machdep.c revision 338691
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/11/sys/i386/i386/machdep.c 338691 2018-09-14 23:21:52Z jhb $");
42
43#include "opt_apic.h"
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kstack_pages.h"
51#include "opt_maxmem.h"
52#include "opt_mp_watchdog.h"
53#include "opt_perfmon.h"
54#include "opt_platform.h"
55#include "opt_xbox.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/eventhandler.h>
67#include <sys/exec.h>
68#include <sys/imgact.h>
69#include <sys/kdb.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/linker.h>
73#include <sys/lock.h>
74#include <sys/malloc.h>
75#include <sys/memrange.h>
76#include <sys/msgbuf.h>
77#include <sys/mutex.h>
78#include <sys/pcpu.h>
79#include <sys/ptrace.h>
80#include <sys/reboot.h>
81#include <sys/rwlock.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#ifdef SMP
85#include <sys/smp.h>
86#endif
87#include <sys/syscallsubr.h>
88#include <sys/sysctl.h>
89#include <sys/sysent.h>
90#include <sys/sysproto.h>
91#include <sys/ucontext.h>
92#include <sys/vmmeter.h>
93
94#include <vm/vm.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_object.h>
100#include <vm/vm_pager.h>
101#include <vm/vm_param.h>
102#include <vm/vm_phys.h>
103
104#ifdef DDB
105#ifndef KDB
106#error KDB must be enabled in order for DDB to work!
107#endif
108#include <ddb/ddb.h>
109#include <ddb/db_sym.h>
110#endif
111
112#ifdef PC98
113#include <pc98/pc98/pc98_machdep.h>
114#else
115#include <isa/rtc.h>
116#endif
117
118#include <net/netisr.h>
119
120#include <machine/bootinfo.h>
121#include <machine/clock.h>
122#include <machine/cpu.h>
123#include <machine/cputypes.h>
124#include <machine/intr_machdep.h>
125#include <x86/mca.h>
126#include <machine/md_var.h>
127#include <machine/metadata.h>
128#include <machine/mp_watchdog.h>
129#include <machine/pc/bios.h>
130#include <machine/pcb.h>
131#include <machine/pcb_ext.h>
132#include <machine/proc.h>
133#include <machine/reg.h>
134#include <machine/sigframe.h>
135#include <machine/specialreg.h>
136#include <machine/vm86.h>
137#include <x86/init.h>
138#ifdef PERFMON
139#include <machine/perfmon.h>
140#endif
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144#ifdef FDT
145#include <x86/fdt.h>
146#endif
147
148#ifdef DEV_APIC
149#include <x86/apicvar.h>
150#endif
151
152#ifdef DEV_ISA
153#include <x86/isa/icu.h>
154#endif
155
156#ifdef XBOX
157#include <machine/xbox.h>
158
159int arch_i386_is_xbox = 0;
160uint32_t arch_i386_xbox_memsize = 0;
161#endif
162
163/* Sanity check for __curthread() */
164CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
165
166extern register_t init386(int first);
167extern void dblfault_handler(void);
168
169static void cpu_startup(void *);
170static void fpstate_drop(struct thread *td);
171static void get_fpcontext(struct thread *td, mcontext_t *mcp,
172    char *xfpusave, size_t xfpusave_len);
173static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
174    char *xfpustate, size_t xfpustate_len);
175SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
176
177/* Intel ICH registers */
178#define ICH_PMBASE	0x400
179#define ICH_SMI_EN	ICH_PMBASE + 0x30
180
181int	_udatasel, _ucodesel;
182u_int	basemem;
183
184#ifdef PC98
185int	need_pre_dma_flush;	/* If 1, use wbinvd befor DMA transfer. */
186int	need_post_dma_flush;	/* If 1, use invd after DMA transfer. */
187
188static int	ispc98 = 1;
189SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
190#endif
191
192int cold = 1;
193
194#ifdef COMPAT_43
195static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
196#endif
197#ifdef COMPAT_FREEBSD4
198static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
199#endif
200
201long Maxmem = 0;
202long realmem = 0;
203
204#ifdef PAE
205FEATURE(pae, "Physical Address Extensions");
206#endif
207
208/*
209 * The number of PHYSMAP entries must be one less than the number of
210 * PHYSSEG entries because the PHYSMAP entry that spans the largest
211 * physical address that is accessible by ISA DMA is split into two
212 * PHYSSEG entries.
213 */
214#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
215
216vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
217vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
218
219/* must be 2 less so 0 0 can signal end of chunks */
220#define	PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
221#define	DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
222
223struct kva_md_info kmi;
224
225static struct trapframe proc0_tf;
226struct pcpu __pcpu[MAXCPU];
227
228struct mtx icu_lock;
229
230struct mem_range_softc mem_range_softc;
231
232 /* Default init_ops implementation. */
233 struct init_ops init_ops = {
234	.early_clock_source_init =	i8254_init,
235	.early_delay =			i8254_delay,
236#ifdef DEV_APIC
237	.msi_init =			msi_init,
238#endif
239 };
240
241static void
242cpu_startup(dummy)
243	void *dummy;
244{
245	uintmax_t memsize;
246	char *sysenv;
247
248#ifndef PC98
249	/*
250	 * On MacBooks, we need to disallow the legacy USB circuit to
251	 * generate an SMI# because this can cause several problems,
252	 * namely: incorrect CPU frequency detection and failure to
253	 * start the APs.
254	 * We do this by disabling a bit in the SMI_EN (SMI Control and
255	 * Enable register) of the Intel ICH LPC Interface Bridge.
256	 */
257	sysenv = kern_getenv("smbios.system.product");
258	if (sysenv != NULL) {
259		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
260		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
261		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
262		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
263		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
264		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
265		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
266		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
267			if (bootverbose)
268				printf("Disabling LEGACY_USB_EN bit on "
269				    "Intel ICH.\n");
270			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
271		}
272		freeenv(sysenv);
273	}
274#endif /* !PC98 */
275
276	/*
277	 * Good {morning,afternoon,evening,night}.
278	 */
279	startrtclock();
280	printcpuinfo();
281	panicifcpuunsupported();
282#ifdef PERFMON
283	perfmon_init();
284#endif
285
286	/*
287	 * Display physical memory if SMBIOS reports reasonable amount.
288	 */
289	memsize = 0;
290	sysenv = kern_getenv("smbios.memory.enabled");
291	if (sysenv != NULL) {
292		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
293		freeenv(sysenv);
294	}
295	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
296		memsize = ptoa((uintmax_t)Maxmem);
297	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
298	realmem = atop(memsize);
299
300	/*
301	 * Display any holes after the first chunk of extended memory.
302	 */
303	if (bootverbose) {
304		int indx;
305
306		printf("Physical memory chunk(s):\n");
307		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
308			vm_paddr_t size;
309
310			size = phys_avail[indx + 1] - phys_avail[indx];
311			printf(
312			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
313			    (uintmax_t)phys_avail[indx],
314			    (uintmax_t)phys_avail[indx + 1] - 1,
315			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
316		}
317	}
318
319	vm_ksubmap_init(&kmi);
320
321	printf("avail memory = %ju (%ju MB)\n",
322	    ptoa((uintmax_t)vm_cnt.v_free_count),
323	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
324
325	/*
326	 * Set up buffers, so they can be used to read disk labels.
327	 */
328	bufinit();
329	vm_pager_bufferinit();
330	cpu_setregs();
331}
332
333/*
334 * Send an interrupt to process.
335 *
336 * Stack is set up to allow sigcode stored
337 * at top to call routine, followed by call
338 * to sigreturn routine below.  After sigreturn
339 * resets the signal mask, the stack, and the
340 * frame pointer, it returns to the user
341 * specified pc, psl.
342 */
343#ifdef COMPAT_43
344static void
345osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
346{
347	struct osigframe sf, *fp;
348	struct proc *p;
349	struct thread *td;
350	struct sigacts *psp;
351	struct trapframe *regs;
352	int sig;
353	int oonstack;
354
355	td = curthread;
356	p = td->td_proc;
357	PROC_LOCK_ASSERT(p, MA_OWNED);
358	sig = ksi->ksi_signo;
359	psp = p->p_sigacts;
360	mtx_assert(&psp->ps_mtx, MA_OWNED);
361	regs = td->td_frame;
362	oonstack = sigonstack(regs->tf_esp);
363
364	/* Allocate space for the signal handler context. */
365	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
366	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
367		fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
368		    td->td_sigstk.ss_size - sizeof(struct osigframe));
369#if defined(COMPAT_43)
370		td->td_sigstk.ss_flags |= SS_ONSTACK;
371#endif
372	} else
373		fp = (struct osigframe *)regs->tf_esp - 1;
374
375	/* Build the argument list for the signal handler. */
376	sf.sf_signum = sig;
377	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
378	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
379	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
380		/* Signal handler installed with SA_SIGINFO. */
381		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
382		sf.sf_siginfo.si_signo = sig;
383		sf.sf_siginfo.si_code = ksi->ksi_code;
384		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
385		sf.sf_addr = 0;
386	} else {
387		/* Old FreeBSD-style arguments. */
388		sf.sf_arg2 = ksi->ksi_code;
389		sf.sf_addr = (register_t)ksi->ksi_addr;
390		sf.sf_ahu.sf_handler = catcher;
391	}
392	mtx_unlock(&psp->ps_mtx);
393	PROC_UNLOCK(p);
394
395	/* Save most if not all of trap frame. */
396	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
397	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
398	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
399	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
400	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
401	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
402	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
403	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
404	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
405	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
406	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
407	sf.sf_siginfo.si_sc.sc_gs = rgs();
408	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
409
410	/* Build the signal context to be used by osigreturn(). */
411	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
412	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
413	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
414	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
415	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
416	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
417	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
418	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
419
420	/*
421	 * If we're a vm86 process, we want to save the segment registers.
422	 * We also change eflags to be our emulated eflags, not the actual
423	 * eflags.
424	 */
425	if (regs->tf_eflags & PSL_VM) {
426		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
427		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
428		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
429
430		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
431		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
432		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
433		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
434
435		if (vm86->vm86_has_vme == 0)
436			sf.sf_siginfo.si_sc.sc_ps =
437			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
438			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
439
440		/* See sendsig() for comments. */
441		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
442	}
443
444	/*
445	 * Copy the sigframe out to the user's stack.
446	 */
447	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
448		PROC_LOCK(p);
449		sigexit(td, SIGILL);
450	}
451
452	regs->tf_esp = (int)fp;
453	if (p->p_sysent->sv_sigcode_base != 0) {
454		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
455		    szosigcode;
456	} else {
457		/* a.out sysentvec does not use shared page */
458		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
459	}
460	regs->tf_eflags &= ~(PSL_T | PSL_D);
461	regs->tf_cs = _ucodesel;
462	regs->tf_ds = _udatasel;
463	regs->tf_es = _udatasel;
464	regs->tf_fs = _udatasel;
465	load_gs(_udatasel);
466	regs->tf_ss = _udatasel;
467	PROC_LOCK(p);
468	mtx_lock(&psp->ps_mtx);
469}
470#endif /* COMPAT_43 */
471
472#ifdef COMPAT_FREEBSD4
473static void
474freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
475{
476	struct sigframe4 sf, *sfp;
477	struct proc *p;
478	struct thread *td;
479	struct sigacts *psp;
480	struct trapframe *regs;
481	int sig;
482	int oonstack;
483
484	td = curthread;
485	p = td->td_proc;
486	PROC_LOCK_ASSERT(p, MA_OWNED);
487	sig = ksi->ksi_signo;
488	psp = p->p_sigacts;
489	mtx_assert(&psp->ps_mtx, MA_OWNED);
490	regs = td->td_frame;
491	oonstack = sigonstack(regs->tf_esp);
492
493	/* Save user context. */
494	bzero(&sf, sizeof(sf));
495	sf.sf_uc.uc_sigmask = *mask;
496	sf.sf_uc.uc_stack = td->td_sigstk;
497	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
498	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
499	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
500	sf.sf_uc.uc_mcontext.mc_gs = rgs();
501	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
502	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
503	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
504	bzero(sf.sf_uc.uc_mcontext.__spare__,
505	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
506	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
507
508	/* Allocate space for the signal handler context. */
509	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
510	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
511		sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
512		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
513#if defined(COMPAT_43)
514		td->td_sigstk.ss_flags |= SS_ONSTACK;
515#endif
516	} else
517		sfp = (struct sigframe4 *)regs->tf_esp - 1;
518
519	/* Build the argument list for the signal handler. */
520	sf.sf_signum = sig;
521	sf.sf_ucontext = (register_t)&sfp->sf_uc;
522	bzero(&sf.sf_si, sizeof(sf.sf_si));
523	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
524		/* Signal handler installed with SA_SIGINFO. */
525		sf.sf_siginfo = (register_t)&sfp->sf_si;
526		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
527
528		/* Fill in POSIX parts */
529		sf.sf_si.si_signo = sig;
530		sf.sf_si.si_code = ksi->ksi_code;
531		sf.sf_si.si_addr = ksi->ksi_addr;
532	} else {
533		/* Old FreeBSD-style arguments. */
534		sf.sf_siginfo = ksi->ksi_code;
535		sf.sf_addr = (register_t)ksi->ksi_addr;
536		sf.sf_ahu.sf_handler = catcher;
537	}
538	mtx_unlock(&psp->ps_mtx);
539	PROC_UNLOCK(p);
540
541	/*
542	 * If we're a vm86 process, we want to save the segment registers.
543	 * We also change eflags to be our emulated eflags, not the actual
544	 * eflags.
545	 */
546	if (regs->tf_eflags & PSL_VM) {
547		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
548		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
549
550		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
551		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
552		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
553		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
554
555		if (vm86->vm86_has_vme == 0)
556			sf.sf_uc.uc_mcontext.mc_eflags =
557			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
558			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
559
560		/*
561		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
562		 * syscalls made by the signal handler.  This just avoids
563		 * wasting time for our lazy fixup of such faults.  PSL_NT
564		 * does nothing in vm86 mode, but vm86 programs can set it
565		 * almost legitimately in probes for old cpu types.
566		 */
567		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
568	}
569
570	/*
571	 * Copy the sigframe out to the user's stack.
572	 */
573	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
574		PROC_LOCK(p);
575		sigexit(td, SIGILL);
576	}
577
578	regs->tf_esp = (int)sfp;
579	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
580	    szfreebsd4_sigcode;
581	regs->tf_eflags &= ~(PSL_T | PSL_D);
582	regs->tf_cs = _ucodesel;
583	regs->tf_ds = _udatasel;
584	regs->tf_es = _udatasel;
585	regs->tf_fs = _udatasel;
586	regs->tf_ss = _udatasel;
587	PROC_LOCK(p);
588	mtx_lock(&psp->ps_mtx);
589}
590#endif	/* COMPAT_FREEBSD4 */
591
592void
593sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
594{
595	struct sigframe sf, *sfp;
596	struct proc *p;
597	struct thread *td;
598	struct sigacts *psp;
599	char *sp;
600	struct trapframe *regs;
601	struct segment_descriptor *sdp;
602	char *xfpusave;
603	size_t xfpusave_len;
604	int sig;
605	int oonstack;
606
607	td = curthread;
608	p = td->td_proc;
609	PROC_LOCK_ASSERT(p, MA_OWNED);
610	sig = ksi->ksi_signo;
611	psp = p->p_sigacts;
612	mtx_assert(&psp->ps_mtx, MA_OWNED);
613#ifdef COMPAT_FREEBSD4
614	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
615		freebsd4_sendsig(catcher, ksi, mask);
616		return;
617	}
618#endif
619#ifdef COMPAT_43
620	if (SIGISMEMBER(psp->ps_osigset, sig)) {
621		osendsig(catcher, ksi, mask);
622		return;
623	}
624#endif
625	regs = td->td_frame;
626	oonstack = sigonstack(regs->tf_esp);
627
628	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
629		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
630		xfpusave = __builtin_alloca(xfpusave_len);
631	} else {
632		xfpusave_len = 0;
633		xfpusave = NULL;
634	}
635
636	/* Save user context. */
637	bzero(&sf, sizeof(sf));
638	sf.sf_uc.uc_sigmask = *mask;
639	sf.sf_uc.uc_stack = td->td_sigstk;
640	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
641	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
642	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
643	sf.sf_uc.uc_mcontext.mc_gs = rgs();
644	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
645	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
646	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
647	fpstate_drop(td);
648	/*
649	 * Unconditionally fill the fsbase and gsbase into the mcontext.
650	 */
651	sdp = &td->td_pcb->pcb_fsd;
652	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
653	    sdp->sd_lobase;
654	sdp = &td->td_pcb->pcb_gsd;
655	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
656	    sdp->sd_lobase;
657	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
658	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
659	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
660
661	/* Allocate space for the signal handler context. */
662	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
663	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
664		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
665#if defined(COMPAT_43)
666		td->td_sigstk.ss_flags |= SS_ONSTACK;
667#endif
668	} else
669		sp = (char *)regs->tf_esp - 128;
670	if (xfpusave != NULL) {
671		sp -= xfpusave_len;
672		sp = (char *)((unsigned int)sp & ~0x3F);
673		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
674	}
675	sp -= sizeof(struct sigframe);
676
677	/* Align to 16 bytes. */
678	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
679
680	/* Build the argument list for the signal handler. */
681	sf.sf_signum = sig;
682	sf.sf_ucontext = (register_t)&sfp->sf_uc;
683	bzero(&sf.sf_si, sizeof(sf.sf_si));
684	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
685		/* Signal handler installed with SA_SIGINFO. */
686		sf.sf_siginfo = (register_t)&sfp->sf_si;
687		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
688
689		/* Fill in POSIX parts */
690		sf.sf_si = ksi->ksi_info;
691		sf.sf_si.si_signo = sig; /* maybe a translated signal */
692	} else {
693		/* Old FreeBSD-style arguments. */
694		sf.sf_siginfo = ksi->ksi_code;
695		sf.sf_addr = (register_t)ksi->ksi_addr;
696		sf.sf_ahu.sf_handler = catcher;
697	}
698	mtx_unlock(&psp->ps_mtx);
699	PROC_UNLOCK(p);
700
701	/*
702	 * If we're a vm86 process, we want to save the segment registers.
703	 * We also change eflags to be our emulated eflags, not the actual
704	 * eflags.
705	 */
706	if (regs->tf_eflags & PSL_VM) {
707		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
708		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
709
710		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
711		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
712		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
713		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
714
715		if (vm86->vm86_has_vme == 0)
716			sf.sf_uc.uc_mcontext.mc_eflags =
717			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
718			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
719
720		/*
721		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
722		 * syscalls made by the signal handler.  This just avoids
723		 * wasting time for our lazy fixup of such faults.  PSL_NT
724		 * does nothing in vm86 mode, but vm86 programs can set it
725		 * almost legitimately in probes for old cpu types.
726		 */
727		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
728	}
729
730	/*
731	 * Copy the sigframe out to the user's stack.
732	 */
733	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
734	    (xfpusave != NULL && copyout(xfpusave,
735	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
736	    != 0)) {
737		PROC_LOCK(p);
738		sigexit(td, SIGILL);
739	}
740
741	regs->tf_esp = (int)sfp;
742	regs->tf_eip = p->p_sysent->sv_sigcode_base;
743	if (regs->tf_eip == 0)
744		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
745	regs->tf_eflags &= ~(PSL_T | PSL_D);
746	regs->tf_cs = _ucodesel;
747	regs->tf_ds = _udatasel;
748	regs->tf_es = _udatasel;
749	regs->tf_fs = _udatasel;
750	regs->tf_ss = _udatasel;
751	PROC_LOCK(p);
752	mtx_lock(&psp->ps_mtx);
753}
754
755/*
756 * System call to cleanup state after a signal
757 * has been taken.  Reset signal mask and
758 * stack state from context left by sendsig (above).
759 * Return to previous pc and psl as specified by
760 * context left by sendsig. Check carefully to
761 * make sure that the user has not modified the
762 * state to gain improper privileges.
763 *
764 * MPSAFE
765 */
766#ifdef COMPAT_43
767int
768osigreturn(td, uap)
769	struct thread *td;
770	struct osigreturn_args /* {
771		struct osigcontext *sigcntxp;
772	} */ *uap;
773{
774	struct osigcontext sc;
775	struct trapframe *regs;
776	struct osigcontext *scp;
777	int eflags, error;
778	ksiginfo_t ksi;
779
780	regs = td->td_frame;
781	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
782	if (error != 0)
783		return (error);
784	scp = &sc;
785	eflags = scp->sc_ps;
786	if (eflags & PSL_VM) {
787		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
788		struct vm86_kernel *vm86;
789
790		/*
791		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
792		 * set up the vm86 area, and we can't enter vm86 mode.
793		 */
794		if (td->td_pcb->pcb_ext == 0)
795			return (EINVAL);
796		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
797		if (vm86->vm86_inited == 0)
798			return (EINVAL);
799
800		/* Go back to user mode if both flags are set. */
801		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
802			ksiginfo_init_trap(&ksi);
803			ksi.ksi_signo = SIGBUS;
804			ksi.ksi_code = BUS_OBJERR;
805			ksi.ksi_addr = (void *)regs->tf_eip;
806			trapsignal(td, &ksi);
807		}
808
809		if (vm86->vm86_has_vme) {
810			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
811			    (eflags & VME_USERCHANGE) | PSL_VM;
812		} else {
813			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
814			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
815			    (eflags & VM_USERCHANGE) | PSL_VM;
816		}
817		tf->tf_vm86_ds = scp->sc_ds;
818		tf->tf_vm86_es = scp->sc_es;
819		tf->tf_vm86_fs = scp->sc_fs;
820		tf->tf_vm86_gs = scp->sc_gs;
821		tf->tf_ds = _udatasel;
822		tf->tf_es = _udatasel;
823		tf->tf_fs = _udatasel;
824	} else {
825		/*
826		 * Don't allow users to change privileged or reserved flags.
827		 */
828		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
829	    		return (EINVAL);
830		}
831
832		/*
833		 * Don't allow users to load a valid privileged %cs.  Let the
834		 * hardware check for invalid selectors, excess privilege in
835		 * other selectors, invalid %eip's and invalid %esp's.
836		 */
837		if (!CS_SECURE(scp->sc_cs)) {
838			ksiginfo_init_trap(&ksi);
839			ksi.ksi_signo = SIGBUS;
840			ksi.ksi_code = BUS_OBJERR;
841			ksi.ksi_trapno = T_PROTFLT;
842			ksi.ksi_addr = (void *)regs->tf_eip;
843			trapsignal(td, &ksi);
844			return (EINVAL);
845		}
846		regs->tf_ds = scp->sc_ds;
847		regs->tf_es = scp->sc_es;
848		regs->tf_fs = scp->sc_fs;
849	}
850
851	/* Restore remaining registers. */
852	regs->tf_eax = scp->sc_eax;
853	regs->tf_ebx = scp->sc_ebx;
854	regs->tf_ecx = scp->sc_ecx;
855	regs->tf_edx = scp->sc_edx;
856	regs->tf_esi = scp->sc_esi;
857	regs->tf_edi = scp->sc_edi;
858	regs->tf_cs = scp->sc_cs;
859	regs->tf_ss = scp->sc_ss;
860	regs->tf_isp = scp->sc_isp;
861	regs->tf_ebp = scp->sc_fp;
862	regs->tf_esp = scp->sc_sp;
863	regs->tf_eip = scp->sc_pc;
864	regs->tf_eflags = eflags;
865
866#if defined(COMPAT_43)
867	if (scp->sc_onstack & 1)
868		td->td_sigstk.ss_flags |= SS_ONSTACK;
869	else
870		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
871#endif
872	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
873	    SIGPROCMASK_OLD);
874	return (EJUSTRETURN);
875}
876#endif /* COMPAT_43 */
877
878#ifdef COMPAT_FREEBSD4
879/*
880 * MPSAFE
881 */
882int
883freebsd4_sigreturn(td, uap)
884	struct thread *td;
885	struct freebsd4_sigreturn_args /* {
886		const ucontext4 *sigcntxp;
887	} */ *uap;
888{
889	struct ucontext4 uc;
890	struct trapframe *regs;
891	struct ucontext4 *ucp;
892	int cs, eflags, error;
893	ksiginfo_t ksi;
894
895	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
896	if (error != 0)
897		return (error);
898	ucp = &uc;
899	regs = td->td_frame;
900	eflags = ucp->uc_mcontext.mc_eflags;
901	if (eflags & PSL_VM) {
902		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
903		struct vm86_kernel *vm86;
904
905		/*
906		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
907		 * set up the vm86 area, and we can't enter vm86 mode.
908		 */
909		if (td->td_pcb->pcb_ext == 0)
910			return (EINVAL);
911		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
912		if (vm86->vm86_inited == 0)
913			return (EINVAL);
914
915		/* Go back to user mode if both flags are set. */
916		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
917			ksiginfo_init_trap(&ksi);
918			ksi.ksi_signo = SIGBUS;
919			ksi.ksi_code = BUS_OBJERR;
920			ksi.ksi_addr = (void *)regs->tf_eip;
921			trapsignal(td, &ksi);
922		}
923		if (vm86->vm86_has_vme) {
924			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
925			    (eflags & VME_USERCHANGE) | PSL_VM;
926		} else {
927			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
928			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
929			    (eflags & VM_USERCHANGE) | PSL_VM;
930		}
931		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
932		tf->tf_eflags = eflags;
933		tf->tf_vm86_ds = tf->tf_ds;
934		tf->tf_vm86_es = tf->tf_es;
935		tf->tf_vm86_fs = tf->tf_fs;
936		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
937		tf->tf_ds = _udatasel;
938		tf->tf_es = _udatasel;
939		tf->tf_fs = _udatasel;
940	} else {
941		/*
942		 * Don't allow users to change privileged or reserved flags.
943		 */
944		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
945			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
946			    td->td_proc->p_pid, td->td_name, eflags);
947	    		return (EINVAL);
948		}
949
950		/*
951		 * Don't allow users to load a valid privileged %cs.  Let the
952		 * hardware check for invalid selectors, excess privilege in
953		 * other selectors, invalid %eip's and invalid %esp's.
954		 */
955		cs = ucp->uc_mcontext.mc_cs;
956		if (!CS_SECURE(cs)) {
957			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
958			    td->td_proc->p_pid, td->td_name, cs);
959			ksiginfo_init_trap(&ksi);
960			ksi.ksi_signo = SIGBUS;
961			ksi.ksi_code = BUS_OBJERR;
962			ksi.ksi_trapno = T_PROTFLT;
963			ksi.ksi_addr = (void *)regs->tf_eip;
964			trapsignal(td, &ksi);
965			return (EINVAL);
966		}
967
968		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
969	}
970
971#if defined(COMPAT_43)
972	if (ucp->uc_mcontext.mc_onstack & 1)
973		td->td_sigstk.ss_flags |= SS_ONSTACK;
974	else
975		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
976#endif
977	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
978	return (EJUSTRETURN);
979}
980#endif	/* COMPAT_FREEBSD4 */
981
982/*
983 * MPSAFE
984 */
985int
986sys_sigreturn(td, uap)
987	struct thread *td;
988	struct sigreturn_args /* {
989		const struct __ucontext *sigcntxp;
990	} */ *uap;
991{
992	ucontext_t uc;
993	struct proc *p;
994	struct trapframe *regs;
995	ucontext_t *ucp;
996	char *xfpustate;
997	size_t xfpustate_len;
998	int cs, eflags, error, ret;
999	ksiginfo_t ksi;
1000
1001	p = td->td_proc;
1002
1003	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1004	if (error != 0)
1005		return (error);
1006	ucp = &uc;
1007	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
1008		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
1009		    td->td_name, ucp->uc_mcontext.mc_flags);
1010		return (EINVAL);
1011	}
1012	regs = td->td_frame;
1013	eflags = ucp->uc_mcontext.mc_eflags;
1014	if (eflags & PSL_VM) {
1015		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1016		struct vm86_kernel *vm86;
1017
1018		/*
1019		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1020		 * set up the vm86 area, and we can't enter vm86 mode.
1021		 */
1022		if (td->td_pcb->pcb_ext == 0)
1023			return (EINVAL);
1024		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1025		if (vm86->vm86_inited == 0)
1026			return (EINVAL);
1027
1028		/* Go back to user mode if both flags are set. */
1029		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1030			ksiginfo_init_trap(&ksi);
1031			ksi.ksi_signo = SIGBUS;
1032			ksi.ksi_code = BUS_OBJERR;
1033			ksi.ksi_addr = (void *)regs->tf_eip;
1034			trapsignal(td, &ksi);
1035		}
1036
1037		if (vm86->vm86_has_vme) {
1038			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1039			    (eflags & VME_USERCHANGE) | PSL_VM;
1040		} else {
1041			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1042			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1043			    (eflags & VM_USERCHANGE) | PSL_VM;
1044		}
1045		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1046		tf->tf_eflags = eflags;
1047		tf->tf_vm86_ds = tf->tf_ds;
1048		tf->tf_vm86_es = tf->tf_es;
1049		tf->tf_vm86_fs = tf->tf_fs;
1050		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1051		tf->tf_ds = _udatasel;
1052		tf->tf_es = _udatasel;
1053		tf->tf_fs = _udatasel;
1054	} else {
1055		/*
1056		 * Don't allow users to change privileged or reserved flags.
1057		 */
1058		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1059			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1060			    td->td_proc->p_pid, td->td_name, eflags);
1061	    		return (EINVAL);
1062		}
1063
1064		/*
1065		 * Don't allow users to load a valid privileged %cs.  Let the
1066		 * hardware check for invalid selectors, excess privilege in
1067		 * other selectors, invalid %eip's and invalid %esp's.
1068		 */
1069		cs = ucp->uc_mcontext.mc_cs;
1070		if (!CS_SECURE(cs)) {
1071			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1072			    td->td_proc->p_pid, td->td_name, cs);
1073			ksiginfo_init_trap(&ksi);
1074			ksi.ksi_signo = SIGBUS;
1075			ksi.ksi_code = BUS_OBJERR;
1076			ksi.ksi_trapno = T_PROTFLT;
1077			ksi.ksi_addr = (void *)regs->tf_eip;
1078			trapsignal(td, &ksi);
1079			return (EINVAL);
1080		}
1081
1082		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1083			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1084			if (xfpustate_len > cpu_max_ext_state_size -
1085			    sizeof(union savefpu)) {
1086				uprintf(
1087			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1088				    p->p_pid, td->td_name, xfpustate_len);
1089				return (EINVAL);
1090			}
1091			xfpustate = __builtin_alloca(xfpustate_len);
1092			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1093			    xfpustate, xfpustate_len);
1094			if (error != 0) {
1095				uprintf(
1096	"pid %d (%s): sigreturn copying xfpustate failed\n",
1097				    p->p_pid, td->td_name);
1098				return (error);
1099			}
1100		} else {
1101			xfpustate = NULL;
1102			xfpustate_len = 0;
1103		}
1104		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1105		    xfpustate_len);
1106		if (ret != 0)
1107			return (ret);
1108		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1109	}
1110
1111#if defined(COMPAT_43)
1112	if (ucp->uc_mcontext.mc_onstack & 1)
1113		td->td_sigstk.ss_flags |= SS_ONSTACK;
1114	else
1115		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1116#endif
1117
1118	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1119	return (EJUSTRETURN);
1120}
1121
1122/*
1123 * Reset registers to default values on exec.
1124 */
1125void
1126exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1127{
1128	struct trapframe *regs;
1129	struct pcb *pcb;
1130	register_t saved_eflags;
1131
1132	regs = td->td_frame;
1133	pcb = td->td_pcb;
1134
1135	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1136	pcb->pcb_gs = _udatasel;
1137	load_gs(_udatasel);
1138
1139	mtx_lock_spin(&dt_lock);
1140	if (td->td_proc->p_md.md_ldt)
1141		user_ldt_free(td);
1142	else
1143		mtx_unlock_spin(&dt_lock);
1144
1145	/*
1146	 * Reset the fs and gs bases.  The values from the old address
1147	 * space do not make sense for the new program.  In particular,
1148	 * gsbase might be the TLS base for the old program but the new
1149	 * program has no TLS now.
1150	 */
1151	set_fsbase(td, 0);
1152	set_gsbase(td, 0);
1153
1154	saved_eflags = regs->tf_eflags & PSL_T;
1155	bzero((char *)regs, sizeof(struct trapframe));
1156	regs->tf_eip = imgp->entry_addr;
1157	regs->tf_esp = stack;
1158	regs->tf_eflags = PSL_USER | saved_eflags;
1159	regs->tf_ss = _udatasel;
1160	regs->tf_ds = _udatasel;
1161	regs->tf_es = _udatasel;
1162	regs->tf_fs = _udatasel;
1163	regs->tf_cs = _ucodesel;
1164
1165	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1166	regs->tf_ebx = imgp->ps_strings;
1167
1168        /*
1169         * Reset the hardware debug registers if they were in use.
1170         * They won't have any meaning for the newly exec'd process.
1171         */
1172        if (pcb->pcb_flags & PCB_DBREGS) {
1173                pcb->pcb_dr0 = 0;
1174                pcb->pcb_dr1 = 0;
1175                pcb->pcb_dr2 = 0;
1176                pcb->pcb_dr3 = 0;
1177                pcb->pcb_dr6 = 0;
1178                pcb->pcb_dr7 = 0;
1179                if (pcb == curpcb) {
1180		        /*
1181			 * Clear the debug registers on the running
1182			 * CPU, otherwise they will end up affecting
1183			 * the next process we switch to.
1184			 */
1185		        reset_dbregs();
1186                }
1187		pcb->pcb_flags &= ~PCB_DBREGS;
1188        }
1189
1190	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1191
1192	/*
1193	 * Drop the FP state if we hold it, so that the process gets a
1194	 * clean FP state if it uses the FPU again.
1195	 */
1196	fpstate_drop(td);
1197
1198	/*
1199	 * XXX - Linux emulator
1200	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1201	 * on it.
1202	 */
1203	td->td_retval[1] = 0;
1204}
1205
1206void
1207cpu_setregs(void)
1208{
1209	unsigned int cr0;
1210
1211	cr0 = rcr0();
1212
1213	/*
1214	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1215	 *
1216	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1217	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1218	 * bit to control the trap, because setting the CR0_EM bit does
1219	 * not cause WAIT instructions to trap.  It's important to trap
1220	 * WAIT instructions - otherwise the "wait" variants of no-wait
1221	 * control instructions would degenerate to the "no-wait" variants
1222	 * after FP context switches but work correctly otherwise.  It's
1223	 * particularly important to trap WAITs when there is no NPX -
1224	 * otherwise the "wait" variants would always degenerate.
1225	 *
1226	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1227	 * Setting it should fail or do nothing on lesser processors.
1228	 */
1229	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1230	load_cr0(cr0);
1231	load_gs(_udatasel);
1232}
1233
1234u_long bootdev;		/* not a struct cdev *- encoding is different */
1235SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1236	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1237
1238static char bootmethod[16] = "BIOS";
1239SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1240    "System firmware boot method");
1241
1242/*
1243 * Initialize 386 and configure to run kernel
1244 */
1245
1246/*
1247 * Initialize segments & interrupt table
1248 */
1249
1250int _default_ldt;
1251
1252union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1253union descriptor ldt[NLDT];		/* local descriptor table */
1254static struct gate_descriptor idt0[NIDT];
1255struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1256struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1257struct mtx dt_lock;			/* lock for GDT and LDT */
1258
1259static struct i386tss dblfault_tss;
1260static char dblfault_stack[PAGE_SIZE];
1261
1262extern  vm_offset_t	proc0kstack;
1263
1264
1265/*
1266 * software prototypes -- in more palatable form.
1267 *
1268 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1269 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1270 */
1271struct soft_segment_descriptor gdt_segs[] = {
1272/* GNULL_SEL	0 Null Descriptor */
1273{	.ssd_base = 0x0,
1274	.ssd_limit = 0x0,
1275	.ssd_type = 0,
1276	.ssd_dpl = SEL_KPL,
1277	.ssd_p = 0,
1278	.ssd_xx = 0, .ssd_xx1 = 0,
1279	.ssd_def32 = 0,
1280	.ssd_gran = 0		},
1281/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1282{	.ssd_base = 0x0,
1283	.ssd_limit = 0xfffff,
1284	.ssd_type = SDT_MEMRWA,
1285	.ssd_dpl = SEL_KPL,
1286	.ssd_p = 1,
1287	.ssd_xx = 0, .ssd_xx1 = 0,
1288	.ssd_def32 = 1,
1289	.ssd_gran = 1		},
1290/* GUFS_SEL	2 %fs Descriptor for user */
1291{	.ssd_base = 0x0,
1292	.ssd_limit = 0xfffff,
1293	.ssd_type = SDT_MEMRWA,
1294	.ssd_dpl = SEL_UPL,
1295	.ssd_p = 1,
1296	.ssd_xx = 0, .ssd_xx1 = 0,
1297	.ssd_def32 = 1,
1298	.ssd_gran = 1		},
1299/* GUGS_SEL	3 %gs Descriptor for user */
1300{	.ssd_base = 0x0,
1301	.ssd_limit = 0xfffff,
1302	.ssd_type = SDT_MEMRWA,
1303	.ssd_dpl = SEL_UPL,
1304	.ssd_p = 1,
1305	.ssd_xx = 0, .ssd_xx1 = 0,
1306	.ssd_def32 = 1,
1307	.ssd_gran = 1		},
1308/* GCODE_SEL	4 Code Descriptor for kernel */
1309{	.ssd_base = 0x0,
1310	.ssd_limit = 0xfffff,
1311	.ssd_type = SDT_MEMERA,
1312	.ssd_dpl = SEL_KPL,
1313	.ssd_p = 1,
1314	.ssd_xx = 0, .ssd_xx1 = 0,
1315	.ssd_def32 = 1,
1316	.ssd_gran = 1		},
1317/* GDATA_SEL	5 Data Descriptor for kernel */
1318{	.ssd_base = 0x0,
1319	.ssd_limit = 0xfffff,
1320	.ssd_type = SDT_MEMRWA,
1321	.ssd_dpl = SEL_KPL,
1322	.ssd_p = 1,
1323	.ssd_xx = 0, .ssd_xx1 = 0,
1324	.ssd_def32 = 1,
1325	.ssd_gran = 1		},
1326/* GUCODE_SEL	6 Code Descriptor for user */
1327{	.ssd_base = 0x0,
1328	.ssd_limit = 0xfffff,
1329	.ssd_type = SDT_MEMERA,
1330	.ssd_dpl = SEL_UPL,
1331	.ssd_p = 1,
1332	.ssd_xx = 0, .ssd_xx1 = 0,
1333	.ssd_def32 = 1,
1334	.ssd_gran = 1		},
1335/* GUDATA_SEL	7 Data Descriptor for user */
1336{	.ssd_base = 0x0,
1337	.ssd_limit = 0xfffff,
1338	.ssd_type = SDT_MEMRWA,
1339	.ssd_dpl = SEL_UPL,
1340	.ssd_p = 1,
1341	.ssd_xx = 0, .ssd_xx1 = 0,
1342	.ssd_def32 = 1,
1343	.ssd_gran = 1		},
1344/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1345{	.ssd_base = 0x400,
1346	.ssd_limit = 0xfffff,
1347	.ssd_type = SDT_MEMRWA,
1348	.ssd_dpl = SEL_KPL,
1349	.ssd_p = 1,
1350	.ssd_xx = 0, .ssd_xx1 = 0,
1351	.ssd_def32 = 1,
1352	.ssd_gran = 1		},
1353/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1354{
1355	.ssd_base = 0x0,
1356	.ssd_limit = sizeof(struct i386tss)-1,
1357	.ssd_type = SDT_SYS386TSS,
1358	.ssd_dpl = 0,
1359	.ssd_p = 1,
1360	.ssd_xx = 0, .ssd_xx1 = 0,
1361	.ssd_def32 = 0,
1362	.ssd_gran = 0		},
1363/* GLDT_SEL	10 LDT Descriptor */
1364{	.ssd_base = (int) ldt,
1365	.ssd_limit = sizeof(ldt)-1,
1366	.ssd_type = SDT_SYSLDT,
1367	.ssd_dpl = SEL_UPL,
1368	.ssd_p = 1,
1369	.ssd_xx = 0, .ssd_xx1 = 0,
1370	.ssd_def32 = 0,
1371	.ssd_gran = 0		},
1372/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1373{	.ssd_base = (int) ldt,
1374	.ssd_limit = (512 * sizeof(union descriptor)-1),
1375	.ssd_type = SDT_SYSLDT,
1376	.ssd_dpl = 0,
1377	.ssd_p = 1,
1378	.ssd_xx = 0, .ssd_xx1 = 0,
1379	.ssd_def32 = 0,
1380	.ssd_gran = 0		},
1381/* GPANIC_SEL	12 Panic Tss Descriptor */
1382{	.ssd_base = (int) &dblfault_tss,
1383	.ssd_limit = sizeof(struct i386tss)-1,
1384	.ssd_type = SDT_SYS386TSS,
1385	.ssd_dpl = 0,
1386	.ssd_p = 1,
1387	.ssd_xx = 0, .ssd_xx1 = 0,
1388	.ssd_def32 = 0,
1389	.ssd_gran = 0		},
1390/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1391{	.ssd_base = 0,
1392	.ssd_limit = 0xfffff,
1393	.ssd_type = SDT_MEMERA,
1394	.ssd_dpl = 0,
1395	.ssd_p = 1,
1396	.ssd_xx = 0, .ssd_xx1 = 0,
1397	.ssd_def32 = 0,
1398	.ssd_gran = 1		},
1399/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1400{	.ssd_base = 0,
1401	.ssd_limit = 0xfffff,
1402	.ssd_type = SDT_MEMERA,
1403	.ssd_dpl = 0,
1404	.ssd_p = 1,
1405	.ssd_xx = 0, .ssd_xx1 = 0,
1406	.ssd_def32 = 0,
1407	.ssd_gran = 1		},
1408/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1409{	.ssd_base = 0,
1410	.ssd_limit = 0xfffff,
1411	.ssd_type = SDT_MEMRWA,
1412	.ssd_dpl = 0,
1413	.ssd_p = 1,
1414	.ssd_xx = 0, .ssd_xx1 = 0,
1415	.ssd_def32 = 1,
1416	.ssd_gran = 1		},
1417/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1418{	.ssd_base = 0,
1419	.ssd_limit = 0xfffff,
1420	.ssd_type = SDT_MEMRWA,
1421	.ssd_dpl = 0,
1422	.ssd_p = 1,
1423	.ssd_xx = 0, .ssd_xx1 = 0,
1424	.ssd_def32 = 0,
1425	.ssd_gran = 1		},
1426/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1427{	.ssd_base = 0,
1428	.ssd_limit = 0xfffff,
1429	.ssd_type = SDT_MEMRWA,
1430	.ssd_dpl = 0,
1431	.ssd_p = 1,
1432	.ssd_xx = 0, .ssd_xx1 = 0,
1433	.ssd_def32 = 0,
1434	.ssd_gran = 1		},
1435/* GNDIS_SEL	18 NDIS Descriptor */
1436{	.ssd_base = 0x0,
1437	.ssd_limit = 0x0,
1438	.ssd_type = 0,
1439	.ssd_dpl = 0,
1440	.ssd_p = 0,
1441	.ssd_xx = 0, .ssd_xx1 = 0,
1442	.ssd_def32 = 0,
1443	.ssd_gran = 0		},
1444};
1445
1446static struct soft_segment_descriptor ldt_segs[] = {
1447	/* Null Descriptor - overwritten by call gate */
1448{	.ssd_base = 0x0,
1449	.ssd_limit = 0x0,
1450	.ssd_type = 0,
1451	.ssd_dpl = 0,
1452	.ssd_p = 0,
1453	.ssd_xx = 0, .ssd_xx1 = 0,
1454	.ssd_def32 = 0,
1455	.ssd_gran = 0		},
1456	/* Null Descriptor - overwritten by call gate */
1457{	.ssd_base = 0x0,
1458	.ssd_limit = 0x0,
1459	.ssd_type = 0,
1460	.ssd_dpl = 0,
1461	.ssd_p = 0,
1462	.ssd_xx = 0, .ssd_xx1 = 0,
1463	.ssd_def32 = 0,
1464	.ssd_gran = 0		},
1465	/* Null Descriptor - overwritten by call gate */
1466{	.ssd_base = 0x0,
1467	.ssd_limit = 0x0,
1468	.ssd_type = 0,
1469	.ssd_dpl = 0,
1470	.ssd_p = 0,
1471	.ssd_xx = 0, .ssd_xx1 = 0,
1472	.ssd_def32 = 0,
1473	.ssd_gran = 0		},
1474	/* Code Descriptor for user */
1475{	.ssd_base = 0x0,
1476	.ssd_limit = 0xfffff,
1477	.ssd_type = SDT_MEMERA,
1478	.ssd_dpl = SEL_UPL,
1479	.ssd_p = 1,
1480	.ssd_xx = 0, .ssd_xx1 = 0,
1481	.ssd_def32 = 1,
1482	.ssd_gran = 1		},
1483	/* Null Descriptor - overwritten by call gate */
1484{	.ssd_base = 0x0,
1485	.ssd_limit = 0x0,
1486	.ssd_type = 0,
1487	.ssd_dpl = 0,
1488	.ssd_p = 0,
1489	.ssd_xx = 0, .ssd_xx1 = 0,
1490	.ssd_def32 = 0,
1491	.ssd_gran = 0		},
1492	/* Data Descriptor for user */
1493{	.ssd_base = 0x0,
1494	.ssd_limit = 0xfffff,
1495	.ssd_type = SDT_MEMRWA,
1496	.ssd_dpl = SEL_UPL,
1497	.ssd_p = 1,
1498	.ssd_xx = 0, .ssd_xx1 = 0,
1499	.ssd_def32 = 1,
1500	.ssd_gran = 1		},
1501};
1502
1503void
1504setidt(idx, func, typ, dpl, selec)
1505	int idx;
1506	inthand_t *func;
1507	int typ;
1508	int dpl;
1509	int selec;
1510{
1511	struct gate_descriptor *ip;
1512
1513	ip = idt + idx;
1514	ip->gd_looffset = (int)func;
1515	ip->gd_selector = selec;
1516	ip->gd_stkcpy = 0;
1517	ip->gd_xx = 0;
1518	ip->gd_type = typ;
1519	ip->gd_dpl = dpl;
1520	ip->gd_p = 1;
1521	ip->gd_hioffset = ((int)func)>>16 ;
1522}
1523
1524extern inthand_t
1525	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1526	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1527	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1528	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1529	IDTVEC(xmm),
1530#ifdef KDTRACE_HOOKS
1531	IDTVEC(dtrace_ret),
1532#endif
1533#ifdef XENHVM
1534	IDTVEC(xen_intr_upcall),
1535#endif
1536	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1537
1538#ifdef DDB
1539/*
1540 * Display the index and function name of any IDT entries that don't use
1541 * the default 'rsvd' entry point.
1542 */
1543DB_SHOW_COMMAND(idt, db_show_idt)
1544{
1545	struct gate_descriptor *ip;
1546	int idx;
1547	uintptr_t func;
1548
1549	ip = idt;
1550	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1551		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1552		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1553			db_printf("%3d\t", idx);
1554			db_printsym(func, DB_STGY_PROC);
1555			db_printf("\n");
1556		}
1557		ip++;
1558	}
1559}
1560
1561/* Show privileged registers. */
1562DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1563{
1564	uint64_t idtr, gdtr;
1565
1566	idtr = ridt();
1567	db_printf("idtr\t0x%08x/%04x\n",
1568	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1569	gdtr = rgdt();
1570	db_printf("gdtr\t0x%08x/%04x\n",
1571	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1572	db_printf("ldtr\t0x%04x\n", rldt());
1573	db_printf("tr\t0x%04x\n", rtr());
1574	db_printf("cr0\t0x%08x\n", rcr0());
1575	db_printf("cr2\t0x%08x\n", rcr2());
1576	db_printf("cr3\t0x%08x\n", rcr3());
1577	db_printf("cr4\t0x%08x\n", rcr4());
1578	if (rcr4() & CR4_XSAVE)
1579		db_printf("xcr0\t0x%016llx\n", rxcr(0));
1580	if (amd_feature & (AMDID_NX | AMDID_LM))
1581		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
1582	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
1583		db_printf("FEATURES_CTL\t0x%016llx\n",
1584		    rdmsr(MSR_IA32_FEATURE_CONTROL));
1585	if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
1586	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6)
1587		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
1588	if (cpu_feature & CPUID_PAT)
1589		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
1590}
1591
1592DB_SHOW_COMMAND(dbregs, db_show_dbregs)
1593{
1594
1595	db_printf("dr0\t0x%08x\n", rdr0());
1596	db_printf("dr1\t0x%08x\n", rdr1());
1597	db_printf("dr2\t0x%08x\n", rdr2());
1598	db_printf("dr3\t0x%08x\n", rdr3());
1599	db_printf("dr6\t0x%08x\n", rdr6());
1600	db_printf("dr7\t0x%08x\n", rdr7());
1601}
1602#endif
1603
1604void
1605sdtossd(sd, ssd)
1606	struct segment_descriptor *sd;
1607	struct soft_segment_descriptor *ssd;
1608{
1609	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1610	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1611	ssd->ssd_type  = sd->sd_type;
1612	ssd->ssd_dpl   = sd->sd_dpl;
1613	ssd->ssd_p     = sd->sd_p;
1614	ssd->ssd_def32 = sd->sd_def32;
1615	ssd->ssd_gran  = sd->sd_gran;
1616}
1617
1618#if !defined(PC98)
1619static int
1620add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1621    int *physmap_idxp)
1622{
1623	int i, insert_idx, physmap_idx;
1624
1625	physmap_idx = *physmap_idxp;
1626
1627	if (length == 0)
1628		return (1);
1629
1630#ifndef PAE
1631	if (base > 0xffffffff) {
1632		printf("%uK of memory above 4GB ignored\n",
1633		    (u_int)(length / 1024));
1634		return (1);
1635	}
1636#endif
1637
1638	/*
1639	 * Find insertion point while checking for overlap.  Start off by
1640	 * assuming the new entry will be added to the end.
1641	 */
1642	insert_idx = physmap_idx + 2;
1643	for (i = 0; i <= physmap_idx; i += 2) {
1644		if (base < physmap[i + 1]) {
1645			if (base + length <= physmap[i]) {
1646				insert_idx = i;
1647				break;
1648			}
1649			if (boothowto & RB_VERBOSE)
1650				printf(
1651		    "Overlapping memory regions, ignoring second region\n");
1652			return (1);
1653		}
1654	}
1655
1656	/* See if we can prepend to the next entry. */
1657	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1658		physmap[insert_idx] = base;
1659		return (1);
1660	}
1661
1662	/* See if we can append to the previous entry. */
1663	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1664		physmap[insert_idx - 1] += length;
1665		return (1);
1666	}
1667
1668	physmap_idx += 2;
1669	*physmap_idxp = physmap_idx;
1670	if (physmap_idx == PHYSMAP_SIZE) {
1671		printf(
1672		"Too many segments in the physical address map, giving up\n");
1673		return (0);
1674	}
1675
1676	/*
1677	 * Move the last 'N' entries down to make room for the new
1678	 * entry if needed.
1679	 */
1680	for (i = physmap_idx; i > insert_idx; i -= 2) {
1681		physmap[i] = physmap[i - 2];
1682		physmap[i + 1] = physmap[i - 1];
1683	}
1684
1685	/* Insert the new entry. */
1686	physmap[insert_idx] = base;
1687	physmap[insert_idx + 1] = base + length;
1688	return (1);
1689}
1690
1691static int
1692add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1693{
1694	if (boothowto & RB_VERBOSE)
1695		printf("SMAP type=%02x base=%016llx len=%016llx\n",
1696		    smap->type, smap->base, smap->length);
1697
1698	if (smap->type != SMAP_TYPE_MEMORY)
1699		return (1);
1700
1701	return (add_physmap_entry(smap->base, smap->length, physmap,
1702	    physmap_idxp));
1703}
1704
1705static void
1706add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1707    int *physmap_idxp)
1708{
1709	struct bios_smap *smap, *smapend;
1710	u_int32_t smapsize;
1711	/*
1712	 * Memory map from INT 15:E820.
1713	 *
1714	 * subr_module.c says:
1715	 * "Consumer may safely assume that size value precedes data."
1716	 * ie: an int32_t immediately precedes SMAP.
1717	 */
1718	smapsize = *((u_int32_t *)smapbase - 1);
1719	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1720
1721	for (smap = smapbase; smap < smapend; smap++)
1722		if (!add_smap_entry(smap, physmap, physmap_idxp))
1723			break;
1724}
1725#endif /* !PC98 */
1726
1727static void
1728basemem_setup(void)
1729{
1730	vm_paddr_t pa;
1731	pt_entry_t *pte;
1732	int i;
1733
1734	if (basemem > 640) {
1735		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1736			basemem);
1737		basemem = 640;
1738	}
1739
1740	/*
1741	 * XXX if biosbasemem is now < 640, there is a `hole'
1742	 * between the end of base memory and the start of
1743	 * ISA memory.  The hole may be empty or it may
1744	 * contain BIOS code or data.  Map it read/write so
1745	 * that the BIOS can write to it.  (Memory from 0 to
1746	 * the physical end of the kernel is mapped read-only
1747	 * to begin with and then parts of it are remapped.
1748	 * The parts that aren't remapped form holes that
1749	 * remain read-only and are unused by the kernel.
1750	 * The base memory area is below the physical end of
1751	 * the kernel and right now forms a read-only hole.
1752	 * The part of it from PAGE_SIZE to
1753	 * (trunc_page(biosbasemem * 1024) - 1) will be
1754	 * remapped and used by the kernel later.)
1755	 *
1756	 * This code is similar to the code used in
1757	 * pmap_mapdev, but since no memory needs to be
1758	 * allocated we simply change the mapping.
1759	 */
1760	for (pa = trunc_page(basemem * 1024);
1761	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1762		pmap_kenter(KERNBASE + pa, pa);
1763
1764	/*
1765	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
1766	 * the vm86 page table so that vm86 can scribble on them using
1767	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
1768	 * page 0, at least as initialized here?
1769	 */
1770	pte = (pt_entry_t *)vm86paddr;
1771	for (i = basemem / 4; i < 160; i++)
1772		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1773}
1774
1775/*
1776 * Populate the (physmap) array with base/bound pairs describing the
1777 * available physical memory in the system, then test this memory and
1778 * build the phys_avail array describing the actually-available memory.
1779 *
1780 * If we cannot accurately determine the physical memory map, then use
1781 * value from the 0xE801 call, and failing that, the RTC.
1782 *
1783 * Total memory size may be set by the kernel environment variable
1784 * hw.physmem or the compile-time define MAXMEM.
1785 *
1786 * XXX first should be vm_paddr_t.
1787 */
1788#ifdef PC98
1789static void
1790getmemsize(int first)
1791{
1792	int off, physmap_idx, pa_indx, da_indx;
1793	u_long physmem_tunable, memtest;
1794	vm_paddr_t physmap[PHYSMAP_SIZE];
1795	pt_entry_t *pte;
1796	quad_t dcons_addr, dcons_size;
1797	int i;
1798	int pg_n;
1799	u_int extmem;
1800	u_int under16;
1801	vm_paddr_t pa;
1802
1803	bzero(physmap, sizeof(physmap));
1804
1805	/* XXX - some of EPSON machines can't use PG_N */
1806	pg_n = PG_N;
1807	if (pc98_machine_type & M_EPSON_PC98) {
1808		switch (epson_machine_id) {
1809#ifdef WB_CACHE
1810		default:
1811#endif
1812		case EPSON_PC486_HX:
1813		case EPSON_PC486_HG:
1814		case EPSON_PC486_HA:
1815			pg_n = 0;
1816			break;
1817		}
1818	}
1819
1820	under16 = pc98_getmemsize(&basemem, &extmem);
1821	basemem_setup();
1822
1823	physmap[0] = 0;
1824	physmap[1] = basemem * 1024;
1825	physmap_idx = 2;
1826	physmap[physmap_idx] = 0x100000;
1827	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1828
1829	/*
1830	 * Now, physmap contains a map of physical memory.
1831	 */
1832
1833#ifdef SMP
1834	/* make hole for AP bootstrap code */
1835	physmap[1] = mp_bootaddress(physmap[1]);
1836#endif
1837
1838	/*
1839	 * Maxmem isn't the "maximum memory", it's one larger than the
1840	 * highest page of the physical address space.  It should be
1841	 * called something like "Maxphyspage".  We may adjust this
1842	 * based on ``hw.physmem'' and the results of the memory test.
1843	 */
1844	Maxmem = atop(physmap[physmap_idx + 1]);
1845
1846#ifdef MAXMEM
1847	Maxmem = MAXMEM / 4;
1848#endif
1849
1850	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1851		Maxmem = atop(physmem_tunable);
1852
1853	/*
1854	 * By default keep the memtest enabled.  Use a general name so that
1855	 * one could eventually do more with the code than just disable it.
1856	 */
1857	memtest = 1;
1858	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1859
1860	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1861	    (boothowto & RB_VERBOSE))
1862		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1863
1864	/*
1865	 * If Maxmem has been increased beyond what the system has detected,
1866	 * extend the last memory segment to the new limit.
1867	 */
1868	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1869		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1870
1871	/*
1872	 * We need to divide chunk if Maxmem is larger than 16MB and
1873	 * under 16MB area is not full of memory.
1874	 * (1) system area (15-16MB region) is cut off
1875	 * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
1876	 */
1877	if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
1878		/* 15M - 16M region is cut off, so need to divide chunk */
1879		physmap[physmap_idx + 1] = under16 * 1024;
1880		physmap_idx += 2;
1881		physmap[physmap_idx] = 0x1000000;
1882		physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
1883	}
1884
1885	/* call pmap initialization to make new kernel address space */
1886	pmap_bootstrap(first);
1887
1888	/*
1889	 * Size up each available chunk of physical memory.
1890	 */
1891	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1892	pa_indx = 0;
1893	da_indx = 1;
1894	phys_avail[pa_indx++] = physmap[0];
1895	phys_avail[pa_indx] = physmap[0];
1896	dump_avail[da_indx] = physmap[0];
1897	pte = CMAP3;
1898
1899	/*
1900	 * Get dcons buffer address
1901	 */
1902	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1903	    getenv_quad("dcons.size", &dcons_size) == 0)
1904		dcons_addr = 0;
1905
1906	/*
1907	 * physmap is in bytes, so when converting to page boundaries,
1908	 * round up the start address and round down the end address.
1909	 */
1910	for (i = 0; i <= physmap_idx; i += 2) {
1911		vm_paddr_t end;
1912
1913		end = ptoa((vm_paddr_t)Maxmem);
1914		if (physmap[i + 1] < end)
1915			end = trunc_page(physmap[i + 1]);
1916		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1917			int tmp, page_bad, full;
1918			int *ptr = (int *)CADDR3;
1919
1920			full = FALSE;
1921			/*
1922			 * block out kernel memory as not available.
1923			 */
1924			if (pa >= KERNLOAD && pa < first)
1925				goto do_dump_avail;
1926
1927			/*
1928			 * block out dcons buffer
1929			 */
1930			if (dcons_addr > 0
1931			    && pa >= trunc_page(dcons_addr)
1932			    && pa < dcons_addr + dcons_size)
1933				goto do_dump_avail;
1934
1935			page_bad = FALSE;
1936			if (memtest == 0)
1937				goto skip_memtest;
1938
1939			/*
1940			 * map page into kernel: valid, read/write,non-cacheable
1941			 */
1942			*pte = pa | PG_V | PG_RW | pg_n;
1943			invltlb();
1944
1945			tmp = *(int *)ptr;
1946			/*
1947			 * Test for alternating 1's and 0's
1948			 */
1949			*(volatile int *)ptr = 0xaaaaaaaa;
1950			if (*(volatile int *)ptr != 0xaaaaaaaa)
1951				page_bad = TRUE;
1952			/*
1953			 * Test for alternating 0's and 1's
1954			 */
1955			*(volatile int *)ptr = 0x55555555;
1956			if (*(volatile int *)ptr != 0x55555555)
1957				page_bad = TRUE;
1958			/*
1959			 * Test for all 1's
1960			 */
1961			*(volatile int *)ptr = 0xffffffff;
1962			if (*(volatile int *)ptr != 0xffffffff)
1963				page_bad = TRUE;
1964			/*
1965			 * Test for all 0's
1966			 */
1967			*(volatile int *)ptr = 0x0;
1968			if (*(volatile int *)ptr != 0x0)
1969				page_bad = TRUE;
1970			/*
1971			 * Restore original value.
1972			 */
1973			*(int *)ptr = tmp;
1974
1975skip_memtest:
1976			/*
1977			 * Adjust array of valid/good pages.
1978			 */
1979			if (page_bad == TRUE)
1980				continue;
1981			/*
1982			 * If this good page is a continuation of the
1983			 * previous set of good pages, then just increase
1984			 * the end pointer. Otherwise start a new chunk.
1985			 * Note that "end" points one higher than end,
1986			 * making the range >= start and < end.
1987			 * If we're also doing a speculative memory
1988			 * test and we at or past the end, bump up Maxmem
1989			 * so that we keep going. The first bad page
1990			 * will terminate the loop.
1991			 */
1992			if (phys_avail[pa_indx] == pa) {
1993				phys_avail[pa_indx] += PAGE_SIZE;
1994			} else {
1995				pa_indx++;
1996				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1997					printf(
1998		"Too many holes in the physical address space, giving up\n");
1999					pa_indx--;
2000					full = TRUE;
2001					goto do_dump_avail;
2002				}
2003				phys_avail[pa_indx++] = pa;	/* start */
2004				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2005			}
2006			physmem++;
2007do_dump_avail:
2008			if (dump_avail[da_indx] == pa) {
2009				dump_avail[da_indx] += PAGE_SIZE;
2010			} else {
2011				da_indx++;
2012				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2013					da_indx--;
2014					goto do_next;
2015				}
2016				dump_avail[da_indx++] = pa;	/* start */
2017				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2018			}
2019do_next:
2020			if (full)
2021				break;
2022		}
2023	}
2024	*pte = 0;
2025	invltlb();
2026
2027	/*
2028	 * XXX
2029	 * The last chunk must contain at least one page plus the message
2030	 * buffer to avoid complicating other code (message buffer address
2031	 * calculation, etc.).
2032	 */
2033	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2034	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2035		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2036		phys_avail[pa_indx--] = 0;
2037		phys_avail[pa_indx--] = 0;
2038	}
2039
2040	Maxmem = atop(phys_avail[pa_indx]);
2041
2042	/* Trim off space for the message buffer. */
2043	phys_avail[pa_indx] -= round_page(msgbufsize);
2044
2045	/* Map the message buffer. */
2046	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2047		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2048		    off);
2049}
2050#else /* PC98 */
2051static void
2052getmemsize(int first)
2053{
2054	int has_smap, off, physmap_idx, pa_indx, da_indx;
2055	u_long memtest;
2056	vm_paddr_t physmap[PHYSMAP_SIZE];
2057	pt_entry_t *pte;
2058	quad_t dcons_addr, dcons_size, physmem_tunable;
2059	int hasbrokenint12, i, res;
2060	u_int extmem;
2061	struct vm86frame vmf;
2062	struct vm86context vmc;
2063	vm_paddr_t pa;
2064	struct bios_smap *smap, *smapbase;
2065	caddr_t kmdp;
2066
2067	has_smap = 0;
2068#ifdef XBOX
2069	if (arch_i386_is_xbox) {
2070		/*
2071		 * We queried the memory size before, so chop off 4MB for
2072		 * the framebuffer and inform the OS of this.
2073		 */
2074		physmap[0] = 0;
2075		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2076		physmap_idx = 0;
2077		goto physmap_done;
2078	}
2079#endif
2080	bzero(&vmf, sizeof(vmf));
2081	bzero(physmap, sizeof(physmap));
2082	basemem = 0;
2083
2084	/*
2085	 * Tell the physical memory allocator about pages used to store
2086	 * the kernel and preloaded data.  See kmem_bootstrap_free().
2087	 */
2088	vm_phys_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first));
2089
2090	/*
2091	 * Check if the loader supplied an SMAP memory map.  If so,
2092	 * use that and do not make any VM86 calls.
2093	 */
2094	physmap_idx = 0;
2095	kmdp = preload_search_by_type("elf kernel");
2096	if (kmdp == NULL)
2097		kmdp = preload_search_by_type("elf32 kernel");
2098	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2099	    MODINFO_METADATA | MODINFOMD_SMAP);
2100	if (smapbase != NULL) {
2101		add_smap_entries(smapbase, physmap, &physmap_idx);
2102		has_smap = 1;
2103		goto have_smap;
2104	}
2105
2106	/*
2107	 * Some newer BIOSes have a broken INT 12H implementation
2108	 * which causes a kernel panic immediately.  In this case, we
2109	 * need use the SMAP to determine the base memory size.
2110	 */
2111	hasbrokenint12 = 0;
2112	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2113	if (hasbrokenint12 == 0) {
2114		/* Use INT12 to determine base memory size. */
2115		vm86_intcall(0x12, &vmf);
2116		basemem = vmf.vmf_ax;
2117		basemem_setup();
2118	}
2119
2120	/*
2121	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2122	 * the kernel page table so we can use it as a buffer.  The
2123	 * kernel will unmap this page later.
2124	 */
2125	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2126	vmc.npages = 0;
2127	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2128	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2129	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2130
2131	vmf.vmf_ebx = 0;
2132	do {
2133		vmf.vmf_eax = 0xE820;
2134		vmf.vmf_edx = SMAP_SIG;
2135		vmf.vmf_ecx = sizeof(struct bios_smap);
2136		i = vm86_datacall(0x15, &vmf, &vmc);
2137		if (i || vmf.vmf_eax != SMAP_SIG)
2138			break;
2139		has_smap = 1;
2140		if (!add_smap_entry(smap, physmap, &physmap_idx))
2141			break;
2142	} while (vmf.vmf_ebx != 0);
2143
2144have_smap:
2145	/*
2146	 * If we didn't fetch the "base memory" size from INT12,
2147	 * figure it out from the SMAP (or just guess).
2148	 */
2149	if (basemem == 0) {
2150		for (i = 0; i <= physmap_idx; i += 2) {
2151			if (physmap[i] == 0x00000000) {
2152				basemem = physmap[i + 1] / 1024;
2153				break;
2154			}
2155		}
2156
2157		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2158		if (basemem == 0)
2159			basemem = 640;
2160		basemem_setup();
2161	}
2162
2163	if (physmap[1] != 0)
2164		goto physmap_done;
2165
2166	/*
2167	 * If we failed to find an SMAP, figure out the extended
2168	 * memory size.  We will then build a simple memory map with
2169	 * two segments, one for "base memory" and the second for
2170	 * "extended memory".  Note that "extended memory" starts at a
2171	 * physical address of 1MB and that both basemem and extmem
2172	 * are in units of 1KB.
2173	 *
2174	 * First, try to fetch the extended memory size via INT 15:E801.
2175	 */
2176	vmf.vmf_ax = 0xE801;
2177	if (vm86_intcall(0x15, &vmf) == 0) {
2178		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2179	} else {
2180		/*
2181		 * If INT15:E801 fails, this is our last ditch effort
2182		 * to determine the extended memory size.  Currently
2183		 * we prefer the RTC value over INT15:88.
2184		 */
2185#if 0
2186		vmf.vmf_ah = 0x88;
2187		vm86_intcall(0x15, &vmf);
2188		extmem = vmf.vmf_ax;
2189#else
2190		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2191#endif
2192	}
2193
2194	/*
2195	 * Special hack for chipsets that still remap the 384k hole when
2196	 * there's 16MB of memory - this really confuses people that
2197	 * are trying to use bus mastering ISA controllers with the
2198	 * "16MB limit"; they only have 16MB, but the remapping puts
2199	 * them beyond the limit.
2200	 *
2201	 * If extended memory is between 15-16MB (16-17MB phys address range),
2202	 *	chop it to 15MB.
2203	 */
2204	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2205		extmem = 15 * 1024;
2206
2207	physmap[0] = 0;
2208	physmap[1] = basemem * 1024;
2209	physmap_idx = 2;
2210	physmap[physmap_idx] = 0x100000;
2211	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2212
2213physmap_done:
2214	/*
2215	 * Now, physmap contains a map of physical memory.
2216	 */
2217
2218#ifdef SMP
2219	/* make hole for AP bootstrap code */
2220	physmap[1] = mp_bootaddress(physmap[1]);
2221#endif
2222
2223	/*
2224	 * Maxmem isn't the "maximum memory", it's one larger than the
2225	 * highest page of the physical address space.  It should be
2226	 * called something like "Maxphyspage".  We may adjust this
2227	 * based on ``hw.physmem'' and the results of the memory test.
2228	 *
2229	 * This is especially confusing when it is much larger than the
2230	 * memory size and is displayed as "realmem".
2231	 */
2232	Maxmem = atop(physmap[physmap_idx + 1]);
2233
2234#ifdef MAXMEM
2235	Maxmem = MAXMEM / 4;
2236#endif
2237
2238	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
2239		Maxmem = atop(physmem_tunable);
2240
2241	/*
2242	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2243	 * the amount of memory in the system.
2244	 */
2245	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2246		Maxmem = atop(physmap[physmap_idx + 1]);
2247
2248	/*
2249	 * By default enable the memory test on real hardware, and disable
2250	 * it if we appear to be running in a VM.  This avoids touching all
2251	 * pages unnecessarily, which doesn't matter on real hardware but is
2252	 * bad for shared VM hosts.  Use a general name so that
2253	 * one could eventually do more with the code than just disable it.
2254	 */
2255	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2256	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2257
2258	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2259	    (boothowto & RB_VERBOSE))
2260		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2261
2262	/*
2263	 * If Maxmem has been increased beyond what the system has detected,
2264	 * extend the last memory segment to the new limit.
2265	 */
2266	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2267		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2268
2269	/* call pmap initialization to make new kernel address space */
2270	pmap_bootstrap(first);
2271
2272	/*
2273	 * Size up each available chunk of physical memory.
2274	 */
2275	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2276	pa_indx = 0;
2277	da_indx = 1;
2278	phys_avail[pa_indx++] = physmap[0];
2279	phys_avail[pa_indx] = physmap[0];
2280	dump_avail[da_indx] = physmap[0];
2281	pte = CMAP3;
2282
2283	/*
2284	 * Get dcons buffer address
2285	 */
2286	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2287	    getenv_quad("dcons.size", &dcons_size) == 0)
2288		dcons_addr = 0;
2289
2290	/*
2291	 * physmap is in bytes, so when converting to page boundaries,
2292	 * round up the start address and round down the end address.
2293	 */
2294	for (i = 0; i <= physmap_idx; i += 2) {
2295		vm_paddr_t end;
2296
2297		end = ptoa((vm_paddr_t)Maxmem);
2298		if (physmap[i + 1] < end)
2299			end = trunc_page(physmap[i + 1]);
2300		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2301			int tmp, page_bad, full;
2302			int *ptr = (int *)CADDR3;
2303
2304			full = FALSE;
2305			/*
2306			 * block out kernel memory as not available.
2307			 */
2308			if (pa >= KERNLOAD && pa < first)
2309				goto do_dump_avail;
2310
2311			/*
2312			 * block out dcons buffer
2313			 */
2314			if (dcons_addr > 0
2315			    && pa >= trunc_page(dcons_addr)
2316			    && pa < dcons_addr + dcons_size)
2317				goto do_dump_avail;
2318
2319			page_bad = FALSE;
2320			if (memtest == 0)
2321				goto skip_memtest;
2322
2323			/*
2324			 * map page into kernel: valid, read/write,non-cacheable
2325			 */
2326			*pte = pa | PG_V | PG_RW | PG_N;
2327			invltlb();
2328
2329			tmp = *(int *)ptr;
2330			/*
2331			 * Test for alternating 1's and 0's
2332			 */
2333			*(volatile int *)ptr = 0xaaaaaaaa;
2334			if (*(volatile int *)ptr != 0xaaaaaaaa)
2335				page_bad = TRUE;
2336			/*
2337			 * Test for alternating 0's and 1's
2338			 */
2339			*(volatile int *)ptr = 0x55555555;
2340			if (*(volatile int *)ptr != 0x55555555)
2341				page_bad = TRUE;
2342			/*
2343			 * Test for all 1's
2344			 */
2345			*(volatile int *)ptr = 0xffffffff;
2346			if (*(volatile int *)ptr != 0xffffffff)
2347				page_bad = TRUE;
2348			/*
2349			 * Test for all 0's
2350			 */
2351			*(volatile int *)ptr = 0x0;
2352			if (*(volatile int *)ptr != 0x0)
2353				page_bad = TRUE;
2354			/*
2355			 * Restore original value.
2356			 */
2357			*(int *)ptr = tmp;
2358
2359skip_memtest:
2360			/*
2361			 * Adjust array of valid/good pages.
2362			 */
2363			if (page_bad == TRUE)
2364				continue;
2365			/*
2366			 * If this good page is a continuation of the
2367			 * previous set of good pages, then just increase
2368			 * the end pointer. Otherwise start a new chunk.
2369			 * Note that "end" points one higher than end,
2370			 * making the range >= start and < end.
2371			 * If we're also doing a speculative memory
2372			 * test and we at or past the end, bump up Maxmem
2373			 * so that we keep going. The first bad page
2374			 * will terminate the loop.
2375			 */
2376			if (phys_avail[pa_indx] == pa) {
2377				phys_avail[pa_indx] += PAGE_SIZE;
2378			} else {
2379				pa_indx++;
2380				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2381					printf(
2382		"Too many holes in the physical address space, giving up\n");
2383					pa_indx--;
2384					full = TRUE;
2385					goto do_dump_avail;
2386				}
2387				phys_avail[pa_indx++] = pa;	/* start */
2388				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2389			}
2390			physmem++;
2391do_dump_avail:
2392			if (dump_avail[da_indx] == pa) {
2393				dump_avail[da_indx] += PAGE_SIZE;
2394			} else {
2395				da_indx++;
2396				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2397					da_indx--;
2398					goto do_next;
2399				}
2400				dump_avail[da_indx++] = pa;	/* start */
2401				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2402			}
2403do_next:
2404			if (full)
2405				break;
2406		}
2407	}
2408	*pte = 0;
2409	invltlb();
2410
2411	/*
2412	 * XXX
2413	 * The last chunk must contain at least one page plus the message
2414	 * buffer to avoid complicating other code (message buffer address
2415	 * calculation, etc.).
2416	 */
2417	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2418	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2419		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2420		phys_avail[pa_indx--] = 0;
2421		phys_avail[pa_indx--] = 0;
2422	}
2423
2424	Maxmem = atop(phys_avail[pa_indx]);
2425
2426	/* Trim off space for the message buffer. */
2427	phys_avail[pa_indx] -= round_page(msgbufsize);
2428
2429	/* Map the message buffer. */
2430	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2431		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2432		    off);
2433}
2434#endif /* PC98 */
2435
2436static void
2437i386_kdb_init(void)
2438{
2439#ifdef DDB
2440	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
2441#endif
2442	kdb_init();
2443#ifdef KDB
2444	if (boothowto & RB_KDB)
2445		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2446#endif
2447}
2448
2449register_t
2450init386(int first)
2451{
2452	struct gate_descriptor *gdp;
2453	int gsel_tss, metadata_missing, x, pa;
2454	struct pcpu *pc;
2455	struct xstate_hdr *xhdr;
2456	caddr_t kmdp;
2457	int late_console;
2458
2459	thread0.td_kstack = proc0kstack;
2460	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
2461
2462	/*
2463 	 * This may be done better later if it gets more high level
2464 	 * components in it. If so just link td->td_proc here.
2465	 */
2466	proc_linkup0(&proc0, &thread0);
2467
2468#ifdef PC98
2469	/*
2470	 * Initialize DMAC
2471	 */
2472	pc98_init_dmac();
2473#endif
2474
2475	metadata_missing = 0;
2476	if (bootinfo.bi_modulep) {
2477		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2478		preload_bootstrap_relocate(KERNBASE);
2479	} else {
2480		metadata_missing = 1;
2481	}
2482
2483	if (bootinfo.bi_envp != 0)
2484		init_static_kenv((char *)bootinfo.bi_envp + KERNBASE, 0);
2485	else
2486		init_static_kenv(NULL, 0);
2487
2488	identify_hypervisor();
2489
2490	/* Init basic tunables, hz etc */
2491	init_param1();
2492
2493	/*
2494	 * Make gdt memory segments.  All segments cover the full 4GB
2495	 * of address space and permissions are enforced at page level.
2496	 */
2497	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2498	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2499	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2500	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2501	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2502	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2503
2504	pc = &__pcpu[0];
2505	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2506	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2507	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2508
2509	for (x = 0; x < NGDT; x++)
2510		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2511
2512	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2513	r_gdt.rd_base =  (int) gdt;
2514	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2515	lgdt(&r_gdt);
2516
2517	pcpu_init(pc, 0, sizeof(struct pcpu));
2518	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2519		pmap_kenter(pa + KERNBASE, pa);
2520	dpcpu_init((void *)(first + KERNBASE), 0);
2521	first += DPCPU_SIZE;
2522	PCPU_SET(prvspace, pc);
2523	PCPU_SET(curthread, &thread0);
2524	/* Non-late cninit() and printf() can be moved up to here. */
2525
2526	/*
2527	 * Initialize mutexes.
2528	 *
2529	 * icu_lock: in order to allow an interrupt to occur in a critical
2530	 * 	     section, to set pcpu->ipending (etc...) properly, we
2531	 *	     must be able to get the icu lock, so it can't be
2532	 *	     under witness.
2533	 */
2534	mutex_init();
2535	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2536
2537	/* make ldt memory segments */
2538	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2539	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2540	for (x = 0; x < nitems(ldt_segs); x++)
2541		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2542
2543	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2544	lldt(_default_ldt);
2545	PCPU_SET(currentldt, _default_ldt);
2546
2547	/* exceptions */
2548	for (x = 0; x < NIDT; x++)
2549		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2550		    GSEL(GCODE_SEL, SEL_KPL));
2551	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2552	    GSEL(GCODE_SEL, SEL_KPL));
2553	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2554	    GSEL(GCODE_SEL, SEL_KPL));
2555	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2556	    GSEL(GCODE_SEL, SEL_KPL));
2557 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2558	    GSEL(GCODE_SEL, SEL_KPL));
2559	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2560	    GSEL(GCODE_SEL, SEL_KPL));
2561	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2562	    GSEL(GCODE_SEL, SEL_KPL));
2563	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2564	    GSEL(GCODE_SEL, SEL_KPL));
2565	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2566	    , GSEL(GCODE_SEL, SEL_KPL));
2567	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2568	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2569	    GSEL(GCODE_SEL, SEL_KPL));
2570	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2571	    GSEL(GCODE_SEL, SEL_KPL));
2572	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2573	    GSEL(GCODE_SEL, SEL_KPL));
2574	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2575	    GSEL(GCODE_SEL, SEL_KPL));
2576	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2577	    GSEL(GCODE_SEL, SEL_KPL));
2578	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2579	    GSEL(GCODE_SEL, SEL_KPL));
2580	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2581	    GSEL(GCODE_SEL, SEL_KPL));
2582	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2583	    GSEL(GCODE_SEL, SEL_KPL));
2584	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2585	    GSEL(GCODE_SEL, SEL_KPL));
2586	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2587	    GSEL(GCODE_SEL, SEL_KPL));
2588 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2589	    GSEL(GCODE_SEL, SEL_KPL));
2590#ifdef KDTRACE_HOOKS
2591	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
2592	    GSEL(GCODE_SEL, SEL_KPL));
2593#endif
2594#ifdef XENHVM
2595	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_KPL,
2596	    GSEL(GCODE_SEL, SEL_KPL));
2597#endif
2598
2599	r_idt.rd_limit = sizeof(idt0) - 1;
2600	r_idt.rd_base = (int) idt;
2601	lidt(&r_idt);
2602
2603#ifdef XBOX
2604	/*
2605	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2606	 * This should be 0x10de / 0x02a5.
2607	 *
2608	 * This is exactly what Linux does.
2609	 */
2610	outl(0xcf8, 0x80000000);
2611	if (inl(0xcfc) == 0x02a510de) {
2612		arch_i386_is_xbox = 1;
2613		pic16l_setled(XBOX_LED_GREEN);
2614
2615		/*
2616		 * We are an XBOX, but we may have either 64MB or 128MB of
2617		 * memory. The PCI host bridge should be programmed for this,
2618		 * so we just query it.
2619		 */
2620		outl(0xcf8, 0x80000084);
2621		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2622	}
2623#endif /* XBOX */
2624
2625	/*
2626	 * Initialize the clock before the console so that console
2627	 * initialization can use DELAY().
2628	 */
2629	clock_init();
2630
2631	finishidentcpu();	/* Final stage of CPU initialization */
2632	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2633	    GSEL(GCODE_SEL, SEL_KPL));
2634	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2635	    GSEL(GCODE_SEL, SEL_KPL));
2636	initializecpu();	/* Initialize CPU registers */
2637	initializecpucache();
2638
2639	/* pointer to selector slot for %fs/%gs */
2640	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2641
2642	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2643	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2644	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2645	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2646#if defined(PAE) || defined(PAE_TABLES)
2647	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2648#else
2649	dblfault_tss.tss_cr3 = (int)IdlePTD;
2650#endif
2651	dblfault_tss.tss_eip = (int)dblfault_handler;
2652	dblfault_tss.tss_eflags = PSL_KERNEL;
2653	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2654	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2655	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2656	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2657	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2658
2659	/* Initialize the tss (except for the final esp0) early for vm86. */
2660	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2661	    thread0.td_kstack_pages * PAGE_SIZE - 16);
2662	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2663	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2664	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2665	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2666	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2667	ltr(gsel_tss);
2668
2669	/* Initialize the PIC early for vm86 calls. */
2670#ifdef DEV_ISA
2671#ifdef DEV_ATPIC
2672#ifndef PC98
2673	elcr_probe();
2674#endif
2675	atpic_startup();
2676#else
2677	/* Reset and mask the atpics and leave them shut down. */
2678	atpic_reset();
2679
2680	/*
2681	 * Point the ICU spurious interrupt vectors at the APIC spurious
2682	 * interrupt handler.
2683	 */
2684	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2685	    GSEL(GCODE_SEL, SEL_KPL));
2686	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2687	    GSEL(GCODE_SEL, SEL_KPL));
2688#endif
2689#endif
2690
2691	/*
2692	 * The console and kdb should be initialized even earlier than here,
2693	 * but some console drivers don't work until after getmemsize().
2694	 * Default to late console initialization to support these drivers.
2695	 * This loses mainly printf()s in getmemsize() and early debugging.
2696	 */
2697	late_console = 1;
2698	TUNABLE_INT_FETCH("debug.late_console", &late_console);
2699	if (!late_console) {
2700		cninit();
2701		i386_kdb_init();
2702	}
2703
2704	kmdp = preload_search_by_type("elf kernel");
2705	link_elf_ireloc(kmdp);
2706
2707	vm86_initialize();
2708	getmemsize(first);
2709	init_param2(physmem);
2710
2711	/* now running on new page tables, configured,and u/iom is accessible */
2712
2713	if (late_console)
2714		cninit();
2715
2716	if (metadata_missing)
2717		printf("WARNING: loader(8) metadata is missing!\n");
2718
2719	if (late_console)
2720		i386_kdb_init();
2721
2722	msgbufinit(msgbufp, msgbufsize);
2723	npxinit(true);
2724	/*
2725	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
2726	 * area size.  Zero out the extended state header in fpu save
2727	 * area.
2728	 */
2729	thread0.td_pcb = get_pcb_td(&thread0);
2730	thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0);
2731	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2732	if (use_xsave) {
2733		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2734		    1);
2735		xhdr->xstate_bv = xsave_mask;
2736	}
2737	PCPU_SET(curpcb, thread0.td_pcb);
2738	/* Move esp0 in the tss to its final place. */
2739	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2740	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
2741	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
2742	ltr(gsel_tss);
2743
2744	/* make a call gate to reenter kernel with */
2745	gdp = &ldt[LSYS5CALLS_SEL].gd;
2746
2747	x = (int) &IDTVEC(lcall_syscall);
2748	gdp->gd_looffset = x;
2749	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2750	gdp->gd_stkcpy = 1;
2751	gdp->gd_type = SDT_SYS386CGT;
2752	gdp->gd_dpl = SEL_UPL;
2753	gdp->gd_p = 1;
2754	gdp->gd_hioffset = x >> 16;
2755
2756	/* XXX does this work? */
2757	/* XXX yes! */
2758	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2759	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2760
2761	/* transfer to user mode */
2762
2763	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2764	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2765
2766	/* setup proc 0's pcb */
2767	thread0.td_pcb->pcb_flags = 0;
2768#if defined(PAE) || defined(PAE_TABLES)
2769	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2770#else
2771	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2772#endif
2773	thread0.td_pcb->pcb_ext = 0;
2774	thread0.td_frame = &proc0_tf;
2775
2776	cpu_probe_amdc1e();
2777
2778#ifdef FDT
2779	x86_init_fdt();
2780#endif
2781
2782	/* Location of kernel stack for locore */
2783	return ((register_t)thread0.td_pcb);
2784}
2785
2786void
2787cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2788{
2789
2790	pcpu->pc_acpi_id = 0xffffffff;
2791}
2792
2793#ifndef PC98
2794static int
2795smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2796{
2797	struct bios_smap *smapbase;
2798	struct bios_smap_xattr smap;
2799	caddr_t kmdp;
2800	uint32_t *smapattr;
2801	int count, error, i;
2802
2803	/* Retrieve the system memory map from the loader. */
2804	kmdp = preload_search_by_type("elf kernel");
2805	if (kmdp == NULL)
2806		kmdp = preload_search_by_type("elf32 kernel");
2807	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2808	    MODINFO_METADATA | MODINFOMD_SMAP);
2809	if (smapbase == NULL)
2810		return (0);
2811	smapattr = (uint32_t *)preload_search_info(kmdp,
2812	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2813	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
2814	error = 0;
2815	for (i = 0; i < count; i++) {
2816		smap.base = smapbase[i].base;
2817		smap.length = smapbase[i].length;
2818		smap.type = smapbase[i].type;
2819		if (smapattr != NULL)
2820			smap.xattr = smapattr[i];
2821		else
2822			smap.xattr = 0;
2823		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2824	}
2825	return (error);
2826}
2827SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2828    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2829#endif /* !PC98 */
2830
2831void
2832spinlock_enter(void)
2833{
2834	struct thread *td;
2835	register_t flags;
2836
2837	td = curthread;
2838	if (td->td_md.md_spinlock_count == 0) {
2839		flags = intr_disable();
2840		td->td_md.md_spinlock_count = 1;
2841		td->td_md.md_saved_flags = flags;
2842	} else
2843		td->td_md.md_spinlock_count++;
2844	critical_enter();
2845}
2846
2847void
2848spinlock_exit(void)
2849{
2850	struct thread *td;
2851	register_t flags;
2852
2853	td = curthread;
2854	critical_exit();
2855	flags = td->td_md.md_saved_flags;
2856	td->td_md.md_spinlock_count--;
2857	if (td->td_md.md_spinlock_count == 0)
2858		intr_restore(flags);
2859}
2860
2861#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2862static void f00f_hack(void *unused);
2863SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2864
2865static void
2866f00f_hack(void *unused)
2867{
2868	struct gate_descriptor *new_idt;
2869	vm_offset_t tmp;
2870
2871	if (!has_f00f_bug)
2872		return;
2873
2874	GIANT_REQUIRED;
2875
2876	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2877
2878	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
2879	if (tmp == 0)
2880		panic("kmem_malloc returned 0");
2881
2882	/* Put the problematic entry (#6) at the end of the lower page. */
2883	new_idt = (struct gate_descriptor*)
2884	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
2885	bcopy(idt, new_idt, sizeof(idt0));
2886	r_idt.rd_base = (u_int)new_idt;
2887	lidt(&r_idt);
2888	idt = new_idt;
2889	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
2890}
2891#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2892
2893/*
2894 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2895 * we want to start a backtrace from the function that caused us to enter
2896 * the debugger. We have the context in the trapframe, but base the trace
2897 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2898 * enough for a backtrace.
2899 */
2900void
2901makectx(struct trapframe *tf, struct pcb *pcb)
2902{
2903
2904	pcb->pcb_edi = tf->tf_edi;
2905	pcb->pcb_esi = tf->tf_esi;
2906	pcb->pcb_ebp = tf->tf_ebp;
2907	pcb->pcb_ebx = tf->tf_ebx;
2908	pcb->pcb_eip = tf->tf_eip;
2909	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
2910	pcb->pcb_gs = rgs();
2911}
2912
2913int
2914ptrace_set_pc(struct thread *td, u_long addr)
2915{
2916
2917	td->td_frame->tf_eip = addr;
2918	return (0);
2919}
2920
2921int
2922ptrace_single_step(struct thread *td)
2923{
2924
2925	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
2926	if ((td->td_frame->tf_eflags & PSL_T) == 0) {
2927		td->td_frame->tf_eflags |= PSL_T;
2928		td->td_dbgflags |= TDB_STEP;
2929	}
2930	return (0);
2931}
2932
2933int
2934ptrace_clear_single_step(struct thread *td)
2935{
2936	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
2937	td->td_frame->tf_eflags &= ~PSL_T;
2938	td->td_dbgflags &= ~TDB_STEP;
2939	return (0);
2940}
2941
2942int
2943fill_regs(struct thread *td, struct reg *regs)
2944{
2945	struct pcb *pcb;
2946	struct trapframe *tp;
2947
2948	tp = td->td_frame;
2949	pcb = td->td_pcb;
2950	regs->r_gs = pcb->pcb_gs;
2951	return (fill_frame_regs(tp, regs));
2952}
2953
2954int
2955fill_frame_regs(struct trapframe *tp, struct reg *regs)
2956{
2957	regs->r_fs = tp->tf_fs;
2958	regs->r_es = tp->tf_es;
2959	regs->r_ds = tp->tf_ds;
2960	regs->r_edi = tp->tf_edi;
2961	regs->r_esi = tp->tf_esi;
2962	regs->r_ebp = tp->tf_ebp;
2963	regs->r_ebx = tp->tf_ebx;
2964	regs->r_edx = tp->tf_edx;
2965	regs->r_ecx = tp->tf_ecx;
2966	regs->r_eax = tp->tf_eax;
2967	regs->r_eip = tp->tf_eip;
2968	regs->r_cs = tp->tf_cs;
2969	regs->r_eflags = tp->tf_eflags;
2970	regs->r_esp = tp->tf_esp;
2971	regs->r_ss = tp->tf_ss;
2972	return (0);
2973}
2974
2975int
2976set_regs(struct thread *td, struct reg *regs)
2977{
2978	struct pcb *pcb;
2979	struct trapframe *tp;
2980
2981	tp = td->td_frame;
2982	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2983	    !CS_SECURE(regs->r_cs))
2984		return (EINVAL);
2985	pcb = td->td_pcb;
2986	tp->tf_fs = regs->r_fs;
2987	tp->tf_es = regs->r_es;
2988	tp->tf_ds = regs->r_ds;
2989	tp->tf_edi = regs->r_edi;
2990	tp->tf_esi = regs->r_esi;
2991	tp->tf_ebp = regs->r_ebp;
2992	tp->tf_ebx = regs->r_ebx;
2993	tp->tf_edx = regs->r_edx;
2994	tp->tf_ecx = regs->r_ecx;
2995	tp->tf_eax = regs->r_eax;
2996	tp->tf_eip = regs->r_eip;
2997	tp->tf_cs = regs->r_cs;
2998	tp->tf_eflags = regs->r_eflags;
2999	tp->tf_esp = regs->r_esp;
3000	tp->tf_ss = regs->r_ss;
3001	pcb->pcb_gs = regs->r_gs;
3002	return (0);
3003}
3004
3005int
3006fill_fpregs(struct thread *td, struct fpreg *fpregs)
3007{
3008
3009	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
3010	    P_SHOULDSTOP(td->td_proc),
3011	    ("not suspended thread %p", td));
3012	npxgetregs(td);
3013	if (cpu_fxsr)
3014		npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
3015		    (struct save87 *)fpregs);
3016	else
3017		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
3018		    sizeof(*fpregs));
3019	return (0);
3020}
3021
3022int
3023set_fpregs(struct thread *td, struct fpreg *fpregs)
3024{
3025
3026	critical_enter();
3027	if (cpu_fxsr)
3028		npx_set_fpregs_xmm((struct save87 *)fpregs,
3029		    &get_pcb_user_save_td(td)->sv_xmm);
3030	else
3031		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
3032		    sizeof(*fpregs));
3033	npxuserinited(td);
3034	critical_exit();
3035	return (0);
3036}
3037
3038/*
3039 * Get machine context.
3040 */
3041int
3042get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3043{
3044	struct trapframe *tp;
3045	struct segment_descriptor *sdp;
3046
3047	tp = td->td_frame;
3048
3049	PROC_LOCK(curthread->td_proc);
3050	mcp->mc_onstack = sigonstack(tp->tf_esp);
3051	PROC_UNLOCK(curthread->td_proc);
3052	mcp->mc_gs = td->td_pcb->pcb_gs;
3053	mcp->mc_fs = tp->tf_fs;
3054	mcp->mc_es = tp->tf_es;
3055	mcp->mc_ds = tp->tf_ds;
3056	mcp->mc_edi = tp->tf_edi;
3057	mcp->mc_esi = tp->tf_esi;
3058	mcp->mc_ebp = tp->tf_ebp;
3059	mcp->mc_isp = tp->tf_isp;
3060	mcp->mc_eflags = tp->tf_eflags;
3061	if (flags & GET_MC_CLEAR_RET) {
3062		mcp->mc_eax = 0;
3063		mcp->mc_edx = 0;
3064		mcp->mc_eflags &= ~PSL_C;
3065	} else {
3066		mcp->mc_eax = tp->tf_eax;
3067		mcp->mc_edx = tp->tf_edx;
3068	}
3069	mcp->mc_ebx = tp->tf_ebx;
3070	mcp->mc_ecx = tp->tf_ecx;
3071	mcp->mc_eip = tp->tf_eip;
3072	mcp->mc_cs = tp->tf_cs;
3073	mcp->mc_esp = tp->tf_esp;
3074	mcp->mc_ss = tp->tf_ss;
3075	mcp->mc_len = sizeof(*mcp);
3076	get_fpcontext(td, mcp, NULL, 0);
3077	sdp = &td->td_pcb->pcb_fsd;
3078	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3079	sdp = &td->td_pcb->pcb_gsd;
3080	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3081	mcp->mc_flags = 0;
3082	mcp->mc_xfpustate = 0;
3083	mcp->mc_xfpustate_len = 0;
3084	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3085	return (0);
3086}
3087
3088/*
3089 * Set machine context.
3090 *
3091 * However, we don't set any but the user modifiable flags, and we won't
3092 * touch the cs selector.
3093 */
3094int
3095set_mcontext(struct thread *td, mcontext_t *mcp)
3096{
3097	struct trapframe *tp;
3098	char *xfpustate;
3099	int eflags, ret;
3100
3101	tp = td->td_frame;
3102	if (mcp->mc_len != sizeof(*mcp) ||
3103	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
3104		return (EINVAL);
3105	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3106	    (tp->tf_eflags & ~PSL_USERCHANGE);
3107	if (mcp->mc_flags & _MC_HASFPXSTATE) {
3108		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
3109		    sizeof(union savefpu))
3110			return (EINVAL);
3111		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
3112		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
3113		    mcp->mc_xfpustate_len);
3114		if (ret != 0)
3115			return (ret);
3116	} else
3117		xfpustate = NULL;
3118	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
3119	if (ret != 0)
3120		return (ret);
3121	tp->tf_fs = mcp->mc_fs;
3122	tp->tf_es = mcp->mc_es;
3123	tp->tf_ds = mcp->mc_ds;
3124	tp->tf_edi = mcp->mc_edi;
3125	tp->tf_esi = mcp->mc_esi;
3126	tp->tf_ebp = mcp->mc_ebp;
3127	tp->tf_ebx = mcp->mc_ebx;
3128	tp->tf_edx = mcp->mc_edx;
3129	tp->tf_ecx = mcp->mc_ecx;
3130	tp->tf_eax = mcp->mc_eax;
3131	tp->tf_eip = mcp->mc_eip;
3132	tp->tf_eflags = eflags;
3133	tp->tf_esp = mcp->mc_esp;
3134	tp->tf_ss = mcp->mc_ss;
3135	td->td_pcb->pcb_gs = mcp->mc_gs;
3136	return (0);
3137}
3138
3139static void
3140get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
3141    size_t xfpusave_len)
3142{
3143	size_t max_len, len;
3144
3145	mcp->mc_ownedfp = npxgetregs(td);
3146	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
3147	    sizeof(mcp->mc_fpstate));
3148	mcp->mc_fpformat = npxformat();
3149	if (!use_xsave || xfpusave_len == 0)
3150		return;
3151	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
3152	len = xfpusave_len;
3153	if (len > max_len) {
3154		len = max_len;
3155		bzero(xfpusave + max_len, len - max_len);
3156	}
3157	mcp->mc_flags |= _MC_HASFPXSTATE;
3158	mcp->mc_xfpustate_len = len;
3159	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3160}
3161
3162static int
3163set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3164    size_t xfpustate_len)
3165{
3166	int error;
3167
3168	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3169		return (0);
3170	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3171	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3172		return (EINVAL);
3173	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3174		/* We don't care what state is left in the FPU or PCB. */
3175		fpstate_drop(td);
3176		error = 0;
3177	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3178	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3179		error = npxsetregs(td, (union savefpu *)&mcp->mc_fpstate,
3180		    xfpustate, xfpustate_len);
3181	} else
3182		return (EINVAL);
3183	return (error);
3184}
3185
3186static void
3187fpstate_drop(struct thread *td)
3188{
3189
3190	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3191	critical_enter();
3192	if (PCPU_GET(fpcurthread) == td)
3193		npxdrop();
3194	/*
3195	 * XXX force a full drop of the npx.  The above only drops it if we
3196	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3197	 *
3198	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3199	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3200	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3201	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3202	 * have too many layers.
3203	 */
3204	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3205	    PCB_NPXUSERINITDONE);
3206	critical_exit();
3207}
3208
3209int
3210fill_dbregs(struct thread *td, struct dbreg *dbregs)
3211{
3212	struct pcb *pcb;
3213
3214	if (td == NULL) {
3215		dbregs->dr[0] = rdr0();
3216		dbregs->dr[1] = rdr1();
3217		dbregs->dr[2] = rdr2();
3218		dbregs->dr[3] = rdr3();
3219		dbregs->dr[4] = rdr4();
3220		dbregs->dr[5] = rdr5();
3221		dbregs->dr[6] = rdr6();
3222		dbregs->dr[7] = rdr7();
3223	} else {
3224		pcb = td->td_pcb;
3225		dbregs->dr[0] = pcb->pcb_dr0;
3226		dbregs->dr[1] = pcb->pcb_dr1;
3227		dbregs->dr[2] = pcb->pcb_dr2;
3228		dbregs->dr[3] = pcb->pcb_dr3;
3229		dbregs->dr[4] = 0;
3230		dbregs->dr[5] = 0;
3231		dbregs->dr[6] = pcb->pcb_dr6;
3232		dbregs->dr[7] = pcb->pcb_dr7;
3233	}
3234	return (0);
3235}
3236
3237int
3238set_dbregs(struct thread *td, struct dbreg *dbregs)
3239{
3240	struct pcb *pcb;
3241	int i;
3242
3243	if (td == NULL) {
3244		load_dr0(dbregs->dr[0]);
3245		load_dr1(dbregs->dr[1]);
3246		load_dr2(dbregs->dr[2]);
3247		load_dr3(dbregs->dr[3]);
3248		load_dr4(dbregs->dr[4]);
3249		load_dr5(dbregs->dr[5]);
3250		load_dr6(dbregs->dr[6]);
3251		load_dr7(dbregs->dr[7]);
3252	} else {
3253		/*
3254		 * Don't let an illegal value for dr7 get set.	Specifically,
3255		 * check for undefined settings.  Setting these bit patterns
3256		 * result in undefined behaviour and can lead to an unexpected
3257		 * TRCTRAP.
3258		 */
3259		for (i = 0; i < 4; i++) {
3260			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3261				return (EINVAL);
3262			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3263				return (EINVAL);
3264		}
3265
3266		pcb = td->td_pcb;
3267
3268		/*
3269		 * Don't let a process set a breakpoint that is not within the
3270		 * process's address space.  If a process could do this, it
3271		 * could halt the system by setting a breakpoint in the kernel
3272		 * (if ddb was enabled).  Thus, we need to check to make sure
3273		 * that no breakpoints are being enabled for addresses outside
3274		 * process's address space.
3275		 *
3276		 * XXX - what about when the watched area of the user's
3277		 * address space is written into from within the kernel
3278		 * ... wouldn't that still cause a breakpoint to be generated
3279		 * from within kernel mode?
3280		 */
3281
3282		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3283			/* dr0 is enabled */
3284			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3285				return (EINVAL);
3286		}
3287
3288		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3289			/* dr1 is enabled */
3290			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3291				return (EINVAL);
3292		}
3293
3294		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3295			/* dr2 is enabled */
3296			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3297				return (EINVAL);
3298		}
3299
3300		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3301			/* dr3 is enabled */
3302			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3303				return (EINVAL);
3304		}
3305
3306		pcb->pcb_dr0 = dbregs->dr[0];
3307		pcb->pcb_dr1 = dbregs->dr[1];
3308		pcb->pcb_dr2 = dbregs->dr[2];
3309		pcb->pcb_dr3 = dbregs->dr[3];
3310		pcb->pcb_dr6 = dbregs->dr[6];
3311		pcb->pcb_dr7 = dbregs->dr[7];
3312
3313		pcb->pcb_flags |= PCB_DBREGS;
3314	}
3315
3316	return (0);
3317}
3318
3319/*
3320 * Return > 0 if a hardware breakpoint has been hit, and the
3321 * breakpoint was in user space.  Return 0, otherwise.
3322 */
3323int
3324user_dbreg_trap(register_t dr6)
3325{
3326        u_int32_t dr7;
3327        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3328        int nbp;            /* number of breakpoints that triggered */
3329        caddr_t addr[4];    /* breakpoint addresses */
3330        int i;
3331
3332        bp = dr6 & DBREG_DR6_BMASK;
3333        if (bp == 0) {
3334                /*
3335                 * None of the breakpoint bits are set meaning this
3336                 * trap was not caused by any of the debug registers
3337                 */
3338                return 0;
3339        }
3340
3341        dr7 = rdr7();
3342        if ((dr7 & 0x000000ff) == 0) {
3343                /*
3344                 * all GE and LE bits in the dr7 register are zero,
3345                 * thus the trap couldn't have been caused by the
3346                 * hardware debug registers
3347                 */
3348                return 0;
3349        }
3350
3351        nbp = 0;
3352
3353        /*
3354         * at least one of the breakpoints were hit, check to see
3355         * which ones and if any of them are user space addresses
3356         */
3357
3358        if (bp & 0x01) {
3359                addr[nbp++] = (caddr_t)rdr0();
3360        }
3361        if (bp & 0x02) {
3362                addr[nbp++] = (caddr_t)rdr1();
3363        }
3364        if (bp & 0x04) {
3365                addr[nbp++] = (caddr_t)rdr2();
3366        }
3367        if (bp & 0x08) {
3368                addr[nbp++] = (caddr_t)rdr3();
3369        }
3370
3371        for (i = 0; i < nbp; i++) {
3372                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3373                        /*
3374                         * addr[i] is in user space
3375                         */
3376                        return nbp;
3377                }
3378        }
3379
3380        /*
3381         * None of the breakpoints are in user space.
3382         */
3383        return 0;
3384}
3385
3386#ifdef KDB
3387
3388/*
3389 * Provide inb() and outb() as functions.  They are normally only available as
3390 * inline functions, thus cannot be called from the debugger.
3391 */
3392
3393/* silence compiler warnings */
3394u_char inb_(u_short);
3395void outb_(u_short, u_char);
3396
3397u_char
3398inb_(u_short port)
3399{
3400	return inb(port);
3401}
3402
3403void
3404outb_(u_short port, u_char data)
3405{
3406	outb(port, data);
3407}
3408
3409#endif /* KDB */
3410