
660	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
661	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
662
663	/* Allocate space for the signal handler context. */
664	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
665	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
666		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
667#if defined(COMPAT_43)
668		td->td_sigstk.ss_flags |= SS_ONSTACK;
669#endif
670	} else
671		sp = (char *)regs->tf_esp - 128;
672	if (xfpusave != NULL) {
673		sp -= xfpusave_len;
674		sp = (char *)((unsigned int)sp & ~0x3F);
675		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
676	}
677	sp -= sizeof(struct sigframe);
678
679	/* Align to 16 bytes. */
680	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
681
682	/* Build the argument list for the signal handler. */
683	sf.sf_signum = sig;
684	sf.sf_ucontext = (register_t)&sfp->sf_uc;
685	bzero(&sf.sf_si, sizeof(sf.sf_si));
686	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
687		/* Signal handler installed with SA_SIGINFO. */
688		sf.sf_siginfo = (register_t)&sfp->sf_si;
689		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
690
691		/* Fill in POSIX parts */
692		sf.sf_si = ksi->ksi_info;
693		sf.sf_si.si_signo = sig; /* maybe a translated signal */
694	} else {
695		/* Old FreeBSD-style arguments. */
696		sf.sf_siginfo = ksi->ksi_code;
697		sf.sf_addr = (register_t)ksi->ksi_addr;
698		sf.sf_ahu.sf_handler = catcher;
699	}
700	mtx_unlock(&psp->ps_mtx);
701	PROC_UNLOCK(p);
702
703	/*
704	 * If we're a vm86 process, we want to save the segment registers.
705	 * We also change eflags to be our emulated eflags, not the actual
706	 * eflags.
707	 */
708	if (regs->tf_eflags & PSL_VM) {
709		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
710		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
711
712		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
713		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
714		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
715		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
716
717		if (vm86->vm86_has_vme == 0)
718			sf.sf_uc.uc_mcontext.mc_eflags =
719			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
720			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
721
722		/*
723		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
724		 * syscalls made by the signal handler.  This just avoids
725		 * wasting time for our lazy fixup of such faults.  PSL_NT
726		 * does nothing in vm86 mode, but vm86 programs can set it
727		 * almost legitimately in probes for old cpu types.
728		 */
729		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
730	}
731
732	/*
733	 * Copy the sigframe out to the user's stack.
734	 */
735	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
736	    (xfpusave != NULL && copyout(xfpusave,
737	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
738	    != 0)) {
739		PROC_LOCK(p);
740		sigexit(td, SIGILL);
741	}
742
743	regs->tf_esp = (int)sfp;
744	regs->tf_eip = p->p_sysent->sv_sigcode_base;
745	if (regs->tf_eip == 0)
746		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
747	regs->tf_eflags &= ~(PSL_T | PSL_D);
748	regs->tf_cs = _ucodesel;
749	regs->tf_ds = _udatasel;
750	regs->tf_es = _udatasel;
751	regs->tf_fs = _udatasel;
752	regs->tf_ss = _udatasel;
753	PROC_LOCK(p);
754	mtx_lock(&psp->ps_mtx);
755}
756
757/*
758 * System call to cleanup state after a signal
759 * has been taken.  Reset signal mask and
760 * stack state from context left by sendsig (above).
761 * Return to previous pc and psl as specified by
762 * context left by sendsig. Check carefully to
763 * make sure that the user has not modified the
764 * state to gain improper privileges.
765 *
766 * MPSAFE
767 */
768#ifdef COMPAT_43
769int
770osigreturn(td, uap)
771	struct thread *td;
772	struct osigreturn_args /* {
773		struct osigcontext *sigcntxp;
774	} */ *uap;
775{
776	struct osigcontext sc;
777	struct trapframe *regs;
778	struct osigcontext *scp;
779	int eflags, error;
780	ksiginfo_t ksi;
781
782	regs = td->td_frame;
783	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
784	if (error != 0)
785		return (error);
786	scp = &sc;
787	eflags = scp->sc_ps;
788	if (eflags & PSL_VM) {
789		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
790		struct vm86_kernel *vm86;
791
792		/*
793		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
794		 * set up the vm86 area, and we can't enter vm86 mode.
795		 */
796		if (td->td_pcb->pcb_ext == 0)
797			return (EINVAL);
798		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
799		if (vm86->vm86_inited == 0)
800			return (EINVAL);
801
802		/* Go back to user mode if both flags are set. */
803		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
804			ksiginfo_init_trap(&ksi);
805			ksi.ksi_signo = SIGBUS;
806			ksi.ksi_code = BUS_OBJERR;
807			ksi.ksi_addr = (void *)regs->tf_eip;
808			trapsignal(td, &ksi);
809		}
810
811		if (vm86->vm86_has_vme) {
812			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
813			    (eflags & VME_USERCHANGE) | PSL_VM;
814		} else {
815			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
816			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
817			    (eflags & VM_USERCHANGE) | PSL_VM;
818		}
819		tf->tf_vm86_ds = scp->sc_ds;
820		tf->tf_vm86_es = scp->sc_es;
821		tf->tf_vm86_fs = scp->sc_fs;
822		tf->tf_vm86_gs = scp->sc_gs;
823		tf->tf_ds = _udatasel;
824		tf->tf_es = _udatasel;
825		tf->tf_fs = _udatasel;
826	} else {
827		/*
828		 * Don't allow users to change privileged or reserved flags.
829		 */
830		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
831	    		return (EINVAL);
832		}
833
834		/*
835		 * Don't allow users to load a valid privileged %cs.  Let the
836		 * hardware check for invalid selectors, excess privilege in
837		 * other selectors, invalid %eip's and invalid %esp's.
838		 */
839		if (!CS_SECURE(scp->sc_cs)) {
840			ksiginfo_init_trap(&ksi);
841			ksi.ksi_signo = SIGBUS;
842			ksi.ksi_code = BUS_OBJERR;
843			ksi.ksi_trapno = T_PROTFLT;
844			ksi.ksi_addr = (void *)regs->tf_eip;
845			trapsignal(td, &ksi);
846			return (EINVAL);
847		}
848		regs->tf_ds = scp->sc_ds;
849		regs->tf_es = scp->sc_es;
850		regs->tf_fs = scp->sc_fs;
851	}
852
853	/* Restore remaining registers. */
854	regs->tf_eax = scp->sc_eax;
855	regs->tf_ebx = scp->sc_ebx;
856	regs->tf_ecx = scp->sc_ecx;
857	regs->tf_edx = scp->sc_edx;
858	regs->tf_esi = scp->sc_esi;
859	regs->tf_edi = scp->sc_edi;
860	regs->tf_cs = scp->sc_cs;
861	regs->tf_ss = scp->sc_ss;
862	regs->tf_isp = scp->sc_isp;
863	regs->tf_ebp = scp->sc_fp;
864	regs->tf_esp = scp->sc_sp;
865	regs->tf_eip = scp->sc_pc;
866	regs->tf_eflags = eflags;
867
868#if defined(COMPAT_43)
869	if (scp->sc_onstack & 1)
870		td->td_sigstk.ss_flags |= SS_ONSTACK;
871	else
872		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
873#endif
874	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
875	    SIGPROCMASK_OLD);
876	return (EJUSTRETURN);
877}
878#endif /* COMPAT_43 */
879
880#ifdef COMPAT_FREEBSD4
881/*
882 * MPSAFE
883 */
884int
885freebsd4_sigreturn(td, uap)
886	struct thread *td;
887	struct freebsd4_sigreturn_args /* {
888		const ucontext4 *sigcntxp;
889	} */ *uap;
890{
891	struct ucontext4 uc;
892	struct trapframe *regs;
893	struct ucontext4 *ucp;
894	int cs, eflags, error;
895	ksiginfo_t ksi;
896
897	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
898	if (error != 0)
899		return (error);
900	ucp = &uc;
901	regs = td->td_frame;
902	eflags = ucp->uc_mcontext.mc_eflags;
903	if (eflags & PSL_VM) {
904		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
905		struct vm86_kernel *vm86;
906
907		/*
908		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
909		 * set up the vm86 area, and we can't enter vm86 mode.
910		 */
911		if (td->td_pcb->pcb_ext == 0)
912			return (EINVAL);
913		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
914		if (vm86->vm86_inited == 0)
915			return (EINVAL);
916
917		/* Go back to user mode if both flags are set. */
918		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
919			ksiginfo_init_trap(&ksi);
920			ksi.ksi_signo = SIGBUS;
921			ksi.ksi_code = BUS_OBJERR;
922			ksi.ksi_addr = (void *)regs->tf_eip;
923			trapsignal(td, &ksi);
924		}
925		if (vm86->vm86_has_vme) {
926			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
927			    (eflags & VME_USERCHANGE) | PSL_VM;
928		} else {
929			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
930			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
931			    (eflags & VM_USERCHANGE) | PSL_VM;
932		}
933		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
934		tf->tf_eflags = eflags;
935		tf->tf_vm86_ds = tf->tf_ds;
936		tf->tf_vm86_es = tf->tf_es;
937		tf->tf_vm86_fs = tf->tf_fs;
938		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
939		tf->tf_ds = _udatasel;
940		tf->tf_es = _udatasel;
941		tf->tf_fs = _udatasel;
942	} else {
943		/*
944		 * Don't allow users to change privileged or reserved flags.
945		 */
946		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
947			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
948			    td->td_proc->p_pid, td->td_name, eflags);
949	    		return (EINVAL);
950		}
951
952		/*
953		 * Don't allow users to load a valid privileged %cs.  Let the
954		 * hardware check for invalid selectors, excess privilege in
955		 * other selectors, invalid %eip's and invalid %esp's.
956		 */
957		cs = ucp->uc_mcontext.mc_cs;
958		if (!CS_SECURE(cs)) {
959			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
960			    td->td_proc->p_pid, td->td_name, cs);
961			ksiginfo_init_trap(&ksi);
962			ksi.ksi_signo = SIGBUS;
963			ksi.ksi_code = BUS_OBJERR;
964			ksi.ksi_trapno = T_PROTFLT;
965			ksi.ksi_addr = (void *)regs->tf_eip;
966			trapsignal(td, &ksi);
967			return (EINVAL);
968		}
969
970		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
971	}
972
973#if defined(COMPAT_43)
974	if (ucp->uc_mcontext.mc_onstack & 1)
975		td->td_sigstk.ss_flags |= SS_ONSTACK;
976	else
977		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
978#endif
979	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
980	return (EJUSTRETURN);
981}
982#endif	/* COMPAT_FREEBSD4 */
983
984/*
985 * MPSAFE
986 */
987int
988sys_sigreturn(td, uap)
989	struct thread *td;
990	struct sigreturn_args /* {
991		const struct __ucontext *sigcntxp;
992	} */ *uap;
993{
994	ucontext_t uc;
995	struct proc *p;
996	struct trapframe *regs;
997	ucontext_t *ucp;
998	char *xfpustate;
999	size_t xfpustate_len;
1000	int cs, eflags, error, ret;
1001	ksiginfo_t ksi;
1002
1003	p = td->td_proc;
1004
1005	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1006	if (error != 0)
1007		return (error);
1008	ucp = &uc;
1009	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
1010		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
1011		    td->td_name, ucp->uc_mcontext.mc_flags);
1012		return (EINVAL);
1013	}
1014	regs = td->td_frame;
1015	eflags = ucp->uc_mcontext.mc_eflags;
1016	if (eflags & PSL_VM) {
1017		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1018		struct vm86_kernel *vm86;
1019
1020		/*
1021		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1022		 * set up the vm86 area, and we can't enter vm86 mode.
1023		 */
1024		if (td->td_pcb->pcb_ext == 0)
1025			return (EINVAL);
1026		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1027		if (vm86->vm86_inited == 0)
1028			return (EINVAL);
1029
1030		/* Go back to user mode if both flags are set. */
1031		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1032			ksiginfo_init_trap(&ksi);
1033			ksi.ksi_signo = SIGBUS;
1034			ksi.ksi_code = BUS_OBJERR;
1035			ksi.ksi_addr = (void *)regs->tf_eip;
1036			trapsignal(td, &ksi);
1037		}
1038
1039		if (vm86->vm86_has_vme) {
1040			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1041			    (eflags & VME_USERCHANGE) | PSL_VM;
1042		} else {
1043			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1044			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1045			    (eflags & VM_USERCHANGE) | PSL_VM;
1046		}
1047		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1048		tf->tf_eflags = eflags;
1049		tf->tf_vm86_ds = tf->tf_ds;
1050		tf->tf_vm86_es = tf->tf_es;
1051		tf->tf_vm86_fs = tf->tf_fs;
1052		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1053		tf->tf_ds = _udatasel;
1054		tf->tf_es = _udatasel;
1055		tf->tf_fs = _udatasel;
1056	} else {
1057		/*
1058		 * Don't allow users to change privileged or reserved flags.
1059		 */
1060		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1061			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1062			    td->td_proc->p_pid, td->td_name, eflags);
1063	    		return (EINVAL);
1064		}
1065
1066		/*
1067		 * Don't allow users to load a valid privileged %cs.  Let the
1068		 * hardware check for invalid selectors, excess privilege in
1069		 * other selectors, invalid %eip's and invalid %esp's.
1070		 */
1071		cs = ucp->uc_mcontext.mc_cs;
1072		if (!CS_SECURE(cs)) {
1073			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1074			    td->td_proc->p_pid, td->td_name, cs);
1075			ksiginfo_init_trap(&ksi);
1076			ksi.ksi_signo = SIGBUS;
1077			ksi.ksi_code = BUS_OBJERR;
1078			ksi.ksi_trapno = T_PROTFLT;
1079			ksi.ksi_addr = (void *)regs->tf_eip;
1080			trapsignal(td, &ksi);
1081			return (EINVAL);
1082		}
1083
1084		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1085			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1086			if (xfpustate_len > cpu_max_ext_state_size -
1087			    sizeof(union savefpu)) {
1088				uprintf(
1089			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1090				    p->p_pid, td->td_name, xfpustate_len);
1091				return (EINVAL);
1092			}
1093			xfpustate = __builtin_alloca(xfpustate_len);
1094			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1095			    xfpustate, xfpustate_len);
1096			if (error != 0) {
1097				uprintf(
1098	"pid %d (%s): sigreturn copying xfpustate failed\n",
1099				    p->p_pid, td->td_name);
1100				return (error);
1101			}
1102		} else {
1103			xfpustate = NULL;
1104			xfpustate_len = 0;
1105		}
1106		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1107		    xfpustate_len);
1108		if (ret != 0)
1109			return (ret);
1110		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1111	}
1112
1113#if defined(COMPAT_43)
1114	if (ucp->uc_mcontext.mc_onstack & 1)
1115		td->td_sigstk.ss_flags |= SS_ONSTACK;
1116	else
1117		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1118#endif
1119
1120	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1121	return (EJUSTRETURN);
1122}
1123
1124/*
1125 * Reset registers to default values on exec.
1126 */
1127void
1128exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1129{
1130	struct trapframe *regs;
1131	struct pcb *pcb;
1132	register_t saved_eflags;
1133
1134	regs = td->td_frame;
1135	pcb = td->td_pcb;
1136
1137	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1138	pcb->pcb_gs = _udatasel;
1139	load_gs(_udatasel);
1140
1141	mtx_lock_spin(&dt_lock);
1142	if (td->td_proc->p_md.md_ldt)
1143		user_ldt_free(td);
1144	else
1145		mtx_unlock_spin(&dt_lock);
1146
1147	/*
1148	 * Reset the fs and gs bases.  The values from the old address
1149	 * space do not make sense for the new program.  In particular,
1150	 * gsbase might be the TLS base for the old program but the new
1151	 * program has no TLS now.
1152	 */
1153	set_fsbase(td, 0);
1154	set_gsbase(td, 0);
1155
1156	saved_eflags = regs->tf_eflags & PSL_T;
1157	bzero((char *)regs, sizeof(struct trapframe));
1158	regs->tf_eip = imgp->entry_addr;
1159	regs->tf_esp = stack;
1160	regs->tf_eflags = PSL_USER | saved_eflags;
1161	regs->tf_ss = _udatasel;
1162	regs->tf_ds = _udatasel;
1163	regs->tf_es = _udatasel;
1164	regs->tf_fs = _udatasel;
1165	regs->tf_cs = _ucodesel;
1166
1167	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1168	regs->tf_ebx = imgp->ps_strings;
1169
1170        /*
1171         * Reset the hardware debug registers if they were in use.
1172         * They won't have any meaning for the newly exec'd process.
1173         */
1174        if (pcb->pcb_flags & PCB_DBREGS) {
1175                pcb->pcb_dr0 = 0;
1176                pcb->pcb_dr1 = 0;
1177                pcb->pcb_dr2 = 0;
1178                pcb->pcb_dr3 = 0;
1179                pcb->pcb_dr6 = 0;
1180                pcb->pcb_dr7 = 0;
1181                if (pcb == curpcb) {
1182		        /*
1183			 * Clear the debug registers on the running
1184			 * CPU, otherwise they will end up affecting
1185			 * the next process we switch to.
1186			 */
1187		        reset_dbregs();
1188                }
1189		pcb->pcb_flags &= ~PCB_DBREGS;
1190        }
1191
1192	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1193
1194	/*
1195	 * Drop the FP state if we hold it, so that the process gets a
1196	 * clean FP state if it uses the FPU again.
1197	 */
1198	fpstate_drop(td);
1199
1200	/*
1201	 * XXX - Linux emulator
1202	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1203	 * on it.
1204	 */
1205	td->td_retval[1] = 0;
1206}
1207
1208void
1209cpu_setregs(void)
1210{
1211	unsigned int cr0;
1212
1213	cr0 = rcr0();
1214
1215	/*
1216	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1217	 *
1218	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1219	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1220	 * bit to control the trap, because setting the CR0_EM bit does
1221	 * not cause WAIT instructions to trap.  It's important to trap
1222	 * WAIT instructions - otherwise the "wait" variants of no-wait
1223	 * control instructions would degenerate to the "no-wait" variants
1224	 * after FP context switches but work correctly otherwise.  It's
1225	 * particularly important to trap WAITs when there is no NPX -
1226	 * otherwise the "wait" variants would always degenerate.
1227	 *
1228	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1229	 * Setting it should fail or do nothing on lesser processors.
1230	 */
1231	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1232	load_cr0(cr0);
1233	load_gs(_udatasel);
1234}
1235
1236u_long bootdev;		/* not a struct cdev *- encoding is different */
1237SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1238	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1239
1240static char bootmethod[16] = "BIOS";
1241SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1242    "System firmware boot method");
1243
1244/*
1245 * Initialize 386 and configure to run kernel
1246 */
1247
1248/*
1249 * Initialize segments & interrupt table
1250 */
1251
1252int _default_ldt;
1253
1254union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1255union descriptor ldt[NLDT];		/* local descriptor table */
1256static struct gate_descriptor idt0[NIDT];
1257struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1258struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1259struct mtx dt_lock;			/* lock for GDT and LDT */
1260
1261static struct i386tss dblfault_tss;
1262static char dblfault_stack[PAGE_SIZE];
1263
1264extern  vm_offset_t	proc0kstack;
1265
1266
1267/*
1268 * software prototypes -- in more palatable form.
1269 *
1270 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1271 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1272 */
1273struct soft_segment_descriptor gdt_segs[] = {
1274/* GNULL_SEL	0 Null Descriptor */
1275{	.ssd_base = 0x0,
1276	.ssd_limit = 0x0,
1277	.ssd_type = 0,
1278	.ssd_dpl = SEL_KPL,
1279	.ssd_p = 0,
1280	.ssd_xx = 0, .ssd_xx1 = 0,
1281	.ssd_def32 = 0,
1282	.ssd_gran = 0		},
1283/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1284{	.ssd_base = 0x0,
1285	.ssd_limit = 0xfffff,
1286	.ssd_type = SDT_MEMRWA,
1287	.ssd_dpl = SEL_KPL,
1288	.ssd_p = 1,
1289	.ssd_xx = 0, .ssd_xx1 = 0,
1290	.ssd_def32 = 1,
1291	.ssd_gran = 1		},
1292/* GUFS_SEL	2 %fs Descriptor for user */
1293{	.ssd_base = 0x0,
1294	.ssd_limit = 0xfffff,
1295	.ssd_type = SDT_MEMRWA,
1296	.ssd_dpl = SEL_UPL,
1297	.ssd_p = 1,
1298	.ssd_xx = 0, .ssd_xx1 = 0,
1299	.ssd_def32 = 1,
1300	.ssd_gran = 1		},
1301/* GUGS_SEL	3 %gs Descriptor for user */
1302{	.ssd_base = 0x0,
1303	.ssd_limit = 0xfffff,
1304	.ssd_type = SDT_MEMRWA,
1305	.ssd_dpl = SEL_UPL,
1306	.ssd_p = 1,
1307	.ssd_xx = 0, .ssd_xx1 = 0,
1308	.ssd_def32 = 1,
1309	.ssd_gran = 1		},
1310/* GCODE_SEL	4 Code Descriptor for kernel */
1311{	.ssd_base = 0x0,
1312	.ssd_limit = 0xfffff,
1313	.ssd_type = SDT_MEMERA,
1314	.ssd_dpl = SEL_KPL,
1315	.ssd_p = 1,
1316	.ssd_xx = 0, .ssd_xx1 = 0,
1317	.ssd_def32 = 1,
1318	.ssd_gran = 1		},
1319/* GDATA_SEL	5 Data Descriptor for kernel */
1320{	.ssd_base = 0x0,
1321	.ssd_limit = 0xfffff,
1322	.ssd_type = SDT_MEMRWA,
1323	.ssd_dpl = SEL_KPL,
1324	.ssd_p = 1,
1325	.ssd_xx = 0, .ssd_xx1 = 0,
1326	.ssd_def32 = 1,
1327	.ssd_gran = 1		},
1328/* GUCODE_SEL	6 Code Descriptor for user */
1329{	.ssd_base = 0x0,
1330	.ssd_limit = 0xfffff,
1331	.ssd_type = SDT_MEMERA,
1332	.ssd_dpl = SEL_UPL,
1333	.ssd_p = 1,
1334	.ssd_xx = 0, .ssd_xx1 = 0,
1335	.ssd_def32 = 1,
1336	.ssd_gran = 1		},
1337/* GUDATA_SEL	7 Data Descriptor for user */
1338{	.ssd_base = 0x0,
1339	.ssd_limit = 0xfffff,
1340	.ssd_type = SDT_MEMRWA,
1341	.ssd_dpl = SEL_UPL,
1342	.ssd_p = 1,
1343	.ssd_xx = 0, .ssd_xx1 = 0,
1344	.ssd_def32 = 1,
1345	.ssd_gran = 1		},
1346/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1347{	.ssd_base = 0x400,
1348	.ssd_limit = 0xfffff,
1349	.ssd_type = SDT_MEMRWA,
1350	.ssd_dpl = SEL_KPL,
1351	.ssd_p = 1,
1352	.ssd_xx = 0, .ssd_xx1 = 0,
1353	.ssd_def32 = 1,
1354	.ssd_gran = 1		},
1355/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1356{
1357	.ssd_base = 0x0,
1358	.ssd_limit = sizeof(struct i386tss)-1,
1359	.ssd_type = SDT_SYS386TSS,
1360	.ssd_dpl = 0,
1361	.ssd_p = 1,
1362	.ssd_xx = 0, .ssd_xx1 = 0,
1363	.ssd_def32 = 0,
1364	.ssd_gran = 0		},
1365/* GLDT_SEL	10 LDT Descriptor */
1366{	.ssd_base = (int) ldt,
1367	.ssd_limit = sizeof(ldt)-1,
1368	.ssd_type = SDT_SYSLDT,
1369	.ssd_dpl = SEL_UPL,
1370	.ssd_p = 1,
1371	.ssd_xx = 0, .ssd_xx1 = 0,
1372	.ssd_def32 = 0,
1373	.ssd_gran = 0		},
1374/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1375{	.ssd_base = (int) ldt,
1376	.ssd_limit = (512 * sizeof(union descriptor)-1),
1377	.ssd_type = SDT_SYSLDT,
1378	.ssd_dpl = 0,
1379	.ssd_p = 1,
1380	.ssd_xx = 0, .ssd_xx1 = 0,
1381	.ssd_def32 = 0,
1382	.ssd_gran = 0		},
1383/* GPANIC_SEL	12 Panic Tss Descriptor */
1384{	.ssd_base = (int) &dblfault_tss,
1385	.ssd_limit = sizeof(struct i386tss)-1,
1386	.ssd_type = SDT_SYS386TSS,
1387	.ssd_dpl = 0,
1388	.ssd_p = 1,
1389	.ssd_xx = 0, .ssd_xx1 = 0,
1390	.ssd_def32 = 0,
1391	.ssd_gran = 0		},
1392/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1393{	.ssd_base = 0,
1394	.ssd_limit = 0xfffff,
1395	.ssd_type = SDT_MEMERA,
1396	.ssd_dpl = 0,
1397	.ssd_p = 1,
1398	.ssd_xx = 0, .ssd_xx1 = 0,
1399	.ssd_def32 = 0,
1400	.ssd_gran = 1		},
1401/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1402{	.ssd_base = 0,
1403	.ssd_limit = 0xfffff,
1404	.ssd_type = SDT_MEMERA,
1405	.ssd_dpl = 0,
1406	.ssd_p = 1,
1407	.ssd_xx = 0, .ssd_xx1 = 0,
1408	.ssd_def32 = 0,
1409	.ssd_gran = 1		},
1410/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1411{	.ssd_base = 0,
1412	.ssd_limit = 0xfffff,
1413	.ssd_type = SDT_MEMRWA,
1414	.ssd_dpl = 0,
1415	.ssd_p = 1,
1416	.ssd_xx = 0, .ssd_xx1 = 0,
1417	.ssd_def32 = 1,
1418	.ssd_gran = 1		},
1419/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1420{	.ssd_base = 0,
1421	.ssd_limit = 0xfffff,
1422	.ssd_type = SDT_MEMRWA,
1423	.ssd_dpl = 0,
1424	.ssd_p = 1,
1425	.ssd_xx = 0, .ssd_xx1 = 0,
1426	.ssd_def32 = 0,
1427	.ssd_gran = 1		},
1428/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1429{	.ssd_base = 0,
1430	.ssd_limit = 0xfffff,
1431	.ssd_type = SDT_MEMRWA,
1432	.ssd_dpl = 0,
1433	.ssd_p = 1,
1434	.ssd_xx = 0, .ssd_xx1 = 0,
1435	.ssd_def32 = 0,
1436	.ssd_gran = 1		},
1437/* GNDIS_SEL	18 NDIS Descriptor */
1438{	.ssd_base = 0x0,
1439	.ssd_limit = 0x0,
1440	.ssd_type = 0,
1441	.ssd_dpl = 0,
1442	.ssd_p = 0,
1443	.ssd_xx = 0, .ssd_xx1 = 0,
1444	.ssd_def32 = 0,
1445	.ssd_gran = 0		},
1446};
1447
1448static struct soft_segment_descriptor ldt_segs[] = {
1449	/* Null Descriptor - overwritten by call gate */
1450{	.ssd_base = 0x0,
1451	.ssd_limit = 0x0,
1452	.ssd_type = 0,
1453	.ssd_dpl = 0,
1454	.ssd_p = 0,
1455	.ssd_xx = 0, .ssd_xx1 = 0,
1456	.ssd_def32 = 0,
1457	.ssd_gran = 0		},
1458	/* Null Descriptor - overwritten by call gate */
1459{	.ssd_base = 0x0,
1460	.ssd_limit = 0x0,
1461	.ssd_type = 0,
1462	.ssd_dpl = 0,
1463	.ssd_p = 0,
1464	.ssd_xx = 0, .ssd_xx1 = 0,
1465	.ssd_def32 = 0,
1466	.ssd_gran = 0		},
1467	/* Null Descriptor - overwritten by call gate */
1468{	.ssd_base = 0x0,
1469	.ssd_limit = 0x0,
1470	.ssd_type = 0,
1471	.ssd_dpl = 0,
1472	.ssd_p = 0,
1473	.ssd_xx = 0, .ssd_xx1 = 0,
1474	.ssd_def32 = 0,
1475	.ssd_gran = 0		},
1476	/* Code Descriptor for user */
1477{	.ssd_base = 0x0,
1478	.ssd_limit = 0xfffff,
1479	.ssd_type = SDT_MEMERA,
1480	.ssd_dpl = SEL_UPL,
1481	.ssd_p = 1,
1482	.ssd_xx = 0, .ssd_xx1 = 0,
1483	.ssd_def32 = 1,
1484	.ssd_gran = 1		},
1485	/* Null Descriptor - overwritten by call gate */
1486{	.ssd_base = 0x0,
1487	.ssd_limit = 0x0,
1488	.ssd_type = 0,
1489	.ssd_dpl = 0,
1490	.ssd_p = 0,
1491	.ssd_xx = 0, .ssd_xx1 = 0,
1492	.ssd_def32 = 0,
1493	.ssd_gran = 0		},
1494	/* Data Descriptor for user */
1495{	.ssd_base = 0x0,
1496	.ssd_limit = 0xfffff,
1497	.ssd_type = SDT_MEMRWA,
1498	.ssd_dpl = SEL_UPL,
1499	.ssd_p = 1,
1500	.ssd_xx = 0, .ssd_xx1 = 0,
1501	.ssd_def32 = 1,
1502	.ssd_gran = 1		},
1503};
1504
1505void
1506setidt(idx, func, typ, dpl, selec)
1507	int idx;
1508	inthand_t *func;
1509	int typ;
1510	int dpl;
1511	int selec;
1512{
1513	struct gate_descriptor *ip;
1514
1515	ip = idt + idx;
1516	ip->gd_looffset = (int)func;
1517	ip->gd_selector = selec;
1518	ip->gd_stkcpy = 0;
1519	ip->gd_xx = 0;
1520	ip->gd_type = typ;
1521	ip->gd_dpl = dpl;
1522	ip->gd_p = 1;
1523	ip->gd_hioffset = ((int)func)>>16 ;
1524}
1525
1526extern inthand_t
1527	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1528	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1529	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1530	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1531	IDTVEC(xmm),
1532#ifdef KDTRACE_HOOKS
1533	IDTVEC(dtrace_ret),
1534#endif
1535#ifdef XENHVM
1536	IDTVEC(xen_intr_upcall),
1537#endif
1538	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1539
1540#ifdef DDB
1541/*
1542 * Display the index and function name of any IDT entries that don't use
1543 * the default 'rsvd' entry point.
1544 */
1545DB_SHOW_COMMAND(idt, db_show_idt)
1546{
1547	struct gate_descriptor *ip;
1548	int idx;
1549	uintptr_t func;
1550
1551	ip = idt;
1552	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1553		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1554		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1555			db_printf("%3d\t", idx);
1556			db_printsym(func, DB_STGY_PROC);
1557			db_printf("\n");
1558		}
1559		ip++;
1560	}
1561}
1562
1563/* Show privileged registers. */
1564DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1565{
1566	uint64_t idtr, gdtr;
1567
1568	idtr = ridt();
1569	db_printf("idtr\t0x%08x/%04x\n",
1570	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1571	gdtr = rgdt();
1572	db_printf("gdtr\t0x%08x/%04x\n",
1573	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1574	db_printf("ldtr\t0x%04x\n", rldt());
1575	db_printf("tr\t0x%04x\n", rtr());
1576	db_printf("cr0\t0x%08x\n", rcr0());
1577	db_printf("cr2\t0x%08x\n", rcr2());
1578	db_printf("cr3\t0x%08x\n", rcr3());
1579	db_printf("cr4\t0x%08x\n", rcr4());
1580	if (rcr4() & CR4_XSAVE)
1581		db_printf("xcr0\t0x%016llx\n", rxcr(0));
1582	if (amd_feature & (AMDID_NX | AMDID_LM))
1583		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
1584	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
1585		db_printf("FEATURES_CTL\t0x%016llx\n",
1586		    rdmsr(MSR_IA32_FEATURE_CONTROL));
1587	if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
1588	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6)
1589		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
1590	if (cpu_feature & CPUID_PAT)
1591		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
1592}
1593
1594DB_SHOW_COMMAND(dbregs, db_show_dbregs)
1595{
1596
1597	db_printf("dr0\t0x%08x\n", rdr0());
1598	db_printf("dr1\t0x%08x\n", rdr1());
1599	db_printf("dr2\t0x%08x\n", rdr2());
1600	db_printf("dr3\t0x%08x\n", rdr3());
1601	db_printf("dr6\t0x%08x\n", rdr6());
1602	db_printf("dr7\t0x%08x\n", rdr7());
1603}
1604#endif
1605
1606void
1607sdtossd(sd, ssd)
1608	struct segment_descriptor *sd;
1609	struct soft_segment_descriptor *ssd;
1610{
1611	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1612	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1613	ssd->ssd_type  = sd->sd_type;
1614	ssd->ssd_dpl   = sd->sd_dpl;
1615	ssd->ssd_p     = sd->sd_p;
1616	ssd->ssd_def32 = sd->sd_def32;
1617	ssd->ssd_gran  = sd->sd_gran;
1618}
1619
1620#if !defined(PC98)
1621static int
1622add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1623    int *physmap_idxp)
1624{
1625	int i, insert_idx, physmap_idx;
1626
1627	physmap_idx = *physmap_idxp;
1628
1629	if (length == 0)
1630		return (1);
1631
1632#ifndef PAE
1633	if (base > 0xffffffff) {
1634		printf("%uK of memory above 4GB ignored\n",
1635		    (u_int)(length / 1024));
1636		return (1);
1637	}
1638#endif
1639
1640	/*
1641	 * Find insertion point while checking for overlap.  Start off by
1642	 * assuming the new entry will be added to the end.
1643	 */
1644	insert_idx = physmap_idx + 2;
1645	for (i = 0; i <= physmap_idx; i += 2) {
1646		if (base < physmap[i + 1]) {
1647			if (base + length <= physmap[i]) {
1648				insert_idx = i;
1649				break;
1650			}
1651			if (boothowto & RB_VERBOSE)
1652				printf(
1653		    "Overlapping memory regions, ignoring second region\n");
1654			return (1);
1655		}
1656	}
1657
1658	/* See if we can prepend to the next entry. */
1659	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1660		physmap[insert_idx] = base;
1661		return (1);
1662	}
1663
1664	/* See if we can append to the previous entry. */
1665	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1666		physmap[insert_idx - 1] += length;
1667		return (1);
1668	}
1669
1670	physmap_idx += 2;
1671	*physmap_idxp = physmap_idx;
1672	if (physmap_idx == PHYSMAP_SIZE) {
1673		printf(
1674		"Too many segments in the physical address map, giving up\n");
1675		return (0);
1676	}
1677
1678	/*
1679	 * Move the last 'N' entries down to make room for the new
1680	 * entry if needed.
1681	 */
1682	for (i = physmap_idx; i > insert_idx; i -= 2) {
1683		physmap[i] = physmap[i - 2];
1684		physmap[i + 1] = physmap[i - 1];
1685	}
1686
1687	/* Insert the new entry. */
1688	physmap[insert_idx] = base;
1689	physmap[insert_idx + 1] = base + length;
1690	return (1);
1691}
1692
1693static int
1694add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1695{
1696	if (boothowto & RB_VERBOSE)
1697		printf("SMAP type=%02x base=%016llx len=%016llx\n",
1698		    smap->type, smap->base, smap->length);
1699
1700	if (smap->type != SMAP_TYPE_MEMORY)
1701		return (1);
1702
1703	return (add_physmap_entry(smap->base, smap->length, physmap,
1704	    physmap_idxp));
1705}
1706
1707static void
1708add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1709    int *physmap_idxp)
1710{
1711	struct bios_smap *smap, *smapend;
1712	u_int32_t smapsize;
1713	/*
1714	 * Memory map from INT 15:E820.
1715	 *
1716	 * subr_module.c says:
1717	 * "Consumer may safely assume that size value precedes data."
1718	 * ie: an int32_t immediately precedes SMAP.
1719	 */
1720	smapsize = *((u_int32_t *)smapbase - 1);
1721	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1722
1723	for (smap = smapbase; smap < smapend; smap++)
1724		if (!add_smap_entry(smap, physmap, physmap_idxp))
1725			break;
1726}
1727#endif /* !PC98 */
1728
1729static void
1730basemem_setup(void)
1731{
1732	vm_paddr_t pa;
1733	pt_entry_t *pte;
1734	int i;
1735
1736	if (basemem > 640) {
1737		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1738			basemem);
1739		basemem = 640;
1740	}
1741
1742	/*
1743	 * XXX if biosbasemem is now < 640, there is a `hole'
1744	 * between the end of base memory and the start of
1745	 * ISA memory.  The hole may be empty or it may
1746	 * contain BIOS code or data.  Map it read/write so
1747	 * that the BIOS can write to it.  (Memory from 0 to
1748	 * the physical end of the kernel is mapped read-only
1749	 * to begin with and then parts of it are remapped.
1750	 * The parts that aren't remapped form holes that
1751	 * remain read-only and are unused by the kernel.
1752	 * The base memory area is below the physical end of
1753	 * the kernel and right now forms a read-only hole.
1754	 * The part of it from PAGE_SIZE to
1755	 * (trunc_page(biosbasemem * 1024) - 1) will be
1756	 * remapped and used by the kernel later.)
1757	 *
1758	 * This code is similar to the code used in
1759	 * pmap_mapdev, but since no memory needs to be
1760	 * allocated we simply change the mapping.
1761	 */
1762	for (pa = trunc_page(basemem * 1024);
1763	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1764		pmap_kenter(KERNBASE + pa, pa);
1765
1766	/*
1767	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
1768	 * the vm86 page table so that vm86 can scribble on them using
1769	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
1770	 * page 0, at least as initialized here?
1771	 */
1772	pte = (pt_entry_t *)vm86paddr;
1773	for (i = basemem / 4; i < 160; i++)
1774		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1775}
1776
1777/*
1778 * Populate the (physmap) array with base/bound pairs describing the
1779 * available physical memory in the system, then test this memory and
1780 * build the phys_avail array describing the actually-available memory.
1781 *
1782 * If we cannot accurately determine the physical memory map, then use
1783 * value from the 0xE801 call, and failing that, the RTC.
1784 *
1785 * Total memory size may be set by the kernel environment variable
1786 * hw.physmem or the compile-time define MAXMEM.
1787 *
1788 * XXX first should be vm_paddr_t.
1789 */
1790#ifdef PC98
1791static void
1792getmemsize(int first)
1793{
1794	int off, physmap_idx, pa_indx, da_indx;
1795	u_long physmem_tunable, memtest;
1796	vm_paddr_t physmap[PHYSMAP_SIZE];
1797	pt_entry_t *pte;
1798	quad_t dcons_addr, dcons_size;
1799	int i;
1800	int pg_n;
1801	u_int extmem;
1802	u_int under16;
1803	vm_paddr_t pa;
1804
1805	bzero(physmap, sizeof(physmap));
1806
1807	/* XXX - some of EPSON machines can't use PG_N */
1808	pg_n = PG_N;
1809	if (pc98_machine_type & M_EPSON_PC98) {
1810		switch (epson_machine_id) {
1811#ifdef WB_CACHE
1812		default:
1813#endif
1814		case EPSON_PC486_HX:
1815		case EPSON_PC486_HG:
1816		case EPSON_PC486_HA:
1817			pg_n = 0;
1818			break;
1819		}
1820	}
1821
1822	under16 = pc98_getmemsize(&basemem, &extmem);
1823	basemem_setup();
1824
1825	physmap[0] = 0;
1826	physmap[1] = basemem * 1024;
1827	physmap_idx = 2;
1828	physmap[physmap_idx] = 0x100000;
1829	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1830
1831	/*
1832	 * Now, physmap contains a map of physical memory.
1833	 */
1834
1835#ifdef SMP
1836	/* make hole for AP bootstrap code */
1837	physmap[1] = mp_bootaddress(physmap[1]);
1838#endif
1839
1840	/*
1841	 * Maxmem isn't the "maximum memory", it's one larger than the
1842	 * highest page of the physical address space.  It should be
1843	 * called something like "Maxphyspage".  We may adjust this
1844	 * based on ``hw.physmem'' and the results of the memory test.
1845	 */
1846	Maxmem = atop(physmap[physmap_idx + 1]);
1847
1848#ifdef MAXMEM
1849	Maxmem = MAXMEM / 4;
1850#endif
1851
1852	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1853		Maxmem = atop(physmem_tunable);
1854
1855	/*
1856	 * By default keep the memtest enabled.  Use a general name so that
1857	 * one could eventually do more with the code than just disable it.
1858	 */
1859	memtest = 1;
1860	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1861
1862	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1863	    (boothowto & RB_VERBOSE))
1864		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1865
1866	/*
1867	 * If Maxmem has been increased beyond what the system has detected,
1868	 * extend the last memory segment to the new limit.
1869	 */
1870	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1871		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1872
1873	/*
1874	 * We need to divide chunk if Maxmem is larger than 16MB and
1875	 * under 16MB area is not full of memory.
1876	 * (1) system area (15-16MB region) is cut off
1877	 * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
1878	 */
1879	if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
1880		/* 15M - 16M region is cut off, so need to divide chunk */
1881		physmap[physmap_idx + 1] = under16 * 1024;
1882		physmap_idx += 2;
1883		physmap[physmap_idx] = 0x1000000;
1884		physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
1885	}
1886
1887	/* call pmap initialization to make new kernel address space */
1888	pmap_bootstrap(first);
1889
1890	/*
1891	 * Size up each available chunk of physical memory.
1892	 */
1893	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1894	pa_indx = 0;
1895	da_indx = 1;
1896	phys_avail[pa_indx++] = physmap[0];
1897	phys_avail[pa_indx] = physmap[0];
1898	dump_avail[da_indx] = physmap[0];
1899	pte = CMAP3;
1900
1901	/*
1902	 * Get dcons buffer address
1903	 */
1904	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1905	    getenv_quad("dcons.size", &dcons_size) == 0)
1906		dcons_addr = 0;
1907
1908	/*
1909	 * physmap is in bytes, so when converting to page boundaries,
1910	 * round up the start address and round down the end address.
1911	 */
1912	for (i = 0; i <= physmap_idx; i += 2) {
1913		vm_paddr_t end;
1914
1915		end = ptoa((vm_paddr_t)Maxmem);
1916		if (physmap[i + 1] < end)
1917			end = trunc_page(physmap[i + 1]);
1918		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1919			int tmp, page_bad, full;
1920			int *ptr = (int *)CADDR3;
1921
1922			full = FALSE;
1923			/*
1924			 * block out kernel memory as not available.
1925			 */
1926			if (pa >= KERNLOAD && pa < first)
1927				goto do_dump_avail;
1928
1929			/*
1930			 * block out dcons buffer
1931			 */
1932			if (dcons_addr > 0
1933			    && pa >= trunc_page(dcons_addr)
1934			    && pa < dcons_addr + dcons_size)
1935				goto do_dump_avail;
1936
1937			page_bad = FALSE;
1938			if (memtest == 0)
1939				goto skip_memtest;
1940
1941			/*
1942			 * map page into kernel: valid, read/write,non-cacheable
1943			 */
1944			*pte = pa | PG_V | PG_RW | pg_n;
1945			invltlb();
1946
1947			tmp = *(int *)ptr;
1948			/*
1949			 * Test for alternating 1's and 0's
1950			 */
1951			*(volatile int *)ptr = 0xaaaaaaaa;
1952			if (*(volatile int *)ptr != 0xaaaaaaaa)
1953				page_bad = TRUE;
1954			/*
1955			 * Test for alternating 0's and 1's
1956			 */
1957			*(volatile int *)ptr = 0x55555555;
1958			if (*(volatile int *)ptr != 0x55555555)
1959				page_bad = TRUE;
1960			/*
1961			 * Test for all 1's
1962			 */
1963			*(volatile int *)ptr = 0xffffffff;
1964			if (*(volatile int *)ptr != 0xffffffff)
1965				page_bad = TRUE;
1966			/*
1967			 * Test for all 0's
1968			 */
1969			*(volatile int *)ptr = 0x0;
1970			if (*(volatile int *)ptr != 0x0)
1971				page_bad = TRUE;
1972			/*
1973			 * Restore original value.
1974			 */
1975			*(int *)ptr = tmp;
1976
1977skip_memtest:
1978			/*
1979			 * Adjust array of valid/good pages.
1980			 */
1981			if (page_bad == TRUE)
1982				continue;
1983			/*
1984			 * If this good page is a continuation of the
1985			 * previous set of good pages, then just increase
1986			 * the end pointer. Otherwise start a new chunk.
1987			 * Note that "end" points one higher than end,
1988			 * making the range >= start and < end.
1989			 * If we're also doing a speculative memory
1990			 * test and we at or past the end, bump up Maxmem
1991			 * so that we keep going. The first bad page
1992			 * will terminate the loop.
1993			 */
1994			if (phys_avail[pa_indx] == pa) {
1995				phys_avail[pa_indx] += PAGE_SIZE;
1996			} else {
1997				pa_indx++;
1998				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1999					printf(
2000		"Too many holes in the physical address space, giving up\n");
2001					pa_indx--;
2002					full = TRUE;
2003					goto do_dump_avail;
2004				}
2005				phys_avail[pa_indx++] = pa;	/* start */
2006				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2007			}
2008			physmem++;
2009do_dump_avail:
2010			if (dump_avail[da_indx] == pa) {
2011				dump_avail[da_indx] += PAGE_SIZE;
2012			} else {
2013				da_indx++;
2014				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2015					da_indx--;
2016					goto do_next;
2017				}
2018				dump_avail[da_indx++] = pa;	/* start */
2019				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2020			}
2021do_next:
2022			if (full)
2023				break;
2024		}
2025	}
2026	*pte = 0;
2027	invltlb();
2028
2029	/*
2030	 * XXX
2031	 * The last chunk must contain at least one page plus the message
2032	 * buffer to avoid complicating other code (message buffer address
2033	 * calculation, etc.).
2034	 */
2035	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2036	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2037		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2038		phys_avail[pa_indx--] = 0;
2039		phys_avail[pa_indx--] = 0;
2040	}
2041
2042	Maxmem = atop(phys_avail[pa_indx]);
2043
2044	/* Trim off space for the message buffer. */
2045	phys_avail[pa_indx] -= round_page(msgbufsize);
2046
2047	/* Map the message buffer. */
2048	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2049		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2050		    off);
2051}
2052#else /* PC98 */
2053static void
2054getmemsize(int first)
2055{
2056	int has_smap, off, physmap_idx, pa_indx, da_indx;
2057	u_long memtest;
2058	vm_paddr_t physmap[PHYSMAP_SIZE];
2059	pt_entry_t *pte;
2060	quad_t dcons_addr, dcons_size, physmem_tunable;
2061	int hasbrokenint12, i, res;
2062	u_int extmem;
2063	struct vm86frame vmf;
2064	struct vm86context vmc;
2065	vm_paddr_t pa;
2066	struct bios_smap *smap, *smapbase;
2067	caddr_t kmdp;
2068
2069	has_smap = 0;
2070#ifdef XBOX
2071	if (arch_i386_is_xbox) {
2072		/*
2073		 * We queried the memory size before, so chop off 4MB for
2074		 * the framebuffer and inform the OS of this.
2075		 */
2076		physmap[0] = 0;
2077		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2078		physmap_idx = 0;
2079		goto physmap_done;
2080	}
2081#endif
2082	bzero(&vmf, sizeof(vmf));
2083	bzero(physmap, sizeof(physmap));
2084	basemem = 0;
2085
2086	/*
2087	 * Tell the physical memory allocator about pages used to store
2088	 * the kernel and preloaded data.  See kmem_bootstrap_free().
2089	 */
2090	vm_phys_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first));
2091
2092	/*
2093	 * Check if the loader supplied an SMAP memory map.  If so,
2094	 * use that and do not make any VM86 calls.
2095	 */
2096	physmap_idx = 0;
2097	kmdp = preload_search_by_type("elf kernel");
2098	if (kmdp == NULL)
2099		kmdp = preload_search_by_type("elf32 kernel");
2100	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2101	    MODINFO_METADATA | MODINFOMD_SMAP);
2102	if (smapbase != NULL) {
2103		add_smap_entries(smapbase, physmap, &physmap_idx);
2104		has_smap = 1;
2105		goto have_smap;
2106	}
2107
2108	/*
2109	 * Some newer BIOSes have a broken INT 12H implementation
2110	 * which causes a kernel panic immediately.  In this case, we
2111	 * need use the SMAP to determine the base memory size.
2112	 */
2113	hasbrokenint12 = 0;
2114	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2115	if (hasbrokenint12 == 0) {
2116		/* Use INT12 to determine base memory size. */
2117		vm86_intcall(0x12, &vmf);
2118		basemem = vmf.vmf_ax;
2119		basemem_setup();
2120	}
2121
2122	/*
2123	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2124	 * the kernel page table so we can use it as a buffer.  The
2125	 * kernel will unmap this page later.
2126	 */
2127	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2128	vmc.npages = 0;
2129	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2130	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2131	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2132
2133	vmf.vmf_ebx = 0;
2134	do {
2135		vmf.vmf_eax = 0xE820;
2136		vmf.vmf_edx = SMAP_SIG;
2137		vmf.vmf_ecx = sizeof(struct bios_smap);
2138		i = vm86_datacall(0x15, &vmf, &vmc);
2139		if (i || vmf.vmf_eax != SMAP_SIG)
2140			break;
2141		has_smap = 1;
2142		if (!add_smap_entry(smap, physmap, &physmap_idx))
2143			break;
2144	} while (vmf.vmf_ebx != 0);
2145
2146have_smap:
2147	/*
2148	 * If we didn't fetch the "base memory" size from INT12,
2149	 * figure it out from the SMAP (or just guess).
2150	 */
2151	if (basemem == 0) {
2152		for (i = 0; i <= physmap_idx; i += 2) {
2153			if (physmap[i] == 0x00000000) {
2154				basemem = physmap[i + 1] / 1024;
2155				break;
2156			}
2157		}
2158
2159		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2160		if (basemem == 0)
2161			basemem = 640;
2162		basemem_setup();
2163	}
2164
2165	if (physmap[1] != 0)
2166		goto physmap_done;
2167
2168	/*
2169	 * If we failed to find an SMAP, figure out the extended
2170	 * memory size.  We will then build a simple memory map with
2171	 * two segments, one for "base memory" and the second for
2172	 * "extended memory".  Note that "extended memory" starts at a
2173	 * physical address of 1MB and that both basemem and extmem
2174	 * are in units of 1KB.
2175	 *
2176	 * First, try to fetch the extended memory size via INT 15:E801.
2177	 */
2178	vmf.vmf_ax = 0xE801;
2179	if (vm86_intcall(0x15, &vmf) == 0) {
2180		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2181	} else {
2182		/*
2183		 * If INT15:E801 fails, this is our last ditch effort
2184		 * to determine the extended memory size.  Currently
2185		 * we prefer the RTC value over INT15:88.
2186		 */
2187#if 0
2188		vmf.vmf_ah = 0x88;
2189		vm86_intcall(0x15, &vmf);
2190		extmem = vmf.vmf_ax;
2191#else
2192		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2193#endif
2194	}
2195
2196	/*
2197	 * Special hack for chipsets that still remap the 384k hole when
2198	 * there's 16MB of memory - this really confuses people that
2199	 * are trying to use bus mastering ISA controllers with the
2200	 * "16MB limit"; they only have 16MB, but the remapping puts
2201	 * them beyond the limit.
2202	 *
2203	 * If extended memory is between 15-16MB (16-17MB phys address range),
2204	 *	chop it to 15MB.
2205	 */
2206	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2207		extmem = 15 * 1024;
2208
2209	physmap[0] = 0;
2210	physmap[1] = basemem * 1024;
2211	physmap_idx = 2;
2212	physmap[physmap_idx] = 0x100000;
2213	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2214
2215physmap_done:
2216	/*
2217	 * Now, physmap contains a map of physical memory.
2218	 */
2219
2220#ifdef SMP
2221	/* make hole for AP bootstrap code */
2222	physmap[1] = mp_bootaddress(physmap[1]);
2223#endif
2224
2225	/*
2226	 * Maxmem isn't the "maximum memory", it's one larger than the
2227	 * highest page of the physical address space.  It should be
2228	 * called something like "Maxphyspage".  We may adjust this
2229	 * based on ``hw.physmem'' and the results of the memory test.
2230	 *
2231	 * This is especially confusing when it is much larger than the
2232	 * memory size and is displayed as "realmem".
2233	 */
2234	Maxmem = atop(physmap[physmap_idx + 1]);
2235
2236#ifdef MAXMEM
2237	Maxmem = MAXMEM / 4;
2238#endif
2239
2240	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
2241		Maxmem = atop(physmem_tunable);
2242
2243	/*
2244	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2245	 * the amount of memory in the system.
2246	 */
2247	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2248		Maxmem = atop(physmap[physmap_idx + 1]);
2249
2250	/*
2251	 * By default enable the memory test on real hardware, and disable
2252	 * it if we appear to be running in a VM.  This avoids touching all
2253	 * pages unnecessarily, which doesn't matter on real hardware but is
2254	 * bad for shared VM hosts.  Use a general name so that
2255	 * one could eventually do more with the code than just disable it.
2256	 */
2257	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2258	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2259
2260	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2261	    (boothowto & RB_VERBOSE))
2262		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2263
2264	/*
2265	 * If Maxmem has been increased beyond what the system has detected,
2266	 * extend the last memory segment to the new limit.
2267	 */
2268	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2269		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2270
2271	/* call pmap initialization to make new kernel address space */
2272	pmap_bootstrap(first);
2273
2274	/*
2275	 * Size up each available chunk of physical memory.
2276	 */
2277	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2278	pa_indx = 0;
2279	da_indx = 1;
2280	phys_avail[pa_indx++] = physmap[0];
2281	phys_avail[pa_indx] = physmap[0];
2282	dump_avail[da_indx] = physmap[0];
2283	pte = CMAP3;
2284
2285	/*
2286	 * Get dcons buffer address
2287	 */
2288	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2289	    getenv_quad("dcons.size", &dcons_size) == 0)
2290		dcons_addr = 0;
2291
2292	/*
2293	 * physmap is in bytes, so when converting to page boundaries,
2294	 * round up the start address and round down the end address.
2295	 */
2296	for (i = 0; i <= physmap_idx; i += 2) {
2297		vm_paddr_t end;
2298
2299		end = ptoa((vm_paddr_t)Maxmem);
2300		if (physmap[i + 1] < end)
2301			end = trunc_page(physmap[i + 1]);
2302		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2303			int tmp, page_bad, full;
2304			int *ptr = (int *)CADDR3;
2305
2306			full = FALSE;
2307			/*
2308			 * block out kernel memory as not available.
2309			 */
2310			if (pa >= KERNLOAD && pa < first)
2311				goto do_dump_avail;
2312
2313			/*
2314			 * block out dcons buffer
2315			 */
2316			if (dcons_addr > 0
2317			    && pa >= trunc_page(dcons_addr)
2318			    && pa < dcons_addr + dcons_size)
2319				goto do_dump_avail;
2320
2321			page_bad = FALSE;
2322			if (memtest == 0)
2323				goto skip_memtest;
2324
2325			/*
2326			 * map page into kernel: valid, read/write,non-cacheable
2327			 */
2328			*pte = pa | PG_V | PG_RW | PG_N;
2329			invltlb();
2330
2331			tmp = *(int *)ptr;
2332			/*
2333			 * Test for alternating 1's and 0's
2334			 */
2335			*(volatile int *)ptr = 0xaaaaaaaa;
2336			if (*(volatile int *)ptr != 0xaaaaaaaa)
2337				page_bad = TRUE;
2338			/*
2339			 * Test for alternating 0's and 1's
2340			 */
2341			*(volatile int *)ptr = 0x55555555;
2342			if (*(volatile int *)ptr != 0x55555555)
2343				page_bad = TRUE;
2344			/*
2345			 * Test for all 1's
2346			 */
2347			*(volatile int *)ptr = 0xffffffff;
2348			if (*(volatile int *)ptr != 0xffffffff)
2349				page_bad = TRUE;
2350			/*
2351			 * Test for all 0's
2352			 */
2353			*(volatile int *)ptr = 0x0;
2354			if (*(volatile int *)ptr != 0x0)
2355				page_bad = TRUE;
2356			/*
2357			 * Restore original value.
2358			 */
2359			*(int *)ptr = tmp;
2360
2361skip_memtest:
2362			/*
2363			 * Adjust array of valid/good pages.
2364			 */
2365			if (page_bad == TRUE)
2366				continue;
2367			/*
2368			 * If this good page is a continuation of the
2369			 * previous set of good pages, then just increase
2370			 * the end pointer. Otherwise start a new chunk.
2371			 * Note that "end" points one higher than end,
2372			 * making the range >= start and < end.
2373			 * If we're also doing a speculative memory
2374			 * test and we at or past the end, bump up Maxmem
2375			 * so that we keep going. The first bad page
2376			 * will terminate the loop.
2377			 */
2378			if (phys_avail[pa_indx] == pa) {
2379				phys_avail[pa_indx] += PAGE_SIZE;
2380			} else {
2381				pa_indx++;
2382				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2383					printf(
2384		"Too many holes in the physical address space, giving up\n");
2385					pa_indx--;
2386					full = TRUE;
2387					goto do_dump_avail;
2388				}
2389				phys_avail[pa_indx++] = pa;	/* start */
2390				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2391			}
2392			physmem++;
2393do_dump_avail:
2394			if (dump_avail[da_indx] == pa) {
2395				dump_avail[da_indx] += PAGE_SIZE;
2396			} else {
2397				da_indx++;
2398				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2399					da_indx--;
2400					goto do_next;
2401				}
2402				dump_avail[da_indx++] = pa;	/* start */
2403				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2404			}
2405do_next:
2406			if (full)
2407				break;
2408		}
2409	}
2410	*pte = 0;
2411	invltlb();
2412
2413	/*
2414	 * XXX
2415	 * The last chunk must contain at least one page plus the message
2416	 * buffer to avoid complicating other code (message buffer address
2417	 * calculation, etc.).
2418	 */
2419	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2420	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2421		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2422		phys_avail[pa_indx--] = 0;
2423		phys_avail[pa_indx--] = 0;
2424	}
2425
2426	Maxmem = atop(phys_avail[pa_indx]);
2427
2428	/* Trim off space for the message buffer. */
2429	phys_avail[pa_indx] -= round_page(msgbufsize);
2430
2431	/* Map the message buffer. */
2432	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2433		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2434		    off);
2435}
2436#endif /* PC98 */
2437
2438static void
2439i386_kdb_init(void)
2440{
2441#ifdef DDB
2442	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
2443#endif
2444	kdb_init();
2445#ifdef KDB
2446	if (boothowto & RB_KDB)
2447		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2448#endif
2449}
2450
2451register_t
2452init386(int first)
2453{
2454	struct gate_descriptor *gdp;
2455	int gsel_tss, metadata_missing, x, pa;
2456	struct pcpu *pc;
2457	struct xstate_hdr *xhdr;
2458	caddr_t kmdp;
2459	size_t ucode_len;
2460	int late_console;
2461
2462	thread0.td_kstack = proc0kstack;
2463	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
2464
2465	/*
2466 	 * This may be done better later if it gets more high level
2467 	 * components in it. If so just link td->td_proc here.
2468	 */
2469	proc_linkup0(&proc0, &thread0);
2470
2471#ifdef PC98
2472	/*
2473	 * Initialize DMAC
2474	 */
2475	pc98_init_dmac();
2476#endif
2477
2478	metadata_missing = 0;
2479	if (bootinfo.bi_modulep) {
2480		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2481		preload_bootstrap_relocate(KERNBASE);
2482	} else {
2483		metadata_missing = 1;
2484	}
2485
2486	if (bootinfo.bi_envp != 0)
2487		init_static_kenv((char *)bootinfo.bi_envp + KERNBASE, 0);
2488	else
2489		init_static_kenv(NULL, 0);
2490
2491	/*
2492	 * Re-evaluate CPU features if we loaded a microcode update.
2493	 */
2494	ucode_len = ucode_load_bsp(first);
2495	if (ucode_len != 0) {
2496		identify_cpu();
2497		first = roundup2(first + ucode_len, PAGE_SIZE);
2498	}
2499
2500	identify_hypervisor();
2501
2502	/* Init basic tunables, hz etc */
2503	init_param1();
2504
2505	/*
2506	 * Make gdt memory segments.  All segments cover the full 4GB
2507	 * of address space and permissions are enforced at page level.
2508	 */
2509	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2510	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2511	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2512	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2513	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2514	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2515
2516	pc = &__pcpu[0];
2517	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2518	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2519	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2520
2521	for (x = 0; x < NGDT; x++)
2522		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2523
2524	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2525	r_gdt.rd_base =  (int) gdt;
2526	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2527	lgdt(&r_gdt);
2528
2529	pcpu_init(pc, 0, sizeof(struct pcpu));
2530	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2531		pmap_kenter(pa + KERNBASE, pa);
2532	dpcpu_init((void *)(first + KERNBASE), 0);
2533	first += DPCPU_SIZE;
2534	PCPU_SET(prvspace, pc);
2535	PCPU_SET(curthread, &thread0);
2536	/* Non-late cninit() and printf() can be moved up to here. */
2537
2538	/*
2539	 * Initialize mutexes.
2540	 *
2541	 * icu_lock: in order to allow an interrupt to occur in a critical
2542	 * 	     section, to set pcpu->ipending (etc...) properly, we
2543	 *	     must be able to get the icu lock, so it can't be
2544	 *	     under witness.
2545	 */
2546	mutex_init();
2547	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2548
2549	/* make ldt memory segments */
2550	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2551	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2552	for (x = 0; x < nitems(ldt_segs); x++)
2553		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2554
2555	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2556	lldt(_default_ldt);
2557	PCPU_SET(currentldt, _default_ldt);
2558
2559	/* exceptions */
2560	for (x = 0; x < NIDT; x++)
2561		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2562		    GSEL(GCODE_SEL, SEL_KPL));
2563	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2564	    GSEL(GCODE_SEL, SEL_KPL));
2565	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2566	    GSEL(GCODE_SEL, SEL_KPL));
2567	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2568	    GSEL(GCODE_SEL, SEL_KPL));
2569 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2570	    GSEL(GCODE_SEL, SEL_KPL));
2571	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2572	    GSEL(GCODE_SEL, SEL_KPL));
2573	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2574	    GSEL(GCODE_SEL, SEL_KPL));
2575	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2576	    GSEL(GCODE_SEL, SEL_KPL));
2577	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2578	    , GSEL(GCODE_SEL, SEL_KPL));
2579	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2580	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2581	    GSEL(GCODE_SEL, SEL_KPL));
2582	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2583	    GSEL(GCODE_SEL, SEL_KPL));
2584	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2585	    GSEL(GCODE_SEL, SEL_KPL));
2586	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2587	    GSEL(GCODE_SEL, SEL_KPL));
2588	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2589	    GSEL(GCODE_SEL, SEL_KPL));
2590	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2591	    GSEL(GCODE_SEL, SEL_KPL));
2592	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2593	    GSEL(GCODE_SEL, SEL_KPL));
2594	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2595	    GSEL(GCODE_SEL, SEL_KPL));
2596	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2597	    GSEL(GCODE_SEL, SEL_KPL));
2598	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2599	    GSEL(GCODE_SEL, SEL_KPL));
2600 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2601	    GSEL(GCODE_SEL, SEL_KPL));
2602#ifdef KDTRACE_HOOKS
2603	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
2604	    GSEL(GCODE_SEL, SEL_KPL));
2605#endif
2606#ifdef XENHVM
2607	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_KPL,
2608	    GSEL(GCODE_SEL, SEL_KPL));
2609#endif
2610
2611	r_idt.rd_limit = sizeof(idt0) - 1;
2612	r_idt.rd_base = (int) idt;
2613	lidt(&r_idt);
2614
2615#ifdef XBOX
2616	/*
2617	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2618	 * This should be 0x10de / 0x02a5.
2619	 *
2620	 * This is exactly what Linux does.
2621	 */
2622	outl(0xcf8, 0x80000000);
2623	if (inl(0xcfc) == 0x02a510de) {
2624		arch_i386_is_xbox = 1;
2625		pic16l_setled(XBOX_LED_GREEN);
2626
2627		/*
2628		 * We are an XBOX, but we may have either 64MB or 128MB of
2629		 * memory. The PCI host bridge should be programmed for this,
2630		 * so we just query it.
2631		 */
2632		outl(0xcf8, 0x80000084);
2633		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2634	}
2635#endif /* XBOX */
2636
2637	/*
2638	 * Initialize the clock before the console so that console
2639	 * initialization can use DELAY().
2640	 */
2641	clock_init();
2642
2643	finishidentcpu();	/* Final stage of CPU initialization */
2644	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2645	    GSEL(GCODE_SEL, SEL_KPL));
2646	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2647	    GSEL(GCODE_SEL, SEL_KPL));
2648	initializecpu();	/* Initialize CPU registers */
2649	initializecpucache();
2650
2651	/* pointer to selector slot for %fs/%gs */
2652	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2653
2654	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2655	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2656	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2657	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2658#if defined(PAE) || defined(PAE_TABLES)
2659	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2660#else
2661	dblfault_tss.tss_cr3 = (int)IdlePTD;
2662#endif
2663	dblfault_tss.tss_eip = (int)dblfault_handler;
2664	dblfault_tss.tss_eflags = PSL_KERNEL;
2665	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2666	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2667	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2668	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2669	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2670
2671	/* Initialize the tss (except for the final esp0) early for vm86. */
2672	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2673	    thread0.td_kstack_pages * PAGE_SIZE - 16);
2674	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2675	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2676	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2677	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2678	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2679	ltr(gsel_tss);
2680
2681	/* Initialize the PIC early for vm86 calls. */
2682#ifdef DEV_ISA
2683#ifdef DEV_ATPIC
2684#ifndef PC98
2685	elcr_probe();
2686#endif
2687	atpic_startup();
2688#else
2689	/* Reset and mask the atpics and leave them shut down. */
2690	atpic_reset();
2691
2692	/*
2693	 * Point the ICU spurious interrupt vectors at the APIC spurious
2694	 * interrupt handler.
2695	 */
2696	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2697	    GSEL(GCODE_SEL, SEL_KPL));
2698	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2699	    GSEL(GCODE_SEL, SEL_KPL));
2700#endif
2701#endif
2702
2703	/*
2704	 * The console and kdb should be initialized even earlier than here,
2705	 * but some console drivers don't work until after getmemsize().
2706	 * Default to late console initialization to support these drivers.
2707	 * This loses mainly printf()s in getmemsize() and early debugging.
2708	 */
2709	late_console = 1;
2710	TUNABLE_INT_FETCH("debug.late_console", &late_console);
2711	if (!late_console) {
2712		cninit();
2713		i386_kdb_init();
2714	}
2715
2716	kmdp = preload_search_by_type("elf kernel");
2717	link_elf_ireloc(kmdp);
2718
2719	vm86_initialize();
2720	getmemsize(first);
2721	init_param2(physmem);
2722
2723	/* now running on new page tables, configured,and u/iom is accessible */
2724
2725	if (late_console)
2726		cninit();
2727
2728	if (metadata_missing)
2729		printf("WARNING: loader(8) metadata is missing!\n");
2730
2731	if (late_console)
2732		i386_kdb_init();
2733
2734	msgbufinit(msgbufp, msgbufsize);
2735	npxinit(true);
2736	/*
2737	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
2738	 * area size.  Zero out the extended state header in fpu save
2739	 * area.
2740	 */
2741	thread0.td_pcb = get_pcb_td(&thread0);
2742	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
2743	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2744	if (use_xsave) {
2745		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2746		    1);
2747		xhdr->xstate_bv = xsave_mask;
2748	}
2749	PCPU_SET(curpcb, thread0.td_pcb);
2750	/* Move esp0 in the tss to its final place. */
2751	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2752	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
2753	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
2754	ltr(gsel_tss);
2755
2756	/* make a call gate to reenter kernel with */
2757	gdp = &ldt[LSYS5CALLS_SEL].gd;
2758
2759	x = (int) &IDTVEC(lcall_syscall);
2760	gdp->gd_looffset = x;
2761	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2762	gdp->gd_stkcpy = 1;
2763	gdp->gd_type = SDT_SYS386CGT;
2764	gdp->gd_dpl = SEL_UPL;
2765	gdp->gd_p = 1;
2766	gdp->gd_hioffset = x >> 16;
2767
2768	/* XXX does this work? */
2769	/* XXX yes! */
2770	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2771	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2772
2773	/* transfer to user mode */
2774
2775	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2776	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2777
2778	/* setup proc 0's pcb */
2779	thread0.td_pcb->pcb_flags = 0;
2780#if defined(PAE) || defined(PAE_TABLES)
2781	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2782#else
2783	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2784#endif
2785	thread0.td_pcb->pcb_ext = 0;
2786	thread0.td_frame = &proc0_tf;
2787
2788	cpu_probe_amdc1e();
2789
2790#ifdef FDT
2791	x86_init_fdt();
2792#endif
2793
2794	/* Location of kernel stack for locore */
2795	return ((register_t)thread0.td_pcb);
2796}
2797
2798void
2799cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2800{
2801
2802	pcpu->pc_acpi_id = 0xffffffff;
2803}
2804
2805#ifndef PC98
2806static int
2807smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2808{
2809	struct bios_smap *smapbase;
2810	struct bios_smap_xattr smap;
2811	caddr_t kmdp;
2812	uint32_t *smapattr;
2813	int count, error, i;
2814
2815	/* Retrieve the system memory map from the loader. */
2816	kmdp = preload_search_by_type("elf kernel");
2817	if (kmdp == NULL)
2818		kmdp = preload_search_by_type("elf32 kernel");
2819	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2820	    MODINFO_METADATA | MODINFOMD_SMAP);
2821	if (smapbase == NULL)
2822		return (0);
2823	smapattr = (uint32_t *)preload_search_info(kmdp,
2824	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2825	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
2826	error = 0;
2827	for (i = 0; i < count; i++) {
2828		smap.base = smapbase[i].base;
2829		smap.length = smapbase[i].length;
2830		smap.type = smapbase[i].type;
2831		if (smapattr != NULL)
2832			smap.xattr = smapattr[i];
2833		else
2834			smap.xattr = 0;
2835		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2836	}
2837	return (error);
2838}
2839SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2840    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2841#endif /* !PC98 */
2842
2843void
2844spinlock_enter(void)
2845{
2846	struct thread *td;
2847	register_t flags;
2848
2849	td = curthread;
2850	if (td->td_md.md_spinlock_count == 0) {
2851		flags = intr_disable();
2852		td->td_md.md_spinlock_count = 1;
2853		td->td_md.md_saved_flags = flags;
2854	} else
2855		td->td_md.md_spinlock_count++;
2856	critical_enter();
2857}
2858
2859void
2860spinlock_exit(void)
2861{
2862	struct thread *td;
2863	register_t flags;
2864
2865	td = curthread;
2866	critical_exit();
2867	flags = td->td_md.md_saved_flags;
2868	td->td_md.md_spinlock_count--;
2869	if (td->td_md.md_spinlock_count == 0)
2870		intr_restore(flags);
2871}
2872
2873#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2874static void f00f_hack(void *unused);
2875SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2876
2877static void
2878f00f_hack(void *unused)
2879{
2880	struct gate_descriptor *new_idt;
2881	vm_offset_t tmp;
2882
2883	if (!has_f00f_bug)
2884		return;
2885
2886	GIANT_REQUIRED;
2887
2888	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2889
2890	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
2891	if (tmp == 0)
2892		panic("kmem_malloc returned 0");
2893
2894	/* Put the problematic entry (#6) at the end of the lower page. */
2895	new_idt = (struct gate_descriptor*)
2896	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
2897	bcopy(idt, new_idt, sizeof(idt0));
2898	r_idt.rd_base = (u_int)new_idt;
2899	lidt(&r_idt);
2900	idt = new_idt;
2901	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
2902}
2903#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2904
2905/*
2906 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2907 * we want to start a backtrace from the function that caused us to enter
2908 * the debugger. We have the context in the trapframe, but base the trace
2909 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2910 * enough for a backtrace.
2911 */
2912void
2913makectx(struct trapframe *tf, struct pcb *pcb)
2914{
2915
2916	pcb->pcb_edi = tf->tf_edi;
2917	pcb->pcb_esi = tf->tf_esi;
2918	pcb->pcb_ebp = tf->tf_ebp;
2919	pcb->pcb_ebx = tf->tf_ebx;
2920	pcb->pcb_eip = tf->tf_eip;
2921	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
2922	pcb->pcb_gs = rgs();
2923}
2924
2925int
2926ptrace_set_pc(struct thread *td, u_long addr)
2927{
2928
2929	td->td_frame->tf_eip = addr;
2930	return (0);
2931}
2932
2933int
2934ptrace_single_step(struct thread *td)
2935{
2936
2937	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
2938	if ((td->td_frame->tf_eflags & PSL_T) == 0) {
2939		td->td_frame->tf_eflags |= PSL_T;
2940		td->td_dbgflags |= TDB_STEP;
2941	}
2942	return (0);
2943}
2944
2945int
2946ptrace_clear_single_step(struct thread *td)
2947{
2948	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
2949	td->td_frame->tf_eflags &= ~PSL_T;
2950	td->td_dbgflags &= ~TDB_STEP;
2951	return (0);
2952}
2953
2954int
2955fill_regs(struct thread *td, struct reg *regs)
2956{
2957	struct pcb *pcb;
2958	struct trapframe *tp;
2959
2960	tp = td->td_frame;
2961	pcb = td->td_pcb;
2962	regs->r_gs = pcb->pcb_gs;
2963	return (fill_frame_regs(tp, regs));
2964}
2965
2966int
2967fill_frame_regs(struct trapframe *tp, struct reg *regs)
2968{
2969
2970	regs->r_fs = tp->tf_fs;
2971	regs->r_es = tp->tf_es;
2972	regs->r_ds = tp->tf_ds;
2973	regs->r_edi = tp->tf_edi;
2974	regs->r_esi = tp->tf_esi;
2975	regs->r_ebp = tp->tf_ebp;
2976	regs->r_ebx = tp->tf_ebx;
2977	regs->r_edx = tp->tf_edx;
2978	regs->r_ecx = tp->tf_ecx;
2979	regs->r_eax = tp->tf_eax;
2980	regs->r_eip = tp->tf_eip;
2981	regs->r_cs = tp->tf_cs;
2982	regs->r_eflags = tp->tf_eflags;
2983	regs->r_esp = tp->tf_esp;
2984	regs->r_ss = tp->tf_ss;
2985	regs->r_err = 0;
2986	regs->r_trapno = 0;
2987	return (0);
2988}
2989
2990int
2991set_regs(struct thread *td, struct reg *regs)
2992{
2993	struct pcb *pcb;
2994	struct trapframe *tp;
2995
2996	tp = td->td_frame;
2997	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2998	    !CS_SECURE(regs->r_cs))
2999		return (EINVAL);
3000	pcb = td->td_pcb;
3001	tp->tf_fs = regs->r_fs;
3002	tp->tf_es = regs->r_es;
3003	tp->tf_ds = regs->r_ds;
3004	tp->tf_edi = regs->r_edi;
3005	tp->tf_esi = regs->r_esi;
3006	tp->tf_ebp = regs->r_ebp;
3007	tp->tf_ebx = regs->r_ebx;
3008	tp->tf_edx = regs->r_edx;
3009	tp->tf_ecx = regs->r_ecx;
3010	tp->tf_eax = regs->r_eax;
3011	tp->tf_eip = regs->r_eip;
3012	tp->tf_cs = regs->r_cs;
3013	tp->tf_eflags = regs->r_eflags;
3014	tp->tf_esp = regs->r_esp;
3015	tp->tf_ss = regs->r_ss;
3016	pcb->pcb_gs = regs->r_gs;
3017	return (0);
3018}
3019
3020int
3021fill_fpregs(struct thread *td, struct fpreg *fpregs)
3022{
3023
3024	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3025	    P_SHOULDSTOP(td->td_proc),
3026	    ("not suspended thread %p", td));
3027	npxgetregs(td);
3028	if (cpu_fxsr)
3029		npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
3030		    (struct save87 *)fpregs);
3031	else
3032		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
3033		    sizeof(*fpregs));
3034	return (0);
3035}
3036
3037int
3038set_fpregs(struct thread *td, struct fpreg *fpregs)
3039{
3040
3041	critical_enter();
3042	if (cpu_fxsr)
3043		npx_set_fpregs_xmm((struct save87 *)fpregs,
3044		    &get_pcb_user_save_td(td)->sv_xmm);
3045	else
3046		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
3047		    sizeof(*fpregs));
3048	npxuserinited(td);
3049	critical_exit();
3050	return (0);
3051}
3052
3053/*
3054 * Get machine context.
3055 */
3056int
3057get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3058{
3059	struct trapframe *tp;
3060	struct segment_descriptor *sdp;
3061
3062	tp = td->td_frame;
3063
3064	PROC_LOCK(curthread->td_proc);
3065	mcp->mc_onstack = sigonstack(tp->tf_esp);
3066	PROC_UNLOCK(curthread->td_proc);
3067	mcp->mc_gs = td->td_pcb->pcb_gs;
3068	mcp->mc_fs = tp->tf_fs;
3069	mcp->mc_es = tp->tf_es;
3070	mcp->mc_ds = tp->tf_ds;
3071	mcp->mc_edi = tp->tf_edi;
3072	mcp->mc_esi = tp->tf_esi;
3073	mcp->mc_ebp = tp->tf_ebp;
3074	mcp->mc_isp = tp->tf_isp;
3075	mcp->mc_eflags = tp->tf_eflags;
3076	if (flags & GET_MC_CLEAR_RET) {
3077		mcp->mc_eax = 0;
3078		mcp->mc_edx = 0;
3079		mcp->mc_eflags &= ~PSL_C;
3080	} else {
3081		mcp->mc_eax = tp->tf_eax;
3082		mcp->mc_edx = tp->tf_edx;
3083	}
3084	mcp->mc_ebx = tp->tf_ebx;
3085	mcp->mc_ecx = tp->tf_ecx;
3086	mcp->mc_eip = tp->tf_eip;
3087	mcp->mc_cs = tp->tf_cs;
3088	mcp->mc_esp = tp->tf_esp;
3089	mcp->mc_ss = tp->tf_ss;
3090	mcp->mc_len = sizeof(*mcp);
3091	get_fpcontext(td, mcp, NULL, 0);
3092	sdp = &td->td_pcb->pcb_fsd;
3093	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3094	sdp = &td->td_pcb->pcb_gsd;
3095	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3096	mcp->mc_flags = 0;
3097	mcp->mc_xfpustate = 0;
3098	mcp->mc_xfpustate_len = 0;
3099	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3100	return (0);
3101}
3102
3103/*
3104 * Set machine context.
3105 *
3106 * However, we don't set any but the user modifiable flags, and we won't
3107 * touch the cs selector.
3108 */
3109int
3110set_mcontext(struct thread *td, mcontext_t *mcp)
3111{
3112	struct trapframe *tp;
3113	char *xfpustate;
3114	int eflags, ret;
3115
3116	tp = td->td_frame;
3117	if (mcp->mc_len != sizeof(*mcp) ||
3118	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
3119		return (EINVAL);
3120	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3121	    (tp->tf_eflags & ~PSL_USERCHANGE);
3122	if (mcp->mc_flags & _MC_HASFPXSTATE) {
3123		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
3124		    sizeof(union savefpu))
3125			return (EINVAL);
3126		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
3127		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
3128		    mcp->mc_xfpustate_len);
3129		if (ret != 0)
3130			return (ret);
3131	} else
3132		xfpustate = NULL;
3133	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
3134	if (ret != 0)
3135		return (ret);
3136	tp->tf_fs = mcp->mc_fs;
3137	tp->tf_es = mcp->mc_es;
3138	tp->tf_ds = mcp->mc_ds;
3139	tp->tf_edi = mcp->mc_edi;
3140	tp->tf_esi = mcp->mc_esi;
3141	tp->tf_ebp = mcp->mc_ebp;
3142	tp->tf_ebx = mcp->mc_ebx;
3143	tp->tf_edx = mcp->mc_edx;
3144	tp->tf_ecx = mcp->mc_ecx;
3145	tp->tf_eax = mcp->mc_eax;
3146	tp->tf_eip = mcp->mc_eip;
3147	tp->tf_eflags = eflags;
3148	tp->tf_esp = mcp->mc_esp;
3149	tp->tf_ss = mcp->mc_ss;
3150	td->td_pcb->pcb_gs = mcp->mc_gs;
3151	return (0);
3152}
3153
3154static void
3155get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
3156    size_t xfpusave_len)
3157{
3158	size_t max_len, len;
3159
3160	mcp->mc_ownedfp = npxgetregs(td);
3161	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
3162	    sizeof(mcp->mc_fpstate));
3163	mcp->mc_fpformat = npxformat();
3164	if (!use_xsave || xfpusave_len == 0)
3165		return;
3166	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
3167	len = xfpusave_len;
3168	if (len > max_len) {
3169		len = max_len;
3170		bzero(xfpusave + max_len, len - max_len);
3171	}
3172	mcp->mc_flags |= _MC_HASFPXSTATE;
3173	mcp->mc_xfpustate_len = len;
3174	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3175}
3176
3177static int
3178set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3179    size_t xfpustate_len)
3180{
3181	int error;
3182
3183	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3184		return (0);
3185	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3186	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3187		return (EINVAL);
3188	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3189		/* We don't care what state is left in the FPU or PCB. */
3190		fpstate_drop(td);
3191		error = 0;
3192	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3193	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3194		error = npxsetregs(td, (union savefpu *)&mcp->mc_fpstate,
3195		    xfpustate, xfpustate_len);
3196	} else
3197		return (EINVAL);
3198	return (error);
3199}
3200
3201static void
3202fpstate_drop(struct thread *td)
3203{
3204
3205	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3206	critical_enter();
3207	if (PCPU_GET(fpcurthread) == td)
3208		npxdrop();
3209	/*
3210	 * XXX force a full drop of the npx.  The above only drops it if we
3211	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3212	 *
3213	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3214	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3215	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3216	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3217	 * have too many layers.
3218	 */
3219	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3220	    PCB_NPXUSERINITDONE);
3221	critical_exit();
3222}
3223
3224int
3225fill_dbregs(struct thread *td, struct dbreg *dbregs)
3226{
3227	struct pcb *pcb;
3228
3229	if (td == NULL) {
3230		dbregs->dr[0] = rdr0();
3231		dbregs->dr[1] = rdr1();
3232		dbregs->dr[2] = rdr2();
3233		dbregs->dr[3] = rdr3();
3234		dbregs->dr[4] = rdr4();
3235		dbregs->dr[5] = rdr5();
3236		dbregs->dr[6] = rdr6();
3237		dbregs->dr[7] = rdr7();
3238	} else {
3239		pcb = td->td_pcb;
3240		dbregs->dr[0] = pcb->pcb_dr0;
3241		dbregs->dr[1] = pcb->pcb_dr1;
3242		dbregs->dr[2] = pcb->pcb_dr2;
3243		dbregs->dr[3] = pcb->pcb_dr3;
3244		dbregs->dr[4] = 0;
3245		dbregs->dr[5] = 0;
3246		dbregs->dr[6] = pcb->pcb_dr6;
3247		dbregs->dr[7] = pcb->pcb_dr7;
3248	}
3249	return (0);
3250}
3251
3252int
3253set_dbregs(struct thread *td, struct dbreg *dbregs)
3254{
3255	struct pcb *pcb;
3256	int i;
3257
3258	if (td == NULL) {
3259		load_dr0(dbregs->dr[0]);
3260		load_dr1(dbregs->dr[1]);
3261		load_dr2(dbregs->dr[2]);
3262		load_dr3(dbregs->dr[3]);
3263		load_dr4(dbregs->dr[4]);
3264		load_dr5(dbregs->dr[5]);
3265		load_dr6(dbregs->dr[6]);
3266		load_dr7(dbregs->dr[7]);
3267	} else {
3268		/*
3269		 * Don't let an illegal value for dr7 get set.	Specifically,
3270		 * check for undefined settings.  Setting these bit patterns
3271		 * result in undefined behaviour and can lead to an unexpected
3272		 * TRCTRAP.
3273		 */
3274		for (i = 0; i < 4; i++) {
3275			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3276				return (EINVAL);
3277			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3278				return (EINVAL);
3279		}
3280
3281		pcb = td->td_pcb;
3282
3283		/*
3284		 * Don't let a process set a breakpoint that is not within the
3285		 * process's address space.  If a process could do this, it
3286		 * could halt the system by setting a breakpoint in the kernel
3287		 * (if ddb was enabled).  Thus, we need to check to make sure
3288		 * that no breakpoints are being enabled for addresses outside
3289		 * process's address space.
3290		 *
3291		 * XXX - what about when the watched area of the user's
3292		 * address space is written into from within the kernel
3293		 * ... wouldn't that still cause a breakpoint to be generated
3294		 * from within kernel mode?
3295		 */
3296
3297		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3298			/* dr0 is enabled */
3299			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3300				return (EINVAL);
3301		}
3302
3303		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3304			/* dr1 is enabled */
3305			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3306				return (EINVAL);
3307		}
3308
3309		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3310			/* dr2 is enabled */
3311			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3312				return (EINVAL);
3313		}
3314
3315		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3316			/* dr3 is enabled */
3317			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3318				return (EINVAL);
3319		}
3320
3321		pcb->pcb_dr0 = dbregs->dr[0];
3322		pcb->pcb_dr1 = dbregs->dr[1];
3323		pcb->pcb_dr2 = dbregs->dr[2];
3324		pcb->pcb_dr3 = dbregs->dr[3];
3325		pcb->pcb_dr6 = dbregs->dr[6];
3326		pcb->pcb_dr7 = dbregs->dr[7];
3327
3328		pcb->pcb_flags |= PCB_DBREGS;
3329	}
3330
3331	return (0);
3332}
3333
3334/*
3335 * Return > 0 if a hardware breakpoint has been hit, and the
3336 * breakpoint was in user space.  Return 0, otherwise.
3337 */
3338int
3339user_dbreg_trap(register_t dr6)
3340{
3341        u_int32_t dr7;
3342        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3343        int nbp;            /* number of breakpoints that triggered */
3344        caddr_t addr[4];    /* breakpoint addresses */
3345        int i;
3346
3347        bp = dr6 & DBREG_DR6_BMASK;
3348        if (bp == 0) {
3349                /*
3350                 * None of the breakpoint bits are set meaning this
3351                 * trap was not caused by any of the debug registers
3352                 */
3353                return 0;
3354        }
3355
3356        dr7 = rdr7();
3357        if ((dr7 & 0x000000ff) == 0) {
3358                /*
3359                 * all GE and LE bits in the dr7 register are zero,
3360                 * thus the trap couldn't have been caused by the
3361                 * hardware debug registers
3362                 */
3363                return 0;
3364        }
3365
3366        nbp = 0;
3367
3368        /*
3369         * at least one of the breakpoints were hit, check to see
3370         * which ones and if any of them are user space addresses
3371         */
3372
3373        if (bp & 0x01) {
3374                addr[nbp++] = (caddr_t)rdr0();
3375        }
3376        if (bp & 0x02) {
3377                addr[nbp++] = (caddr_t)rdr1();
3378        }
3379        if (bp & 0x04) {
3380                addr[nbp++] = (caddr_t)rdr2();
3381        }
3382        if (bp & 0x08) {
3383                addr[nbp++] = (caddr_t)rdr3();
3384        }
3385
3386        for (i = 0; i < nbp; i++) {
3387                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3388                        /*
3389                         * addr[i] is in user space
3390                         */
3391                        return nbp;
3392                }
3393        }
3394
3395        /*
3396         * None of the breakpoints are in user space.
3397         */
3398        return 0;
3399}
3400
3401#ifdef KDB
3402
3403/*
3404 * Provide inb() and outb() as functions.  They are normally only available as
3405 * inline functions, thus cannot be called from the debugger.
3406 */
3407
3408/* silence compiler warnings */
3409u_char inb_(u_short);
3410void outb_(u_short, u_char);
3411
3412u_char
3413inb_(u_short port)
3414{
3415	return inb(port);
3416}
3417
3418void
3419outb_(u_short port, u_char data)
3420{
3421	outb(port, data);
3422}
3423
3424#endif /* KDB */
3425