machdep.c revision 314210
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by the University of
20 *	California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: stable/11/sys/i386/i386/machdep.c 314210 2017-02-24 16:02:01Z kib $");
42
43#include "opt_apic.h"
44#include "opt_atpic.h"
45#include "opt_compat.h"
46#include "opt_cpu.h"
47#include "opt_ddb.h"
48#include "opt_inet.h"
49#include "opt_isa.h"
50#include "opt_kstack_pages.h"
51#include "opt_maxmem.h"
52#include "opt_mp_watchdog.h"
53#include "opt_perfmon.h"
54#include "opt_platform.h"
55#include "opt_xbox.h"
56
57#include <sys/param.h>
58#include <sys/proc.h>
59#include <sys/systm.h>
60#include <sys/bio.h>
61#include <sys/buf.h>
62#include <sys/bus.h>
63#include <sys/callout.h>
64#include <sys/cons.h>
65#include <sys/cpu.h>
66#include <sys/eventhandler.h>
67#include <sys/exec.h>
68#include <sys/imgact.h>
69#include <sys/kdb.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/linker.h>
73#include <sys/lock.h>
74#include <sys/malloc.h>
75#include <sys/memrange.h>
76#include <sys/msgbuf.h>
77#include <sys/mutex.h>
78#include <sys/pcpu.h>
79#include <sys/ptrace.h>
80#include <sys/reboot.h>
81#include <sys/rwlock.h>
82#include <sys/sched.h>
83#include <sys/signalvar.h>
84#ifdef SMP
85#include <sys/smp.h>
86#endif
87#include <sys/syscallsubr.h>
88#include <sys/sysctl.h>
89#include <sys/sysent.h>
90#include <sys/sysproto.h>
91#include <sys/ucontext.h>
92#include <sys/vmmeter.h>
93
94#include <vm/vm.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_page.h>
98#include <vm/vm_map.h>
99#include <vm/vm_object.h>
100#include <vm/vm_pager.h>
101#include <vm/vm_param.h>
102
103#ifdef DDB
104#ifndef KDB
105#error KDB must be enabled in order for DDB to work!
106#endif
107#include <ddb/ddb.h>
108#include <ddb/db_sym.h>
109#endif
110
111#ifdef PC98
112#include <pc98/pc98/pc98_machdep.h>
113#else
114#include <isa/rtc.h>
115#endif
116
117#include <net/netisr.h>
118
119#include <machine/bootinfo.h>
120#include <machine/clock.h>
121#include <machine/cpu.h>
122#include <machine/cputypes.h>
123#include <machine/intr_machdep.h>
124#include <x86/mca.h>
125#include <machine/md_var.h>
126#include <machine/metadata.h>
127#include <machine/mp_watchdog.h>
128#include <machine/pc/bios.h>
129#include <machine/pcb.h>
130#include <machine/pcb_ext.h>
131#include <machine/proc.h>
132#include <machine/reg.h>
133#include <machine/sigframe.h>
134#include <machine/specialreg.h>
135#include <machine/vm86.h>
136#include <x86/init.h>
137#ifdef PERFMON
138#include <machine/perfmon.h>
139#endif
140#ifdef SMP
141#include <machine/smp.h>
142#endif
143#ifdef FDT
144#include <x86/fdt.h>
145#endif
146
147#ifdef DEV_APIC
148#include <x86/apicvar.h>
149#endif
150
151#ifdef DEV_ISA
152#include <x86/isa/icu.h>
153#endif
154
155#ifdef XBOX
156#include <machine/xbox.h>
157
158int arch_i386_is_xbox = 0;
159uint32_t arch_i386_xbox_memsize = 0;
160#endif
161
162/* Sanity check for __curthread() */
163CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
164
165extern register_t init386(int first);
166extern void dblfault_handler(void);
167
168static void cpu_startup(void *);
169static void fpstate_drop(struct thread *td);
170static void get_fpcontext(struct thread *td, mcontext_t *mcp,
171    char *xfpusave, size_t xfpusave_len);
172static int  set_fpcontext(struct thread *td, mcontext_t *mcp,
173    char *xfpustate, size_t xfpustate_len);
174SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
175
176/* Intel ICH registers */
177#define ICH_PMBASE	0x400
178#define ICH_SMI_EN	ICH_PMBASE + 0x30
179
180int	_udatasel, _ucodesel;
181u_int	basemem;
182
183#ifdef PC98
184int	need_pre_dma_flush;	/* If 1, use wbinvd befor DMA transfer. */
185int	need_post_dma_flush;	/* If 1, use invd after DMA transfer. */
186
187static int	ispc98 = 1;
188SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, "");
189#endif
190
191int cold = 1;
192
193#ifdef COMPAT_43
194static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
195#endif
196#ifdef COMPAT_FREEBSD4
197static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask);
198#endif
199
200long Maxmem = 0;
201long realmem = 0;
202
203#ifdef PAE
204FEATURE(pae, "Physical Address Extensions");
205#endif
206
207/*
208 * The number of PHYSMAP entries must be one less than the number of
209 * PHYSSEG entries because the PHYSMAP entry that spans the largest
210 * physical address that is accessible by ISA DMA is split into two
211 * PHYSSEG entries.
212 */
213#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
214
215vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
216vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
217
218/* must be 2 less so 0 0 can signal end of chunks */
219#define	PHYS_AVAIL_ARRAY_END (nitems(phys_avail) - 2)
220#define	DUMP_AVAIL_ARRAY_END (nitems(dump_avail) - 2)
221
222struct kva_md_info kmi;
223
224static struct trapframe proc0_tf;
225struct pcpu __pcpu[MAXCPU];
226
227struct mtx icu_lock;
228
229struct mem_range_softc mem_range_softc;
230
231 /* Default init_ops implementation. */
232 struct init_ops init_ops = {
233	.early_clock_source_init =	i8254_init,
234	.early_delay =			i8254_delay,
235#ifdef DEV_APIC
236	.msi_init =			msi_init,
237#endif
238 };
239
240static void
241cpu_startup(dummy)
242	void *dummy;
243{
244	uintmax_t memsize;
245	char *sysenv;
246
247#ifndef PC98
248	/*
249	 * On MacBooks, we need to disallow the legacy USB circuit to
250	 * generate an SMI# because this can cause several problems,
251	 * namely: incorrect CPU frequency detection and failure to
252	 * start the APs.
253	 * We do this by disabling a bit in the SMI_EN (SMI Control and
254	 * Enable register) of the Intel ICH LPC Interface Bridge.
255	 */
256	sysenv = kern_getenv("smbios.system.product");
257	if (sysenv != NULL) {
258		if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
259		    strncmp(sysenv, "MacBook3,1", 10) == 0 ||
260		    strncmp(sysenv, "MacBook4,1", 10) == 0 ||
261		    strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
262		    strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
263		    strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
264		    strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
265		    strncmp(sysenv, "Macmini1,1", 10) == 0) {
266			if (bootverbose)
267				printf("Disabling LEGACY_USB_EN bit on "
268				    "Intel ICH.\n");
269			outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
270		}
271		freeenv(sysenv);
272	}
273#endif /* !PC98 */
274
275	/*
276	 * Good {morning,afternoon,evening,night}.
277	 */
278	startrtclock();
279	printcpuinfo();
280	panicifcpuunsupported();
281#ifdef PERFMON
282	perfmon_init();
283#endif
284
285	/*
286	 * Display physical memory if SMBIOS reports reasonable amount.
287	 */
288	memsize = 0;
289	sysenv = kern_getenv("smbios.memory.enabled");
290	if (sysenv != NULL) {
291		memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
292		freeenv(sysenv);
293	}
294	if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
295		memsize = ptoa((uintmax_t)Maxmem);
296	printf("real memory  = %ju (%ju MB)\n", memsize, memsize >> 20);
297	realmem = atop(memsize);
298
299	/*
300	 * Display any holes after the first chunk of extended memory.
301	 */
302	if (bootverbose) {
303		int indx;
304
305		printf("Physical memory chunk(s):\n");
306		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
307			vm_paddr_t size;
308
309			size = phys_avail[indx + 1] - phys_avail[indx];
310			printf(
311			    "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
312			    (uintmax_t)phys_avail[indx],
313			    (uintmax_t)phys_avail[indx + 1] - 1,
314			    (uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
315		}
316	}
317
318	vm_ksubmap_init(&kmi);
319
320	printf("avail memory = %ju (%ju MB)\n",
321	    ptoa((uintmax_t)vm_cnt.v_free_count),
322	    ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
323
324	/*
325	 * Set up buffers, so they can be used to read disk labels.
326	 */
327	bufinit();
328	vm_pager_bufferinit();
329	cpu_setregs();
330}
331
332/*
333 * Send an interrupt to process.
334 *
335 * Stack is set up to allow sigcode stored
336 * at top to call routine, followed by call
337 * to sigreturn routine below.  After sigreturn
338 * resets the signal mask, the stack, and the
339 * frame pointer, it returns to the user
340 * specified pc, psl.
341 */
342#ifdef COMPAT_43
343static void
344osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
345{
346	struct osigframe sf, *fp;
347	struct proc *p;
348	struct thread *td;
349	struct sigacts *psp;
350	struct trapframe *regs;
351	int sig;
352	int oonstack;
353
354	td = curthread;
355	p = td->td_proc;
356	PROC_LOCK_ASSERT(p, MA_OWNED);
357	sig = ksi->ksi_signo;
358	psp = p->p_sigacts;
359	mtx_assert(&psp->ps_mtx, MA_OWNED);
360	regs = td->td_frame;
361	oonstack = sigonstack(regs->tf_esp);
362
363	/* Allocate space for the signal handler context. */
364	if ((td->td_pflags & TDP_ALTSTACK) && !oonstack &&
365	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
366		fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp +
367		    td->td_sigstk.ss_size - sizeof(struct osigframe));
368#if defined(COMPAT_43)
369		td->td_sigstk.ss_flags |= SS_ONSTACK;
370#endif
371	} else
372		fp = (struct osigframe *)regs->tf_esp - 1;
373
374	/* Build the argument list for the signal handler. */
375	sf.sf_signum = sig;
376	sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc;
377	bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo));
378	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
379		/* Signal handler installed with SA_SIGINFO. */
380		sf.sf_arg2 = (register_t)&fp->sf_siginfo;
381		sf.sf_siginfo.si_signo = sig;
382		sf.sf_siginfo.si_code = ksi->ksi_code;
383		sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher;
384		sf.sf_addr = 0;
385	} else {
386		/* Old FreeBSD-style arguments. */
387		sf.sf_arg2 = ksi->ksi_code;
388		sf.sf_addr = (register_t)ksi->ksi_addr;
389		sf.sf_ahu.sf_handler = catcher;
390	}
391	mtx_unlock(&psp->ps_mtx);
392	PROC_UNLOCK(p);
393
394	/* Save most if not all of trap frame. */
395	sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax;
396	sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx;
397	sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx;
398	sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx;
399	sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi;
400	sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi;
401	sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs;
402	sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds;
403	sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss;
404	sf.sf_siginfo.si_sc.sc_es = regs->tf_es;
405	sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs;
406	sf.sf_siginfo.si_sc.sc_gs = rgs();
407	sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp;
408
409	/* Build the signal context to be used by osigreturn(). */
410	sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0;
411	SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask);
412	sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp;
413	sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp;
414	sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip;
415	sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags;
416	sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno;
417	sf.sf_siginfo.si_sc.sc_err = regs->tf_err;
418
419	/*
420	 * If we're a vm86 process, we want to save the segment registers.
421	 * We also change eflags to be our emulated eflags, not the actual
422	 * eflags.
423	 */
424	if (regs->tf_eflags & PSL_VM) {
425		/* XXX confusing names: `tf' isn't a trapframe; `regs' is. */
426		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
427		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
428
429		sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs;
430		sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs;
431		sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es;
432		sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds;
433
434		if (vm86->vm86_has_vme == 0)
435			sf.sf_siginfo.si_sc.sc_ps =
436			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
437			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
438
439		/* See sendsig() for comments. */
440		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
441	}
442
443	/*
444	 * Copy the sigframe out to the user's stack.
445	 */
446	if (copyout(&sf, fp, sizeof(*fp)) != 0) {
447#ifdef DEBUG
448		printf("process %ld has trashed its stack\n", (long)p->p_pid);
449#endif
450		PROC_LOCK(p);
451		sigexit(td, SIGILL);
452	}
453
454	regs->tf_esp = (int)fp;
455	if (p->p_sysent->sv_sigcode_base != 0) {
456		regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
457		    szosigcode;
458	} else {
459		/* a.out sysentvec does not use shared page */
460		regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode;
461	}
462	regs->tf_eflags &= ~(PSL_T | PSL_D);
463	regs->tf_cs = _ucodesel;
464	regs->tf_ds = _udatasel;
465	regs->tf_es = _udatasel;
466	regs->tf_fs = _udatasel;
467	load_gs(_udatasel);
468	regs->tf_ss = _udatasel;
469	PROC_LOCK(p);
470	mtx_lock(&psp->ps_mtx);
471}
472#endif /* COMPAT_43 */
473
474#ifdef COMPAT_FREEBSD4
475static void
476freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
477{
478	struct sigframe4 sf, *sfp;
479	struct proc *p;
480	struct thread *td;
481	struct sigacts *psp;
482	struct trapframe *regs;
483	int sig;
484	int oonstack;
485
486	td = curthread;
487	p = td->td_proc;
488	PROC_LOCK_ASSERT(p, MA_OWNED);
489	sig = ksi->ksi_signo;
490	psp = p->p_sigacts;
491	mtx_assert(&psp->ps_mtx, MA_OWNED);
492	regs = td->td_frame;
493	oonstack = sigonstack(regs->tf_esp);
494
495	/* Save user context. */
496	bzero(&sf, sizeof(sf));
497	sf.sf_uc.uc_sigmask = *mask;
498	sf.sf_uc.uc_stack = td->td_sigstk;
499	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
500	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
501	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
502	sf.sf_uc.uc_mcontext.mc_gs = rgs();
503	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
504	bzero(sf.sf_uc.uc_mcontext.mc_fpregs,
505	    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
506	bzero(sf.sf_uc.uc_mcontext.__spare__,
507	    sizeof(sf.sf_uc.uc_mcontext.__spare__));
508	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
509
510	/* Allocate space for the signal handler context. */
511	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
512	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
513		sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp +
514		    td->td_sigstk.ss_size - sizeof(struct sigframe4));
515#if defined(COMPAT_43)
516		td->td_sigstk.ss_flags |= SS_ONSTACK;
517#endif
518	} else
519		sfp = (struct sigframe4 *)regs->tf_esp - 1;
520
521	/* Build the argument list for the signal handler. */
522	sf.sf_signum = sig;
523	sf.sf_ucontext = (register_t)&sfp->sf_uc;
524	bzero(&sf.sf_si, sizeof(sf.sf_si));
525	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
526		/* Signal handler installed with SA_SIGINFO. */
527		sf.sf_siginfo = (register_t)&sfp->sf_si;
528		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
529
530		/* Fill in POSIX parts */
531		sf.sf_si.si_signo = sig;
532		sf.sf_si.si_code = ksi->ksi_code;
533		sf.sf_si.si_addr = ksi->ksi_addr;
534	} else {
535		/* Old FreeBSD-style arguments. */
536		sf.sf_siginfo = ksi->ksi_code;
537		sf.sf_addr = (register_t)ksi->ksi_addr;
538		sf.sf_ahu.sf_handler = catcher;
539	}
540	mtx_unlock(&psp->ps_mtx);
541	PROC_UNLOCK(p);
542
543	/*
544	 * If we're a vm86 process, we want to save the segment registers.
545	 * We also change eflags to be our emulated eflags, not the actual
546	 * eflags.
547	 */
548	if (regs->tf_eflags & PSL_VM) {
549		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
550		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
551
552		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
553		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
554		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
555		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
556
557		if (vm86->vm86_has_vme == 0)
558			sf.sf_uc.uc_mcontext.mc_eflags =
559			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
560			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
561
562		/*
563		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
564		 * syscalls made by the signal handler.  This just avoids
565		 * wasting time for our lazy fixup of such faults.  PSL_NT
566		 * does nothing in vm86 mode, but vm86 programs can set it
567		 * almost legitimately in probes for old cpu types.
568		 */
569		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
570	}
571
572	/*
573	 * Copy the sigframe out to the user's stack.
574	 */
575	if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
576#ifdef DEBUG
577		printf("process %ld has trashed its stack\n", (long)p->p_pid);
578#endif
579		PROC_LOCK(p);
580		sigexit(td, SIGILL);
581	}
582
583	regs->tf_esp = (int)sfp;
584	regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode -
585	    szfreebsd4_sigcode;
586	regs->tf_eflags &= ~(PSL_T | PSL_D);
587	regs->tf_cs = _ucodesel;
588	regs->tf_ds = _udatasel;
589	regs->tf_es = _udatasel;
590	regs->tf_fs = _udatasel;
591	regs->tf_ss = _udatasel;
592	PROC_LOCK(p);
593	mtx_lock(&psp->ps_mtx);
594}
595#endif	/* COMPAT_FREEBSD4 */
596
597void
598sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
599{
600	struct sigframe sf, *sfp;
601	struct proc *p;
602	struct thread *td;
603	struct sigacts *psp;
604	char *sp;
605	struct trapframe *regs;
606	struct segment_descriptor *sdp;
607	char *xfpusave;
608	size_t xfpusave_len;
609	int sig;
610	int oonstack;
611
612	td = curthread;
613	p = td->td_proc;
614	PROC_LOCK_ASSERT(p, MA_OWNED);
615	sig = ksi->ksi_signo;
616	psp = p->p_sigacts;
617	mtx_assert(&psp->ps_mtx, MA_OWNED);
618#ifdef COMPAT_FREEBSD4
619	if (SIGISMEMBER(psp->ps_freebsd4, sig)) {
620		freebsd4_sendsig(catcher, ksi, mask);
621		return;
622	}
623#endif
624#ifdef COMPAT_43
625	if (SIGISMEMBER(psp->ps_osigset, sig)) {
626		osendsig(catcher, ksi, mask);
627		return;
628	}
629#endif
630	regs = td->td_frame;
631	oonstack = sigonstack(regs->tf_esp);
632
633	if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) {
634		xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu);
635		xfpusave = __builtin_alloca(xfpusave_len);
636	} else {
637		xfpusave_len = 0;
638		xfpusave = NULL;
639	}
640
641	/* Save user context. */
642	bzero(&sf, sizeof(sf));
643	sf.sf_uc.uc_sigmask = *mask;
644	sf.sf_uc.uc_stack = td->td_sigstk;
645	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
646	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
647	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
648	sf.sf_uc.uc_mcontext.mc_gs = rgs();
649	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs));
650	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
651	get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
652	fpstate_drop(td);
653	/*
654	 * Unconditionally fill the fsbase and gsbase into the mcontext.
655	 */
656	sdp = &td->td_pcb->pcb_fsd;
657	sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 |
658	    sdp->sd_lobase;
659	sdp = &td->td_pcb->pcb_gsd;
660	sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 |
661	    sdp->sd_lobase;
662	bzero(sf.sf_uc.uc_mcontext.mc_spare2,
663	    sizeof(sf.sf_uc.uc_mcontext.mc_spare2));
664	bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
665
666	/* Allocate space for the signal handler context. */
667	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
668	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
669		sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
670#if defined(COMPAT_43)
671		td->td_sigstk.ss_flags |= SS_ONSTACK;
672#endif
673	} else
674		sp = (char *)regs->tf_esp - 128;
675	if (xfpusave != NULL) {
676		sp -= xfpusave_len;
677		sp = (char *)((unsigned int)sp & ~0x3F);
678		sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
679	}
680	sp -= sizeof(struct sigframe);
681
682	/* Align to 16 bytes. */
683	sfp = (struct sigframe *)((unsigned int)sp & ~0xF);
684
685	/* Build the argument list for the signal handler. */
686	sf.sf_signum = sig;
687	sf.sf_ucontext = (register_t)&sfp->sf_uc;
688	bzero(&sf.sf_si, sizeof(sf.sf_si));
689	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
690		/* Signal handler installed with SA_SIGINFO. */
691		sf.sf_siginfo = (register_t)&sfp->sf_si;
692		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
693
694		/* Fill in POSIX parts */
695		sf.sf_si = ksi->ksi_info;
696		sf.sf_si.si_signo = sig; /* maybe a translated signal */
697	} else {
698		/* Old FreeBSD-style arguments. */
699		sf.sf_siginfo = ksi->ksi_code;
700		sf.sf_addr = (register_t)ksi->ksi_addr;
701		sf.sf_ahu.sf_handler = catcher;
702	}
703	mtx_unlock(&psp->ps_mtx);
704	PROC_UNLOCK(p);
705
706	/*
707	 * If we're a vm86 process, we want to save the segment registers.
708	 * We also change eflags to be our emulated eflags, not the actual
709	 * eflags.
710	 */
711	if (regs->tf_eflags & PSL_VM) {
712		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
713		struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86;
714
715		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
716		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
717		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
718		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
719
720		if (vm86->vm86_has_vme == 0)
721			sf.sf_uc.uc_mcontext.mc_eflags =
722			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
723			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
724
725		/*
726		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
727		 * syscalls made by the signal handler.  This just avoids
728		 * wasting time for our lazy fixup of such faults.  PSL_NT
729		 * does nothing in vm86 mode, but vm86 programs can set it
730		 * almost legitimately in probes for old cpu types.
731		 */
732		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
733	}
734
735	/*
736	 * Copy the sigframe out to the user's stack.
737	 */
738	if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
739	    (xfpusave != NULL && copyout(xfpusave,
740	    (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
741	    != 0)) {
742#ifdef DEBUG
743		printf("process %ld has trashed its stack\n", (long)p->p_pid);
744#endif
745		PROC_LOCK(p);
746		sigexit(td, SIGILL);
747	}
748
749	regs->tf_esp = (int)sfp;
750	regs->tf_eip = p->p_sysent->sv_sigcode_base;
751	if (regs->tf_eip == 0)
752		regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode;
753	regs->tf_eflags &= ~(PSL_T | PSL_D);
754	regs->tf_cs = _ucodesel;
755	regs->tf_ds = _udatasel;
756	regs->tf_es = _udatasel;
757	regs->tf_fs = _udatasel;
758	regs->tf_ss = _udatasel;
759	PROC_LOCK(p);
760	mtx_lock(&psp->ps_mtx);
761}
762
763/*
764 * System call to cleanup state after a signal
765 * has been taken.  Reset signal mask and
766 * stack state from context left by sendsig (above).
767 * Return to previous pc and psl as specified by
768 * context left by sendsig. Check carefully to
769 * make sure that the user has not modified the
770 * state to gain improper privileges.
771 *
772 * MPSAFE
773 */
774#ifdef COMPAT_43
775int
776osigreturn(td, uap)
777	struct thread *td;
778	struct osigreturn_args /* {
779		struct osigcontext *sigcntxp;
780	} */ *uap;
781{
782	struct osigcontext sc;
783	struct trapframe *regs;
784	struct osigcontext *scp;
785	int eflags, error;
786	ksiginfo_t ksi;
787
788	regs = td->td_frame;
789	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
790	if (error != 0)
791		return (error);
792	scp = &sc;
793	eflags = scp->sc_ps;
794	if (eflags & PSL_VM) {
795		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
796		struct vm86_kernel *vm86;
797
798		/*
799		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
800		 * set up the vm86 area, and we can't enter vm86 mode.
801		 */
802		if (td->td_pcb->pcb_ext == 0)
803			return (EINVAL);
804		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
805		if (vm86->vm86_inited == 0)
806			return (EINVAL);
807
808		/* Go back to user mode if both flags are set. */
809		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
810			ksiginfo_init_trap(&ksi);
811			ksi.ksi_signo = SIGBUS;
812			ksi.ksi_code = BUS_OBJERR;
813			ksi.ksi_addr = (void *)regs->tf_eip;
814			trapsignal(td, &ksi);
815		}
816
817		if (vm86->vm86_has_vme) {
818			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
819			    (eflags & VME_USERCHANGE) | PSL_VM;
820		} else {
821			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
822			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
823			    (eflags & VM_USERCHANGE) | PSL_VM;
824		}
825		tf->tf_vm86_ds = scp->sc_ds;
826		tf->tf_vm86_es = scp->sc_es;
827		tf->tf_vm86_fs = scp->sc_fs;
828		tf->tf_vm86_gs = scp->sc_gs;
829		tf->tf_ds = _udatasel;
830		tf->tf_es = _udatasel;
831		tf->tf_fs = _udatasel;
832	} else {
833		/*
834		 * Don't allow users to change privileged or reserved flags.
835		 */
836		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
837	    		return (EINVAL);
838		}
839
840		/*
841		 * Don't allow users to load a valid privileged %cs.  Let the
842		 * hardware check for invalid selectors, excess privilege in
843		 * other selectors, invalid %eip's and invalid %esp's.
844		 */
845		if (!CS_SECURE(scp->sc_cs)) {
846			ksiginfo_init_trap(&ksi);
847			ksi.ksi_signo = SIGBUS;
848			ksi.ksi_code = BUS_OBJERR;
849			ksi.ksi_trapno = T_PROTFLT;
850			ksi.ksi_addr = (void *)regs->tf_eip;
851			trapsignal(td, &ksi);
852			return (EINVAL);
853		}
854		regs->tf_ds = scp->sc_ds;
855		regs->tf_es = scp->sc_es;
856		regs->tf_fs = scp->sc_fs;
857	}
858
859	/* Restore remaining registers. */
860	regs->tf_eax = scp->sc_eax;
861	regs->tf_ebx = scp->sc_ebx;
862	regs->tf_ecx = scp->sc_ecx;
863	regs->tf_edx = scp->sc_edx;
864	regs->tf_esi = scp->sc_esi;
865	regs->tf_edi = scp->sc_edi;
866	regs->tf_cs = scp->sc_cs;
867	regs->tf_ss = scp->sc_ss;
868	regs->tf_isp = scp->sc_isp;
869	regs->tf_ebp = scp->sc_fp;
870	regs->tf_esp = scp->sc_sp;
871	regs->tf_eip = scp->sc_pc;
872	regs->tf_eflags = eflags;
873
874#if defined(COMPAT_43)
875	if (scp->sc_onstack & 1)
876		td->td_sigstk.ss_flags |= SS_ONSTACK;
877	else
878		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
879#endif
880	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
881	    SIGPROCMASK_OLD);
882	return (EJUSTRETURN);
883}
884#endif /* COMPAT_43 */
885
886#ifdef COMPAT_FREEBSD4
887/*
888 * MPSAFE
889 */
890int
891freebsd4_sigreturn(td, uap)
892	struct thread *td;
893	struct freebsd4_sigreturn_args /* {
894		const ucontext4 *sigcntxp;
895	} */ *uap;
896{
897	struct ucontext4 uc;
898	struct trapframe *regs;
899	struct ucontext4 *ucp;
900	int cs, eflags, error;
901	ksiginfo_t ksi;
902
903	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
904	if (error != 0)
905		return (error);
906	ucp = &uc;
907	regs = td->td_frame;
908	eflags = ucp->uc_mcontext.mc_eflags;
909	if (eflags & PSL_VM) {
910		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
911		struct vm86_kernel *vm86;
912
913		/*
914		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
915		 * set up the vm86 area, and we can't enter vm86 mode.
916		 */
917		if (td->td_pcb->pcb_ext == 0)
918			return (EINVAL);
919		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
920		if (vm86->vm86_inited == 0)
921			return (EINVAL);
922
923		/* Go back to user mode if both flags are set. */
924		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
925			ksiginfo_init_trap(&ksi);
926			ksi.ksi_signo = SIGBUS;
927			ksi.ksi_code = BUS_OBJERR;
928			ksi.ksi_addr = (void *)regs->tf_eip;
929			trapsignal(td, &ksi);
930		}
931		if (vm86->vm86_has_vme) {
932			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
933			    (eflags & VME_USERCHANGE) | PSL_VM;
934		} else {
935			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
936			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
937			    (eflags & VM_USERCHANGE) | PSL_VM;
938		}
939		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
940		tf->tf_eflags = eflags;
941		tf->tf_vm86_ds = tf->tf_ds;
942		tf->tf_vm86_es = tf->tf_es;
943		tf->tf_vm86_fs = tf->tf_fs;
944		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
945		tf->tf_ds = _udatasel;
946		tf->tf_es = _udatasel;
947		tf->tf_fs = _udatasel;
948	} else {
949		/*
950		 * Don't allow users to change privileged or reserved flags.
951		 */
952		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
953			uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n",
954			    td->td_proc->p_pid, td->td_name, eflags);
955	    		return (EINVAL);
956		}
957
958		/*
959		 * Don't allow users to load a valid privileged %cs.  Let the
960		 * hardware check for invalid selectors, excess privilege in
961		 * other selectors, invalid %eip's and invalid %esp's.
962		 */
963		cs = ucp->uc_mcontext.mc_cs;
964		if (!CS_SECURE(cs)) {
965			uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n",
966			    td->td_proc->p_pid, td->td_name, cs);
967			ksiginfo_init_trap(&ksi);
968			ksi.ksi_signo = SIGBUS;
969			ksi.ksi_code = BUS_OBJERR;
970			ksi.ksi_trapno = T_PROTFLT;
971			ksi.ksi_addr = (void *)regs->tf_eip;
972			trapsignal(td, &ksi);
973			return (EINVAL);
974		}
975
976		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
977	}
978
979#if defined(COMPAT_43)
980	if (ucp->uc_mcontext.mc_onstack & 1)
981		td->td_sigstk.ss_flags |= SS_ONSTACK;
982	else
983		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
984#endif
985	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
986	return (EJUSTRETURN);
987}
988#endif	/* COMPAT_FREEBSD4 */
989
990/*
991 * MPSAFE
992 */
993int
994sys_sigreturn(td, uap)
995	struct thread *td;
996	struct sigreturn_args /* {
997		const struct __ucontext *sigcntxp;
998	} */ *uap;
999{
1000	ucontext_t uc;
1001	struct proc *p;
1002	struct trapframe *regs;
1003	ucontext_t *ucp;
1004	char *xfpustate;
1005	size_t xfpustate_len;
1006	int cs, eflags, error, ret;
1007	ksiginfo_t ksi;
1008
1009	p = td->td_proc;
1010
1011	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
1012	if (error != 0)
1013		return (error);
1014	ucp = &uc;
1015	if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
1016		uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
1017		    td->td_name, ucp->uc_mcontext.mc_flags);
1018		return (EINVAL);
1019	}
1020	regs = td->td_frame;
1021	eflags = ucp->uc_mcontext.mc_eflags;
1022	if (eflags & PSL_VM) {
1023		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
1024		struct vm86_kernel *vm86;
1025
1026		/*
1027		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
1028		 * set up the vm86 area, and we can't enter vm86 mode.
1029		 */
1030		if (td->td_pcb->pcb_ext == 0)
1031			return (EINVAL);
1032		vm86 = &td->td_pcb->pcb_ext->ext_vm86;
1033		if (vm86->vm86_inited == 0)
1034			return (EINVAL);
1035
1036		/* Go back to user mode if both flags are set. */
1037		if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) {
1038			ksiginfo_init_trap(&ksi);
1039			ksi.ksi_signo = SIGBUS;
1040			ksi.ksi_code = BUS_OBJERR;
1041			ksi.ksi_addr = (void *)regs->tf_eip;
1042			trapsignal(td, &ksi);
1043		}
1044
1045		if (vm86->vm86_has_vme) {
1046			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
1047			    (eflags & VME_USERCHANGE) | PSL_VM;
1048		} else {
1049			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
1050			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
1051			    (eflags & VM_USERCHANGE) | PSL_VM;
1052		}
1053		bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe));
1054		tf->tf_eflags = eflags;
1055		tf->tf_vm86_ds = tf->tf_ds;
1056		tf->tf_vm86_es = tf->tf_es;
1057		tf->tf_vm86_fs = tf->tf_fs;
1058		tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs;
1059		tf->tf_ds = _udatasel;
1060		tf->tf_es = _udatasel;
1061		tf->tf_fs = _udatasel;
1062	} else {
1063		/*
1064		 * Don't allow users to change privileged or reserved flags.
1065		 */
1066		if (!EFL_SECURE(eflags, regs->tf_eflags)) {
1067			uprintf("pid %d (%s): sigreturn eflags = 0x%x\n",
1068			    td->td_proc->p_pid, td->td_name, eflags);
1069	    		return (EINVAL);
1070		}
1071
1072		/*
1073		 * Don't allow users to load a valid privileged %cs.  Let the
1074		 * hardware check for invalid selectors, excess privilege in
1075		 * other selectors, invalid %eip's and invalid %esp's.
1076		 */
1077		cs = ucp->uc_mcontext.mc_cs;
1078		if (!CS_SECURE(cs)) {
1079			uprintf("pid %d (%s): sigreturn cs = 0x%x\n",
1080			    td->td_proc->p_pid, td->td_name, cs);
1081			ksiginfo_init_trap(&ksi);
1082			ksi.ksi_signo = SIGBUS;
1083			ksi.ksi_code = BUS_OBJERR;
1084			ksi.ksi_trapno = T_PROTFLT;
1085			ksi.ksi_addr = (void *)regs->tf_eip;
1086			trapsignal(td, &ksi);
1087			return (EINVAL);
1088		}
1089
1090		if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
1091			xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
1092			if (xfpustate_len > cpu_max_ext_state_size -
1093			    sizeof(union savefpu)) {
1094				uprintf(
1095			    "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
1096				    p->p_pid, td->td_name, xfpustate_len);
1097				return (EINVAL);
1098			}
1099			xfpustate = __builtin_alloca(xfpustate_len);
1100			error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
1101			    xfpustate, xfpustate_len);
1102			if (error != 0) {
1103				uprintf(
1104	"pid %d (%s): sigreturn copying xfpustate failed\n",
1105				    p->p_pid, td->td_name);
1106				return (error);
1107			}
1108		} else {
1109			xfpustate = NULL;
1110			xfpustate_len = 0;
1111		}
1112		ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate,
1113		    xfpustate_len);
1114		if (ret != 0)
1115			return (ret);
1116		bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs));
1117	}
1118
1119#if defined(COMPAT_43)
1120	if (ucp->uc_mcontext.mc_onstack & 1)
1121		td->td_sigstk.ss_flags |= SS_ONSTACK;
1122	else
1123		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
1124#endif
1125
1126	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
1127	return (EJUSTRETURN);
1128}
1129
1130/*
1131 * Reset registers to default values on exec.
1132 */
1133void
1134exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
1135{
1136	struct trapframe *regs = td->td_frame;
1137	struct pcb *pcb = td->td_pcb;
1138
1139	/* Reset pc->pcb_gs and %gs before possibly invalidating it. */
1140	pcb->pcb_gs = _udatasel;
1141	load_gs(_udatasel);
1142
1143	mtx_lock_spin(&dt_lock);
1144	if (td->td_proc->p_md.md_ldt)
1145		user_ldt_free(td);
1146	else
1147		mtx_unlock_spin(&dt_lock);
1148
1149	bzero((char *)regs, sizeof(struct trapframe));
1150	regs->tf_eip = imgp->entry_addr;
1151	regs->tf_esp = stack;
1152	regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
1153	regs->tf_ss = _udatasel;
1154	regs->tf_ds = _udatasel;
1155	regs->tf_es = _udatasel;
1156	regs->tf_fs = _udatasel;
1157	regs->tf_cs = _ucodesel;
1158
1159	/* PS_STRINGS value for BSD/OS binaries.  It is 0 for non-BSD/OS. */
1160	regs->tf_ebx = imgp->ps_strings;
1161
1162        /*
1163         * Reset the hardware debug registers if they were in use.
1164         * They won't have any meaning for the newly exec'd process.
1165         */
1166        if (pcb->pcb_flags & PCB_DBREGS) {
1167                pcb->pcb_dr0 = 0;
1168                pcb->pcb_dr1 = 0;
1169                pcb->pcb_dr2 = 0;
1170                pcb->pcb_dr3 = 0;
1171                pcb->pcb_dr6 = 0;
1172                pcb->pcb_dr7 = 0;
1173                if (pcb == curpcb) {
1174		        /*
1175			 * Clear the debug registers on the running
1176			 * CPU, otherwise they will end up affecting
1177			 * the next process we switch to.
1178			 */
1179		        reset_dbregs();
1180                }
1181		pcb->pcb_flags &= ~PCB_DBREGS;
1182        }
1183
1184	pcb->pcb_initial_npxcw = __INITIAL_NPXCW__;
1185
1186	/*
1187	 * Drop the FP state if we hold it, so that the process gets a
1188	 * clean FP state if it uses the FPU again.
1189	 */
1190	fpstate_drop(td);
1191
1192	/*
1193	 * XXX - Linux emulator
1194	 * Make sure sure edx is 0x0 on entry. Linux binaries depend
1195	 * on it.
1196	 */
1197	td->td_retval[1] = 0;
1198}
1199
1200void
1201cpu_setregs(void)
1202{
1203	unsigned int cr0;
1204
1205	cr0 = rcr0();
1206
1207	/*
1208	 * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support:
1209	 *
1210	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
1211	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
1212	 * bit to control the trap, because setting the CR0_EM bit does
1213	 * not cause WAIT instructions to trap.  It's important to trap
1214	 * WAIT instructions - otherwise the "wait" variants of no-wait
1215	 * control instructions would degenerate to the "no-wait" variants
1216	 * after FP context switches but work correctly otherwise.  It's
1217	 * particularly important to trap WAITs when there is no NPX -
1218	 * otherwise the "wait" variants would always degenerate.
1219	 *
1220	 * Try setting CR0_NE to get correct error reporting on 486DX's.
1221	 * Setting it should fail or do nothing on lesser processors.
1222	 */
1223	cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
1224	load_cr0(cr0);
1225	load_gs(_udatasel);
1226}
1227
1228u_long bootdev;		/* not a struct cdev *- encoding is different */
1229SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1230	CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)");
1231
1232static char bootmethod[16] = "BIOS";
1233SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
1234    "System firmware boot method");
1235
1236/*
1237 * Initialize 386 and configure to run kernel
1238 */
1239
1240/*
1241 * Initialize segments & interrupt table
1242 */
1243
1244int _default_ldt;
1245
1246union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1247union descriptor ldt[NLDT];		/* local descriptor table */
1248static struct gate_descriptor idt0[NIDT];
1249struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1250struct region_descriptor r_gdt, r_idt;	/* table descriptors */
1251struct mtx dt_lock;			/* lock for GDT and LDT */
1252
1253static struct i386tss dblfault_tss;
1254static char dblfault_stack[PAGE_SIZE];
1255
1256extern  vm_offset_t	proc0kstack;
1257
1258
1259/*
1260 * software prototypes -- in more palatable form.
1261 *
1262 * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret
1263 * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it)
1264 */
1265struct soft_segment_descriptor gdt_segs[] = {
1266/* GNULL_SEL	0 Null Descriptor */
1267{	.ssd_base = 0x0,
1268	.ssd_limit = 0x0,
1269	.ssd_type = 0,
1270	.ssd_dpl = SEL_KPL,
1271	.ssd_p = 0,
1272	.ssd_xx = 0, .ssd_xx1 = 0,
1273	.ssd_def32 = 0,
1274	.ssd_gran = 0		},
1275/* GPRIV_SEL	1 SMP Per-Processor Private Data Descriptor */
1276{	.ssd_base = 0x0,
1277	.ssd_limit = 0xfffff,
1278	.ssd_type = SDT_MEMRWA,
1279	.ssd_dpl = SEL_KPL,
1280	.ssd_p = 1,
1281	.ssd_xx = 0, .ssd_xx1 = 0,
1282	.ssd_def32 = 1,
1283	.ssd_gran = 1		},
1284/* GUFS_SEL	2 %fs Descriptor for user */
1285{	.ssd_base = 0x0,
1286	.ssd_limit = 0xfffff,
1287	.ssd_type = SDT_MEMRWA,
1288	.ssd_dpl = SEL_UPL,
1289	.ssd_p = 1,
1290	.ssd_xx = 0, .ssd_xx1 = 0,
1291	.ssd_def32 = 1,
1292	.ssd_gran = 1		},
1293/* GUGS_SEL	3 %gs Descriptor for user */
1294{	.ssd_base = 0x0,
1295	.ssd_limit = 0xfffff,
1296	.ssd_type = SDT_MEMRWA,
1297	.ssd_dpl = SEL_UPL,
1298	.ssd_p = 1,
1299	.ssd_xx = 0, .ssd_xx1 = 0,
1300	.ssd_def32 = 1,
1301	.ssd_gran = 1		},
1302/* GCODE_SEL	4 Code Descriptor for kernel */
1303{	.ssd_base = 0x0,
1304	.ssd_limit = 0xfffff,
1305	.ssd_type = SDT_MEMERA,
1306	.ssd_dpl = SEL_KPL,
1307	.ssd_p = 1,
1308	.ssd_xx = 0, .ssd_xx1 = 0,
1309	.ssd_def32 = 1,
1310	.ssd_gran = 1		},
1311/* GDATA_SEL	5 Data Descriptor for kernel */
1312{	.ssd_base = 0x0,
1313	.ssd_limit = 0xfffff,
1314	.ssd_type = SDT_MEMRWA,
1315	.ssd_dpl = SEL_KPL,
1316	.ssd_p = 1,
1317	.ssd_xx = 0, .ssd_xx1 = 0,
1318	.ssd_def32 = 1,
1319	.ssd_gran = 1		},
1320/* GUCODE_SEL	6 Code Descriptor for user */
1321{	.ssd_base = 0x0,
1322	.ssd_limit = 0xfffff,
1323	.ssd_type = SDT_MEMERA,
1324	.ssd_dpl = SEL_UPL,
1325	.ssd_p = 1,
1326	.ssd_xx = 0, .ssd_xx1 = 0,
1327	.ssd_def32 = 1,
1328	.ssd_gran = 1		},
1329/* GUDATA_SEL	7 Data Descriptor for user */
1330{	.ssd_base = 0x0,
1331	.ssd_limit = 0xfffff,
1332	.ssd_type = SDT_MEMRWA,
1333	.ssd_dpl = SEL_UPL,
1334	.ssd_p = 1,
1335	.ssd_xx = 0, .ssd_xx1 = 0,
1336	.ssd_def32 = 1,
1337	.ssd_gran = 1		},
1338/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1339{	.ssd_base = 0x400,
1340	.ssd_limit = 0xfffff,
1341	.ssd_type = SDT_MEMRWA,
1342	.ssd_dpl = SEL_KPL,
1343	.ssd_p = 1,
1344	.ssd_xx = 0, .ssd_xx1 = 0,
1345	.ssd_def32 = 1,
1346	.ssd_gran = 1		},
1347/* GPROC0_SEL	9 Proc 0 Tss Descriptor */
1348{
1349	.ssd_base = 0x0,
1350	.ssd_limit = sizeof(struct i386tss)-1,
1351	.ssd_type = SDT_SYS386TSS,
1352	.ssd_dpl = 0,
1353	.ssd_p = 1,
1354	.ssd_xx = 0, .ssd_xx1 = 0,
1355	.ssd_def32 = 0,
1356	.ssd_gran = 0		},
1357/* GLDT_SEL	10 LDT Descriptor */
1358{	.ssd_base = (int) ldt,
1359	.ssd_limit = sizeof(ldt)-1,
1360	.ssd_type = SDT_SYSLDT,
1361	.ssd_dpl = SEL_UPL,
1362	.ssd_p = 1,
1363	.ssd_xx = 0, .ssd_xx1 = 0,
1364	.ssd_def32 = 0,
1365	.ssd_gran = 0		},
1366/* GUSERLDT_SEL	11 User LDT Descriptor per process */
1367{	.ssd_base = (int) ldt,
1368	.ssd_limit = (512 * sizeof(union descriptor)-1),
1369	.ssd_type = SDT_SYSLDT,
1370	.ssd_dpl = 0,
1371	.ssd_p = 1,
1372	.ssd_xx = 0, .ssd_xx1 = 0,
1373	.ssd_def32 = 0,
1374	.ssd_gran = 0		},
1375/* GPANIC_SEL	12 Panic Tss Descriptor */
1376{	.ssd_base = (int) &dblfault_tss,
1377	.ssd_limit = sizeof(struct i386tss)-1,
1378	.ssd_type = SDT_SYS386TSS,
1379	.ssd_dpl = 0,
1380	.ssd_p = 1,
1381	.ssd_xx = 0, .ssd_xx1 = 0,
1382	.ssd_def32 = 0,
1383	.ssd_gran = 0		},
1384/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */
1385{	.ssd_base = 0,
1386	.ssd_limit = 0xfffff,
1387	.ssd_type = SDT_MEMERA,
1388	.ssd_dpl = 0,
1389	.ssd_p = 1,
1390	.ssd_xx = 0, .ssd_xx1 = 0,
1391	.ssd_def32 = 0,
1392	.ssd_gran = 1		},
1393/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */
1394{	.ssd_base = 0,
1395	.ssd_limit = 0xfffff,
1396	.ssd_type = SDT_MEMERA,
1397	.ssd_dpl = 0,
1398	.ssd_p = 1,
1399	.ssd_xx = 0, .ssd_xx1 = 0,
1400	.ssd_def32 = 0,
1401	.ssd_gran = 1		},
1402/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */
1403{	.ssd_base = 0,
1404	.ssd_limit = 0xfffff,
1405	.ssd_type = SDT_MEMRWA,
1406	.ssd_dpl = 0,
1407	.ssd_p = 1,
1408	.ssd_xx = 0, .ssd_xx1 = 0,
1409	.ssd_def32 = 1,
1410	.ssd_gran = 1		},
1411/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */
1412{	.ssd_base = 0,
1413	.ssd_limit = 0xfffff,
1414	.ssd_type = SDT_MEMRWA,
1415	.ssd_dpl = 0,
1416	.ssd_p = 1,
1417	.ssd_xx = 0, .ssd_xx1 = 0,
1418	.ssd_def32 = 0,
1419	.ssd_gran = 1		},
1420/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */
1421{	.ssd_base = 0,
1422	.ssd_limit = 0xfffff,
1423	.ssd_type = SDT_MEMRWA,
1424	.ssd_dpl = 0,
1425	.ssd_p = 1,
1426	.ssd_xx = 0, .ssd_xx1 = 0,
1427	.ssd_def32 = 0,
1428	.ssd_gran = 1		},
1429/* GNDIS_SEL	18 NDIS Descriptor */
1430{	.ssd_base = 0x0,
1431	.ssd_limit = 0x0,
1432	.ssd_type = 0,
1433	.ssd_dpl = 0,
1434	.ssd_p = 0,
1435	.ssd_xx = 0, .ssd_xx1 = 0,
1436	.ssd_def32 = 0,
1437	.ssd_gran = 0		},
1438};
1439
1440static struct soft_segment_descriptor ldt_segs[] = {
1441	/* Null Descriptor - overwritten by call gate */
1442{	.ssd_base = 0x0,
1443	.ssd_limit = 0x0,
1444	.ssd_type = 0,
1445	.ssd_dpl = 0,
1446	.ssd_p = 0,
1447	.ssd_xx = 0, .ssd_xx1 = 0,
1448	.ssd_def32 = 0,
1449	.ssd_gran = 0		},
1450	/* Null Descriptor - overwritten by call gate */
1451{	.ssd_base = 0x0,
1452	.ssd_limit = 0x0,
1453	.ssd_type = 0,
1454	.ssd_dpl = 0,
1455	.ssd_p = 0,
1456	.ssd_xx = 0, .ssd_xx1 = 0,
1457	.ssd_def32 = 0,
1458	.ssd_gran = 0		},
1459	/* Null Descriptor - overwritten by call gate */
1460{	.ssd_base = 0x0,
1461	.ssd_limit = 0x0,
1462	.ssd_type = 0,
1463	.ssd_dpl = 0,
1464	.ssd_p = 0,
1465	.ssd_xx = 0, .ssd_xx1 = 0,
1466	.ssd_def32 = 0,
1467	.ssd_gran = 0		},
1468	/* Code Descriptor for user */
1469{	.ssd_base = 0x0,
1470	.ssd_limit = 0xfffff,
1471	.ssd_type = SDT_MEMERA,
1472	.ssd_dpl = SEL_UPL,
1473	.ssd_p = 1,
1474	.ssd_xx = 0, .ssd_xx1 = 0,
1475	.ssd_def32 = 1,
1476	.ssd_gran = 1		},
1477	/* Null Descriptor - overwritten by call gate */
1478{	.ssd_base = 0x0,
1479	.ssd_limit = 0x0,
1480	.ssd_type = 0,
1481	.ssd_dpl = 0,
1482	.ssd_p = 0,
1483	.ssd_xx = 0, .ssd_xx1 = 0,
1484	.ssd_def32 = 0,
1485	.ssd_gran = 0		},
1486	/* Data Descriptor for user */
1487{	.ssd_base = 0x0,
1488	.ssd_limit = 0xfffff,
1489	.ssd_type = SDT_MEMRWA,
1490	.ssd_dpl = SEL_UPL,
1491	.ssd_p = 1,
1492	.ssd_xx = 0, .ssd_xx1 = 0,
1493	.ssd_def32 = 1,
1494	.ssd_gran = 1		},
1495};
1496
1497void
1498setidt(idx, func, typ, dpl, selec)
1499	int idx;
1500	inthand_t *func;
1501	int typ;
1502	int dpl;
1503	int selec;
1504{
1505	struct gate_descriptor *ip;
1506
1507	ip = idt + idx;
1508	ip->gd_looffset = (int)func;
1509	ip->gd_selector = selec;
1510	ip->gd_stkcpy = 0;
1511	ip->gd_xx = 0;
1512	ip->gd_type = typ;
1513	ip->gd_dpl = dpl;
1514	ip->gd_p = 1;
1515	ip->gd_hioffset = ((int)func)>>16 ;
1516}
1517
1518extern inthand_t
1519	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1520	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1521	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1522	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1523	IDTVEC(xmm),
1524#ifdef KDTRACE_HOOKS
1525	IDTVEC(dtrace_ret),
1526#endif
1527#ifdef XENHVM
1528	IDTVEC(xen_intr_upcall),
1529#endif
1530	IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall);
1531
1532#ifdef DDB
1533/*
1534 * Display the index and function name of any IDT entries that don't use
1535 * the default 'rsvd' entry point.
1536 */
1537DB_SHOW_COMMAND(idt, db_show_idt)
1538{
1539	struct gate_descriptor *ip;
1540	int idx;
1541	uintptr_t func;
1542
1543	ip = idt;
1544	for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
1545		func = (ip->gd_hioffset << 16 | ip->gd_looffset);
1546		if (func != (uintptr_t)&IDTVEC(rsvd)) {
1547			db_printf("%3d\t", idx);
1548			db_printsym(func, DB_STGY_PROC);
1549			db_printf("\n");
1550		}
1551		ip++;
1552	}
1553}
1554
1555/* Show privileged registers. */
1556DB_SHOW_COMMAND(sysregs, db_show_sysregs)
1557{
1558	uint64_t idtr, gdtr;
1559
1560	idtr = ridt();
1561	db_printf("idtr\t0x%08x/%04x\n",
1562	    (u_int)(idtr >> 16), (u_int)idtr & 0xffff);
1563	gdtr = rgdt();
1564	db_printf("gdtr\t0x%08x/%04x\n",
1565	    (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff);
1566	db_printf("ldtr\t0x%04x\n", rldt());
1567	db_printf("tr\t0x%04x\n", rtr());
1568	db_printf("cr0\t0x%08x\n", rcr0());
1569	db_printf("cr2\t0x%08x\n", rcr2());
1570	db_printf("cr3\t0x%08x\n", rcr3());
1571	db_printf("cr4\t0x%08x\n", rcr4());
1572	if (rcr4() & CR4_XSAVE)
1573		db_printf("xcr0\t0x%016llx\n", rxcr(0));
1574	if (amd_feature & (AMDID_NX | AMDID_LM))
1575		db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER));
1576	if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX))
1577		db_printf("FEATURES_CTL\t0x%016llx\n",
1578		    rdmsr(MSR_IA32_FEATURE_CONTROL));
1579	if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
1580	    cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6)
1581		db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR));
1582	if (cpu_feature & CPUID_PAT)
1583		db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT));
1584}
1585
1586DB_SHOW_COMMAND(dbregs, db_show_dbregs)
1587{
1588
1589	db_printf("dr0\t0x%08x\n", rdr0());
1590	db_printf("dr1\t0x%08x\n", rdr1());
1591	db_printf("dr2\t0x%08x\n", rdr2());
1592	db_printf("dr3\t0x%08x\n", rdr3());
1593	db_printf("dr6\t0x%08x\n", rdr6());
1594	db_printf("dr7\t0x%08x\n", rdr7());
1595}
1596#endif
1597
1598void
1599sdtossd(sd, ssd)
1600	struct segment_descriptor *sd;
1601	struct soft_segment_descriptor *ssd;
1602{
1603	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1604	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1605	ssd->ssd_type  = sd->sd_type;
1606	ssd->ssd_dpl   = sd->sd_dpl;
1607	ssd->ssd_p     = sd->sd_p;
1608	ssd->ssd_def32 = sd->sd_def32;
1609	ssd->ssd_gran  = sd->sd_gran;
1610}
1611
1612#if !defined(PC98)
1613static int
1614add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
1615    int *physmap_idxp)
1616{
1617	int i, insert_idx, physmap_idx;
1618
1619	physmap_idx = *physmap_idxp;
1620
1621	if (length == 0)
1622		return (1);
1623
1624#ifndef PAE
1625	if (base > 0xffffffff) {
1626		printf("%uK of memory above 4GB ignored\n",
1627		    (u_int)(length / 1024));
1628		return (1);
1629	}
1630#endif
1631
1632	/*
1633	 * Find insertion point while checking for overlap.  Start off by
1634	 * assuming the new entry will be added to the end.
1635	 */
1636	insert_idx = physmap_idx + 2;
1637	for (i = 0; i <= physmap_idx; i += 2) {
1638		if (base < physmap[i + 1]) {
1639			if (base + length <= physmap[i]) {
1640				insert_idx = i;
1641				break;
1642			}
1643			if (boothowto & RB_VERBOSE)
1644				printf(
1645		    "Overlapping memory regions, ignoring second region\n");
1646			return (1);
1647		}
1648	}
1649
1650	/* See if we can prepend to the next entry. */
1651	if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
1652		physmap[insert_idx] = base;
1653		return (1);
1654	}
1655
1656	/* See if we can append to the previous entry. */
1657	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
1658		physmap[insert_idx - 1] += length;
1659		return (1);
1660	}
1661
1662	physmap_idx += 2;
1663	*physmap_idxp = physmap_idx;
1664	if (physmap_idx == PHYSMAP_SIZE) {
1665		printf(
1666		"Too many segments in the physical address map, giving up\n");
1667		return (0);
1668	}
1669
1670	/*
1671	 * Move the last 'N' entries down to make room for the new
1672	 * entry if needed.
1673	 */
1674	for (i = physmap_idx; i > insert_idx; i -= 2) {
1675		physmap[i] = physmap[i - 2];
1676		physmap[i + 1] = physmap[i - 1];
1677	}
1678
1679	/* Insert the new entry. */
1680	physmap[insert_idx] = base;
1681	physmap[insert_idx + 1] = base + length;
1682	return (1);
1683}
1684
1685static int
1686add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp)
1687{
1688	if (boothowto & RB_VERBOSE)
1689		printf("SMAP type=%02x base=%016llx len=%016llx\n",
1690		    smap->type, smap->base, smap->length);
1691
1692	if (smap->type != SMAP_TYPE_MEMORY)
1693		return (1);
1694
1695	return (add_physmap_entry(smap->base, smap->length, physmap,
1696	    physmap_idxp));
1697}
1698
1699static void
1700add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap,
1701    int *physmap_idxp)
1702{
1703	struct bios_smap *smap, *smapend;
1704	u_int32_t smapsize;
1705	/*
1706	 * Memory map from INT 15:E820.
1707	 *
1708	 * subr_module.c says:
1709	 * "Consumer may safely assume that size value precedes data."
1710	 * ie: an int32_t immediately precedes SMAP.
1711	 */
1712	smapsize = *((u_int32_t *)smapbase - 1);
1713	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1714
1715	for (smap = smapbase; smap < smapend; smap++)
1716		if (!add_smap_entry(smap, physmap, physmap_idxp))
1717			break;
1718}
1719#endif /* !PC98 */
1720
1721static void
1722basemem_setup(void)
1723{
1724	vm_paddr_t pa;
1725	pt_entry_t *pte;
1726	int i;
1727
1728	if (basemem > 640) {
1729		printf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1730			basemem);
1731		basemem = 640;
1732	}
1733
1734	/*
1735	 * XXX if biosbasemem is now < 640, there is a `hole'
1736	 * between the end of base memory and the start of
1737	 * ISA memory.  The hole may be empty or it may
1738	 * contain BIOS code or data.  Map it read/write so
1739	 * that the BIOS can write to it.  (Memory from 0 to
1740	 * the physical end of the kernel is mapped read-only
1741	 * to begin with and then parts of it are remapped.
1742	 * The parts that aren't remapped form holes that
1743	 * remain read-only and are unused by the kernel.
1744	 * The base memory area is below the physical end of
1745	 * the kernel and right now forms a read-only hole.
1746	 * The part of it from PAGE_SIZE to
1747	 * (trunc_page(biosbasemem * 1024) - 1) will be
1748	 * remapped and used by the kernel later.)
1749	 *
1750	 * This code is similar to the code used in
1751	 * pmap_mapdev, but since no memory needs to be
1752	 * allocated we simply change the mapping.
1753	 */
1754	for (pa = trunc_page(basemem * 1024);
1755	     pa < ISA_HOLE_START; pa += PAGE_SIZE)
1756		pmap_kenter(KERNBASE + pa, pa);
1757
1758	/*
1759	 * Map pages between basemem and ISA_HOLE_START, if any, r/w into
1760	 * the vm86 page table so that vm86 can scribble on them using
1761	 * the vm86 map too.  XXX: why 2 ways for this and only 1 way for
1762	 * page 0, at least as initialized here?
1763	 */
1764	pte = (pt_entry_t *)vm86paddr;
1765	for (i = basemem / 4; i < 160; i++)
1766		pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1767}
1768
1769/*
1770 * Populate the (physmap) array with base/bound pairs describing the
1771 * available physical memory in the system, then test this memory and
1772 * build the phys_avail array describing the actually-available memory.
1773 *
1774 * If we cannot accurately determine the physical memory map, then use
1775 * value from the 0xE801 call, and failing that, the RTC.
1776 *
1777 * Total memory size may be set by the kernel environment variable
1778 * hw.physmem or the compile-time define MAXMEM.
1779 *
1780 * XXX first should be vm_paddr_t.
1781 */
1782#ifdef PC98
1783static void
1784getmemsize(int first)
1785{
1786	int off, physmap_idx, pa_indx, da_indx;
1787	u_long physmem_tunable, memtest;
1788	vm_paddr_t physmap[PHYSMAP_SIZE];
1789	pt_entry_t *pte;
1790	quad_t dcons_addr, dcons_size;
1791	int i;
1792	int pg_n;
1793	u_int extmem;
1794	u_int under16;
1795	vm_paddr_t pa;
1796
1797	bzero(physmap, sizeof(physmap));
1798
1799	/* XXX - some of EPSON machines can't use PG_N */
1800	pg_n = PG_N;
1801	if (pc98_machine_type & M_EPSON_PC98) {
1802		switch (epson_machine_id) {
1803#ifdef WB_CACHE
1804		default:
1805#endif
1806		case EPSON_PC486_HX:
1807		case EPSON_PC486_HG:
1808		case EPSON_PC486_HA:
1809			pg_n = 0;
1810			break;
1811		}
1812	}
1813
1814	under16 = pc98_getmemsize(&basemem, &extmem);
1815	basemem_setup();
1816
1817	physmap[0] = 0;
1818	physmap[1] = basemem * 1024;
1819	physmap_idx = 2;
1820	physmap[physmap_idx] = 0x100000;
1821	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1822
1823	/*
1824	 * Now, physmap contains a map of physical memory.
1825	 */
1826
1827#ifdef SMP
1828	/* make hole for AP bootstrap code */
1829	physmap[1] = mp_bootaddress(physmap[1]);
1830#endif
1831
1832	/*
1833	 * Maxmem isn't the "maximum memory", it's one larger than the
1834	 * highest page of the physical address space.  It should be
1835	 * called something like "Maxphyspage".  We may adjust this
1836	 * based on ``hw.physmem'' and the results of the memory test.
1837	 */
1838	Maxmem = atop(physmap[physmap_idx + 1]);
1839
1840#ifdef MAXMEM
1841	Maxmem = MAXMEM / 4;
1842#endif
1843
1844	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1845		Maxmem = atop(physmem_tunable);
1846
1847	/*
1848	 * By default keep the memtest enabled.  Use a general name so that
1849	 * one could eventually do more with the code than just disable it.
1850	 */
1851	memtest = 1;
1852	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
1853
1854	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1855	    (boothowto & RB_VERBOSE))
1856		printf("Physical memory use set to %ldK\n", Maxmem * 4);
1857
1858	/*
1859	 * If Maxmem has been increased beyond what the system has detected,
1860	 * extend the last memory segment to the new limit.
1861	 */
1862	if (atop(physmap[physmap_idx + 1]) < Maxmem)
1863		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
1864
1865	/*
1866	 * We need to divide chunk if Maxmem is larger than 16MB and
1867	 * under 16MB area is not full of memory.
1868	 * (1) system area (15-16MB region) is cut off
1869	 * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY")
1870	 */
1871	if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) {
1872		/* 15M - 16M region is cut off, so need to divide chunk */
1873		physmap[physmap_idx + 1] = under16 * 1024;
1874		physmap_idx += 2;
1875		physmap[physmap_idx] = 0x1000000;
1876		physmap[physmap_idx + 1] = physmap[2] + extmem * 1024;
1877	}
1878
1879	/* call pmap initialization to make new kernel address space */
1880	pmap_bootstrap(first);
1881
1882	/*
1883	 * Size up each available chunk of physical memory.
1884	 */
1885	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
1886	pa_indx = 0;
1887	da_indx = 1;
1888	phys_avail[pa_indx++] = physmap[0];
1889	phys_avail[pa_indx] = physmap[0];
1890	dump_avail[da_indx] = physmap[0];
1891	pte = CMAP3;
1892
1893	/*
1894	 * Get dcons buffer address
1895	 */
1896	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
1897	    getenv_quad("dcons.size", &dcons_size) == 0)
1898		dcons_addr = 0;
1899
1900	/*
1901	 * physmap is in bytes, so when converting to page boundaries,
1902	 * round up the start address and round down the end address.
1903	 */
1904	for (i = 0; i <= physmap_idx; i += 2) {
1905		vm_paddr_t end;
1906
1907		end = ptoa((vm_paddr_t)Maxmem);
1908		if (physmap[i + 1] < end)
1909			end = trunc_page(physmap[i + 1]);
1910		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1911			int tmp, page_bad, full;
1912			int *ptr = (int *)CADDR3;
1913
1914			full = FALSE;
1915			/*
1916			 * block out kernel memory as not available.
1917			 */
1918			if (pa >= KERNLOAD && pa < first)
1919				goto do_dump_avail;
1920
1921			/*
1922			 * block out dcons buffer
1923			 */
1924			if (dcons_addr > 0
1925			    && pa >= trunc_page(dcons_addr)
1926			    && pa < dcons_addr + dcons_size)
1927				goto do_dump_avail;
1928
1929			page_bad = FALSE;
1930			if (memtest == 0)
1931				goto skip_memtest;
1932
1933			/*
1934			 * map page into kernel: valid, read/write,non-cacheable
1935			 */
1936			*pte = pa | PG_V | PG_RW | pg_n;
1937			invltlb();
1938
1939			tmp = *(int *)ptr;
1940			/*
1941			 * Test for alternating 1's and 0's
1942			 */
1943			*(volatile int *)ptr = 0xaaaaaaaa;
1944			if (*(volatile int *)ptr != 0xaaaaaaaa)
1945				page_bad = TRUE;
1946			/*
1947			 * Test for alternating 0's and 1's
1948			 */
1949			*(volatile int *)ptr = 0x55555555;
1950			if (*(volatile int *)ptr != 0x55555555)
1951				page_bad = TRUE;
1952			/*
1953			 * Test for all 1's
1954			 */
1955			*(volatile int *)ptr = 0xffffffff;
1956			if (*(volatile int *)ptr != 0xffffffff)
1957				page_bad = TRUE;
1958			/*
1959			 * Test for all 0's
1960			 */
1961			*(volatile int *)ptr = 0x0;
1962			if (*(volatile int *)ptr != 0x0)
1963				page_bad = TRUE;
1964			/*
1965			 * Restore original value.
1966			 */
1967			*(int *)ptr = tmp;
1968
1969skip_memtest:
1970			/*
1971			 * Adjust array of valid/good pages.
1972			 */
1973			if (page_bad == TRUE)
1974				continue;
1975			/*
1976			 * If this good page is a continuation of the
1977			 * previous set of good pages, then just increase
1978			 * the end pointer. Otherwise start a new chunk.
1979			 * Note that "end" points one higher than end,
1980			 * making the range >= start and < end.
1981			 * If we're also doing a speculative memory
1982			 * test and we at or past the end, bump up Maxmem
1983			 * so that we keep going. The first bad page
1984			 * will terminate the loop.
1985			 */
1986			if (phys_avail[pa_indx] == pa) {
1987				phys_avail[pa_indx] += PAGE_SIZE;
1988			} else {
1989				pa_indx++;
1990				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1991					printf(
1992		"Too many holes in the physical address space, giving up\n");
1993					pa_indx--;
1994					full = TRUE;
1995					goto do_dump_avail;
1996				}
1997				phys_avail[pa_indx++] = pa;	/* start */
1998				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1999			}
2000			physmem++;
2001do_dump_avail:
2002			if (dump_avail[da_indx] == pa) {
2003				dump_avail[da_indx] += PAGE_SIZE;
2004			} else {
2005				da_indx++;
2006				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2007					da_indx--;
2008					goto do_next;
2009				}
2010				dump_avail[da_indx++] = pa;	/* start */
2011				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2012			}
2013do_next:
2014			if (full)
2015				break;
2016		}
2017	}
2018	*pte = 0;
2019	invltlb();
2020
2021	/*
2022	 * XXX
2023	 * The last chunk must contain at least one page plus the message
2024	 * buffer to avoid complicating other code (message buffer address
2025	 * calculation, etc.).
2026	 */
2027	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2028	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2029		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2030		phys_avail[pa_indx--] = 0;
2031		phys_avail[pa_indx--] = 0;
2032	}
2033
2034	Maxmem = atop(phys_avail[pa_indx]);
2035
2036	/* Trim off space for the message buffer. */
2037	phys_avail[pa_indx] -= round_page(msgbufsize);
2038
2039	/* Map the message buffer. */
2040	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2041		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2042		    off);
2043}
2044#else /* PC98 */
2045static void
2046getmemsize(int first)
2047{
2048	int has_smap, off, physmap_idx, pa_indx, da_indx;
2049	u_long memtest;
2050	vm_paddr_t physmap[PHYSMAP_SIZE];
2051	pt_entry_t *pte;
2052	quad_t dcons_addr, dcons_size, physmem_tunable;
2053	int hasbrokenint12, i, res;
2054	u_int extmem;
2055	struct vm86frame vmf;
2056	struct vm86context vmc;
2057	vm_paddr_t pa;
2058	struct bios_smap *smap, *smapbase;
2059	caddr_t kmdp;
2060
2061	has_smap = 0;
2062#ifdef XBOX
2063	if (arch_i386_is_xbox) {
2064		/*
2065		 * We queried the memory size before, so chop off 4MB for
2066		 * the framebuffer and inform the OS of this.
2067		 */
2068		physmap[0] = 0;
2069		physmap[1] = (arch_i386_xbox_memsize * 1024 * 1024) - XBOX_FB_SIZE;
2070		physmap_idx = 0;
2071		goto physmap_done;
2072	}
2073#endif
2074	bzero(&vmf, sizeof(vmf));
2075	bzero(physmap, sizeof(physmap));
2076	basemem = 0;
2077
2078	/*
2079	 * Check if the loader supplied an SMAP memory map.  If so,
2080	 * use that and do not make any VM86 calls.
2081	 */
2082	physmap_idx = 0;
2083	kmdp = preload_search_by_type("elf kernel");
2084	if (kmdp == NULL)
2085		kmdp = preload_search_by_type("elf32 kernel");
2086	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2087	    MODINFO_METADATA | MODINFOMD_SMAP);
2088	if (smapbase != NULL) {
2089		add_smap_entries(smapbase, physmap, &physmap_idx);
2090		has_smap = 1;
2091		goto have_smap;
2092	}
2093
2094	/*
2095	 * Some newer BIOSes have a broken INT 12H implementation
2096	 * which causes a kernel panic immediately.  In this case, we
2097	 * need use the SMAP to determine the base memory size.
2098	 */
2099	hasbrokenint12 = 0;
2100	TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
2101	if (hasbrokenint12 == 0) {
2102		/* Use INT12 to determine base memory size. */
2103		vm86_intcall(0x12, &vmf);
2104		basemem = vmf.vmf_ax;
2105		basemem_setup();
2106	}
2107
2108	/*
2109	 * Fetch the memory map with INT 15:E820.  Map page 1 R/W into
2110	 * the kernel page table so we can use it as a buffer.  The
2111	 * kernel will unmap this page later.
2112	 */
2113	pmap_kenter(KERNBASE + (1 << PAGE_SHIFT), 1 << PAGE_SHIFT);
2114	vmc.npages = 0;
2115	smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
2116	res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
2117	KASSERT(res != 0, ("vm86_getptr() failed: address not found"));
2118
2119	vmf.vmf_ebx = 0;
2120	do {
2121		vmf.vmf_eax = 0xE820;
2122		vmf.vmf_edx = SMAP_SIG;
2123		vmf.vmf_ecx = sizeof(struct bios_smap);
2124		i = vm86_datacall(0x15, &vmf, &vmc);
2125		if (i || vmf.vmf_eax != SMAP_SIG)
2126			break;
2127		has_smap = 1;
2128		if (!add_smap_entry(smap, physmap, &physmap_idx))
2129			break;
2130	} while (vmf.vmf_ebx != 0);
2131
2132have_smap:
2133	/*
2134	 * If we didn't fetch the "base memory" size from INT12,
2135	 * figure it out from the SMAP (or just guess).
2136	 */
2137	if (basemem == 0) {
2138		for (i = 0; i <= physmap_idx; i += 2) {
2139			if (physmap[i] == 0x00000000) {
2140				basemem = physmap[i + 1] / 1024;
2141				break;
2142			}
2143		}
2144
2145		/* XXX: If we couldn't find basemem from SMAP, just guess. */
2146		if (basemem == 0)
2147			basemem = 640;
2148		basemem_setup();
2149	}
2150
2151	if (physmap[1] != 0)
2152		goto physmap_done;
2153
2154	/*
2155	 * If we failed to find an SMAP, figure out the extended
2156	 * memory size.  We will then build a simple memory map with
2157	 * two segments, one for "base memory" and the second for
2158	 * "extended memory".  Note that "extended memory" starts at a
2159	 * physical address of 1MB and that both basemem and extmem
2160	 * are in units of 1KB.
2161	 *
2162	 * First, try to fetch the extended memory size via INT 15:E801.
2163	 */
2164	vmf.vmf_ax = 0xE801;
2165	if (vm86_intcall(0x15, &vmf) == 0) {
2166		extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
2167	} else {
2168		/*
2169		 * If INT15:E801 fails, this is our last ditch effort
2170		 * to determine the extended memory size.  Currently
2171		 * we prefer the RTC value over INT15:88.
2172		 */
2173#if 0
2174		vmf.vmf_ah = 0x88;
2175		vm86_intcall(0x15, &vmf);
2176		extmem = vmf.vmf_ax;
2177#else
2178		extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
2179#endif
2180	}
2181
2182	/*
2183	 * Special hack for chipsets that still remap the 384k hole when
2184	 * there's 16MB of memory - this really confuses people that
2185	 * are trying to use bus mastering ISA controllers with the
2186	 * "16MB limit"; they only have 16MB, but the remapping puts
2187	 * them beyond the limit.
2188	 *
2189	 * If extended memory is between 15-16MB (16-17MB phys address range),
2190	 *	chop it to 15MB.
2191	 */
2192	if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
2193		extmem = 15 * 1024;
2194
2195	physmap[0] = 0;
2196	physmap[1] = basemem * 1024;
2197	physmap_idx = 2;
2198	physmap[physmap_idx] = 0x100000;
2199	physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
2200
2201physmap_done:
2202	/*
2203	 * Now, physmap contains a map of physical memory.
2204	 */
2205
2206#ifdef SMP
2207	/* make hole for AP bootstrap code */
2208	physmap[1] = mp_bootaddress(physmap[1]);
2209#endif
2210
2211	/*
2212	 * Maxmem isn't the "maximum memory", it's one larger than the
2213	 * highest page of the physical address space.  It should be
2214	 * called something like "Maxphyspage".  We may adjust this
2215	 * based on ``hw.physmem'' and the results of the memory test.
2216	 *
2217	 * This is especially confusing when it is much larger than the
2218	 * memory size and is displayed as "realmem".
2219	 */
2220	Maxmem = atop(physmap[physmap_idx + 1]);
2221
2222#ifdef MAXMEM
2223	Maxmem = MAXMEM / 4;
2224#endif
2225
2226	if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable))
2227		Maxmem = atop(physmem_tunable);
2228
2229	/*
2230	 * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend
2231	 * the amount of memory in the system.
2232	 */
2233	if (has_smap && Maxmem > atop(physmap[physmap_idx + 1]))
2234		Maxmem = atop(physmap[physmap_idx + 1]);
2235
2236	/*
2237	 * By default enable the memory test on real hardware, and disable
2238	 * it if we appear to be running in a VM.  This avoids touching all
2239	 * pages unnecessarily, which doesn't matter on real hardware but is
2240	 * bad for shared VM hosts.  Use a general name so that
2241	 * one could eventually do more with the code than just disable it.
2242	 */
2243	memtest = (vm_guest > VM_GUEST_NO) ? 0 : 1;
2244	TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
2245
2246	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2247	    (boothowto & RB_VERBOSE))
2248		printf("Physical memory use set to %ldK\n", Maxmem * 4);
2249
2250	/*
2251	 * If Maxmem has been increased beyond what the system has detected,
2252	 * extend the last memory segment to the new limit.
2253	 */
2254	if (atop(physmap[physmap_idx + 1]) < Maxmem)
2255		physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
2256
2257	/* call pmap initialization to make new kernel address space */
2258	pmap_bootstrap(first);
2259
2260	/*
2261	 * Size up each available chunk of physical memory.
2262	 */
2263	physmap[0] = PAGE_SIZE;		/* mask off page 0 */
2264	pa_indx = 0;
2265	da_indx = 1;
2266	phys_avail[pa_indx++] = physmap[0];
2267	phys_avail[pa_indx] = physmap[0];
2268	dump_avail[da_indx] = physmap[0];
2269	pte = CMAP3;
2270
2271	/*
2272	 * Get dcons buffer address
2273	 */
2274	if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
2275	    getenv_quad("dcons.size", &dcons_size) == 0)
2276		dcons_addr = 0;
2277
2278	/*
2279	 * physmap is in bytes, so when converting to page boundaries,
2280	 * round up the start address and round down the end address.
2281	 */
2282	for (i = 0; i <= physmap_idx; i += 2) {
2283		vm_paddr_t end;
2284
2285		end = ptoa((vm_paddr_t)Maxmem);
2286		if (physmap[i + 1] < end)
2287			end = trunc_page(physmap[i + 1]);
2288		for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
2289			int tmp, page_bad, full;
2290			int *ptr = (int *)CADDR3;
2291
2292			full = FALSE;
2293			/*
2294			 * block out kernel memory as not available.
2295			 */
2296			if (pa >= KERNLOAD && pa < first)
2297				goto do_dump_avail;
2298
2299			/*
2300			 * block out dcons buffer
2301			 */
2302			if (dcons_addr > 0
2303			    && pa >= trunc_page(dcons_addr)
2304			    && pa < dcons_addr + dcons_size)
2305				goto do_dump_avail;
2306
2307			page_bad = FALSE;
2308			if (memtest == 0)
2309				goto skip_memtest;
2310
2311			/*
2312			 * map page into kernel: valid, read/write,non-cacheable
2313			 */
2314			*pte = pa | PG_V | PG_RW | PG_N;
2315			invltlb();
2316
2317			tmp = *(int *)ptr;
2318			/*
2319			 * Test for alternating 1's and 0's
2320			 */
2321			*(volatile int *)ptr = 0xaaaaaaaa;
2322			if (*(volatile int *)ptr != 0xaaaaaaaa)
2323				page_bad = TRUE;
2324			/*
2325			 * Test for alternating 0's and 1's
2326			 */
2327			*(volatile int *)ptr = 0x55555555;
2328			if (*(volatile int *)ptr != 0x55555555)
2329				page_bad = TRUE;
2330			/*
2331			 * Test for all 1's
2332			 */
2333			*(volatile int *)ptr = 0xffffffff;
2334			if (*(volatile int *)ptr != 0xffffffff)
2335				page_bad = TRUE;
2336			/*
2337			 * Test for all 0's
2338			 */
2339			*(volatile int *)ptr = 0x0;
2340			if (*(volatile int *)ptr != 0x0)
2341				page_bad = TRUE;
2342			/*
2343			 * Restore original value.
2344			 */
2345			*(int *)ptr = tmp;
2346
2347skip_memtest:
2348			/*
2349			 * Adjust array of valid/good pages.
2350			 */
2351			if (page_bad == TRUE)
2352				continue;
2353			/*
2354			 * If this good page is a continuation of the
2355			 * previous set of good pages, then just increase
2356			 * the end pointer. Otherwise start a new chunk.
2357			 * Note that "end" points one higher than end,
2358			 * making the range >= start and < end.
2359			 * If we're also doing a speculative memory
2360			 * test and we at or past the end, bump up Maxmem
2361			 * so that we keep going. The first bad page
2362			 * will terminate the loop.
2363			 */
2364			if (phys_avail[pa_indx] == pa) {
2365				phys_avail[pa_indx] += PAGE_SIZE;
2366			} else {
2367				pa_indx++;
2368				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2369					printf(
2370		"Too many holes in the physical address space, giving up\n");
2371					pa_indx--;
2372					full = TRUE;
2373					goto do_dump_avail;
2374				}
2375				phys_avail[pa_indx++] = pa;	/* start */
2376				phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
2377			}
2378			physmem++;
2379do_dump_avail:
2380			if (dump_avail[da_indx] == pa) {
2381				dump_avail[da_indx] += PAGE_SIZE;
2382			} else {
2383				da_indx++;
2384				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2385					da_indx--;
2386					goto do_next;
2387				}
2388				dump_avail[da_indx++] = pa;	/* start */
2389				dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
2390			}
2391do_next:
2392			if (full)
2393				break;
2394		}
2395	}
2396	*pte = 0;
2397	invltlb();
2398
2399	/*
2400	 * XXX
2401	 * The last chunk must contain at least one page plus the message
2402	 * buffer to avoid complicating other code (message buffer address
2403	 * calculation, etc.).
2404	 */
2405	while (phys_avail[pa_indx - 1] + PAGE_SIZE +
2406	    round_page(msgbufsize) >= phys_avail[pa_indx]) {
2407		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2408		phys_avail[pa_indx--] = 0;
2409		phys_avail[pa_indx--] = 0;
2410	}
2411
2412	Maxmem = atop(phys_avail[pa_indx]);
2413
2414	/* Trim off space for the message buffer. */
2415	phys_avail[pa_indx] -= round_page(msgbufsize);
2416
2417	/* Map the message buffer. */
2418	for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE)
2419		pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
2420		    off);
2421}
2422#endif /* PC98 */
2423
2424static void
2425i386_kdb_init(void)
2426{
2427#ifdef DDB
2428	db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab);
2429#endif
2430	kdb_init();
2431#ifdef KDB
2432	if (boothowto & RB_KDB)
2433		kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
2434#endif
2435}
2436
2437register_t
2438init386(int first)
2439{
2440	struct gate_descriptor *gdp;
2441	int gsel_tss, metadata_missing, x, pa;
2442	struct pcpu *pc;
2443	struct xstate_hdr *xhdr;
2444	int late_console;
2445
2446	thread0.td_kstack = proc0kstack;
2447	thread0.td_kstack_pages = TD0_KSTACK_PAGES;
2448
2449	/*
2450 	 * This may be done better later if it gets more high level
2451 	 * components in it. If so just link td->td_proc here.
2452	 */
2453	proc_linkup0(&proc0, &thread0);
2454
2455#ifdef PC98
2456	/*
2457	 * Initialize DMAC
2458	 */
2459	pc98_init_dmac();
2460#endif
2461
2462	metadata_missing = 0;
2463	if (bootinfo.bi_modulep) {
2464		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2465		preload_bootstrap_relocate(KERNBASE);
2466	} else {
2467		metadata_missing = 1;
2468	}
2469
2470	if (bootinfo.bi_envp != 0)
2471		init_static_kenv((char *)bootinfo.bi_envp + KERNBASE, 0);
2472	else
2473		init_static_kenv(NULL, 0);
2474
2475	/* Init basic tunables, hz etc */
2476	init_param1();
2477
2478	/*
2479	 * Make gdt memory segments.  All segments cover the full 4GB
2480	 * of address space and permissions are enforced at page level.
2481	 */
2482	gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
2483	gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
2484	gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1);
2485	gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1);
2486	gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1);
2487	gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1);
2488
2489	pc = &__pcpu[0];
2490	gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1);
2491	gdt_segs[GPRIV_SEL].ssd_base = (int) pc;
2492	gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss;
2493
2494	for (x = 0; x < NGDT; x++)
2495		ssdtosd(&gdt_segs[x], &gdt[x].sd);
2496
2497	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2498	r_gdt.rd_base =  (int) gdt;
2499	mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN);
2500	lgdt(&r_gdt);
2501
2502	pcpu_init(pc, 0, sizeof(struct pcpu));
2503	for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE)
2504		pmap_kenter(pa + KERNBASE, pa);
2505	dpcpu_init((void *)(first + KERNBASE), 0);
2506	first += DPCPU_SIZE;
2507	PCPU_SET(prvspace, pc);
2508	PCPU_SET(curthread, &thread0);
2509	/* Non-late cninit() and printf() can be moved up to here. */
2510
2511	/*
2512	 * Initialize mutexes.
2513	 *
2514	 * icu_lock: in order to allow an interrupt to occur in a critical
2515	 * 	     section, to set pcpu->ipending (etc...) properly, we
2516	 *	     must be able to get the icu lock, so it can't be
2517	 *	     under witness.
2518	 */
2519	mutex_init();
2520	mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE);
2521
2522	/* make ldt memory segments */
2523	ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1);
2524	ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1);
2525	for (x = 0; x < nitems(ldt_segs); x++)
2526		ssdtosd(&ldt_segs[x], &ldt[x].sd);
2527
2528	_default_ldt = GSEL(GLDT_SEL, SEL_KPL);
2529	lldt(_default_ldt);
2530	PCPU_SET(currentldt, _default_ldt);
2531
2532	/* exceptions */
2533	for (x = 0; x < NIDT; x++)
2534		setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL,
2535		    GSEL(GCODE_SEL, SEL_KPL));
2536	setidt(IDT_DE, &IDTVEC(div),  SDT_SYS386TGT, SEL_KPL,
2537	    GSEL(GCODE_SEL, SEL_KPL));
2538	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYS386IGT, SEL_KPL,
2539	    GSEL(GCODE_SEL, SEL_KPL));
2540	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYS386IGT, SEL_KPL,
2541	    GSEL(GCODE_SEL, SEL_KPL));
2542 	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYS386IGT, SEL_UPL,
2543	    GSEL(GCODE_SEL, SEL_KPL));
2544	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYS386TGT, SEL_UPL,
2545	    GSEL(GCODE_SEL, SEL_KPL));
2546	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYS386TGT, SEL_KPL,
2547	    GSEL(GCODE_SEL, SEL_KPL));
2548	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2549	    GSEL(GCODE_SEL, SEL_KPL));
2550	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYS386TGT, SEL_KPL
2551	    , GSEL(GCODE_SEL, SEL_KPL));
2552	setidt(IDT_DF, 0,  SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
2553	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYS386TGT, SEL_KPL,
2554	    GSEL(GCODE_SEL, SEL_KPL));
2555	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYS386TGT, SEL_KPL,
2556	    GSEL(GCODE_SEL, SEL_KPL));
2557	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYS386TGT, SEL_KPL,
2558	    GSEL(GCODE_SEL, SEL_KPL));
2559	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYS386TGT, SEL_KPL,
2560	    GSEL(GCODE_SEL, SEL_KPL));
2561	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2562	    GSEL(GCODE_SEL, SEL_KPL));
2563	setidt(IDT_PF, &IDTVEC(page),  SDT_SYS386IGT, SEL_KPL,
2564	    GSEL(GCODE_SEL, SEL_KPL));
2565	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYS386TGT, SEL_KPL,
2566	    GSEL(GCODE_SEL, SEL_KPL));
2567	setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL,
2568	    GSEL(GCODE_SEL, SEL_KPL));
2569	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYS386TGT, SEL_KPL,
2570	    GSEL(GCODE_SEL, SEL_KPL));
2571	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL,
2572	    GSEL(GCODE_SEL, SEL_KPL));
2573 	setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL,
2574	    GSEL(GCODE_SEL, SEL_KPL));
2575#ifdef KDTRACE_HOOKS
2576	setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL,
2577	    GSEL(GCODE_SEL, SEL_KPL));
2578#endif
2579#ifdef XENHVM
2580	setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_UPL,
2581	    GSEL(GCODE_SEL, SEL_KPL));
2582#endif
2583
2584	r_idt.rd_limit = sizeof(idt0) - 1;
2585	r_idt.rd_base = (int) idt;
2586	lidt(&r_idt);
2587
2588#ifdef XBOX
2589	/*
2590	 * The following code queries the PCI ID of 0:0:0. For the XBOX,
2591	 * This should be 0x10de / 0x02a5.
2592	 *
2593	 * This is exactly what Linux does.
2594	 */
2595	outl(0xcf8, 0x80000000);
2596	if (inl(0xcfc) == 0x02a510de) {
2597		arch_i386_is_xbox = 1;
2598		pic16l_setled(XBOX_LED_GREEN);
2599
2600		/*
2601		 * We are an XBOX, but we may have either 64MB or 128MB of
2602		 * memory. The PCI host bridge should be programmed for this,
2603		 * so we just query it.
2604		 */
2605		outl(0xcf8, 0x80000084);
2606		arch_i386_xbox_memsize = (inl(0xcfc) == 0x7FFFFFF) ? 128 : 64;
2607	}
2608#endif /* XBOX */
2609
2610	/*
2611	 * Initialize the clock before the console so that console
2612	 * initialization can use DELAY().
2613	 */
2614	clock_init();
2615
2616	finishidentcpu();	/* Final stage of CPU initialization */
2617	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYS386TGT, SEL_KPL,
2618	    GSEL(GCODE_SEL, SEL_KPL));
2619	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYS386TGT, SEL_KPL,
2620	    GSEL(GCODE_SEL, SEL_KPL));
2621	initializecpu();	/* Initialize CPU registers */
2622	initializecpucache();
2623
2624	/* pointer to selector slot for %fs/%gs */
2625	PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd);
2626
2627	dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2628	    dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)];
2629	dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2630	    dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2631#if defined(PAE) || defined(PAE_TABLES)
2632	dblfault_tss.tss_cr3 = (int)IdlePDPT;
2633#else
2634	dblfault_tss.tss_cr3 = (int)IdlePTD;
2635#endif
2636	dblfault_tss.tss_eip = (int)dblfault_handler;
2637	dblfault_tss.tss_eflags = PSL_KERNEL;
2638	dblfault_tss.tss_ds = dblfault_tss.tss_es =
2639	    dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2640	dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2641	dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2642	dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2643
2644	/* Initialize the tss (except for the final esp0) early for vm86. */
2645	PCPU_SET(common_tss.tss_esp0, thread0.td_kstack +
2646	    thread0.td_kstack_pages * PAGE_SIZE - 16);
2647	PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
2648	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2649	PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd);
2650	PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
2651	PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
2652	ltr(gsel_tss);
2653
2654	/* Initialize the PIC early for vm86 calls. */
2655#ifdef DEV_ISA
2656#ifdef DEV_ATPIC
2657#ifndef PC98
2658	elcr_probe();
2659#endif
2660	atpic_startup();
2661#else
2662	/* Reset and mask the atpics and leave them shut down. */
2663	atpic_reset();
2664
2665	/*
2666	 * Point the ICU spurious interrupt vectors at the APIC spurious
2667	 * interrupt handler.
2668	 */
2669	setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2670	    GSEL(GCODE_SEL, SEL_KPL));
2671	setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL,
2672	    GSEL(GCODE_SEL, SEL_KPL));
2673#endif
2674#endif
2675
2676	/*
2677	 * The console and kdb should be initialized even earlier than here,
2678	 * but some console drivers don't work until after getmemsize().
2679	 * Default to late console initialization to support these drivers.
2680	 * This loses mainly printf()s in getmemsize() and early debugging.
2681	 */
2682	late_console = 1;
2683	TUNABLE_INT_FETCH("debug.late_console", &late_console);
2684	if (!late_console) {
2685		cninit();
2686		i386_kdb_init();
2687	}
2688
2689	vm86_initialize();
2690	getmemsize(first);
2691	init_param2(physmem);
2692
2693	/* now running on new page tables, configured,and u/iom is accessible */
2694
2695	if (late_console)
2696		cninit();
2697
2698	if (metadata_missing)
2699		printf("WARNING: loader(8) metadata is missing!\n");
2700
2701	if (late_console)
2702		i386_kdb_init();
2703
2704	msgbufinit(msgbufp, msgbufsize);
2705	npxinit(true);
2706	/*
2707	 * Set up thread0 pcb after npxinit calculated pcb + fpu save
2708	 * area size.  Zero out the extended state header in fpu save
2709	 * area.
2710	 */
2711	thread0.td_pcb = get_pcb_td(&thread0);
2712	bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
2713	if (use_xsave) {
2714		xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
2715		    1);
2716		xhdr->xstate_bv = xsave_mask;
2717	}
2718	PCPU_SET(curpcb, thread0.td_pcb);
2719	/* Move esp0 in the tss to its final place. */
2720	/* Note: -16 is so we can grow the trapframe if we came from vm86 */
2721	PCPU_SET(common_tss.tss_esp0, (vm_offset_t)thread0.td_pcb - 16);
2722	gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;	/* clear busy bit */
2723	ltr(gsel_tss);
2724
2725	/* make a call gate to reenter kernel with */
2726	gdp = &ldt[LSYS5CALLS_SEL].gd;
2727
2728	x = (int) &IDTVEC(lcall_syscall);
2729	gdp->gd_looffset = x;
2730	gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2731	gdp->gd_stkcpy = 1;
2732	gdp->gd_type = SDT_SYS386CGT;
2733	gdp->gd_dpl = SEL_UPL;
2734	gdp->gd_p = 1;
2735	gdp->gd_hioffset = x >> 16;
2736
2737	/* XXX does this work? */
2738	/* XXX yes! */
2739	ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2740	ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2741
2742	/* transfer to user mode */
2743
2744	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2745	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2746
2747	/* setup proc 0's pcb */
2748	thread0.td_pcb->pcb_flags = 0;
2749#if defined(PAE) || defined(PAE_TABLES)
2750	thread0.td_pcb->pcb_cr3 = (int)IdlePDPT;
2751#else
2752	thread0.td_pcb->pcb_cr3 = (int)IdlePTD;
2753#endif
2754	thread0.td_pcb->pcb_ext = 0;
2755	thread0.td_frame = &proc0_tf;
2756
2757	cpu_probe_amdc1e();
2758
2759#ifdef FDT
2760	x86_init_fdt();
2761#endif
2762
2763	/* Location of kernel stack for locore */
2764	return ((register_t)thread0.td_pcb);
2765}
2766
2767void
2768cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
2769{
2770
2771	pcpu->pc_acpi_id = 0xffffffff;
2772}
2773
2774#ifndef PC98
2775static int
2776smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
2777{
2778	struct bios_smap *smapbase;
2779	struct bios_smap_xattr smap;
2780	caddr_t kmdp;
2781	uint32_t *smapattr;
2782	int count, error, i;
2783
2784	/* Retrieve the system memory map from the loader. */
2785	kmdp = preload_search_by_type("elf kernel");
2786	if (kmdp == NULL)
2787		kmdp = preload_search_by_type("elf32 kernel");
2788	smapbase = (struct bios_smap *)preload_search_info(kmdp,
2789	    MODINFO_METADATA | MODINFOMD_SMAP);
2790	if (smapbase == NULL)
2791		return (0);
2792	smapattr = (uint32_t *)preload_search_info(kmdp,
2793	    MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
2794	count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase);
2795	error = 0;
2796	for (i = 0; i < count; i++) {
2797		smap.base = smapbase[i].base;
2798		smap.length = smapbase[i].length;
2799		smap.type = smapbase[i].type;
2800		if (smapattr != NULL)
2801			smap.xattr = smapattr[i];
2802		else
2803			smap.xattr = 0;
2804		error = SYSCTL_OUT(req, &smap, sizeof(smap));
2805	}
2806	return (error);
2807}
2808SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
2809    smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
2810#endif /* !PC98 */
2811
2812void
2813spinlock_enter(void)
2814{
2815	struct thread *td;
2816	register_t flags;
2817
2818	td = curthread;
2819	if (td->td_md.md_spinlock_count == 0) {
2820		flags = intr_disable();
2821		td->td_md.md_spinlock_count = 1;
2822		td->td_md.md_saved_flags = flags;
2823	} else
2824		td->td_md.md_spinlock_count++;
2825	critical_enter();
2826}
2827
2828void
2829spinlock_exit(void)
2830{
2831	struct thread *td;
2832	register_t flags;
2833
2834	td = curthread;
2835	critical_exit();
2836	flags = td->td_md.md_saved_flags;
2837	td->td_md.md_spinlock_count--;
2838	if (td->td_md.md_spinlock_count == 0)
2839		intr_restore(flags);
2840}
2841
2842#if defined(I586_CPU) && !defined(NO_F00F_HACK)
2843static void f00f_hack(void *unused);
2844SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2845
2846static void
2847f00f_hack(void *unused)
2848{
2849	struct gate_descriptor *new_idt;
2850	vm_offset_t tmp;
2851
2852	if (!has_f00f_bug)
2853		return;
2854
2855	GIANT_REQUIRED;
2856
2857	printf("Intel Pentium detected, installing workaround for F00F bug\n");
2858
2859	tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO);
2860	if (tmp == 0)
2861		panic("kmem_malloc returned 0");
2862
2863	/* Put the problematic entry (#6) at the end of the lower page. */
2864	new_idt = (struct gate_descriptor*)
2865	    (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor));
2866	bcopy(idt, new_idt, sizeof(idt0));
2867	r_idt.rd_base = (u_int)new_idt;
2868	lidt(&r_idt);
2869	idt = new_idt;
2870	pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ);
2871}
2872#endif /* defined(I586_CPU) && !NO_F00F_HACK */
2873
2874/*
2875 * Construct a PCB from a trapframe. This is called from kdb_trap() where
2876 * we want to start a backtrace from the function that caused us to enter
2877 * the debugger. We have the context in the trapframe, but base the trace
2878 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
2879 * enough for a backtrace.
2880 */
2881void
2882makectx(struct trapframe *tf, struct pcb *pcb)
2883{
2884
2885	pcb->pcb_edi = tf->tf_edi;
2886	pcb->pcb_esi = tf->tf_esi;
2887	pcb->pcb_ebp = tf->tf_ebp;
2888	pcb->pcb_ebx = tf->tf_ebx;
2889	pcb->pcb_eip = tf->tf_eip;
2890	pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8;
2891	pcb->pcb_gs = rgs();
2892}
2893
2894int
2895ptrace_set_pc(struct thread *td, u_long addr)
2896{
2897
2898	td->td_frame->tf_eip = addr;
2899	return (0);
2900}
2901
2902int
2903ptrace_single_step(struct thread *td)
2904{
2905	td->td_frame->tf_eflags |= PSL_T;
2906	return (0);
2907}
2908
2909int
2910ptrace_clear_single_step(struct thread *td)
2911{
2912	td->td_frame->tf_eflags &= ~PSL_T;
2913	return (0);
2914}
2915
2916int
2917fill_regs(struct thread *td, struct reg *regs)
2918{
2919	struct pcb *pcb;
2920	struct trapframe *tp;
2921
2922	tp = td->td_frame;
2923	pcb = td->td_pcb;
2924	regs->r_gs = pcb->pcb_gs;
2925	return (fill_frame_regs(tp, regs));
2926}
2927
2928int
2929fill_frame_regs(struct trapframe *tp, struct reg *regs)
2930{
2931	regs->r_fs = tp->tf_fs;
2932	regs->r_es = tp->tf_es;
2933	regs->r_ds = tp->tf_ds;
2934	regs->r_edi = tp->tf_edi;
2935	regs->r_esi = tp->tf_esi;
2936	regs->r_ebp = tp->tf_ebp;
2937	regs->r_ebx = tp->tf_ebx;
2938	regs->r_edx = tp->tf_edx;
2939	regs->r_ecx = tp->tf_ecx;
2940	regs->r_eax = tp->tf_eax;
2941	regs->r_eip = tp->tf_eip;
2942	regs->r_cs = tp->tf_cs;
2943	regs->r_eflags = tp->tf_eflags;
2944	regs->r_esp = tp->tf_esp;
2945	regs->r_ss = tp->tf_ss;
2946	return (0);
2947}
2948
2949int
2950set_regs(struct thread *td, struct reg *regs)
2951{
2952	struct pcb *pcb;
2953	struct trapframe *tp;
2954
2955	tp = td->td_frame;
2956	if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2957	    !CS_SECURE(regs->r_cs))
2958		return (EINVAL);
2959	pcb = td->td_pcb;
2960	tp->tf_fs = regs->r_fs;
2961	tp->tf_es = regs->r_es;
2962	tp->tf_ds = regs->r_ds;
2963	tp->tf_edi = regs->r_edi;
2964	tp->tf_esi = regs->r_esi;
2965	tp->tf_ebp = regs->r_ebp;
2966	tp->tf_ebx = regs->r_ebx;
2967	tp->tf_edx = regs->r_edx;
2968	tp->tf_ecx = regs->r_ecx;
2969	tp->tf_eax = regs->r_eax;
2970	tp->tf_eip = regs->r_eip;
2971	tp->tf_cs = regs->r_cs;
2972	tp->tf_eflags = regs->r_eflags;
2973	tp->tf_esp = regs->r_esp;
2974	tp->tf_ss = regs->r_ss;
2975	pcb->pcb_gs = regs->r_gs;
2976	return (0);
2977}
2978
2979int
2980fill_fpregs(struct thread *td, struct fpreg *fpregs)
2981{
2982
2983	KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
2984	    P_SHOULDSTOP(td->td_proc),
2985	    ("not suspended thread %p", td));
2986	npxgetregs(td);
2987	if (cpu_fxsr)
2988		npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm,
2989		    (struct save87 *)fpregs);
2990	else
2991		bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs,
2992		    sizeof(*fpregs));
2993	return (0);
2994}
2995
2996int
2997set_fpregs(struct thread *td, struct fpreg *fpregs)
2998{
2999
3000	if (cpu_fxsr)
3001		npx_set_fpregs_xmm((struct save87 *)fpregs,
3002		    &get_pcb_user_save_td(td)->sv_xmm);
3003	else
3004		bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87,
3005		    sizeof(*fpregs));
3006	npxuserinited(td);
3007	return (0);
3008}
3009
3010/*
3011 * Get machine context.
3012 */
3013int
3014get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
3015{
3016	struct trapframe *tp;
3017	struct segment_descriptor *sdp;
3018
3019	tp = td->td_frame;
3020
3021	PROC_LOCK(curthread->td_proc);
3022	mcp->mc_onstack = sigonstack(tp->tf_esp);
3023	PROC_UNLOCK(curthread->td_proc);
3024	mcp->mc_gs = td->td_pcb->pcb_gs;
3025	mcp->mc_fs = tp->tf_fs;
3026	mcp->mc_es = tp->tf_es;
3027	mcp->mc_ds = tp->tf_ds;
3028	mcp->mc_edi = tp->tf_edi;
3029	mcp->mc_esi = tp->tf_esi;
3030	mcp->mc_ebp = tp->tf_ebp;
3031	mcp->mc_isp = tp->tf_isp;
3032	mcp->mc_eflags = tp->tf_eflags;
3033	if (flags & GET_MC_CLEAR_RET) {
3034		mcp->mc_eax = 0;
3035		mcp->mc_edx = 0;
3036		mcp->mc_eflags &= ~PSL_C;
3037	} else {
3038		mcp->mc_eax = tp->tf_eax;
3039		mcp->mc_edx = tp->tf_edx;
3040	}
3041	mcp->mc_ebx = tp->tf_ebx;
3042	mcp->mc_ecx = tp->tf_ecx;
3043	mcp->mc_eip = tp->tf_eip;
3044	mcp->mc_cs = tp->tf_cs;
3045	mcp->mc_esp = tp->tf_esp;
3046	mcp->mc_ss = tp->tf_ss;
3047	mcp->mc_len = sizeof(*mcp);
3048	get_fpcontext(td, mcp, NULL, 0);
3049	sdp = &td->td_pcb->pcb_fsd;
3050	mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3051	sdp = &td->td_pcb->pcb_gsd;
3052	mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase;
3053	mcp->mc_flags = 0;
3054	mcp->mc_xfpustate = 0;
3055	mcp->mc_xfpustate_len = 0;
3056	bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2));
3057	return (0);
3058}
3059
3060/*
3061 * Set machine context.
3062 *
3063 * However, we don't set any but the user modifiable flags, and we won't
3064 * touch the cs selector.
3065 */
3066int
3067set_mcontext(struct thread *td, mcontext_t *mcp)
3068{
3069	struct trapframe *tp;
3070	char *xfpustate;
3071	int eflags, ret;
3072
3073	tp = td->td_frame;
3074	if (mcp->mc_len != sizeof(*mcp) ||
3075	    (mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
3076		return (EINVAL);
3077	eflags = (mcp->mc_eflags & PSL_USERCHANGE) |
3078	    (tp->tf_eflags & ~PSL_USERCHANGE);
3079	if (mcp->mc_flags & _MC_HASFPXSTATE) {
3080		if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
3081		    sizeof(union savefpu))
3082			return (EINVAL);
3083		xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
3084		ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
3085		    mcp->mc_xfpustate_len);
3086		if (ret != 0)
3087			return (ret);
3088	} else
3089		xfpustate = NULL;
3090	ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
3091	if (ret != 0)
3092		return (ret);
3093	tp->tf_fs = mcp->mc_fs;
3094	tp->tf_es = mcp->mc_es;
3095	tp->tf_ds = mcp->mc_ds;
3096	tp->tf_edi = mcp->mc_edi;
3097	tp->tf_esi = mcp->mc_esi;
3098	tp->tf_ebp = mcp->mc_ebp;
3099	tp->tf_ebx = mcp->mc_ebx;
3100	tp->tf_edx = mcp->mc_edx;
3101	tp->tf_ecx = mcp->mc_ecx;
3102	tp->tf_eax = mcp->mc_eax;
3103	tp->tf_eip = mcp->mc_eip;
3104	tp->tf_eflags = eflags;
3105	tp->tf_esp = mcp->mc_esp;
3106	tp->tf_ss = mcp->mc_ss;
3107	td->td_pcb->pcb_gs = mcp->mc_gs;
3108	return (0);
3109}
3110
3111static void
3112get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
3113    size_t xfpusave_len)
3114{
3115	size_t max_len, len;
3116
3117	mcp->mc_ownedfp = npxgetregs(td);
3118	bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
3119	    sizeof(mcp->mc_fpstate));
3120	mcp->mc_fpformat = npxformat();
3121	if (!use_xsave || xfpusave_len == 0)
3122		return;
3123	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
3124	len = xfpusave_len;
3125	if (len > max_len) {
3126		len = max_len;
3127		bzero(xfpusave + max_len, len - max_len);
3128	}
3129	mcp->mc_flags |= _MC_HASFPXSTATE;
3130	mcp->mc_xfpustate_len = len;
3131	bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
3132}
3133
3134static int
3135set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
3136    size_t xfpustate_len)
3137{
3138	union savefpu *fpstate;
3139	int error;
3140
3141	if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
3142		return (0);
3143	else if (mcp->mc_fpformat != _MC_FPFMT_387 &&
3144	    mcp->mc_fpformat != _MC_FPFMT_XMM)
3145		return (EINVAL);
3146	else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
3147		/* We don't care what state is left in the FPU or PCB. */
3148		fpstate_drop(td);
3149		error = 0;
3150	} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
3151	    mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
3152		fpstate = (union savefpu *)&mcp->mc_fpstate;
3153		if (cpu_fxsr)
3154			fpstate->sv_xmm.sv_env.en_mxcsr &= cpu_mxcsr_mask;
3155		error = npxsetregs(td, fpstate, xfpustate, xfpustate_len);
3156	} else
3157		return (EINVAL);
3158	return (error);
3159}
3160
3161static void
3162fpstate_drop(struct thread *td)
3163{
3164
3165	KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
3166	critical_enter();
3167	if (PCPU_GET(fpcurthread) == td)
3168		npxdrop();
3169	/*
3170	 * XXX force a full drop of the npx.  The above only drops it if we
3171	 * owned it.  npxgetregs() has the same bug in the !cpu_fxsr case.
3172	 *
3173	 * XXX I don't much like npxgetregs()'s semantics of doing a full
3174	 * drop.  Dropping only to the pcb matches fnsave's behaviour.
3175	 * We only need to drop to !PCB_INITDONE in sendsig().  But
3176	 * sendsig() is the only caller of npxgetregs()... perhaps we just
3177	 * have too many layers.
3178	 */
3179	curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE |
3180	    PCB_NPXUSERINITDONE);
3181	critical_exit();
3182}
3183
3184int
3185fill_dbregs(struct thread *td, struct dbreg *dbregs)
3186{
3187	struct pcb *pcb;
3188
3189	if (td == NULL) {
3190		dbregs->dr[0] = rdr0();
3191		dbregs->dr[1] = rdr1();
3192		dbregs->dr[2] = rdr2();
3193		dbregs->dr[3] = rdr3();
3194		dbregs->dr[4] = rdr4();
3195		dbregs->dr[5] = rdr5();
3196		dbregs->dr[6] = rdr6();
3197		dbregs->dr[7] = rdr7();
3198	} else {
3199		pcb = td->td_pcb;
3200		dbregs->dr[0] = pcb->pcb_dr0;
3201		dbregs->dr[1] = pcb->pcb_dr1;
3202		dbregs->dr[2] = pcb->pcb_dr2;
3203		dbregs->dr[3] = pcb->pcb_dr3;
3204		dbregs->dr[4] = 0;
3205		dbregs->dr[5] = 0;
3206		dbregs->dr[6] = pcb->pcb_dr6;
3207		dbregs->dr[7] = pcb->pcb_dr7;
3208	}
3209	return (0);
3210}
3211
3212int
3213set_dbregs(struct thread *td, struct dbreg *dbregs)
3214{
3215	struct pcb *pcb;
3216	int i;
3217
3218	if (td == NULL) {
3219		load_dr0(dbregs->dr[0]);
3220		load_dr1(dbregs->dr[1]);
3221		load_dr2(dbregs->dr[2]);
3222		load_dr3(dbregs->dr[3]);
3223		load_dr4(dbregs->dr[4]);
3224		load_dr5(dbregs->dr[5]);
3225		load_dr6(dbregs->dr[6]);
3226		load_dr7(dbregs->dr[7]);
3227	} else {
3228		/*
3229		 * Don't let an illegal value for dr7 get set.	Specifically,
3230		 * check for undefined settings.  Setting these bit patterns
3231		 * result in undefined behaviour and can lead to an unexpected
3232		 * TRCTRAP.
3233		 */
3234		for (i = 0; i < 4; i++) {
3235			if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
3236				return (EINVAL);
3237			if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02)
3238				return (EINVAL);
3239		}
3240
3241		pcb = td->td_pcb;
3242
3243		/*
3244		 * Don't let a process set a breakpoint that is not within the
3245		 * process's address space.  If a process could do this, it
3246		 * could halt the system by setting a breakpoint in the kernel
3247		 * (if ddb was enabled).  Thus, we need to check to make sure
3248		 * that no breakpoints are being enabled for addresses outside
3249		 * process's address space.
3250		 *
3251		 * XXX - what about when the watched area of the user's
3252		 * address space is written into from within the kernel
3253		 * ... wouldn't that still cause a breakpoint to be generated
3254		 * from within kernel mode?
3255		 */
3256
3257		if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
3258			/* dr0 is enabled */
3259			if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
3260				return (EINVAL);
3261		}
3262
3263		if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
3264			/* dr1 is enabled */
3265			if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
3266				return (EINVAL);
3267		}
3268
3269		if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
3270			/* dr2 is enabled */
3271			if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
3272				return (EINVAL);
3273		}
3274
3275		if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
3276			/* dr3 is enabled */
3277			if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
3278				return (EINVAL);
3279		}
3280
3281		pcb->pcb_dr0 = dbregs->dr[0];
3282		pcb->pcb_dr1 = dbregs->dr[1];
3283		pcb->pcb_dr2 = dbregs->dr[2];
3284		pcb->pcb_dr3 = dbregs->dr[3];
3285		pcb->pcb_dr6 = dbregs->dr[6];
3286		pcb->pcb_dr7 = dbregs->dr[7];
3287
3288		pcb->pcb_flags |= PCB_DBREGS;
3289	}
3290
3291	return (0);
3292}
3293
3294/*
3295 * Return > 0 if a hardware breakpoint has been hit, and the
3296 * breakpoint was in user space.  Return 0, otherwise.
3297 */
3298int
3299user_dbreg_trap(void)
3300{
3301        u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
3302        u_int32_t bp;       /* breakpoint bits extracted from dr6 */
3303        int nbp;            /* number of breakpoints that triggered */
3304        caddr_t addr[4];    /* breakpoint addresses */
3305        int i;
3306
3307        dr7 = rdr7();
3308        if ((dr7 & 0x000000ff) == 0) {
3309                /*
3310                 * all GE and LE bits in the dr7 register are zero,
3311                 * thus the trap couldn't have been caused by the
3312                 * hardware debug registers
3313                 */
3314                return 0;
3315        }
3316
3317        nbp = 0;
3318        dr6 = rdr6();
3319        bp = dr6 & 0x0000000f;
3320
3321        if (!bp) {
3322                /*
3323                 * None of the breakpoint bits are set meaning this
3324                 * trap was not caused by any of the debug registers
3325                 */
3326                return 0;
3327        }
3328
3329        /*
3330         * at least one of the breakpoints were hit, check to see
3331         * which ones and if any of them are user space addresses
3332         */
3333
3334        if (bp & 0x01) {
3335                addr[nbp++] = (caddr_t)rdr0();
3336        }
3337        if (bp & 0x02) {
3338                addr[nbp++] = (caddr_t)rdr1();
3339        }
3340        if (bp & 0x04) {
3341                addr[nbp++] = (caddr_t)rdr2();
3342        }
3343        if (bp & 0x08) {
3344                addr[nbp++] = (caddr_t)rdr3();
3345        }
3346
3347        for (i = 0; i < nbp; i++) {
3348                if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
3349                        /*
3350                         * addr[i] is in user space
3351                         */
3352                        return nbp;
3353                }
3354        }
3355
3356        /*
3357         * None of the breakpoints are in user space.
3358         */
3359        return 0;
3360}
3361
3362#ifdef KDB
3363
3364/*
3365 * Provide inb() and outb() as functions.  They are normally only available as
3366 * inline functions, thus cannot be called from the debugger.
3367 */
3368
3369/* silence compiler warnings */
3370u_char inb_(u_short);
3371void outb_(u_short, u_char);
3372
3373u_char
3374inb_(u_short port)
3375{
3376	return inb(port);
3377}
3378
3379void
3380outb_(u_short port, u_char data)
3381{
3382	outb(port, data);
3383}
3384
3385#endif /* KDB */
3386