in_cksum.c revision 28270
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from tahoe:	in_cksum.c	1.2	86/01/05
34 *	from:		@(#)in_cksum.c	1.3 (Berkeley) 1/19/91
35 *	$Id: in_cksum.c,v 1.10 1997/02/22 09:32:20 peter Exp $
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/mbuf.h>
41#include <sys/socket.h>
42
43#include <netinet/in.h>
44#include <netinet/in_systm.h>
45#include <netinet/ip.h>
46
47#include <machine/in_cksum.h>
48
49/*
50 * Checksum routine for Internet Protocol family headers.
51 *
52 * This routine is very heavily used in the network
53 * code and should be modified for each CPU to be as fast as possible.
54 *
55 * This implementation is 386 version.
56 */
57
58#undef	ADDCARRY
59#define ADDCARRY(x)     if ((x) > 0xffff) (x) -= 0xffff
60#define REDUCE          {sum = (sum & 0xffff) + (sum >> 16); ADDCARRY(sum);}
61
62/*
63 * Thanks to gcc we don't have to guess
64 * which registers contain sum & w.
65 */
66#define ADD(n)	asm("addl " #n "(%2), %0" : "=r" (sum) : "0" (sum), "r" (w))
67#define ADDC(n)	asm("adcl " #n "(%2), %0" : "=r" (sum) : "0" (sum), "r" (w))
68#define LOAD(n)	asm volatile("movb " #n "(%1), %0" : "=r" (junk) : "r" (w))
69#define MOP	asm("adcl         $0, %0" : "=r" (sum) : "0" (sum))
70
71int
72in_cksum(m, len)
73	register struct mbuf *m;
74	register int len;
75{
76	register u_short *w;
77	register unsigned sum = 0;
78	register int mlen = 0;
79	int byte_swapped = 0;
80	union { char	c[2]; u_short	s; } su;
81
82	for (;m && len; m = m->m_next) {
83		if (m->m_len == 0)
84			continue;
85		w = mtod(m, u_short *);
86		if (mlen == -1) {
87			/*
88			 * The first byte of this mbuf is the continuation
89			 * of a word spanning between this mbuf and the
90			 * last mbuf.
91			 */
92
93			/* su.c[0] is already saved when scanning previous
94			 * mbuf.  sum was REDUCEd when we found mlen == -1
95			 */
96			su.c[1] = *(u_char *)w;
97			sum += su.s;
98			w = (u_short *)((char *)w + 1);
99			mlen = m->m_len - 1;
100			len--;
101		} else
102			mlen = m->m_len;
103		if (len < mlen)
104			mlen = len;
105		len -= mlen;
106		/*
107		 * Force to long boundary so we do longword aligned
108		 * memory operations
109		 */
110		if (3 & (int) w) {
111			REDUCE;
112			if ((1 & (int) w) && (mlen > 0)) {
113				sum <<= 8;
114				su.c[0] = *(char *)w;
115				w = (u_short *)((char *)w + 1);
116				mlen--;
117				byte_swapped = 1;
118			}
119			if ((2 & (int) w) && (mlen >= 2)) {
120				sum += *w++;
121				mlen -= 2;
122			}
123		}
124		/*
125		 * Advance to a 486 cache line boundary.
126		 */
127		if (4 & (int) w && mlen >= 4) {
128			ADD(0);
129			MOP;
130			w += 2;
131			mlen -= 4;
132		}
133		if (8 & (int) w && mlen >= 8) {
134			ADD(0);
135			ADDC(4);
136			MOP;
137			w += 4;
138			mlen -= 8;
139		}
140		/*
141		 * Do as much of the checksum as possible 32 bits at at time.
142		 * In fact, this loop is unrolled to make overhead from
143		 * branches &c small.
144		 */
145		mlen -= 1;
146		while ((mlen -= 32) >= 0) {
147			u_char junk;
148			/*
149			 * Add with carry 16 words and fold in the last
150			 * carry by adding a 0 with carry.
151			 *
152			 * The early ADD(16) and the LOAD(32) are to load
153			 * the next 2 cache lines in advance on 486's.  The
154			 * 486 has a penalty of 2 clock cycles for loading
155			 * a cache line, plus whatever time the external
156			 * memory takes to load the first word(s) addressed.
157			 * These penalties are unavoidable.  Subsequent
158			 * accesses to a cache line being loaded (and to
159			 * other external memory?) are delayed until the
160			 * whole load finishes.  These penalties are mostly
161			 * avoided by not accessing external memory for
162			 * 8 cycles after the ADD(16) and 12 cycles after
163			 * the LOAD(32).  The loop terminates when mlen
164			 * is initially 33 (not 32) to guaranteed that
165			 * the LOAD(32) is within bounds.
166			 */
167			ADD(16);
168			ADDC(0);
169			ADDC(4);
170			ADDC(8);
171			ADDC(12);
172			LOAD(32);
173			ADDC(20);
174			ADDC(24);
175			ADDC(28);
176			MOP;
177			w += 16;
178		}
179		mlen += 32 + 1;
180		if (mlen >= 32) {
181			ADD(16);
182			ADDC(0);
183			ADDC(4);
184			ADDC(8);
185			ADDC(12);
186			ADDC(20);
187			ADDC(24);
188			ADDC(28);
189			MOP;
190			w += 16;
191			mlen -= 32;
192		}
193		if (mlen >= 16) {
194			ADD(0);
195			ADDC(4);
196			ADDC(8);
197			ADDC(12);
198			MOP;
199			w += 8;
200			mlen -= 16;
201		}
202		if (mlen >= 8) {
203			ADD(0);
204			ADDC(4);
205			MOP;
206			w += 4;
207			mlen -= 8;
208		}
209		if (mlen == 0 && byte_swapped == 0)
210			continue;       /* worth 1% maybe ?? */
211		REDUCE;
212		while ((mlen -= 2) >= 0) {
213			sum += *w++;
214		}
215		if (byte_swapped) {
216			sum <<= 8;
217			byte_swapped = 0;
218			if (mlen == -1) {
219				su.c[1] = *(char *)w;
220				sum += su.s;
221				mlen = 0;
222			} else
223				mlen = -1;
224		} else if (mlen == -1)
225			/*
226			 * This mbuf has odd number of bytes.
227			 * There could be a word split betwen
228			 * this mbuf and the next mbuf.
229			 * Save the last byte (to prepend to next mbuf).
230			 */
231			su.c[0] = *(char *)w;
232	}
233
234	if (len)
235		printf("cksum: out of data\n");
236	if (mlen == -1) {
237		/* The last mbuf has odd # of bytes. Follow the
238		   standard (the odd byte is shifted left by 8 bits) */
239		su.c[1] = 0;
240		sum += su.s;
241	}
242	REDUCE;
243	return (~sum & 0xffff);
244}
245
246/*
247 * This is the exact same algorithm as above with a few exceptions:
248 * (1) it is designed to operate on buffers, not mbufs
249 * (2) it returns an intermediate form of the sum which has to be
250 *     explicitly finalized (but this can be delayed)
251 * (3) it accepts an intermediate sum
252 *
253 * This is particularly useful when building packets quickly,
254 * since one can compute the checksum of the pseudoheader ahead of
255 * time and then use this function to complete the work.  That way,
256 * the pseudoheader never actually has to exist in the packet buffer,
257 * which avoids needless duplication of work.
258 */
259in_psum_t
260in_cksum_partial(psum, w, len)
261	in_psum_t psum;
262	const u_short *w;
263	int len;
264{
265	register in_psum_t sum = psum;
266	int byte_swapped = 0;
267	union { char	c[2]; u_short	s; } su;
268
269	/*
270	 * Force to long boundary so we do longword aligned
271	 * memory operations
272	 */
273	if (3 & (int) w) {
274		REDUCE;
275		if ((1 & (int) w) && (len > 0)) {
276			sum <<= 8;
277			su.c[0] = *(char *)w;
278			w = (u_short *)((char *)w + 1);
279			len--;
280			byte_swapped = 1;
281		}
282		if ((2 & (int) w) && (len >= 2)) {
283			sum += *w++;
284			len -= 2;
285		}
286	}
287	/*
288	 * Advance to a 486 cache line boundary.
289	 */
290	if (4 & (int) w && len >= 4) {
291		ADD(0);
292		MOP;
293		w += 2;
294		len -= 4;
295	}
296	if (8 & (int) w && len >= 8) {
297		ADD(0);
298		ADDC(4);
299		MOP;
300		w += 4;
301		len -= 8;
302	}
303	/*
304	 * Do as much of the checksum as possible 32 bits at at time.
305	 * In fact, this loop is unrolled to make overhead from
306	 * branches &c small.
307	 */
308	len -= 1;
309	while ((len -= 32) >= 0) {
310		u_char junk;
311		/*
312		 * Add with carry 16 words and fold in the last
313		 * carry by adding a 0 with carry.
314		 *
315		 * The early ADD(16) and the LOAD(32) are to load
316		 * the next 2 cache lines in advance on 486's.  The
317		 * 486 has a penalty of 2 clock cycles for loading
318		 * a cache line, plus whatever time the external
319		 * memory takes to load the first word(s) addressed.
320		 * These penalties are unavoidable.  Subsequent
321		 * accesses to a cache line being loaded (and to
322		 * other external memory?) are delayed until the
323		 * whole load finishes.  These penalties are mostly
324		 * avoided by not accessing external memory for
325		 * 8 cycles after the ADD(16) and 12 cycles after
326		 * the LOAD(32).  The loop terminates when len
327		 * is initially 33 (not 32) to guaranteed that
328		 * the LOAD(32) is within bounds.
329		 */
330		ADD(16);
331		ADDC(0);
332		ADDC(4);
333		ADDC(8);
334		ADDC(12);
335		LOAD(32);
336		ADDC(20);
337		ADDC(24);
338		ADDC(28);
339		MOP;
340		w += 16;
341	}
342	len += 32 + 1;
343	if (len >= 32) {
344		ADD(16);
345		ADDC(0);
346		ADDC(4);
347		ADDC(8);
348		ADDC(12);
349		ADDC(20);
350		ADDC(24);
351		ADDC(28);
352		MOP;
353		w += 16;
354		len -= 32;
355	}
356	if (len >= 16) {
357		ADD(0);
358		ADDC(4);
359		ADDC(8);
360		ADDC(12);
361		MOP;
362		w += 8;
363		len -= 16;
364	}
365	if (len >= 8) {
366		ADD(0);
367		ADDC(4);
368		MOP;
369		w += 4;
370		len -= 8;
371	}
372	if (len == 0 && byte_swapped == 0)
373		goto out;
374	REDUCE;
375	while ((len -= 2) >= 0) {
376		sum += *w++;
377	}
378	if (byte_swapped) {
379		sum <<= 8;
380		byte_swapped = 0;
381		if (len == -1) {
382			su.c[1] = *(char *)w;
383			sum += su.s;
384			len = 0;
385		} else
386			len = -1;
387	} else if (len == -1) {
388		/*
389		 * This buffer has odd number of bytes.
390		 * There could be a word split betwen
391		 * this buffer and the next.
392		 */
393		su.c[0] = *(char *)w;
394	}
395out:
396	if (len == -1) {
397		/* The last buffer has odd # of bytes. Follow the
398		   standard (the odd byte is shifted left by 8 bits) */
399		su.c[1] = 0;
400		sum += su.s;
401	}
402	return sum;
403}
404
405int
406in_cksum_finalize(psum)
407	in_psum_t psum;
408{
409	in_psum_t sum = psum;
410	REDUCE;
411	return (sum & 0xffff);
412}
413