g_raid3.c revision 201567
1/*-
2 * Copyright (c) 2004-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/raid3/g_raid3.c 201567 2010-01-05 10:52:21Z mav $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/module.h>
34#include <sys/limits.h>
35#include <sys/lock.h>
36#include <sys/mutex.h>
37#include <sys/bio.h>
38#include <sys/sysctl.h>
39#include <sys/malloc.h>
40#include <sys/eventhandler.h>
41#include <vm/uma.h>
42#include <geom/geom.h>
43#include <sys/proc.h>
44#include <sys/kthread.h>
45#include <sys/sched.h>
46#include <geom/raid3/g_raid3.h>
47
48
49static MALLOC_DEFINE(M_RAID3, "raid3_data", "GEOM_RAID3 Data");
50
51SYSCTL_DECL(_kern_geom);
52SYSCTL_NODE(_kern_geom, OID_AUTO, raid3, CTLFLAG_RW, 0, "GEOM_RAID3 stuff");
53u_int g_raid3_debug = 0;
54TUNABLE_INT("kern.geom.raid3.debug", &g_raid3_debug);
55SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, debug, CTLFLAG_RW, &g_raid3_debug, 0,
56    "Debug level");
57static u_int g_raid3_timeout = 4;
58TUNABLE_INT("kern.geom.raid3.timeout", &g_raid3_timeout);
59SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, timeout, CTLFLAG_RW, &g_raid3_timeout,
60    0, "Time to wait on all raid3 components");
61static u_int g_raid3_idletime = 5;
62TUNABLE_INT("kern.geom.raid3.idletime", &g_raid3_idletime);
63SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, idletime, CTLFLAG_RW,
64    &g_raid3_idletime, 0, "Mark components as clean when idling");
65static u_int g_raid3_disconnect_on_failure = 1;
66TUNABLE_INT("kern.geom.raid3.disconnect_on_failure",
67    &g_raid3_disconnect_on_failure);
68SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, disconnect_on_failure, CTLFLAG_RW,
69    &g_raid3_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
70static u_int g_raid3_syncreqs = 2;
71TUNABLE_INT("kern.geom.raid3.sync_requests", &g_raid3_syncreqs);
72SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, sync_requests, CTLFLAG_RDTUN,
73    &g_raid3_syncreqs, 0, "Parallel synchronization I/O requests.");
74static u_int g_raid3_use_malloc = 0;
75TUNABLE_INT("kern.geom.raid3.use_malloc", &g_raid3_use_malloc);
76SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, use_malloc, CTLFLAG_RDTUN,
77    &g_raid3_use_malloc, 0, "Use malloc(9) instead of uma(9).");
78
79static u_int g_raid3_n64k = 50;
80TUNABLE_INT("kern.geom.raid3.n64k", &g_raid3_n64k);
81SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n64k, CTLFLAG_RD, &g_raid3_n64k, 0,
82    "Maximum number of 64kB allocations");
83static u_int g_raid3_n16k = 200;
84TUNABLE_INT("kern.geom.raid3.n16k", &g_raid3_n16k);
85SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n16k, CTLFLAG_RD, &g_raid3_n16k, 0,
86    "Maximum number of 16kB allocations");
87static u_int g_raid3_n4k = 1200;
88TUNABLE_INT("kern.geom.raid3.n4k", &g_raid3_n4k);
89SYSCTL_UINT(_kern_geom_raid3, OID_AUTO, n4k, CTLFLAG_RD, &g_raid3_n4k, 0,
90    "Maximum number of 4kB allocations");
91
92SYSCTL_NODE(_kern_geom_raid3, OID_AUTO, stat, CTLFLAG_RW, 0,
93    "GEOM_RAID3 statistics");
94static u_int g_raid3_parity_mismatch = 0;
95SYSCTL_UINT(_kern_geom_raid3_stat, OID_AUTO, parity_mismatch, CTLFLAG_RD,
96    &g_raid3_parity_mismatch, 0, "Number of failures in VERIFY mode");
97
98#define	MSLEEP(ident, mtx, priority, wmesg, timeout)	do {		\
99	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, (ident));	\
100	msleep((ident), (mtx), (priority), (wmesg), (timeout));		\
101	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, (ident));	\
102} while (0)
103
104static eventhandler_tag g_raid3_pre_sync = NULL;
105
106static int g_raid3_destroy_geom(struct gctl_req *req, struct g_class *mp,
107    struct g_geom *gp);
108static g_taste_t g_raid3_taste;
109static void g_raid3_init(struct g_class *mp);
110static void g_raid3_fini(struct g_class *mp);
111
112struct g_class g_raid3_class = {
113	.name = G_RAID3_CLASS_NAME,
114	.version = G_VERSION,
115	.ctlreq = g_raid3_config,
116	.taste = g_raid3_taste,
117	.destroy_geom = g_raid3_destroy_geom,
118	.init = g_raid3_init,
119	.fini = g_raid3_fini
120};
121
122
123static void g_raid3_destroy_provider(struct g_raid3_softc *sc);
124static int g_raid3_update_disk(struct g_raid3_disk *disk, u_int state);
125static void g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force);
126static void g_raid3_dumpconf(struct sbuf *sb, const char *indent,
127    struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
128static void g_raid3_sync_stop(struct g_raid3_softc *sc, int type);
129static int g_raid3_register_request(struct bio *pbp);
130static void g_raid3_sync_release(struct g_raid3_softc *sc);
131
132
133static const char *
134g_raid3_disk_state2str(int state)
135{
136
137	switch (state) {
138	case G_RAID3_DISK_STATE_NODISK:
139		return ("NODISK");
140	case G_RAID3_DISK_STATE_NONE:
141		return ("NONE");
142	case G_RAID3_DISK_STATE_NEW:
143		return ("NEW");
144	case G_RAID3_DISK_STATE_ACTIVE:
145		return ("ACTIVE");
146	case G_RAID3_DISK_STATE_STALE:
147		return ("STALE");
148	case G_RAID3_DISK_STATE_SYNCHRONIZING:
149		return ("SYNCHRONIZING");
150	case G_RAID3_DISK_STATE_DISCONNECTED:
151		return ("DISCONNECTED");
152	default:
153		return ("INVALID");
154	}
155}
156
157static const char *
158g_raid3_device_state2str(int state)
159{
160
161	switch (state) {
162	case G_RAID3_DEVICE_STATE_STARTING:
163		return ("STARTING");
164	case G_RAID3_DEVICE_STATE_DEGRADED:
165		return ("DEGRADED");
166	case G_RAID3_DEVICE_STATE_COMPLETE:
167		return ("COMPLETE");
168	default:
169		return ("INVALID");
170	}
171}
172
173const char *
174g_raid3_get_diskname(struct g_raid3_disk *disk)
175{
176
177	if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
178		return ("[unknown]");
179	return (disk->d_name);
180}
181
182static void *
183g_raid3_alloc(struct g_raid3_softc *sc, size_t size, int flags)
184{
185	void *ptr;
186	enum g_raid3_zones zone;
187
188	if (g_raid3_use_malloc ||
189	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
190		ptr = malloc(size, M_RAID3, flags);
191	else {
192		ptr = uma_zalloc_arg(sc->sc_zones[zone].sz_zone,
193		   &sc->sc_zones[zone], flags);
194		sc->sc_zones[zone].sz_requested++;
195		if (ptr == NULL)
196			sc->sc_zones[zone].sz_failed++;
197	}
198	return (ptr);
199}
200
201static void
202g_raid3_free(struct g_raid3_softc *sc, void *ptr, size_t size)
203{
204	enum g_raid3_zones zone;
205
206	if (g_raid3_use_malloc ||
207	    (zone = g_raid3_zone(size)) == G_RAID3_NUM_ZONES)
208		free(ptr, M_RAID3);
209	else {
210		uma_zfree_arg(sc->sc_zones[zone].sz_zone,
211		    ptr, &sc->sc_zones[zone]);
212	}
213}
214
215static int
216g_raid3_uma_ctor(void *mem, int size, void *arg, int flags)
217{
218	struct g_raid3_zone *sz = arg;
219
220	if (sz->sz_max > 0 && sz->sz_inuse == sz->sz_max)
221		return (ENOMEM);
222	sz->sz_inuse++;
223	return (0);
224}
225
226static void
227g_raid3_uma_dtor(void *mem, int size, void *arg)
228{
229	struct g_raid3_zone *sz = arg;
230
231	sz->sz_inuse--;
232}
233
234#define	g_raid3_xor(src, dst, size)					\
235	_g_raid3_xor((uint64_t *)(src),					\
236	    (uint64_t *)(dst), (size_t)size)
237static void
238_g_raid3_xor(uint64_t *src, uint64_t *dst, size_t size)
239{
240
241	KASSERT((size % 128) == 0, ("Invalid size: %zu.", size));
242	for (; size > 0; size -= 128) {
243		*dst++ ^= (*src++);
244		*dst++ ^= (*src++);
245		*dst++ ^= (*src++);
246		*dst++ ^= (*src++);
247		*dst++ ^= (*src++);
248		*dst++ ^= (*src++);
249		*dst++ ^= (*src++);
250		*dst++ ^= (*src++);
251		*dst++ ^= (*src++);
252		*dst++ ^= (*src++);
253		*dst++ ^= (*src++);
254		*dst++ ^= (*src++);
255		*dst++ ^= (*src++);
256		*dst++ ^= (*src++);
257		*dst++ ^= (*src++);
258		*dst++ ^= (*src++);
259	}
260}
261
262static int
263g_raid3_is_zero(struct bio *bp)
264{
265	static const uint64_t zeros[] = {
266	    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
267	};
268	u_char *addr;
269	ssize_t size;
270
271	size = bp->bio_length;
272	addr = (u_char *)bp->bio_data;
273	for (; size > 0; size -= sizeof(zeros), addr += sizeof(zeros)) {
274		if (bcmp(addr, zeros, sizeof(zeros)) != 0)
275			return (0);
276	}
277	return (1);
278}
279
280/*
281 * --- Events handling functions ---
282 * Events in geom_raid3 are used to maintain disks and device status
283 * from one thread to simplify locking.
284 */
285static void
286g_raid3_event_free(struct g_raid3_event *ep)
287{
288
289	free(ep, M_RAID3);
290}
291
292int
293g_raid3_event_send(void *arg, int state, int flags)
294{
295	struct g_raid3_softc *sc;
296	struct g_raid3_disk *disk;
297	struct g_raid3_event *ep;
298	int error;
299
300	ep = malloc(sizeof(*ep), M_RAID3, M_WAITOK);
301	G_RAID3_DEBUG(4, "%s: Sending event %p.", __func__, ep);
302	if ((flags & G_RAID3_EVENT_DEVICE) != 0) {
303		disk = NULL;
304		sc = arg;
305	} else {
306		disk = arg;
307		sc = disk->d_softc;
308	}
309	ep->e_disk = disk;
310	ep->e_state = state;
311	ep->e_flags = flags;
312	ep->e_error = 0;
313	mtx_lock(&sc->sc_events_mtx);
314	TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
315	mtx_unlock(&sc->sc_events_mtx);
316	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
317	mtx_lock(&sc->sc_queue_mtx);
318	wakeup(sc);
319	wakeup(&sc->sc_queue);
320	mtx_unlock(&sc->sc_queue_mtx);
321	if ((flags & G_RAID3_EVENT_DONTWAIT) != 0)
322		return (0);
323	sx_assert(&sc->sc_lock, SX_XLOCKED);
324	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, ep);
325	sx_xunlock(&sc->sc_lock);
326	while ((ep->e_flags & G_RAID3_EVENT_DONE) == 0) {
327		mtx_lock(&sc->sc_events_mtx);
328		MSLEEP(ep, &sc->sc_events_mtx, PRIBIO | PDROP, "r3:event",
329		    hz * 5);
330	}
331	error = ep->e_error;
332	g_raid3_event_free(ep);
333	sx_xlock(&sc->sc_lock);
334	return (error);
335}
336
337static struct g_raid3_event *
338g_raid3_event_get(struct g_raid3_softc *sc)
339{
340	struct g_raid3_event *ep;
341
342	mtx_lock(&sc->sc_events_mtx);
343	ep = TAILQ_FIRST(&sc->sc_events);
344	mtx_unlock(&sc->sc_events_mtx);
345	return (ep);
346}
347
348static void
349g_raid3_event_remove(struct g_raid3_softc *sc, struct g_raid3_event *ep)
350{
351
352	mtx_lock(&sc->sc_events_mtx);
353	TAILQ_REMOVE(&sc->sc_events, ep, e_next);
354	mtx_unlock(&sc->sc_events_mtx);
355}
356
357static void
358g_raid3_event_cancel(struct g_raid3_disk *disk)
359{
360	struct g_raid3_softc *sc;
361	struct g_raid3_event *ep, *tmpep;
362
363	sc = disk->d_softc;
364	sx_assert(&sc->sc_lock, SX_XLOCKED);
365
366	mtx_lock(&sc->sc_events_mtx);
367	TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
368		if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0)
369			continue;
370		if (ep->e_disk != disk)
371			continue;
372		TAILQ_REMOVE(&sc->sc_events, ep, e_next);
373		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
374			g_raid3_event_free(ep);
375		else {
376			ep->e_error = ECANCELED;
377			wakeup(ep);
378		}
379	}
380	mtx_unlock(&sc->sc_events_mtx);
381}
382
383/*
384 * Return the number of disks in the given state.
385 * If state is equal to -1, count all connected disks.
386 */
387u_int
388g_raid3_ndisks(struct g_raid3_softc *sc, int state)
389{
390	struct g_raid3_disk *disk;
391	u_int n, ndisks;
392
393	sx_assert(&sc->sc_lock, SX_LOCKED);
394
395	for (n = ndisks = 0; n < sc->sc_ndisks; n++) {
396		disk = &sc->sc_disks[n];
397		if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
398			continue;
399		if (state == -1 || disk->d_state == state)
400			ndisks++;
401	}
402	return (ndisks);
403}
404
405static u_int
406g_raid3_nrequests(struct g_raid3_softc *sc, struct g_consumer *cp)
407{
408	struct bio *bp;
409	u_int nreqs = 0;
410
411	mtx_lock(&sc->sc_queue_mtx);
412	TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
413		if (bp->bio_from == cp)
414			nreqs++;
415	}
416	mtx_unlock(&sc->sc_queue_mtx);
417	return (nreqs);
418}
419
420static int
421g_raid3_is_busy(struct g_raid3_softc *sc, struct g_consumer *cp)
422{
423
424	if (cp->index > 0) {
425		G_RAID3_DEBUG(2,
426		    "I/O requests for %s exist, can't destroy it now.",
427		    cp->provider->name);
428		return (1);
429	}
430	if (g_raid3_nrequests(sc, cp) > 0) {
431		G_RAID3_DEBUG(2,
432		    "I/O requests for %s in queue, can't destroy it now.",
433		    cp->provider->name);
434		return (1);
435	}
436	return (0);
437}
438
439static void
440g_raid3_destroy_consumer(void *arg, int flags __unused)
441{
442	struct g_consumer *cp;
443
444	g_topology_assert();
445
446	cp = arg;
447	G_RAID3_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
448	g_detach(cp);
449	g_destroy_consumer(cp);
450}
451
452static void
453g_raid3_kill_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
454{
455	struct g_provider *pp;
456	int retaste_wait;
457
458	g_topology_assert();
459
460	cp->private = NULL;
461	if (g_raid3_is_busy(sc, cp))
462		return;
463	G_RAID3_DEBUG(2, "Consumer %s destroyed.", cp->provider->name);
464	pp = cp->provider;
465	retaste_wait = 0;
466	if (cp->acw == 1) {
467		if ((pp->geom->flags & G_GEOM_WITHER) == 0)
468			retaste_wait = 1;
469	}
470	G_RAID3_DEBUG(2, "Access %s r%dw%de%d = %d", pp->name, -cp->acr,
471	    -cp->acw, -cp->ace, 0);
472	if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
473		g_access(cp, -cp->acr, -cp->acw, -cp->ace);
474	if (retaste_wait) {
475		/*
476		 * After retaste event was send (inside g_access()), we can send
477		 * event to detach and destroy consumer.
478		 * A class, which has consumer to the given provider connected
479		 * will not receive retaste event for the provider.
480		 * This is the way how I ignore retaste events when I close
481		 * consumers opened for write: I detach and destroy consumer
482		 * after retaste event is sent.
483		 */
484		g_post_event(g_raid3_destroy_consumer, cp, M_WAITOK, NULL);
485		return;
486	}
487	G_RAID3_DEBUG(1, "Consumer %s destroyed.", pp->name);
488	g_detach(cp);
489	g_destroy_consumer(cp);
490}
491
492static int
493g_raid3_connect_disk(struct g_raid3_disk *disk, struct g_provider *pp)
494{
495	struct g_consumer *cp;
496	int error;
497
498	g_topology_assert_not();
499	KASSERT(disk->d_consumer == NULL,
500	    ("Disk already connected (device %s).", disk->d_softc->sc_name));
501
502	g_topology_lock();
503	cp = g_new_consumer(disk->d_softc->sc_geom);
504	error = g_attach(cp, pp);
505	if (error != 0) {
506		g_destroy_consumer(cp);
507		g_topology_unlock();
508		return (error);
509	}
510	error = g_access(cp, 1, 1, 1);
511		g_topology_unlock();
512	if (error != 0) {
513		g_detach(cp);
514		g_destroy_consumer(cp);
515		G_RAID3_DEBUG(0, "Cannot open consumer %s (error=%d).",
516		    pp->name, error);
517		return (error);
518	}
519	disk->d_consumer = cp;
520	disk->d_consumer->private = disk;
521	disk->d_consumer->index = 0;
522	G_RAID3_DEBUG(2, "Disk %s connected.", g_raid3_get_diskname(disk));
523	return (0);
524}
525
526static void
527g_raid3_disconnect_consumer(struct g_raid3_softc *sc, struct g_consumer *cp)
528{
529
530	g_topology_assert();
531
532	if (cp == NULL)
533		return;
534	if (cp->provider != NULL)
535		g_raid3_kill_consumer(sc, cp);
536	else
537		g_destroy_consumer(cp);
538}
539
540/*
541 * Initialize disk. This means allocate memory, create consumer, attach it
542 * to the provider and open access (r1w1e1) to it.
543 */
544static struct g_raid3_disk *
545g_raid3_init_disk(struct g_raid3_softc *sc, struct g_provider *pp,
546    struct g_raid3_metadata *md, int *errorp)
547{
548	struct g_raid3_disk *disk;
549	int error;
550
551	disk = &sc->sc_disks[md->md_no];
552	error = g_raid3_connect_disk(disk, pp);
553	if (error != 0) {
554		if (errorp != NULL)
555			*errorp = error;
556		return (NULL);
557	}
558	disk->d_state = G_RAID3_DISK_STATE_NONE;
559	disk->d_flags = md->md_dflags;
560	if (md->md_provider[0] != '\0')
561		disk->d_flags |= G_RAID3_DISK_FLAG_HARDCODED;
562	disk->d_sync.ds_consumer = NULL;
563	disk->d_sync.ds_offset = md->md_sync_offset;
564	disk->d_sync.ds_offset_done = md->md_sync_offset;
565	disk->d_genid = md->md_genid;
566	disk->d_sync.ds_syncid = md->md_syncid;
567	if (errorp != NULL)
568		*errorp = 0;
569	return (disk);
570}
571
572static void
573g_raid3_destroy_disk(struct g_raid3_disk *disk)
574{
575	struct g_raid3_softc *sc;
576
577	g_topology_assert_not();
578	sc = disk->d_softc;
579	sx_assert(&sc->sc_lock, SX_XLOCKED);
580
581	if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
582		return;
583	g_raid3_event_cancel(disk);
584	switch (disk->d_state) {
585	case G_RAID3_DISK_STATE_SYNCHRONIZING:
586		if (sc->sc_syncdisk != NULL)
587			g_raid3_sync_stop(sc, 1);
588		/* FALLTHROUGH */
589	case G_RAID3_DISK_STATE_NEW:
590	case G_RAID3_DISK_STATE_STALE:
591	case G_RAID3_DISK_STATE_ACTIVE:
592		g_topology_lock();
593		g_raid3_disconnect_consumer(sc, disk->d_consumer);
594		g_topology_unlock();
595		disk->d_consumer = NULL;
596		break;
597	default:
598		KASSERT(0 == 1, ("Wrong disk state (%s, %s).",
599		    g_raid3_get_diskname(disk),
600		    g_raid3_disk_state2str(disk->d_state)));
601	}
602	disk->d_state = G_RAID3_DISK_STATE_NODISK;
603}
604
605static void
606g_raid3_destroy_device(struct g_raid3_softc *sc)
607{
608	struct g_raid3_event *ep;
609	struct g_raid3_disk *disk;
610	struct g_geom *gp;
611	struct g_consumer *cp;
612	u_int n;
613
614	g_topology_assert_not();
615	sx_assert(&sc->sc_lock, SX_XLOCKED);
616
617	gp = sc->sc_geom;
618	if (sc->sc_provider != NULL)
619		g_raid3_destroy_provider(sc);
620	for (n = 0; n < sc->sc_ndisks; n++) {
621		disk = &sc->sc_disks[n];
622		if (disk->d_state != G_RAID3_DISK_STATE_NODISK) {
623			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
624			g_raid3_update_metadata(disk);
625			g_raid3_destroy_disk(disk);
626		}
627	}
628	while ((ep = g_raid3_event_get(sc)) != NULL) {
629		g_raid3_event_remove(sc, ep);
630		if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0)
631			g_raid3_event_free(ep);
632		else {
633			ep->e_error = ECANCELED;
634			ep->e_flags |= G_RAID3_EVENT_DONE;
635			G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, ep);
636			mtx_lock(&sc->sc_events_mtx);
637			wakeup(ep);
638			mtx_unlock(&sc->sc_events_mtx);
639		}
640	}
641	callout_drain(&sc->sc_callout);
642	cp = LIST_FIRST(&sc->sc_sync.ds_geom->consumer);
643	g_topology_lock();
644	if (cp != NULL)
645		g_raid3_disconnect_consumer(sc, cp);
646	g_wither_geom(sc->sc_sync.ds_geom, ENXIO);
647	G_RAID3_DEBUG(0, "Device %s destroyed.", gp->name);
648	g_wither_geom(gp, ENXIO);
649	g_topology_unlock();
650	if (!g_raid3_use_malloc) {
651		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
652		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
653		uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
654	}
655	mtx_destroy(&sc->sc_queue_mtx);
656	mtx_destroy(&sc->sc_events_mtx);
657	sx_xunlock(&sc->sc_lock);
658	sx_destroy(&sc->sc_lock);
659}
660
661static void
662g_raid3_orphan(struct g_consumer *cp)
663{
664	struct g_raid3_disk *disk;
665
666	g_topology_assert();
667
668	disk = cp->private;
669	if (disk == NULL)
670		return;
671	disk->d_softc->sc_bump_id = G_RAID3_BUMP_SYNCID;
672	g_raid3_event_send(disk, G_RAID3_DISK_STATE_DISCONNECTED,
673	    G_RAID3_EVENT_DONTWAIT);
674}
675
676static int
677g_raid3_write_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
678{
679	struct g_raid3_softc *sc;
680	struct g_consumer *cp;
681	off_t offset, length;
682	u_char *sector;
683	int error = 0;
684
685	g_topology_assert_not();
686	sc = disk->d_softc;
687	sx_assert(&sc->sc_lock, SX_LOCKED);
688
689	cp = disk->d_consumer;
690	KASSERT(cp != NULL, ("NULL consumer (%s).", sc->sc_name));
691	KASSERT(cp->provider != NULL, ("NULL provider (%s).", sc->sc_name));
692	KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
693	    ("Consumer %s closed? (r%dw%de%d).", cp->provider->name, cp->acr,
694	    cp->acw, cp->ace));
695	length = cp->provider->sectorsize;
696	offset = cp->provider->mediasize - length;
697	sector = malloc((size_t)length, M_RAID3, M_WAITOK | M_ZERO);
698	if (md != NULL)
699		raid3_metadata_encode(md, sector);
700	error = g_write_data(cp, offset, sector, length);
701	free(sector, M_RAID3);
702	if (error != 0) {
703		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
704			G_RAID3_DEBUG(0, "Cannot write metadata on %s "
705			    "(device=%s, error=%d).",
706			    g_raid3_get_diskname(disk), sc->sc_name, error);
707			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
708		} else {
709			G_RAID3_DEBUG(1, "Cannot write metadata on %s "
710			    "(device=%s, error=%d).",
711			    g_raid3_get_diskname(disk), sc->sc_name, error);
712		}
713		if (g_raid3_disconnect_on_failure &&
714		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
715			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
716			g_raid3_event_send(disk,
717			    G_RAID3_DISK_STATE_DISCONNECTED,
718			    G_RAID3_EVENT_DONTWAIT);
719		}
720	}
721	return (error);
722}
723
724int
725g_raid3_clear_metadata(struct g_raid3_disk *disk)
726{
727	int error;
728
729	g_topology_assert_not();
730	sx_assert(&disk->d_softc->sc_lock, SX_LOCKED);
731
732	error = g_raid3_write_metadata(disk, NULL);
733	if (error == 0) {
734		G_RAID3_DEBUG(2, "Metadata on %s cleared.",
735		    g_raid3_get_diskname(disk));
736	} else {
737		G_RAID3_DEBUG(0,
738		    "Cannot clear metadata on disk %s (error=%d).",
739		    g_raid3_get_diskname(disk), error);
740	}
741	return (error);
742}
743
744void
745g_raid3_fill_metadata(struct g_raid3_disk *disk, struct g_raid3_metadata *md)
746{
747	struct g_raid3_softc *sc;
748	struct g_provider *pp;
749
750	sc = disk->d_softc;
751	strlcpy(md->md_magic, G_RAID3_MAGIC, sizeof(md->md_magic));
752	md->md_version = G_RAID3_VERSION;
753	strlcpy(md->md_name, sc->sc_name, sizeof(md->md_name));
754	md->md_id = sc->sc_id;
755	md->md_all = sc->sc_ndisks;
756	md->md_genid = sc->sc_genid;
757	md->md_mediasize = sc->sc_mediasize;
758	md->md_sectorsize = sc->sc_sectorsize;
759	md->md_mflags = (sc->sc_flags & G_RAID3_DEVICE_FLAG_MASK);
760	md->md_no = disk->d_no;
761	md->md_syncid = disk->d_sync.ds_syncid;
762	md->md_dflags = (disk->d_flags & G_RAID3_DISK_FLAG_MASK);
763	if (disk->d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
764		md->md_sync_offset = 0;
765	else {
766		md->md_sync_offset =
767		    disk->d_sync.ds_offset_done / (sc->sc_ndisks - 1);
768	}
769	if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL)
770		pp = disk->d_consumer->provider;
771	else
772		pp = NULL;
773	if ((disk->d_flags & G_RAID3_DISK_FLAG_HARDCODED) != 0 && pp != NULL)
774		strlcpy(md->md_provider, pp->name, sizeof(md->md_provider));
775	else
776		bzero(md->md_provider, sizeof(md->md_provider));
777	if (pp != NULL)
778		md->md_provsize = pp->mediasize;
779	else
780		md->md_provsize = 0;
781}
782
783void
784g_raid3_update_metadata(struct g_raid3_disk *disk)
785{
786	struct g_raid3_softc *sc;
787	struct g_raid3_metadata md;
788	int error;
789
790	g_topology_assert_not();
791	sc = disk->d_softc;
792	sx_assert(&sc->sc_lock, SX_LOCKED);
793
794	g_raid3_fill_metadata(disk, &md);
795	error = g_raid3_write_metadata(disk, &md);
796	if (error == 0) {
797		G_RAID3_DEBUG(2, "Metadata on %s updated.",
798		    g_raid3_get_diskname(disk));
799	} else {
800		G_RAID3_DEBUG(0,
801		    "Cannot update metadata on disk %s (error=%d).",
802		    g_raid3_get_diskname(disk), error);
803	}
804}
805
806static void
807g_raid3_bump_syncid(struct g_raid3_softc *sc)
808{
809	struct g_raid3_disk *disk;
810	u_int n;
811
812	g_topology_assert_not();
813	sx_assert(&sc->sc_lock, SX_XLOCKED);
814	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
815	    ("%s called with no active disks (device=%s).", __func__,
816	    sc->sc_name));
817
818	sc->sc_syncid++;
819	G_RAID3_DEBUG(1, "Device %s: syncid bumped to %u.", sc->sc_name,
820	    sc->sc_syncid);
821	for (n = 0; n < sc->sc_ndisks; n++) {
822		disk = &sc->sc_disks[n];
823		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
824		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
825			disk->d_sync.ds_syncid = sc->sc_syncid;
826			g_raid3_update_metadata(disk);
827		}
828	}
829}
830
831static void
832g_raid3_bump_genid(struct g_raid3_softc *sc)
833{
834	struct g_raid3_disk *disk;
835	u_int n;
836
837	g_topology_assert_not();
838	sx_assert(&sc->sc_lock, SX_XLOCKED);
839	KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) > 0,
840	    ("%s called with no active disks (device=%s).", __func__,
841	    sc->sc_name));
842
843	sc->sc_genid++;
844	G_RAID3_DEBUG(1, "Device %s: genid bumped to %u.", sc->sc_name,
845	    sc->sc_genid);
846	for (n = 0; n < sc->sc_ndisks; n++) {
847		disk = &sc->sc_disks[n];
848		if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
849		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
850			disk->d_genid = sc->sc_genid;
851			g_raid3_update_metadata(disk);
852		}
853	}
854}
855
856static int
857g_raid3_idle(struct g_raid3_softc *sc, int acw)
858{
859	struct g_raid3_disk *disk;
860	u_int i;
861	int timeout;
862
863	g_topology_assert_not();
864	sx_assert(&sc->sc_lock, SX_XLOCKED);
865
866	if (sc->sc_provider == NULL)
867		return (0);
868	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
869		return (0);
870	if (sc->sc_idle)
871		return (0);
872	if (sc->sc_writes > 0)
873		return (0);
874	if (acw > 0 || (acw == -1 && sc->sc_provider->acw > 0)) {
875		timeout = g_raid3_idletime - (time_uptime - sc->sc_last_write);
876		if (timeout > 0)
877			return (timeout);
878	}
879	sc->sc_idle = 1;
880	for (i = 0; i < sc->sc_ndisks; i++) {
881		disk = &sc->sc_disks[i];
882		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
883			continue;
884		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
885		    g_raid3_get_diskname(disk), sc->sc_name);
886		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
887		g_raid3_update_metadata(disk);
888	}
889	return (0);
890}
891
892static void
893g_raid3_unidle(struct g_raid3_softc *sc)
894{
895	struct g_raid3_disk *disk;
896	u_int i;
897
898	g_topology_assert_not();
899	sx_assert(&sc->sc_lock, SX_XLOCKED);
900
901	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
902		return;
903	sc->sc_idle = 0;
904	sc->sc_last_write = time_uptime;
905	for (i = 0; i < sc->sc_ndisks; i++) {
906		disk = &sc->sc_disks[i];
907		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
908			continue;
909		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
910		    g_raid3_get_diskname(disk), sc->sc_name);
911		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
912		g_raid3_update_metadata(disk);
913	}
914}
915
916/*
917 * Treat bio_driver1 field in parent bio as list head and field bio_caller1
918 * in child bio as pointer to the next element on the list.
919 */
920#define	G_RAID3_HEAD_BIO(pbp)	(pbp)->bio_driver1
921
922#define	G_RAID3_NEXT_BIO(cbp)	(cbp)->bio_caller1
923
924#define	G_RAID3_FOREACH_BIO(pbp, bp)					\
925	for ((bp) = G_RAID3_HEAD_BIO(pbp); (bp) != NULL;		\
926	    (bp) = G_RAID3_NEXT_BIO(bp))
927
928#define	G_RAID3_FOREACH_SAFE_BIO(pbp, bp, tmpbp)			\
929	for ((bp) = G_RAID3_HEAD_BIO(pbp);				\
930	    (bp) != NULL && ((tmpbp) = G_RAID3_NEXT_BIO(bp), 1);	\
931	    (bp) = (tmpbp))
932
933static void
934g_raid3_init_bio(struct bio *pbp)
935{
936
937	G_RAID3_HEAD_BIO(pbp) = NULL;
938}
939
940static void
941g_raid3_remove_bio(struct bio *cbp)
942{
943	struct bio *pbp, *bp;
944
945	pbp = cbp->bio_parent;
946	if (G_RAID3_HEAD_BIO(pbp) == cbp)
947		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
948	else {
949		G_RAID3_FOREACH_BIO(pbp, bp) {
950			if (G_RAID3_NEXT_BIO(bp) == cbp) {
951				G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
952				break;
953			}
954		}
955	}
956	G_RAID3_NEXT_BIO(cbp) = NULL;
957}
958
959static void
960g_raid3_replace_bio(struct bio *sbp, struct bio *dbp)
961{
962	struct bio *pbp, *bp;
963
964	g_raid3_remove_bio(sbp);
965	pbp = dbp->bio_parent;
966	G_RAID3_NEXT_BIO(sbp) = G_RAID3_NEXT_BIO(dbp);
967	if (G_RAID3_HEAD_BIO(pbp) == dbp)
968		G_RAID3_HEAD_BIO(pbp) = sbp;
969	else {
970		G_RAID3_FOREACH_BIO(pbp, bp) {
971			if (G_RAID3_NEXT_BIO(bp) == dbp) {
972				G_RAID3_NEXT_BIO(bp) = sbp;
973				break;
974			}
975		}
976	}
977	G_RAID3_NEXT_BIO(dbp) = NULL;
978}
979
980static void
981g_raid3_destroy_bio(struct g_raid3_softc *sc, struct bio *cbp)
982{
983	struct bio *bp, *pbp;
984	size_t size;
985
986	pbp = cbp->bio_parent;
987	pbp->bio_children--;
988	KASSERT(cbp->bio_data != NULL, ("NULL bio_data"));
989	size = pbp->bio_length / (sc->sc_ndisks - 1);
990	g_raid3_free(sc, cbp->bio_data, size);
991	if (G_RAID3_HEAD_BIO(pbp) == cbp) {
992		G_RAID3_HEAD_BIO(pbp) = G_RAID3_NEXT_BIO(cbp);
993		G_RAID3_NEXT_BIO(cbp) = NULL;
994		g_destroy_bio(cbp);
995	} else {
996		G_RAID3_FOREACH_BIO(pbp, bp) {
997			if (G_RAID3_NEXT_BIO(bp) == cbp)
998				break;
999		}
1000		if (bp != NULL) {
1001			KASSERT(G_RAID3_NEXT_BIO(bp) != NULL,
1002			    ("NULL bp->bio_driver1"));
1003			G_RAID3_NEXT_BIO(bp) = G_RAID3_NEXT_BIO(cbp);
1004			G_RAID3_NEXT_BIO(cbp) = NULL;
1005		}
1006		g_destroy_bio(cbp);
1007	}
1008}
1009
1010static struct bio *
1011g_raid3_clone_bio(struct g_raid3_softc *sc, struct bio *pbp)
1012{
1013	struct bio *bp, *cbp;
1014	size_t size;
1015	int memflag;
1016
1017	cbp = g_clone_bio(pbp);
1018	if (cbp == NULL)
1019		return (NULL);
1020	size = pbp->bio_length / (sc->sc_ndisks - 1);
1021	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
1022		memflag = M_WAITOK;
1023	else
1024		memflag = M_NOWAIT;
1025	cbp->bio_data = g_raid3_alloc(sc, size, memflag);
1026	if (cbp->bio_data == NULL) {
1027		pbp->bio_children--;
1028		g_destroy_bio(cbp);
1029		return (NULL);
1030	}
1031	G_RAID3_NEXT_BIO(cbp) = NULL;
1032	if (G_RAID3_HEAD_BIO(pbp) == NULL)
1033		G_RAID3_HEAD_BIO(pbp) = cbp;
1034	else {
1035		G_RAID3_FOREACH_BIO(pbp, bp) {
1036			if (G_RAID3_NEXT_BIO(bp) == NULL) {
1037				G_RAID3_NEXT_BIO(bp) = cbp;
1038				break;
1039			}
1040		}
1041	}
1042	return (cbp);
1043}
1044
1045static void
1046g_raid3_scatter(struct bio *pbp)
1047{
1048	struct g_raid3_softc *sc;
1049	struct g_raid3_disk *disk;
1050	struct bio *bp, *cbp, *tmpbp;
1051	off_t atom, cadd, padd, left;
1052	int first;
1053
1054	sc = pbp->bio_to->geom->softc;
1055	bp = NULL;
1056	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1057		/*
1058		 * Find bio for which we should calculate data.
1059		 */
1060		G_RAID3_FOREACH_BIO(pbp, cbp) {
1061			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1062				bp = cbp;
1063				break;
1064			}
1065		}
1066		KASSERT(bp != NULL, ("NULL parity bio."));
1067	}
1068	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1069	cadd = padd = 0;
1070	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1071		G_RAID3_FOREACH_BIO(pbp, cbp) {
1072			if (cbp == bp)
1073				continue;
1074			bcopy(pbp->bio_data + padd, cbp->bio_data + cadd, atom);
1075			padd += atom;
1076		}
1077		cadd += atom;
1078	}
1079	if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_NOPARITY) == 0) {
1080		/*
1081		 * Calculate parity.
1082		 */
1083		first = 1;
1084		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1085			if (cbp == bp)
1086				continue;
1087			if (first) {
1088				bcopy(cbp->bio_data, bp->bio_data,
1089				    bp->bio_length);
1090				first = 0;
1091			} else {
1092				g_raid3_xor(cbp->bio_data, bp->bio_data,
1093				    bp->bio_length);
1094			}
1095			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_NODISK) != 0)
1096				g_raid3_destroy_bio(sc, cbp);
1097		}
1098	}
1099	G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1100		struct g_consumer *cp;
1101
1102		disk = cbp->bio_caller2;
1103		cp = disk->d_consumer;
1104		cbp->bio_to = cp->provider;
1105		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1106		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1107		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1108		    cp->acr, cp->acw, cp->ace));
1109		cp->index++;
1110		sc->sc_writes++;
1111		g_io_request(cbp, cp);
1112	}
1113}
1114
1115static void
1116g_raid3_gather(struct bio *pbp)
1117{
1118	struct g_raid3_softc *sc;
1119	struct g_raid3_disk *disk;
1120	struct bio *xbp, *fbp, *cbp;
1121	off_t atom, cadd, padd, left;
1122
1123	sc = pbp->bio_to->geom->softc;
1124	/*
1125	 * Find bio for which we have to calculate data.
1126	 * While going through this path, check if all requests
1127	 * succeeded, if not, deny whole request.
1128	 * If we're in COMPLETE mode, we allow one request to fail,
1129	 * so if we find one, we're sending it to the parity consumer.
1130	 * If there are more failed requests, we deny whole request.
1131	 */
1132	xbp = fbp = NULL;
1133	G_RAID3_FOREACH_BIO(pbp, cbp) {
1134		if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0) {
1135			KASSERT(xbp == NULL, ("More than one parity bio."));
1136			xbp = cbp;
1137		}
1138		if (cbp->bio_error == 0)
1139			continue;
1140		/*
1141		 * Found failed request.
1142		 */
1143		if (fbp == NULL) {
1144			if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_DEGRADED) != 0) {
1145				/*
1146				 * We are already in degraded mode, so we can't
1147				 * accept any failures.
1148				 */
1149				if (pbp->bio_error == 0)
1150					pbp->bio_error = cbp->bio_error;
1151			} else {
1152				fbp = cbp;
1153			}
1154		} else {
1155			/*
1156			 * Next failed request, that's too many.
1157			 */
1158			if (pbp->bio_error == 0)
1159				pbp->bio_error = fbp->bio_error;
1160		}
1161		disk = cbp->bio_caller2;
1162		if (disk == NULL)
1163			continue;
1164		if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1165			disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1166			G_RAID3_LOGREQ(0, cbp, "Request failed (error=%d).",
1167			    cbp->bio_error);
1168		} else {
1169			G_RAID3_LOGREQ(1, cbp, "Request failed (error=%d).",
1170			    cbp->bio_error);
1171		}
1172		if (g_raid3_disconnect_on_failure &&
1173		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1174			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1175			g_raid3_event_send(disk,
1176			    G_RAID3_DISK_STATE_DISCONNECTED,
1177			    G_RAID3_EVENT_DONTWAIT);
1178		}
1179	}
1180	if (pbp->bio_error != 0)
1181		goto finish;
1182	if (fbp != NULL && (pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1183		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_VERIFY;
1184		if (xbp != fbp)
1185			g_raid3_replace_bio(xbp, fbp);
1186		g_raid3_destroy_bio(sc, fbp);
1187	} else if (fbp != NULL) {
1188		struct g_consumer *cp;
1189
1190		/*
1191		 * One request failed, so send the same request to
1192		 * the parity consumer.
1193		 */
1194		disk = pbp->bio_driver2;
1195		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1196			pbp->bio_error = fbp->bio_error;
1197			goto finish;
1198		}
1199		pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1200		pbp->bio_inbed--;
1201		fbp->bio_flags &= ~(BIO_DONE | BIO_ERROR);
1202		if (disk->d_no == sc->sc_ndisks - 1)
1203			fbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1204		fbp->bio_error = 0;
1205		fbp->bio_completed = 0;
1206		fbp->bio_children = 0;
1207		fbp->bio_inbed = 0;
1208		cp = disk->d_consumer;
1209		fbp->bio_caller2 = disk;
1210		fbp->bio_to = cp->provider;
1211		G_RAID3_LOGREQ(3, fbp, "Sending request (recover).");
1212		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1213		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1214		    cp->acr, cp->acw, cp->ace));
1215		cp->index++;
1216		g_io_request(fbp, cp);
1217		return;
1218	}
1219	if (xbp != NULL) {
1220		/*
1221		 * Calculate parity.
1222		 */
1223		G_RAID3_FOREACH_BIO(pbp, cbp) {
1224			if ((cbp->bio_cflags & G_RAID3_BIO_CFLAG_PARITY) != 0)
1225				continue;
1226			g_raid3_xor(cbp->bio_data, xbp->bio_data,
1227			    xbp->bio_length);
1228		}
1229		xbp->bio_cflags &= ~G_RAID3_BIO_CFLAG_PARITY;
1230		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0) {
1231			if (!g_raid3_is_zero(xbp)) {
1232				g_raid3_parity_mismatch++;
1233				pbp->bio_error = EIO;
1234				goto finish;
1235			}
1236			g_raid3_destroy_bio(sc, xbp);
1237		}
1238	}
1239	atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1240	cadd = padd = 0;
1241	for (left = pbp->bio_length; left > 0; left -= sc->sc_sectorsize) {
1242		G_RAID3_FOREACH_BIO(pbp, cbp) {
1243			bcopy(cbp->bio_data + cadd, pbp->bio_data + padd, atom);
1244			pbp->bio_completed += atom;
1245			padd += atom;
1246		}
1247		cadd += atom;
1248	}
1249finish:
1250	if (pbp->bio_error == 0)
1251		G_RAID3_LOGREQ(3, pbp, "Request finished.");
1252	else {
1253		if ((pbp->bio_pflags & G_RAID3_BIO_PFLAG_VERIFY) != 0)
1254			G_RAID3_LOGREQ(1, pbp, "Verification error.");
1255		else
1256			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1257	}
1258	pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_MASK;
1259	while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1260		g_raid3_destroy_bio(sc, cbp);
1261	g_io_deliver(pbp, pbp->bio_error);
1262}
1263
1264static void
1265g_raid3_done(struct bio *bp)
1266{
1267	struct g_raid3_softc *sc;
1268
1269	sc = bp->bio_from->geom->softc;
1270	bp->bio_cflags |= G_RAID3_BIO_CFLAG_REGULAR;
1271	G_RAID3_LOGREQ(3, bp, "Regular request done (error=%d).", bp->bio_error);
1272	mtx_lock(&sc->sc_queue_mtx);
1273	bioq_insert_head(&sc->sc_queue, bp);
1274	mtx_unlock(&sc->sc_queue_mtx);
1275	wakeup(sc);
1276	wakeup(&sc->sc_queue);
1277}
1278
1279static void
1280g_raid3_regular_request(struct bio *cbp)
1281{
1282	struct g_raid3_softc *sc;
1283	struct g_raid3_disk *disk;
1284	struct bio *pbp;
1285
1286	g_topology_assert_not();
1287
1288	pbp = cbp->bio_parent;
1289	sc = pbp->bio_to->geom->softc;
1290	cbp->bio_from->index--;
1291	if (cbp->bio_cmd == BIO_WRITE)
1292		sc->sc_writes--;
1293	disk = cbp->bio_from->private;
1294	if (disk == NULL) {
1295		g_topology_lock();
1296		g_raid3_kill_consumer(sc, cbp->bio_from);
1297		g_topology_unlock();
1298	}
1299
1300	G_RAID3_LOGREQ(3, cbp, "Request finished.");
1301	pbp->bio_inbed++;
1302	KASSERT(pbp->bio_inbed <= pbp->bio_children,
1303	    ("bio_inbed (%u) is bigger than bio_children (%u).", pbp->bio_inbed,
1304	    pbp->bio_children));
1305	if (pbp->bio_inbed != pbp->bio_children)
1306		return;
1307	switch (pbp->bio_cmd) {
1308	case BIO_READ:
1309		g_raid3_gather(pbp);
1310		break;
1311	case BIO_WRITE:
1312	case BIO_DELETE:
1313	    {
1314		int error = 0;
1315
1316		pbp->bio_completed = pbp->bio_length;
1317		while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL) {
1318			if (cbp->bio_error == 0) {
1319				g_raid3_destroy_bio(sc, cbp);
1320				continue;
1321			}
1322
1323			if (error == 0)
1324				error = cbp->bio_error;
1325			else if (pbp->bio_error == 0) {
1326				/*
1327				 * Next failed request, that's too many.
1328				 */
1329				pbp->bio_error = error;
1330			}
1331
1332			disk = cbp->bio_caller2;
1333			if (disk == NULL) {
1334				g_raid3_destroy_bio(sc, cbp);
1335				continue;
1336			}
1337
1338			if ((disk->d_flags & G_RAID3_DISK_FLAG_BROKEN) == 0) {
1339				disk->d_flags |= G_RAID3_DISK_FLAG_BROKEN;
1340				G_RAID3_LOGREQ(0, cbp,
1341				    "Request failed (error=%d).",
1342				    cbp->bio_error);
1343			} else {
1344				G_RAID3_LOGREQ(1, cbp,
1345				    "Request failed (error=%d).",
1346				    cbp->bio_error);
1347			}
1348			if (g_raid3_disconnect_on_failure &&
1349			    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1350				sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1351				g_raid3_event_send(disk,
1352				    G_RAID3_DISK_STATE_DISCONNECTED,
1353				    G_RAID3_EVENT_DONTWAIT);
1354			}
1355			g_raid3_destroy_bio(sc, cbp);
1356		}
1357		if (pbp->bio_error == 0)
1358			G_RAID3_LOGREQ(3, pbp, "Request finished.");
1359		else
1360			G_RAID3_LOGREQ(0, pbp, "Request failed.");
1361		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_DEGRADED;
1362		pbp->bio_pflags &= ~G_RAID3_BIO_PFLAG_NOPARITY;
1363		bioq_remove(&sc->sc_inflight, pbp);
1364		/* Release delayed sync requests if possible. */
1365		g_raid3_sync_release(sc);
1366		g_io_deliver(pbp, pbp->bio_error);
1367		break;
1368	    }
1369	}
1370}
1371
1372static void
1373g_raid3_sync_done(struct bio *bp)
1374{
1375	struct g_raid3_softc *sc;
1376
1377	G_RAID3_LOGREQ(3, bp, "Synchronization request delivered.");
1378	sc = bp->bio_from->geom->softc;
1379	bp->bio_cflags |= G_RAID3_BIO_CFLAG_SYNC;
1380	mtx_lock(&sc->sc_queue_mtx);
1381	bioq_insert_head(&sc->sc_queue, bp);
1382	mtx_unlock(&sc->sc_queue_mtx);
1383	wakeup(sc);
1384	wakeup(&sc->sc_queue);
1385}
1386
1387static void
1388g_raid3_flush(struct g_raid3_softc *sc, struct bio *bp)
1389{
1390	struct bio_queue_head queue;
1391	struct g_raid3_disk *disk;
1392	struct g_consumer *cp;
1393	struct bio *cbp;
1394	u_int i;
1395
1396	bioq_init(&queue);
1397	for (i = 0; i < sc->sc_ndisks; i++) {
1398		disk = &sc->sc_disks[i];
1399		if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE)
1400			continue;
1401		cbp = g_clone_bio(bp);
1402		if (cbp == NULL) {
1403			for (cbp = bioq_first(&queue); cbp != NULL;
1404			    cbp = bioq_first(&queue)) {
1405				bioq_remove(&queue, cbp);
1406				g_destroy_bio(cbp);
1407			}
1408			if (bp->bio_error == 0)
1409				bp->bio_error = ENOMEM;
1410			g_io_deliver(bp, bp->bio_error);
1411			return;
1412		}
1413		bioq_insert_tail(&queue, cbp);
1414		cbp->bio_done = g_std_done;
1415		cbp->bio_caller1 = disk;
1416		cbp->bio_to = disk->d_consumer->provider;
1417	}
1418	for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) {
1419		bioq_remove(&queue, cbp);
1420		G_RAID3_LOGREQ(3, cbp, "Sending request.");
1421		disk = cbp->bio_caller1;
1422		cbp->bio_caller1 = NULL;
1423		cp = disk->d_consumer;
1424		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1425		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1426		    cp->acr, cp->acw, cp->ace));
1427		g_io_request(cbp, disk->d_consumer);
1428	}
1429}
1430
1431static void
1432g_raid3_start(struct bio *bp)
1433{
1434	struct g_raid3_softc *sc;
1435
1436	sc = bp->bio_to->geom->softc;
1437	/*
1438	 * If sc == NULL or there are no valid disks, provider's error
1439	 * should be set and g_raid3_start() should not be called at all.
1440	 */
1441	KASSERT(sc != NULL && (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
1442	    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE),
1443	    ("Provider's error should be set (error=%d)(device=%s).",
1444	    bp->bio_to->error, bp->bio_to->name));
1445	G_RAID3_LOGREQ(3, bp, "Request received.");
1446
1447	switch (bp->bio_cmd) {
1448	case BIO_READ:
1449	case BIO_WRITE:
1450	case BIO_DELETE:
1451		break;
1452	case BIO_FLUSH:
1453		g_raid3_flush(sc, bp);
1454		return;
1455	case BIO_GETATTR:
1456	default:
1457		g_io_deliver(bp, EOPNOTSUPP);
1458		return;
1459	}
1460	mtx_lock(&sc->sc_queue_mtx);
1461	bioq_insert_tail(&sc->sc_queue, bp);
1462	mtx_unlock(&sc->sc_queue_mtx);
1463	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
1464	wakeup(sc);
1465}
1466
1467/*
1468 * Return TRUE if the given request is colliding with a in-progress
1469 * synchronization request.
1470 */
1471static int
1472g_raid3_sync_collision(struct g_raid3_softc *sc, struct bio *bp)
1473{
1474	struct g_raid3_disk *disk;
1475	struct bio *sbp;
1476	off_t rstart, rend, sstart, send;
1477	int i;
1478
1479	disk = sc->sc_syncdisk;
1480	if (disk == NULL)
1481		return (0);
1482	rstart = bp->bio_offset;
1483	rend = bp->bio_offset + bp->bio_length;
1484	for (i = 0; i < g_raid3_syncreqs; i++) {
1485		sbp = disk->d_sync.ds_bios[i];
1486		if (sbp == NULL)
1487			continue;
1488		sstart = sbp->bio_offset;
1489		send = sbp->bio_length;
1490		if (sbp->bio_cmd == BIO_WRITE) {
1491			sstart *= sc->sc_ndisks - 1;
1492			send *= sc->sc_ndisks - 1;
1493		}
1494		send += sstart;
1495		if (rend > sstart && rstart < send)
1496			return (1);
1497	}
1498	return (0);
1499}
1500
1501/*
1502 * Return TRUE if the given sync request is colliding with a in-progress regular
1503 * request.
1504 */
1505static int
1506g_raid3_regular_collision(struct g_raid3_softc *sc, struct bio *sbp)
1507{
1508	off_t rstart, rend, sstart, send;
1509	struct bio *bp;
1510
1511	if (sc->sc_syncdisk == NULL)
1512		return (0);
1513	sstart = sbp->bio_offset;
1514	send = sstart + sbp->bio_length;
1515	TAILQ_FOREACH(bp, &sc->sc_inflight.queue, bio_queue) {
1516		rstart = bp->bio_offset;
1517		rend = bp->bio_offset + bp->bio_length;
1518		if (rend > sstart && rstart < send)
1519			return (1);
1520	}
1521	return (0);
1522}
1523
1524/*
1525 * Puts request onto delayed queue.
1526 */
1527static void
1528g_raid3_regular_delay(struct g_raid3_softc *sc, struct bio *bp)
1529{
1530
1531	G_RAID3_LOGREQ(2, bp, "Delaying request.");
1532	bioq_insert_head(&sc->sc_regular_delayed, bp);
1533}
1534
1535/*
1536 * Puts synchronization request onto delayed queue.
1537 */
1538static void
1539g_raid3_sync_delay(struct g_raid3_softc *sc, struct bio *bp)
1540{
1541
1542	G_RAID3_LOGREQ(2, bp, "Delaying synchronization request.");
1543	bioq_insert_tail(&sc->sc_sync_delayed, bp);
1544}
1545
1546/*
1547 * Releases delayed regular requests which don't collide anymore with sync
1548 * requests.
1549 */
1550static void
1551g_raid3_regular_release(struct g_raid3_softc *sc)
1552{
1553	struct bio *bp, *bp2;
1554
1555	TAILQ_FOREACH_SAFE(bp, &sc->sc_regular_delayed.queue, bio_queue, bp2) {
1556		if (g_raid3_sync_collision(sc, bp))
1557			continue;
1558		bioq_remove(&sc->sc_regular_delayed, bp);
1559		G_RAID3_LOGREQ(2, bp, "Releasing delayed request (%p).", bp);
1560		mtx_lock(&sc->sc_queue_mtx);
1561		bioq_insert_head(&sc->sc_queue, bp);
1562#if 0
1563		/*
1564		 * wakeup() is not needed, because this function is called from
1565		 * the worker thread.
1566		 */
1567		wakeup(&sc->sc_queue);
1568#endif
1569		mtx_unlock(&sc->sc_queue_mtx);
1570	}
1571}
1572
1573/*
1574 * Releases delayed sync requests which don't collide anymore with regular
1575 * requests.
1576 */
1577static void
1578g_raid3_sync_release(struct g_raid3_softc *sc)
1579{
1580	struct bio *bp, *bp2;
1581
1582	TAILQ_FOREACH_SAFE(bp, &sc->sc_sync_delayed.queue, bio_queue, bp2) {
1583		if (g_raid3_regular_collision(sc, bp))
1584			continue;
1585		bioq_remove(&sc->sc_sync_delayed, bp);
1586		G_RAID3_LOGREQ(2, bp,
1587		    "Releasing delayed synchronization request.");
1588		g_io_request(bp, bp->bio_from);
1589	}
1590}
1591
1592/*
1593 * Handle synchronization requests.
1594 * Every synchronization request is two-steps process: first, READ request is
1595 * send to active provider and then WRITE request (with read data) to the provider
1596 * beeing synchronized. When WRITE is finished, new synchronization request is
1597 * send.
1598 */
1599static void
1600g_raid3_sync_request(struct bio *bp)
1601{
1602	struct g_raid3_softc *sc;
1603	struct g_raid3_disk *disk;
1604
1605	bp->bio_from->index--;
1606	sc = bp->bio_from->geom->softc;
1607	disk = bp->bio_from->private;
1608	if (disk == NULL) {
1609		sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
1610		g_topology_lock();
1611		g_raid3_kill_consumer(sc, bp->bio_from);
1612		g_topology_unlock();
1613		free(bp->bio_data, M_RAID3);
1614		g_destroy_bio(bp);
1615		sx_xlock(&sc->sc_lock);
1616		return;
1617	}
1618
1619	/*
1620	 * Synchronization request.
1621	 */
1622	switch (bp->bio_cmd) {
1623	case BIO_READ:
1624	    {
1625		struct g_consumer *cp;
1626		u_char *dst, *src;
1627		off_t left;
1628		u_int atom;
1629
1630		if (bp->bio_error != 0) {
1631			G_RAID3_LOGREQ(0, bp,
1632			    "Synchronization request failed (error=%d).",
1633			    bp->bio_error);
1634			g_destroy_bio(bp);
1635			return;
1636		}
1637		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1638		atom = sc->sc_sectorsize / (sc->sc_ndisks - 1);
1639		dst = src = bp->bio_data;
1640		if (disk->d_no == sc->sc_ndisks - 1) {
1641			u_int n;
1642
1643			/* Parity component. */
1644			for (left = bp->bio_length; left > 0;
1645			    left -= sc->sc_sectorsize) {
1646				bcopy(src, dst, atom);
1647				src += atom;
1648				for (n = 1; n < sc->sc_ndisks - 1; n++) {
1649					g_raid3_xor(src, dst, atom);
1650					src += atom;
1651				}
1652				dst += atom;
1653			}
1654		} else {
1655			/* Regular component. */
1656			src += atom * disk->d_no;
1657			for (left = bp->bio_length; left > 0;
1658			    left -= sc->sc_sectorsize) {
1659				bcopy(src, dst, atom);
1660				src += sc->sc_sectorsize;
1661				dst += atom;
1662			}
1663		}
1664		bp->bio_driver1 = bp->bio_driver2 = NULL;
1665		bp->bio_pflags = 0;
1666		bp->bio_offset /= sc->sc_ndisks - 1;
1667		bp->bio_length /= sc->sc_ndisks - 1;
1668		bp->bio_cmd = BIO_WRITE;
1669		bp->bio_cflags = 0;
1670		bp->bio_children = bp->bio_inbed = 0;
1671		cp = disk->d_consumer;
1672		KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1673		    ("Consumer %s not opened (r%dw%de%d).", cp->provider->name,
1674		    cp->acr, cp->acw, cp->ace));
1675		cp->index++;
1676		g_io_request(bp, cp);
1677		return;
1678	    }
1679	case BIO_WRITE:
1680	    {
1681		struct g_raid3_disk_sync *sync;
1682		off_t boffset, moffset;
1683		void *data;
1684		int i;
1685
1686		if (bp->bio_error != 0) {
1687			G_RAID3_LOGREQ(0, bp,
1688			    "Synchronization request failed (error=%d).",
1689			    bp->bio_error);
1690			g_destroy_bio(bp);
1691			sc->sc_bump_id |= G_RAID3_BUMP_GENID;
1692			g_raid3_event_send(disk,
1693			    G_RAID3_DISK_STATE_DISCONNECTED,
1694			    G_RAID3_EVENT_DONTWAIT);
1695			return;
1696		}
1697		G_RAID3_LOGREQ(3, bp, "Synchronization request finished.");
1698		sync = &disk->d_sync;
1699		if (sync->ds_offset == sc->sc_mediasize / (sc->sc_ndisks - 1) ||
1700		    sync->ds_consumer == NULL ||
1701		    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1702			/* Don't send more synchronization requests. */
1703			sync->ds_inflight--;
1704			if (sync->ds_bios != NULL) {
1705				i = (int)(uintptr_t)bp->bio_caller1;
1706				sync->ds_bios[i] = NULL;
1707			}
1708			free(bp->bio_data, M_RAID3);
1709			g_destroy_bio(bp);
1710			if (sync->ds_inflight > 0)
1711				return;
1712			if (sync->ds_consumer == NULL ||
1713			    (sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
1714				return;
1715			}
1716			/*
1717			 * Disk up-to-date, activate it.
1718			 */
1719			g_raid3_event_send(disk, G_RAID3_DISK_STATE_ACTIVE,
1720			    G_RAID3_EVENT_DONTWAIT);
1721			return;
1722		}
1723
1724		/* Send next synchronization request. */
1725		data = bp->bio_data;
1726		bzero(bp, sizeof(*bp));
1727		bp->bio_cmd = BIO_READ;
1728		bp->bio_offset = sync->ds_offset * (sc->sc_ndisks - 1);
1729		bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
1730		sync->ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
1731		bp->bio_done = g_raid3_sync_done;
1732		bp->bio_data = data;
1733		bp->bio_from = sync->ds_consumer;
1734		bp->bio_to = sc->sc_provider;
1735		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
1736		sync->ds_consumer->index++;
1737		/*
1738		 * Delay the request if it is colliding with a regular request.
1739		 */
1740		if (g_raid3_regular_collision(sc, bp))
1741			g_raid3_sync_delay(sc, bp);
1742		else
1743			g_io_request(bp, sync->ds_consumer);
1744
1745		/* Release delayed requests if possible. */
1746		g_raid3_regular_release(sc);
1747
1748		/* Find the smallest offset. */
1749		moffset = sc->sc_mediasize;
1750		for (i = 0; i < g_raid3_syncreqs; i++) {
1751			bp = sync->ds_bios[i];
1752			boffset = bp->bio_offset;
1753			if (bp->bio_cmd == BIO_WRITE)
1754				boffset *= sc->sc_ndisks - 1;
1755			if (boffset < moffset)
1756				moffset = boffset;
1757		}
1758		if (sync->ds_offset_done + (MAXPHYS * 100) < moffset) {
1759			/* Update offset_done on every 100 blocks. */
1760			sync->ds_offset_done = moffset;
1761			g_raid3_update_metadata(disk);
1762		}
1763		return;
1764	    }
1765	default:
1766		KASSERT(1 == 0, ("Invalid command here: %u (device=%s)",
1767		    bp->bio_cmd, sc->sc_name));
1768		break;
1769	}
1770}
1771
1772static int
1773g_raid3_register_request(struct bio *pbp)
1774{
1775	struct g_raid3_softc *sc;
1776	struct g_raid3_disk *disk;
1777	struct g_consumer *cp;
1778	struct bio *cbp, *tmpbp;
1779	off_t offset, length;
1780	u_int n, ndisks;
1781	int round_robin, verify;
1782
1783	ndisks = 0;
1784	sc = pbp->bio_to->geom->softc;
1785	if ((pbp->bio_cflags & G_RAID3_BIO_CFLAG_REGSYNC) != 0 &&
1786	    sc->sc_syncdisk == NULL) {
1787		g_io_deliver(pbp, EIO);
1788		return (0);
1789	}
1790	g_raid3_init_bio(pbp);
1791	length = pbp->bio_length / (sc->sc_ndisks - 1);
1792	offset = pbp->bio_offset / (sc->sc_ndisks - 1);
1793	round_robin = verify = 0;
1794	switch (pbp->bio_cmd) {
1795	case BIO_READ:
1796		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
1797		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1798			pbp->bio_pflags |= G_RAID3_BIO_PFLAG_VERIFY;
1799			verify = 1;
1800			ndisks = sc->sc_ndisks;
1801		} else {
1802			verify = 0;
1803			ndisks = sc->sc_ndisks - 1;
1804		}
1805		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0 &&
1806		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
1807			round_robin = 1;
1808		} else {
1809			round_robin = 0;
1810		}
1811		KASSERT(!round_robin || !verify,
1812		    ("ROUND-ROBIN and VERIFY are mutually exclusive."));
1813		pbp->bio_driver2 = &sc->sc_disks[sc->sc_ndisks - 1];
1814		break;
1815	case BIO_WRITE:
1816	case BIO_DELETE:
1817		/*
1818		 * Delay the request if it is colliding with a synchronization
1819		 * request.
1820		 */
1821		if (g_raid3_sync_collision(sc, pbp)) {
1822			g_raid3_regular_delay(sc, pbp);
1823			return (0);
1824		}
1825
1826		if (sc->sc_idle)
1827			g_raid3_unidle(sc);
1828		else
1829			sc->sc_last_write = time_uptime;
1830
1831		ndisks = sc->sc_ndisks;
1832		break;
1833	}
1834	for (n = 0; n < ndisks; n++) {
1835		disk = &sc->sc_disks[n];
1836		cbp = g_raid3_clone_bio(sc, pbp);
1837		if (cbp == NULL) {
1838			while ((cbp = G_RAID3_HEAD_BIO(pbp)) != NULL)
1839				g_raid3_destroy_bio(sc, cbp);
1840			/*
1841			 * To prevent deadlock, we must run back up
1842			 * with the ENOMEM for failed requests of any
1843			 * of our consumers.  Our own sync requests
1844			 * can stick around, as they are finite.
1845			 */
1846			if ((pbp->bio_cflags &
1847			    G_RAID3_BIO_CFLAG_REGULAR) != 0) {
1848				g_io_deliver(pbp, ENOMEM);
1849				return (0);
1850			}
1851			return (ENOMEM);
1852		}
1853		cbp->bio_offset = offset;
1854		cbp->bio_length = length;
1855		cbp->bio_done = g_raid3_done;
1856		switch (pbp->bio_cmd) {
1857		case BIO_READ:
1858			if (disk->d_state != G_RAID3_DISK_STATE_ACTIVE) {
1859				/*
1860				 * Replace invalid component with the parity
1861				 * component.
1862				 */
1863				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1864				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1865				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1866			} else if (round_robin &&
1867			    disk->d_no == sc->sc_round_robin) {
1868				/*
1869				 * In round-robin mode skip one data component
1870				 * and use parity component when reading.
1871				 */
1872				pbp->bio_driver2 = disk;
1873				disk = &sc->sc_disks[sc->sc_ndisks - 1];
1874				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1875				sc->sc_round_robin++;
1876				round_robin = 0;
1877			} else if (verify && disk->d_no == sc->sc_ndisks - 1) {
1878				cbp->bio_cflags |= G_RAID3_BIO_CFLAG_PARITY;
1879			}
1880			break;
1881		case BIO_WRITE:
1882		case BIO_DELETE:
1883			if (disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
1884			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
1885				if (n == ndisks - 1) {
1886					/*
1887					 * Active parity component, mark it as such.
1888					 */
1889					cbp->bio_cflags |=
1890					    G_RAID3_BIO_CFLAG_PARITY;
1891				}
1892			} else {
1893				pbp->bio_pflags |= G_RAID3_BIO_PFLAG_DEGRADED;
1894				if (n == ndisks - 1) {
1895					/*
1896					 * Parity component is not connected,
1897					 * so destroy its request.
1898					 */
1899					pbp->bio_pflags |=
1900					    G_RAID3_BIO_PFLAG_NOPARITY;
1901					g_raid3_destroy_bio(sc, cbp);
1902					cbp = NULL;
1903				} else {
1904					cbp->bio_cflags |=
1905					    G_RAID3_BIO_CFLAG_NODISK;
1906					disk = NULL;
1907				}
1908			}
1909			break;
1910		}
1911		if (cbp != NULL)
1912			cbp->bio_caller2 = disk;
1913	}
1914	switch (pbp->bio_cmd) {
1915	case BIO_READ:
1916		if (round_robin) {
1917			/*
1918			 * If we are in round-robin mode and 'round_robin' is
1919			 * still 1, it means, that we skipped parity component
1920			 * for this read and must reset sc_round_robin field.
1921			 */
1922			sc->sc_round_robin = 0;
1923		}
1924		G_RAID3_FOREACH_SAFE_BIO(pbp, cbp, tmpbp) {
1925			disk = cbp->bio_caller2;
1926			cp = disk->d_consumer;
1927			cbp->bio_to = cp->provider;
1928			G_RAID3_LOGREQ(3, cbp, "Sending request.");
1929			KASSERT(cp->acr >= 1 && cp->acw >= 1 && cp->ace >= 1,
1930			    ("Consumer %s not opened (r%dw%de%d).",
1931			    cp->provider->name, cp->acr, cp->acw, cp->ace));
1932			cp->index++;
1933			g_io_request(cbp, cp);
1934		}
1935		break;
1936	case BIO_WRITE:
1937	case BIO_DELETE:
1938		/*
1939		 * Put request onto inflight queue, so we can check if new
1940		 * synchronization requests don't collide with it.
1941		 */
1942		bioq_insert_tail(&sc->sc_inflight, pbp);
1943
1944		/*
1945		 * Bump syncid on first write.
1946		 */
1947		if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0) {
1948			sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
1949			g_raid3_bump_syncid(sc);
1950		}
1951		g_raid3_scatter(pbp);
1952		break;
1953	}
1954	return (0);
1955}
1956
1957static int
1958g_raid3_can_destroy(struct g_raid3_softc *sc)
1959{
1960	struct g_geom *gp;
1961	struct g_consumer *cp;
1962
1963	g_topology_assert();
1964	gp = sc->sc_geom;
1965	if (gp->softc == NULL)
1966		return (1);
1967	LIST_FOREACH(cp, &gp->consumer, consumer) {
1968		if (g_raid3_is_busy(sc, cp))
1969			return (0);
1970	}
1971	gp = sc->sc_sync.ds_geom;
1972	LIST_FOREACH(cp, &gp->consumer, consumer) {
1973		if (g_raid3_is_busy(sc, cp))
1974			return (0);
1975	}
1976	G_RAID3_DEBUG(2, "No I/O requests for %s, it can be destroyed.",
1977	    sc->sc_name);
1978	return (1);
1979}
1980
1981static int
1982g_raid3_try_destroy(struct g_raid3_softc *sc)
1983{
1984
1985	g_topology_assert_not();
1986	sx_assert(&sc->sc_lock, SX_XLOCKED);
1987
1988	if (sc->sc_rootmount != NULL) {
1989		G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
1990		    sc->sc_rootmount);
1991		root_mount_rel(sc->sc_rootmount);
1992		sc->sc_rootmount = NULL;
1993	}
1994
1995	g_topology_lock();
1996	if (!g_raid3_can_destroy(sc)) {
1997		g_topology_unlock();
1998		return (0);
1999	}
2000	sc->sc_geom->softc = NULL;
2001	sc->sc_sync.ds_geom->softc = NULL;
2002	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_WAIT) != 0) {
2003		g_topology_unlock();
2004		G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2005		    &sc->sc_worker);
2006		/* Unlock sc_lock here, as it can be destroyed after wakeup. */
2007		sx_xunlock(&sc->sc_lock);
2008		wakeup(&sc->sc_worker);
2009		sc->sc_worker = NULL;
2010	} else {
2011		g_topology_unlock();
2012		g_raid3_destroy_device(sc);
2013		free(sc->sc_disks, M_RAID3);
2014		free(sc, M_RAID3);
2015	}
2016	return (1);
2017}
2018
2019/*
2020 * Worker thread.
2021 */
2022static void
2023g_raid3_worker(void *arg)
2024{
2025	struct g_raid3_softc *sc;
2026	struct g_raid3_event *ep;
2027	struct bio *bp;
2028	int timeout;
2029
2030	sc = arg;
2031	thread_lock(curthread);
2032	sched_prio(curthread, PRIBIO);
2033	thread_unlock(curthread);
2034
2035	sx_xlock(&sc->sc_lock);
2036	for (;;) {
2037		G_RAID3_DEBUG(5, "%s: Let's see...", __func__);
2038		/*
2039		 * First take a look at events.
2040		 * This is important to handle events before any I/O requests.
2041		 */
2042		ep = g_raid3_event_get(sc);
2043		if (ep != NULL) {
2044			g_raid3_event_remove(sc, ep);
2045			if ((ep->e_flags & G_RAID3_EVENT_DEVICE) != 0) {
2046				/* Update only device status. */
2047				G_RAID3_DEBUG(3,
2048				    "Running event for device %s.",
2049				    sc->sc_name);
2050				ep->e_error = 0;
2051				g_raid3_update_device(sc, 1);
2052			} else {
2053				/* Update disk status. */
2054				G_RAID3_DEBUG(3, "Running event for disk %s.",
2055				     g_raid3_get_diskname(ep->e_disk));
2056				ep->e_error = g_raid3_update_disk(ep->e_disk,
2057				    ep->e_state);
2058				if (ep->e_error == 0)
2059					g_raid3_update_device(sc, 0);
2060			}
2061			if ((ep->e_flags & G_RAID3_EVENT_DONTWAIT) != 0) {
2062				KASSERT(ep->e_error == 0,
2063				    ("Error cannot be handled."));
2064				g_raid3_event_free(ep);
2065			} else {
2066				ep->e_flags |= G_RAID3_EVENT_DONE;
2067				G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__,
2068				    ep);
2069				mtx_lock(&sc->sc_events_mtx);
2070				wakeup(ep);
2071				mtx_unlock(&sc->sc_events_mtx);
2072			}
2073			if ((sc->sc_flags &
2074			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2075				if (g_raid3_try_destroy(sc)) {
2076					curthread->td_pflags &= ~TDP_GEOM;
2077					G_RAID3_DEBUG(1, "Thread exiting.");
2078					kproc_exit(0);
2079				}
2080			}
2081			G_RAID3_DEBUG(5, "%s: I'm here 1.", __func__);
2082			continue;
2083		}
2084		/*
2085		 * Check if we can mark array as CLEAN and if we can't take
2086		 * how much seconds should we wait.
2087		 */
2088		timeout = g_raid3_idle(sc, -1);
2089		/*
2090		 * Now I/O requests.
2091		 */
2092		/* Get first request from the queue. */
2093		mtx_lock(&sc->sc_queue_mtx);
2094		bp = bioq_first(&sc->sc_queue);
2095		if (bp == NULL) {
2096			if ((sc->sc_flags &
2097			    G_RAID3_DEVICE_FLAG_DESTROY) != 0) {
2098				mtx_unlock(&sc->sc_queue_mtx);
2099				if (g_raid3_try_destroy(sc)) {
2100					curthread->td_pflags &= ~TDP_GEOM;
2101					G_RAID3_DEBUG(1, "Thread exiting.");
2102					kproc_exit(0);
2103				}
2104				mtx_lock(&sc->sc_queue_mtx);
2105			}
2106			sx_xunlock(&sc->sc_lock);
2107			/*
2108			 * XXX: We can miss an event here, because an event
2109			 *      can be added without sx-device-lock and without
2110			 *      mtx-queue-lock. Maybe I should just stop using
2111			 *      dedicated mutex for events synchronization and
2112			 *      stick with the queue lock?
2113			 *      The event will hang here until next I/O request
2114			 *      or next event is received.
2115			 */
2116			MSLEEP(sc, &sc->sc_queue_mtx, PRIBIO | PDROP, "r3:w1",
2117			    timeout * hz);
2118			sx_xlock(&sc->sc_lock);
2119			G_RAID3_DEBUG(5, "%s: I'm here 4.", __func__);
2120			continue;
2121		}
2122process:
2123		bioq_remove(&sc->sc_queue, bp);
2124		mtx_unlock(&sc->sc_queue_mtx);
2125
2126		if (bp->bio_from->geom == sc->sc_sync.ds_geom &&
2127		    (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0) {
2128			g_raid3_sync_request(bp);	/* READ */
2129		} else if (bp->bio_to != sc->sc_provider) {
2130			if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR) != 0)
2131				g_raid3_regular_request(bp);
2132			else if ((bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC) != 0)
2133				g_raid3_sync_request(bp);	/* WRITE */
2134			else {
2135				KASSERT(0,
2136				    ("Invalid request cflags=0x%hhx to=%s.",
2137				    bp->bio_cflags, bp->bio_to->name));
2138			}
2139		} else if (g_raid3_register_request(bp) != 0) {
2140			mtx_lock(&sc->sc_queue_mtx);
2141			bioq_insert_head(&sc->sc_queue, bp);
2142			/*
2143			 * We are short in memory, let see if there are finished
2144			 * request we can free.
2145			 */
2146			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2147				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_REGULAR)
2148					goto process;
2149			}
2150			/*
2151			 * No finished regular request, so at least keep
2152			 * synchronization running.
2153			 */
2154			TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
2155				if (bp->bio_cflags & G_RAID3_BIO_CFLAG_SYNC)
2156					goto process;
2157			}
2158			sx_xunlock(&sc->sc_lock);
2159			MSLEEP(&sc->sc_queue, &sc->sc_queue_mtx, PRIBIO | PDROP,
2160			    "r3:lowmem", hz / 10);
2161			sx_xlock(&sc->sc_lock);
2162		}
2163		G_RAID3_DEBUG(5, "%s: I'm here 9.", __func__);
2164	}
2165}
2166
2167static void
2168g_raid3_update_idle(struct g_raid3_softc *sc, struct g_raid3_disk *disk)
2169{
2170
2171	sx_assert(&sc->sc_lock, SX_LOCKED);
2172	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) != 0)
2173		return;
2174	if (!sc->sc_idle && (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) == 0) {
2175		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as dirty.",
2176		    g_raid3_get_diskname(disk), sc->sc_name);
2177		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2178	} else if (sc->sc_idle &&
2179	    (disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0) {
2180		G_RAID3_DEBUG(1, "Disk %s (device %s) marked as clean.",
2181		    g_raid3_get_diskname(disk), sc->sc_name);
2182		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2183	}
2184}
2185
2186static void
2187g_raid3_sync_start(struct g_raid3_softc *sc)
2188{
2189	struct g_raid3_disk *disk;
2190	struct g_consumer *cp;
2191	struct bio *bp;
2192	int error;
2193	u_int n;
2194
2195	g_topology_assert_not();
2196	sx_assert(&sc->sc_lock, SX_XLOCKED);
2197
2198	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2199	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2200	    sc->sc_state));
2201	KASSERT(sc->sc_syncdisk == NULL, ("Syncdisk is not NULL (%s, %u).",
2202	    sc->sc_name, sc->sc_state));
2203	disk = NULL;
2204	for (n = 0; n < sc->sc_ndisks; n++) {
2205		if (sc->sc_disks[n].d_state != G_RAID3_DISK_STATE_SYNCHRONIZING)
2206			continue;
2207		disk = &sc->sc_disks[n];
2208		break;
2209	}
2210	if (disk == NULL)
2211		return;
2212
2213	sx_xunlock(&sc->sc_lock);
2214	g_topology_lock();
2215	cp = g_new_consumer(sc->sc_sync.ds_geom);
2216	error = g_attach(cp, sc->sc_provider);
2217	KASSERT(error == 0,
2218	    ("Cannot attach to %s (error=%d).", sc->sc_name, error));
2219	error = g_access(cp, 1, 0, 0);
2220	KASSERT(error == 0, ("Cannot open %s (error=%d).", sc->sc_name, error));
2221	g_topology_unlock();
2222	sx_xlock(&sc->sc_lock);
2223
2224	G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s.", sc->sc_name,
2225	    g_raid3_get_diskname(disk));
2226	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOFAILSYNC) == 0)
2227		disk->d_flags |= G_RAID3_DISK_FLAG_DIRTY;
2228	KASSERT(disk->d_sync.ds_consumer == NULL,
2229	    ("Sync consumer already exists (device=%s, disk=%s).",
2230	    sc->sc_name, g_raid3_get_diskname(disk)));
2231
2232	disk->d_sync.ds_consumer = cp;
2233	disk->d_sync.ds_consumer->private = disk;
2234	disk->d_sync.ds_consumer->index = 0;
2235	sc->sc_syncdisk = disk;
2236
2237	/*
2238	 * Allocate memory for synchronization bios and initialize them.
2239	 */
2240	disk->d_sync.ds_bios = malloc(sizeof(struct bio *) * g_raid3_syncreqs,
2241	    M_RAID3, M_WAITOK);
2242	for (n = 0; n < g_raid3_syncreqs; n++) {
2243		bp = g_alloc_bio();
2244		disk->d_sync.ds_bios[n] = bp;
2245		bp->bio_parent = NULL;
2246		bp->bio_cmd = BIO_READ;
2247		bp->bio_data = malloc(MAXPHYS, M_RAID3, M_WAITOK);
2248		bp->bio_cflags = 0;
2249		bp->bio_offset = disk->d_sync.ds_offset * (sc->sc_ndisks - 1);
2250		bp->bio_length = MIN(MAXPHYS, sc->sc_mediasize - bp->bio_offset);
2251		disk->d_sync.ds_offset += bp->bio_length / (sc->sc_ndisks - 1);
2252		bp->bio_done = g_raid3_sync_done;
2253		bp->bio_from = disk->d_sync.ds_consumer;
2254		bp->bio_to = sc->sc_provider;
2255		bp->bio_caller1 = (void *)(uintptr_t)n;
2256	}
2257
2258	/* Set the number of in-flight synchronization requests. */
2259	disk->d_sync.ds_inflight = g_raid3_syncreqs;
2260
2261	/*
2262	 * Fire off first synchronization requests.
2263	 */
2264	for (n = 0; n < g_raid3_syncreqs; n++) {
2265		bp = disk->d_sync.ds_bios[n];
2266		G_RAID3_LOGREQ(3, bp, "Sending synchronization request.");
2267		disk->d_sync.ds_consumer->index++;
2268		/*
2269		 * Delay the request if it is colliding with a regular request.
2270		 */
2271		if (g_raid3_regular_collision(sc, bp))
2272			g_raid3_sync_delay(sc, bp);
2273		else
2274			g_io_request(bp, disk->d_sync.ds_consumer);
2275	}
2276}
2277
2278/*
2279 * Stop synchronization process.
2280 * type: 0 - synchronization finished
2281 *       1 - synchronization stopped
2282 */
2283static void
2284g_raid3_sync_stop(struct g_raid3_softc *sc, int type)
2285{
2286	struct g_raid3_disk *disk;
2287	struct g_consumer *cp;
2288
2289	g_topology_assert_not();
2290	sx_assert(&sc->sc_lock, SX_LOCKED);
2291
2292	KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED,
2293	    ("Device not in DEGRADED state (%s, %u).", sc->sc_name,
2294	    sc->sc_state));
2295	disk = sc->sc_syncdisk;
2296	sc->sc_syncdisk = NULL;
2297	KASSERT(disk != NULL, ("No disk was synchronized (%s).", sc->sc_name));
2298	KASSERT(disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2299	    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2300	    g_raid3_disk_state2str(disk->d_state)));
2301	if (disk->d_sync.ds_consumer == NULL)
2302		return;
2303
2304	if (type == 0) {
2305		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s finished.",
2306		    sc->sc_name, g_raid3_get_diskname(disk));
2307	} else /* if (type == 1) */ {
2308		G_RAID3_DEBUG(0, "Device %s: rebuilding provider %s stopped.",
2309		    sc->sc_name, g_raid3_get_diskname(disk));
2310	}
2311	free(disk->d_sync.ds_bios, M_RAID3);
2312	disk->d_sync.ds_bios = NULL;
2313	cp = disk->d_sync.ds_consumer;
2314	disk->d_sync.ds_consumer = NULL;
2315	disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2316	sx_xunlock(&sc->sc_lock); /* Avoid recursion on sc_lock. */
2317	g_topology_lock();
2318	g_raid3_kill_consumer(sc, cp);
2319	g_topology_unlock();
2320	sx_xlock(&sc->sc_lock);
2321}
2322
2323static void
2324g_raid3_launch_provider(struct g_raid3_softc *sc)
2325{
2326	struct g_provider *pp;
2327	struct g_raid3_disk *disk;
2328	int n;
2329
2330	sx_assert(&sc->sc_lock, SX_LOCKED);
2331
2332	g_topology_lock();
2333	pp = g_new_providerf(sc->sc_geom, "raid3/%s", sc->sc_name);
2334	pp->mediasize = sc->sc_mediasize;
2335	pp->sectorsize = sc->sc_sectorsize;
2336	pp->stripesize = 0;
2337	pp->stripeoffset = 0;
2338	for (n = 0; n < sc->sc_ndisks; n++) {
2339		disk = &sc->sc_disks[n];
2340		if (disk->d_consumer && disk->d_consumer->provider &&
2341		    disk->d_consumer->provider->stripesize > pp->stripesize) {
2342			pp->stripesize = disk->d_consumer->provider->stripesize;
2343			pp->stripeoffset = disk->d_consumer->provider->stripeoffset;
2344		}
2345	}
2346	pp->stripesize *= sc->sc_ndisks - 1;
2347	pp->stripeoffset *= sc->sc_ndisks - 1;
2348	sc->sc_provider = pp;
2349	g_error_provider(pp, 0);
2350	g_topology_unlock();
2351	G_RAID3_DEBUG(0, "Device %s launched (%u/%u).", pp->name,
2352	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE), sc->sc_ndisks);
2353
2354	if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED)
2355		g_raid3_sync_start(sc);
2356}
2357
2358static void
2359g_raid3_destroy_provider(struct g_raid3_softc *sc)
2360{
2361	struct bio *bp;
2362
2363	g_topology_assert_not();
2364	KASSERT(sc->sc_provider != NULL, ("NULL provider (device=%s).",
2365	    sc->sc_name));
2366
2367	g_topology_lock();
2368	g_error_provider(sc->sc_provider, ENXIO);
2369	mtx_lock(&sc->sc_queue_mtx);
2370	while ((bp = bioq_first(&sc->sc_queue)) != NULL) {
2371		bioq_remove(&sc->sc_queue, bp);
2372		g_io_deliver(bp, ENXIO);
2373	}
2374	mtx_unlock(&sc->sc_queue_mtx);
2375	G_RAID3_DEBUG(0, "Device %s: provider %s destroyed.", sc->sc_name,
2376	    sc->sc_provider->name);
2377	sc->sc_provider->flags |= G_PF_WITHER;
2378	g_orphan_provider(sc->sc_provider, ENXIO);
2379	g_topology_unlock();
2380	sc->sc_provider = NULL;
2381	if (sc->sc_syncdisk != NULL)
2382		g_raid3_sync_stop(sc, 1);
2383}
2384
2385static void
2386g_raid3_go(void *arg)
2387{
2388	struct g_raid3_softc *sc;
2389
2390	sc = arg;
2391	G_RAID3_DEBUG(0, "Force device %s start due to timeout.", sc->sc_name);
2392	g_raid3_event_send(sc, 0,
2393	    G_RAID3_EVENT_DONTWAIT | G_RAID3_EVENT_DEVICE);
2394}
2395
2396static u_int
2397g_raid3_determine_state(struct g_raid3_disk *disk)
2398{
2399	struct g_raid3_softc *sc;
2400	u_int state;
2401
2402	sc = disk->d_softc;
2403	if (sc->sc_syncid == disk->d_sync.ds_syncid) {
2404		if ((disk->d_flags &
2405		    G_RAID3_DISK_FLAG_SYNCHRONIZING) == 0) {
2406			/* Disk does not need synchronization. */
2407			state = G_RAID3_DISK_STATE_ACTIVE;
2408		} else {
2409			if ((sc->sc_flags &
2410			     G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2411			    (disk->d_flags &
2412			     G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2413				/*
2414				 * We can start synchronization from
2415				 * the stored offset.
2416				 */
2417				state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2418			} else {
2419				state = G_RAID3_DISK_STATE_STALE;
2420			}
2421		}
2422	} else if (disk->d_sync.ds_syncid < sc->sc_syncid) {
2423		/*
2424		 * Reset all synchronization data for this disk,
2425		 * because if it even was synchronized, it was
2426		 * synchronized to disks with different syncid.
2427		 */
2428		disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2429		disk->d_sync.ds_offset = 0;
2430		disk->d_sync.ds_offset_done = 0;
2431		disk->d_sync.ds_syncid = sc->sc_syncid;
2432		if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) == 0 ||
2433		    (disk->d_flags & G_RAID3_DISK_FLAG_FORCE_SYNC) != 0) {
2434			state = G_RAID3_DISK_STATE_SYNCHRONIZING;
2435		} else {
2436			state = G_RAID3_DISK_STATE_STALE;
2437		}
2438	} else /* if (sc->sc_syncid < disk->d_sync.ds_syncid) */ {
2439		/*
2440		 * Not good, NOT GOOD!
2441		 * It means that device was started on stale disks
2442		 * and more fresh disk just arrive.
2443		 * If there were writes, device is broken, sorry.
2444		 * I think the best choice here is don't touch
2445		 * this disk and inform the user loudly.
2446		 */
2447		G_RAID3_DEBUG(0, "Device %s was started before the freshest "
2448		    "disk (%s) arrives!! It will not be connected to the "
2449		    "running device.", sc->sc_name,
2450		    g_raid3_get_diskname(disk));
2451		g_raid3_destroy_disk(disk);
2452		state = G_RAID3_DISK_STATE_NONE;
2453		/* Return immediately, because disk was destroyed. */
2454		return (state);
2455	}
2456	G_RAID3_DEBUG(3, "State for %s disk: %s.",
2457	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(state));
2458	return (state);
2459}
2460
2461/*
2462 * Update device state.
2463 */
2464static void
2465g_raid3_update_device(struct g_raid3_softc *sc, boolean_t force)
2466{
2467	struct g_raid3_disk *disk;
2468	u_int state;
2469
2470	sx_assert(&sc->sc_lock, SX_XLOCKED);
2471
2472	switch (sc->sc_state) {
2473	case G_RAID3_DEVICE_STATE_STARTING:
2474	    {
2475		u_int n, ndirty, ndisks, genid, syncid;
2476
2477		KASSERT(sc->sc_provider == NULL,
2478		    ("Non-NULL provider in STARTING state (%s).", sc->sc_name));
2479		/*
2480		 * Are we ready? We are, if all disks are connected or
2481		 * one disk is missing and 'force' is true.
2482		 */
2483		if (g_raid3_ndisks(sc, -1) + force == sc->sc_ndisks) {
2484			if (!force)
2485				callout_drain(&sc->sc_callout);
2486		} else {
2487			if (force) {
2488				/*
2489				 * Timeout expired, so destroy device.
2490				 */
2491				sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2492				G_RAID3_DEBUG(1, "root_mount_rel[%u] %p",
2493				    __LINE__, sc->sc_rootmount);
2494				root_mount_rel(sc->sc_rootmount);
2495				sc->sc_rootmount = NULL;
2496			}
2497			return;
2498		}
2499
2500		/*
2501		 * Find the biggest genid.
2502		 */
2503		genid = 0;
2504		for (n = 0; n < sc->sc_ndisks; n++) {
2505			disk = &sc->sc_disks[n];
2506			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2507				continue;
2508			if (disk->d_genid > genid)
2509				genid = disk->d_genid;
2510		}
2511		sc->sc_genid = genid;
2512		/*
2513		 * Remove all disks without the biggest genid.
2514		 */
2515		for (n = 0; n < sc->sc_ndisks; n++) {
2516			disk = &sc->sc_disks[n];
2517			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2518				continue;
2519			if (disk->d_genid < genid) {
2520				G_RAID3_DEBUG(0,
2521				    "Component %s (device %s) broken, skipping.",
2522				    g_raid3_get_diskname(disk), sc->sc_name);
2523				g_raid3_destroy_disk(disk);
2524			}
2525		}
2526
2527		/*
2528		 * There must be at least 'sc->sc_ndisks - 1' components
2529		 * with the same syncid and without SYNCHRONIZING flag.
2530		 */
2531
2532		/*
2533		 * Find the biggest syncid, number of valid components and
2534		 * number of dirty components.
2535		 */
2536		ndirty = ndisks = syncid = 0;
2537		for (n = 0; n < sc->sc_ndisks; n++) {
2538			disk = &sc->sc_disks[n];
2539			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2540				continue;
2541			if ((disk->d_flags & G_RAID3_DISK_FLAG_DIRTY) != 0)
2542				ndirty++;
2543			if (disk->d_sync.ds_syncid > syncid) {
2544				syncid = disk->d_sync.ds_syncid;
2545				ndisks = 0;
2546			} else if (disk->d_sync.ds_syncid < syncid) {
2547				continue;
2548			}
2549			if ((disk->d_flags &
2550			    G_RAID3_DISK_FLAG_SYNCHRONIZING) != 0) {
2551				continue;
2552			}
2553			ndisks++;
2554		}
2555		/*
2556		 * Do we have enough valid components?
2557		 */
2558		if (ndisks + 1 < sc->sc_ndisks) {
2559			G_RAID3_DEBUG(0,
2560			    "Device %s is broken, too few valid components.",
2561			    sc->sc_name);
2562			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2563			return;
2564		}
2565		/*
2566		 * If there is one DIRTY component and all disks are present,
2567		 * mark it for synchronization. If there is more than one DIRTY
2568		 * component, mark parity component for synchronization.
2569		 */
2570		if (ndisks == sc->sc_ndisks && ndirty == 1) {
2571			for (n = 0; n < sc->sc_ndisks; n++) {
2572				disk = &sc->sc_disks[n];
2573				if ((disk->d_flags &
2574				    G_RAID3_DISK_FLAG_DIRTY) == 0) {
2575					continue;
2576				}
2577				disk->d_flags |=
2578				    G_RAID3_DISK_FLAG_SYNCHRONIZING;
2579			}
2580		} else if (ndisks == sc->sc_ndisks && ndirty > 1) {
2581			disk = &sc->sc_disks[sc->sc_ndisks - 1];
2582			disk->d_flags |= G_RAID3_DISK_FLAG_SYNCHRONIZING;
2583		}
2584
2585		sc->sc_syncid = syncid;
2586		if (force) {
2587			/* Remember to bump syncid on first write. */
2588			sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2589		}
2590		if (ndisks == sc->sc_ndisks)
2591			state = G_RAID3_DEVICE_STATE_COMPLETE;
2592		else /* if (ndisks == sc->sc_ndisks - 1) */
2593			state = G_RAID3_DEVICE_STATE_DEGRADED;
2594		G_RAID3_DEBUG(1, "Device %s state changed from %s to %s.",
2595		    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2596		    g_raid3_device_state2str(state));
2597		sc->sc_state = state;
2598		for (n = 0; n < sc->sc_ndisks; n++) {
2599			disk = &sc->sc_disks[n];
2600			if (disk->d_state == G_RAID3_DISK_STATE_NODISK)
2601				continue;
2602			state = g_raid3_determine_state(disk);
2603			g_raid3_event_send(disk, state, G_RAID3_EVENT_DONTWAIT);
2604			if (state == G_RAID3_DISK_STATE_STALE)
2605				sc->sc_bump_id |= G_RAID3_BUMP_SYNCID;
2606		}
2607		break;
2608	    }
2609	case G_RAID3_DEVICE_STATE_DEGRADED:
2610		/*
2611		 * Genid need to be bumped immediately, so do it here.
2612		 */
2613		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2614			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2615			g_raid3_bump_genid(sc);
2616		}
2617
2618		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2619			return;
2620		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) <
2621		    sc->sc_ndisks - 1) {
2622			if (sc->sc_provider != NULL)
2623				g_raid3_destroy_provider(sc);
2624			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
2625			return;
2626		}
2627		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2628		    sc->sc_ndisks) {
2629			state = G_RAID3_DEVICE_STATE_COMPLETE;
2630			G_RAID3_DEBUG(1,
2631			    "Device %s state changed from %s to %s.",
2632			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2633			    g_raid3_device_state2str(state));
2634			sc->sc_state = state;
2635		}
2636		if (sc->sc_provider == NULL)
2637			g_raid3_launch_provider(sc);
2638		if (sc->sc_rootmount != NULL) {
2639			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2640			    sc->sc_rootmount);
2641			root_mount_rel(sc->sc_rootmount);
2642			sc->sc_rootmount = NULL;
2643		}
2644		break;
2645	case G_RAID3_DEVICE_STATE_COMPLETE:
2646		/*
2647		 * Genid need to be bumped immediately, so do it here.
2648		 */
2649		if ((sc->sc_bump_id & G_RAID3_BUMP_GENID) != 0) {
2650			sc->sc_bump_id &= ~G_RAID3_BUMP_GENID;
2651			g_raid3_bump_genid(sc);
2652		}
2653
2654		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NEW) > 0)
2655			return;
2656		KASSERT(g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) >=
2657		    sc->sc_ndisks - 1,
2658		    ("Too few ACTIVE components in COMPLETE state (device %s).",
2659		    sc->sc_name));
2660		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) ==
2661		    sc->sc_ndisks - 1) {
2662			state = G_RAID3_DEVICE_STATE_DEGRADED;
2663			G_RAID3_DEBUG(1,
2664			    "Device %s state changed from %s to %s.",
2665			    sc->sc_name, g_raid3_device_state2str(sc->sc_state),
2666			    g_raid3_device_state2str(state));
2667			sc->sc_state = state;
2668		}
2669		if (sc->sc_provider == NULL)
2670			g_raid3_launch_provider(sc);
2671		if (sc->sc_rootmount != NULL) {
2672			G_RAID3_DEBUG(1, "root_mount_rel[%u] %p", __LINE__,
2673			    sc->sc_rootmount);
2674			root_mount_rel(sc->sc_rootmount);
2675			sc->sc_rootmount = NULL;
2676		}
2677		break;
2678	default:
2679		KASSERT(1 == 0, ("Wrong device state (%s, %s).", sc->sc_name,
2680		    g_raid3_device_state2str(sc->sc_state)));
2681		break;
2682	}
2683}
2684
2685/*
2686 * Update disk state and device state if needed.
2687 */
2688#define	DISK_STATE_CHANGED()	G_RAID3_DEBUG(1,			\
2689	"Disk %s state changed from %s to %s (device %s).",		\
2690	g_raid3_get_diskname(disk),					\
2691	g_raid3_disk_state2str(disk->d_state),				\
2692	g_raid3_disk_state2str(state), sc->sc_name)
2693static int
2694g_raid3_update_disk(struct g_raid3_disk *disk, u_int state)
2695{
2696	struct g_raid3_softc *sc;
2697
2698	sc = disk->d_softc;
2699	sx_assert(&sc->sc_lock, SX_XLOCKED);
2700
2701again:
2702	G_RAID3_DEBUG(3, "Changing disk %s state from %s to %s.",
2703	    g_raid3_get_diskname(disk), g_raid3_disk_state2str(disk->d_state),
2704	    g_raid3_disk_state2str(state));
2705	switch (state) {
2706	case G_RAID3_DISK_STATE_NEW:
2707		/*
2708		 * Possible scenarios:
2709		 * 1. New disk arrive.
2710		 */
2711		/* Previous state should be NONE. */
2712		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NONE,
2713		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2714		    g_raid3_disk_state2str(disk->d_state)));
2715		DISK_STATE_CHANGED();
2716
2717		disk->d_state = state;
2718		G_RAID3_DEBUG(1, "Device %s: provider %s detected.",
2719		    sc->sc_name, g_raid3_get_diskname(disk));
2720		if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING)
2721			break;
2722		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2723		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2724		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2725		    g_raid3_device_state2str(sc->sc_state),
2726		    g_raid3_get_diskname(disk),
2727		    g_raid3_disk_state2str(disk->d_state)));
2728		state = g_raid3_determine_state(disk);
2729		if (state != G_RAID3_DISK_STATE_NONE)
2730			goto again;
2731		break;
2732	case G_RAID3_DISK_STATE_ACTIVE:
2733		/*
2734		 * Possible scenarios:
2735		 * 1. New disk does not need synchronization.
2736		 * 2. Synchronization process finished successfully.
2737		 */
2738		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2739		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2740		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2741		    g_raid3_device_state2str(sc->sc_state),
2742		    g_raid3_get_diskname(disk),
2743		    g_raid3_disk_state2str(disk->d_state)));
2744		/* Previous state should be NEW or SYNCHRONIZING. */
2745		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW ||
2746		    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2747		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2748		    g_raid3_disk_state2str(disk->d_state)));
2749		DISK_STATE_CHANGED();
2750
2751		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
2752			disk->d_flags &= ~G_RAID3_DISK_FLAG_SYNCHRONIZING;
2753			disk->d_flags &= ~G_RAID3_DISK_FLAG_FORCE_SYNC;
2754			g_raid3_sync_stop(sc, 0);
2755		}
2756		disk->d_state = state;
2757		disk->d_sync.ds_offset = 0;
2758		disk->d_sync.ds_offset_done = 0;
2759		g_raid3_update_idle(sc, disk);
2760		g_raid3_update_metadata(disk);
2761		G_RAID3_DEBUG(1, "Device %s: provider %s activated.",
2762		    sc->sc_name, g_raid3_get_diskname(disk));
2763		break;
2764	case G_RAID3_DISK_STATE_STALE:
2765		/*
2766		 * Possible scenarios:
2767		 * 1. Stale disk was connected.
2768		 */
2769		/* Previous state should be NEW. */
2770		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2771		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2772		    g_raid3_disk_state2str(disk->d_state)));
2773		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2774		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2775		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2776		    g_raid3_device_state2str(sc->sc_state),
2777		    g_raid3_get_diskname(disk),
2778		    g_raid3_disk_state2str(disk->d_state)));
2779		/*
2780		 * STALE state is only possible if device is marked
2781		 * NOAUTOSYNC.
2782		 */
2783		KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_NOAUTOSYNC) != 0,
2784		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2785		    g_raid3_device_state2str(sc->sc_state),
2786		    g_raid3_get_diskname(disk),
2787		    g_raid3_disk_state2str(disk->d_state)));
2788		DISK_STATE_CHANGED();
2789
2790		disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2791		disk->d_state = state;
2792		g_raid3_update_metadata(disk);
2793		G_RAID3_DEBUG(0, "Device %s: provider %s is stale.",
2794		    sc->sc_name, g_raid3_get_diskname(disk));
2795		break;
2796	case G_RAID3_DISK_STATE_SYNCHRONIZING:
2797		/*
2798		 * Possible scenarios:
2799		 * 1. Disk which needs synchronization was connected.
2800		 */
2801		/* Previous state should be NEW. */
2802		KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2803		    ("Wrong disk state (%s, %s).", g_raid3_get_diskname(disk),
2804		    g_raid3_disk_state2str(disk->d_state)));
2805		KASSERT(sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2806		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE,
2807		    ("Wrong device state (%s, %s, %s, %s).", sc->sc_name,
2808		    g_raid3_device_state2str(sc->sc_state),
2809		    g_raid3_get_diskname(disk),
2810		    g_raid3_disk_state2str(disk->d_state)));
2811		DISK_STATE_CHANGED();
2812
2813		if (disk->d_state == G_RAID3_DISK_STATE_NEW)
2814			disk->d_flags &= ~G_RAID3_DISK_FLAG_DIRTY;
2815		disk->d_state = state;
2816		if (sc->sc_provider != NULL) {
2817			g_raid3_sync_start(sc);
2818			g_raid3_update_metadata(disk);
2819		}
2820		break;
2821	case G_RAID3_DISK_STATE_DISCONNECTED:
2822		/*
2823		 * Possible scenarios:
2824		 * 1. Device wasn't running yet, but disk disappear.
2825		 * 2. Disk was active and disapppear.
2826		 * 3. Disk disappear during synchronization process.
2827		 */
2828		if (sc->sc_state == G_RAID3_DEVICE_STATE_DEGRADED ||
2829		    sc->sc_state == G_RAID3_DEVICE_STATE_COMPLETE) {
2830			/*
2831			 * Previous state should be ACTIVE, STALE or
2832			 * SYNCHRONIZING.
2833			 */
2834			KASSERT(disk->d_state == G_RAID3_DISK_STATE_ACTIVE ||
2835			    disk->d_state == G_RAID3_DISK_STATE_STALE ||
2836			    disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING,
2837			    ("Wrong disk state (%s, %s).",
2838			    g_raid3_get_diskname(disk),
2839			    g_raid3_disk_state2str(disk->d_state)));
2840		} else if (sc->sc_state == G_RAID3_DEVICE_STATE_STARTING) {
2841			/* Previous state should be NEW. */
2842			KASSERT(disk->d_state == G_RAID3_DISK_STATE_NEW,
2843			    ("Wrong disk state (%s, %s).",
2844			    g_raid3_get_diskname(disk),
2845			    g_raid3_disk_state2str(disk->d_state)));
2846			/*
2847			 * Reset bumping syncid if disk disappeared in STARTING
2848			 * state.
2849			 */
2850			if ((sc->sc_bump_id & G_RAID3_BUMP_SYNCID) != 0)
2851				sc->sc_bump_id &= ~G_RAID3_BUMP_SYNCID;
2852#ifdef	INVARIANTS
2853		} else {
2854			KASSERT(1 == 0, ("Wrong device state (%s, %s, %s, %s).",
2855			    sc->sc_name,
2856			    g_raid3_device_state2str(sc->sc_state),
2857			    g_raid3_get_diskname(disk),
2858			    g_raid3_disk_state2str(disk->d_state)));
2859#endif
2860		}
2861		DISK_STATE_CHANGED();
2862		G_RAID3_DEBUG(0, "Device %s: provider %s disconnected.",
2863		    sc->sc_name, g_raid3_get_diskname(disk));
2864
2865		g_raid3_destroy_disk(disk);
2866		break;
2867	default:
2868		KASSERT(1 == 0, ("Unknown state (%u).", state));
2869		break;
2870	}
2871	return (0);
2872}
2873#undef	DISK_STATE_CHANGED
2874
2875int
2876g_raid3_read_metadata(struct g_consumer *cp, struct g_raid3_metadata *md)
2877{
2878	struct g_provider *pp;
2879	u_char *buf;
2880	int error;
2881
2882	g_topology_assert();
2883
2884	error = g_access(cp, 1, 0, 0);
2885	if (error != 0)
2886		return (error);
2887	pp = cp->provider;
2888	g_topology_unlock();
2889	/* Metadata are stored on last sector. */
2890	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
2891	    &error);
2892	g_topology_lock();
2893	g_access(cp, -1, 0, 0);
2894	if (buf == NULL) {
2895		G_RAID3_DEBUG(1, "Cannot read metadata from %s (error=%d).",
2896		    cp->provider->name, error);
2897		return (error);
2898	}
2899
2900	/* Decode metadata. */
2901	error = raid3_metadata_decode(buf, md);
2902	g_free(buf);
2903	if (strcmp(md->md_magic, G_RAID3_MAGIC) != 0)
2904		return (EINVAL);
2905	if (md->md_version > G_RAID3_VERSION) {
2906		G_RAID3_DEBUG(0,
2907		    "Kernel module is too old to handle metadata from %s.",
2908		    cp->provider->name);
2909		return (EINVAL);
2910	}
2911	if (error != 0) {
2912		G_RAID3_DEBUG(1, "MD5 metadata hash mismatch for provider %s.",
2913		    cp->provider->name);
2914		return (error);
2915	}
2916
2917	return (0);
2918}
2919
2920static int
2921g_raid3_check_metadata(struct g_raid3_softc *sc, struct g_provider *pp,
2922    struct g_raid3_metadata *md)
2923{
2924
2925	if (md->md_no >= sc->sc_ndisks) {
2926		G_RAID3_DEBUG(1, "Invalid disk %s number (no=%u), skipping.",
2927		    pp->name, md->md_no);
2928		return (EINVAL);
2929	}
2930	if (sc->sc_disks[md->md_no].d_state != G_RAID3_DISK_STATE_NODISK) {
2931		G_RAID3_DEBUG(1, "Disk %s (no=%u) already exists, skipping.",
2932		    pp->name, md->md_no);
2933		return (EEXIST);
2934	}
2935	if (md->md_all != sc->sc_ndisks) {
2936		G_RAID3_DEBUG(1,
2937		    "Invalid '%s' field on disk %s (device %s), skipping.",
2938		    "md_all", pp->name, sc->sc_name);
2939		return (EINVAL);
2940	}
2941	if ((md->md_mediasize % md->md_sectorsize) != 0) {
2942		G_RAID3_DEBUG(1, "Invalid metadata (mediasize %% sectorsize != "
2943		    "0) on disk %s (device %s), skipping.", pp->name,
2944		    sc->sc_name);
2945		return (EINVAL);
2946	}
2947	if (md->md_mediasize != sc->sc_mediasize) {
2948		G_RAID3_DEBUG(1,
2949		    "Invalid '%s' field on disk %s (device %s), skipping.",
2950		    "md_mediasize", pp->name, sc->sc_name);
2951		return (EINVAL);
2952	}
2953	if ((md->md_mediasize % (sc->sc_ndisks - 1)) != 0) {
2954		G_RAID3_DEBUG(1,
2955		    "Invalid '%s' field on disk %s (device %s), skipping.",
2956		    "md_mediasize", pp->name, sc->sc_name);
2957		return (EINVAL);
2958	}
2959	if ((sc->sc_mediasize / (sc->sc_ndisks - 1)) > pp->mediasize) {
2960		G_RAID3_DEBUG(1,
2961		    "Invalid size of disk %s (device %s), skipping.", pp->name,
2962		    sc->sc_name);
2963		return (EINVAL);
2964	}
2965	if ((md->md_sectorsize / pp->sectorsize) < sc->sc_ndisks - 1) {
2966		G_RAID3_DEBUG(1,
2967		    "Invalid '%s' field on disk %s (device %s), skipping.",
2968		    "md_sectorsize", pp->name, sc->sc_name);
2969		return (EINVAL);
2970	}
2971	if (md->md_sectorsize != sc->sc_sectorsize) {
2972		G_RAID3_DEBUG(1,
2973		    "Invalid '%s' field on disk %s (device %s), skipping.",
2974		    "md_sectorsize", pp->name, sc->sc_name);
2975		return (EINVAL);
2976	}
2977	if ((sc->sc_sectorsize % pp->sectorsize) != 0) {
2978		G_RAID3_DEBUG(1,
2979		    "Invalid sector size of disk %s (device %s), skipping.",
2980		    pp->name, sc->sc_name);
2981		return (EINVAL);
2982	}
2983	if ((md->md_mflags & ~G_RAID3_DEVICE_FLAG_MASK) != 0) {
2984		G_RAID3_DEBUG(1,
2985		    "Invalid device flags on disk %s (device %s), skipping.",
2986		    pp->name, sc->sc_name);
2987		return (EINVAL);
2988	}
2989	if ((md->md_mflags & G_RAID3_DEVICE_FLAG_VERIFY) != 0 &&
2990	    (md->md_mflags & G_RAID3_DEVICE_FLAG_ROUND_ROBIN) != 0) {
2991		/*
2992		 * VERIFY and ROUND-ROBIN options are mutally exclusive.
2993		 */
2994		G_RAID3_DEBUG(1, "Both VERIFY and ROUND-ROBIN flags exist on "
2995		    "disk %s (device %s), skipping.", pp->name, sc->sc_name);
2996		return (EINVAL);
2997	}
2998	if ((md->md_dflags & ~G_RAID3_DISK_FLAG_MASK) != 0) {
2999		G_RAID3_DEBUG(1,
3000		    "Invalid disk flags on disk %s (device %s), skipping.",
3001		    pp->name, sc->sc_name);
3002		return (EINVAL);
3003	}
3004	return (0);
3005}
3006
3007int
3008g_raid3_add_disk(struct g_raid3_softc *sc, struct g_provider *pp,
3009    struct g_raid3_metadata *md)
3010{
3011	struct g_raid3_disk *disk;
3012	int error;
3013
3014	g_topology_assert_not();
3015	G_RAID3_DEBUG(2, "Adding disk %s.", pp->name);
3016
3017	error = g_raid3_check_metadata(sc, pp, md);
3018	if (error != 0)
3019		return (error);
3020	if (sc->sc_state != G_RAID3_DEVICE_STATE_STARTING &&
3021	    md->md_genid < sc->sc_genid) {
3022		G_RAID3_DEBUG(0, "Component %s (device %s) broken, skipping.",
3023		    pp->name, sc->sc_name);
3024		return (EINVAL);
3025	}
3026	disk = g_raid3_init_disk(sc, pp, md, &error);
3027	if (disk == NULL)
3028		return (error);
3029	error = g_raid3_event_send(disk, G_RAID3_DISK_STATE_NEW,
3030	    G_RAID3_EVENT_WAIT);
3031	if (error != 0)
3032		return (error);
3033	if (md->md_version < G_RAID3_VERSION) {
3034		G_RAID3_DEBUG(0, "Upgrading metadata on %s (v%d->v%d).",
3035		    pp->name, md->md_version, G_RAID3_VERSION);
3036		g_raid3_update_metadata(disk);
3037	}
3038	return (0);
3039}
3040
3041static void
3042g_raid3_destroy_delayed(void *arg, int flag)
3043{
3044	struct g_raid3_softc *sc;
3045	int error;
3046
3047	if (flag == EV_CANCEL) {
3048		G_RAID3_DEBUG(1, "Destroying canceled.");
3049		return;
3050	}
3051	sc = arg;
3052	g_topology_unlock();
3053	sx_xlock(&sc->sc_lock);
3054	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) == 0,
3055	    ("DESTROY flag set on %s.", sc->sc_name));
3056	KASSERT((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0,
3057	    ("DESTROYING flag not set on %s.", sc->sc_name));
3058	G_RAID3_DEBUG(0, "Destroying %s (delayed).", sc->sc_name);
3059	error = g_raid3_destroy(sc, G_RAID3_DESTROY_SOFT);
3060	if (error != 0) {
3061		G_RAID3_DEBUG(0, "Cannot destroy %s.", sc->sc_name);
3062		sx_xunlock(&sc->sc_lock);
3063	}
3064	g_topology_lock();
3065}
3066
3067static int
3068g_raid3_access(struct g_provider *pp, int acr, int acw, int ace)
3069{
3070	struct g_raid3_softc *sc;
3071	int dcr, dcw, dce, error = 0;
3072
3073	g_topology_assert();
3074	G_RAID3_DEBUG(2, "Access request for %s: r%dw%de%d.", pp->name, acr,
3075	    acw, ace);
3076
3077	sc = pp->geom->softc;
3078	if (sc == NULL && acr <= 0 && acw <= 0 && ace <= 0)
3079		return (0);
3080	KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
3081
3082	dcr = pp->acr + acr;
3083	dcw = pp->acw + acw;
3084	dce = pp->ace + ace;
3085
3086	g_topology_unlock();
3087	sx_xlock(&sc->sc_lock);
3088	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROY) != 0 ||
3089	    g_raid3_ndisks(sc, G_RAID3_DISK_STATE_ACTIVE) < sc->sc_ndisks - 1) {
3090		if (acr > 0 || acw > 0 || ace > 0)
3091			error = ENXIO;
3092		goto end;
3093	}
3094	if (dcw == 0 && !sc->sc_idle)
3095		g_raid3_idle(sc, dcw);
3096	if ((sc->sc_flags & G_RAID3_DEVICE_FLAG_DESTROYING) != 0) {
3097		if (acr > 0 || acw > 0 || ace > 0) {
3098			error = ENXIO;
3099			goto end;
3100		}
3101		if (dcr == 0 && dcw == 0 && dce == 0) {
3102			g_post_event(g_raid3_destroy_delayed, sc, M_WAITOK,
3103			    sc, NULL);
3104		}
3105	}
3106end:
3107	sx_xunlock(&sc->sc_lock);
3108	g_topology_lock();
3109	return (error);
3110}
3111
3112static struct g_geom *
3113g_raid3_create(struct g_class *mp, const struct g_raid3_metadata *md)
3114{
3115	struct g_raid3_softc *sc;
3116	struct g_geom *gp;
3117	int error, timeout;
3118	u_int n;
3119
3120	g_topology_assert();
3121	G_RAID3_DEBUG(1, "Creating device %s (id=%u).", md->md_name, md->md_id);
3122
3123	/* One disk is minimum. */
3124	if (md->md_all < 1)
3125		return (NULL);
3126	/*
3127	 * Action geom.
3128	 */
3129	gp = g_new_geomf(mp, "%s", md->md_name);
3130	sc = malloc(sizeof(*sc), M_RAID3, M_WAITOK | M_ZERO);
3131	sc->sc_disks = malloc(sizeof(struct g_raid3_disk) * md->md_all, M_RAID3,
3132	    M_WAITOK | M_ZERO);
3133	gp->start = g_raid3_start;
3134	gp->orphan = g_raid3_orphan;
3135	gp->access = g_raid3_access;
3136	gp->dumpconf = g_raid3_dumpconf;
3137
3138	sc->sc_id = md->md_id;
3139	sc->sc_mediasize = md->md_mediasize;
3140	sc->sc_sectorsize = md->md_sectorsize;
3141	sc->sc_ndisks = md->md_all;
3142	sc->sc_round_robin = 0;
3143	sc->sc_flags = md->md_mflags;
3144	sc->sc_bump_id = 0;
3145	sc->sc_idle = 1;
3146	sc->sc_last_write = time_uptime;
3147	sc->sc_writes = 0;
3148	for (n = 0; n < sc->sc_ndisks; n++) {
3149		sc->sc_disks[n].d_softc = sc;
3150		sc->sc_disks[n].d_no = n;
3151		sc->sc_disks[n].d_state = G_RAID3_DISK_STATE_NODISK;
3152	}
3153	sx_init(&sc->sc_lock, "graid3:lock");
3154	bioq_init(&sc->sc_queue);
3155	mtx_init(&sc->sc_queue_mtx, "graid3:queue", NULL, MTX_DEF);
3156	bioq_init(&sc->sc_regular_delayed);
3157	bioq_init(&sc->sc_inflight);
3158	bioq_init(&sc->sc_sync_delayed);
3159	TAILQ_INIT(&sc->sc_events);
3160	mtx_init(&sc->sc_events_mtx, "graid3:events", NULL, MTX_DEF);
3161	callout_init(&sc->sc_callout, CALLOUT_MPSAFE);
3162	sc->sc_state = G_RAID3_DEVICE_STATE_STARTING;
3163	gp->softc = sc;
3164	sc->sc_geom = gp;
3165	sc->sc_provider = NULL;
3166	/*
3167	 * Synchronization geom.
3168	 */
3169	gp = g_new_geomf(mp, "%s.sync", md->md_name);
3170	gp->softc = sc;
3171	gp->orphan = g_raid3_orphan;
3172	sc->sc_sync.ds_geom = gp;
3173
3174	if (!g_raid3_use_malloc) {
3175		sc->sc_zones[G_RAID3_ZONE_64K].sz_zone = uma_zcreate("gr3:64k",
3176		    65536, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3177		    UMA_ALIGN_PTR, 0);
3178		sc->sc_zones[G_RAID3_ZONE_64K].sz_inuse = 0;
3179		sc->sc_zones[G_RAID3_ZONE_64K].sz_max = g_raid3_n64k;
3180		sc->sc_zones[G_RAID3_ZONE_64K].sz_requested =
3181		    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed = 0;
3182		sc->sc_zones[G_RAID3_ZONE_16K].sz_zone = uma_zcreate("gr3:16k",
3183		    16384, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3184		    UMA_ALIGN_PTR, 0);
3185		sc->sc_zones[G_RAID3_ZONE_16K].sz_inuse = 0;
3186		sc->sc_zones[G_RAID3_ZONE_16K].sz_max = g_raid3_n16k;
3187		sc->sc_zones[G_RAID3_ZONE_16K].sz_requested =
3188		    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed = 0;
3189		sc->sc_zones[G_RAID3_ZONE_4K].sz_zone = uma_zcreate("gr3:4k",
3190		    4096, g_raid3_uma_ctor, g_raid3_uma_dtor, NULL, NULL,
3191		    UMA_ALIGN_PTR, 0);
3192		sc->sc_zones[G_RAID3_ZONE_4K].sz_inuse = 0;
3193		sc->sc_zones[G_RAID3_ZONE_4K].sz_max = g_raid3_n4k;
3194		sc->sc_zones[G_RAID3_ZONE_4K].sz_requested =
3195		    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed = 0;
3196	}
3197
3198	error = kproc_create(g_raid3_worker, sc, &sc->sc_worker, 0, 0,
3199	    "g_raid3 %s", md->md_name);
3200	if (error != 0) {
3201		G_RAID3_DEBUG(1, "Cannot create kernel thread for %s.",
3202		    sc->sc_name);
3203		if (!g_raid3_use_malloc) {
3204			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_64K].sz_zone);
3205			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_16K].sz_zone);
3206			uma_zdestroy(sc->sc_zones[G_RAID3_ZONE_4K].sz_zone);
3207		}
3208		g_destroy_geom(sc->sc_sync.ds_geom);
3209		mtx_destroy(&sc->sc_events_mtx);
3210		mtx_destroy(&sc->sc_queue_mtx);
3211		sx_destroy(&sc->sc_lock);
3212		g_destroy_geom(sc->sc_geom);
3213		free(sc->sc_disks, M_RAID3);
3214		free(sc, M_RAID3);
3215		return (NULL);
3216	}
3217
3218	G_RAID3_DEBUG(1, "Device %s created (%u components, id=%u).",
3219	    sc->sc_name, sc->sc_ndisks, sc->sc_id);
3220
3221	sc->sc_rootmount = root_mount_hold("GRAID3");
3222	G_RAID3_DEBUG(1, "root_mount_hold %p", sc->sc_rootmount);
3223
3224	/*
3225	 * Run timeout.
3226	 */
3227	timeout = atomic_load_acq_int(&g_raid3_timeout);
3228	callout_reset(&sc->sc_callout, timeout * hz, g_raid3_go, sc);
3229	return (sc->sc_geom);
3230}
3231
3232int
3233g_raid3_destroy(struct g_raid3_softc *sc, int how)
3234{
3235	struct g_provider *pp;
3236
3237	g_topology_assert_not();
3238	if (sc == NULL)
3239		return (ENXIO);
3240	sx_assert(&sc->sc_lock, SX_XLOCKED);
3241
3242	pp = sc->sc_provider;
3243	if (pp != NULL && (pp->acr != 0 || pp->acw != 0 || pp->ace != 0)) {
3244		switch (how) {
3245		case G_RAID3_DESTROY_SOFT:
3246			G_RAID3_DEBUG(1,
3247			    "Device %s is still open (r%dw%de%d).", pp->name,
3248			    pp->acr, pp->acw, pp->ace);
3249			return (EBUSY);
3250		case G_RAID3_DESTROY_DELAYED:
3251			G_RAID3_DEBUG(1,
3252			    "Device %s will be destroyed on last close.",
3253			    pp->name);
3254			if (sc->sc_syncdisk != NULL)
3255				g_raid3_sync_stop(sc, 1);
3256			sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROYING;
3257			return (EBUSY);
3258		case G_RAID3_DESTROY_HARD:
3259			G_RAID3_DEBUG(1, "Device %s is still open, so it "
3260			    "can't be definitely removed.", pp->name);
3261			break;
3262		}
3263	}
3264
3265	g_topology_lock();
3266	if (sc->sc_geom->softc == NULL) {
3267		g_topology_unlock();
3268		return (0);
3269	}
3270	sc->sc_geom->softc = NULL;
3271	sc->sc_sync.ds_geom->softc = NULL;
3272	g_topology_unlock();
3273
3274	sc->sc_flags |= G_RAID3_DEVICE_FLAG_DESTROY;
3275	sc->sc_flags |= G_RAID3_DEVICE_FLAG_WAIT;
3276	G_RAID3_DEBUG(4, "%s: Waking up %p.", __func__, sc);
3277	sx_xunlock(&sc->sc_lock);
3278	mtx_lock(&sc->sc_queue_mtx);
3279	wakeup(sc);
3280	wakeup(&sc->sc_queue);
3281	mtx_unlock(&sc->sc_queue_mtx);
3282	G_RAID3_DEBUG(4, "%s: Sleeping %p.", __func__, &sc->sc_worker);
3283	while (sc->sc_worker != NULL)
3284		tsleep(&sc->sc_worker, PRIBIO, "r3:destroy", hz / 5);
3285	G_RAID3_DEBUG(4, "%s: Woken up %p.", __func__, &sc->sc_worker);
3286	sx_xlock(&sc->sc_lock);
3287	g_raid3_destroy_device(sc);
3288	free(sc->sc_disks, M_RAID3);
3289	free(sc, M_RAID3);
3290	return (0);
3291}
3292
3293static void
3294g_raid3_taste_orphan(struct g_consumer *cp)
3295{
3296
3297	KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
3298	    cp->provider->name));
3299}
3300
3301static struct g_geom *
3302g_raid3_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
3303{
3304	struct g_raid3_metadata md;
3305	struct g_raid3_softc *sc;
3306	struct g_consumer *cp;
3307	struct g_geom *gp;
3308	int error;
3309
3310	g_topology_assert();
3311	g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
3312	G_RAID3_DEBUG(2, "Tasting %s.", pp->name);
3313
3314	gp = g_new_geomf(mp, "raid3:taste");
3315	/* This orphan function should be never called. */
3316	gp->orphan = g_raid3_taste_orphan;
3317	cp = g_new_consumer(gp);
3318	g_attach(cp, pp);
3319	error = g_raid3_read_metadata(cp, &md);
3320	g_detach(cp);
3321	g_destroy_consumer(cp);
3322	g_destroy_geom(gp);
3323	if (error != 0)
3324		return (NULL);
3325	gp = NULL;
3326
3327	if (md.md_provider[0] != '\0' && strcmp(md.md_provider, pp->name) != 0)
3328		return (NULL);
3329	if (md.md_provsize != 0 && md.md_provsize != pp->mediasize)
3330		return (NULL);
3331	if (g_raid3_debug >= 2)
3332		raid3_metadata_dump(&md);
3333
3334	/*
3335	 * Let's check if device already exists.
3336	 */
3337	sc = NULL;
3338	LIST_FOREACH(gp, &mp->geom, geom) {
3339		sc = gp->softc;
3340		if (sc == NULL)
3341			continue;
3342		if (sc->sc_sync.ds_geom == gp)
3343			continue;
3344		if (strcmp(md.md_name, sc->sc_name) != 0)
3345			continue;
3346		if (md.md_id != sc->sc_id) {
3347			G_RAID3_DEBUG(0, "Device %s already configured.",
3348			    sc->sc_name);
3349			return (NULL);
3350		}
3351		break;
3352	}
3353	if (gp == NULL) {
3354		gp = g_raid3_create(mp, &md);
3355		if (gp == NULL) {
3356			G_RAID3_DEBUG(0, "Cannot create device %s.",
3357			    md.md_name);
3358			return (NULL);
3359		}
3360		sc = gp->softc;
3361	}
3362	G_RAID3_DEBUG(1, "Adding disk %s to %s.", pp->name, gp->name);
3363	g_topology_unlock();
3364	sx_xlock(&sc->sc_lock);
3365	error = g_raid3_add_disk(sc, pp, &md);
3366	if (error != 0) {
3367		G_RAID3_DEBUG(0, "Cannot add disk %s to %s (error=%d).",
3368		    pp->name, gp->name, error);
3369		if (g_raid3_ndisks(sc, G_RAID3_DISK_STATE_NODISK) ==
3370		    sc->sc_ndisks) {
3371			g_cancel_event(sc);
3372			g_raid3_destroy(sc, G_RAID3_DESTROY_HARD);
3373			g_topology_lock();
3374			return (NULL);
3375		}
3376		gp = NULL;
3377	}
3378	sx_xunlock(&sc->sc_lock);
3379	g_topology_lock();
3380	return (gp);
3381}
3382
3383static int
3384g_raid3_destroy_geom(struct gctl_req *req __unused, struct g_class *mp __unused,
3385    struct g_geom *gp)
3386{
3387	struct g_raid3_softc *sc;
3388	int error;
3389
3390	g_topology_unlock();
3391	sc = gp->softc;
3392	sx_xlock(&sc->sc_lock);
3393	g_cancel_event(sc);
3394	error = g_raid3_destroy(gp->softc, G_RAID3_DESTROY_SOFT);
3395	if (error != 0)
3396		sx_xunlock(&sc->sc_lock);
3397	g_topology_lock();
3398	return (error);
3399}
3400
3401static void
3402g_raid3_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
3403    struct g_consumer *cp, struct g_provider *pp)
3404{
3405	struct g_raid3_softc *sc;
3406
3407	g_topology_assert();
3408
3409	sc = gp->softc;
3410	if (sc == NULL)
3411		return;
3412	/* Skip synchronization geom. */
3413	if (gp == sc->sc_sync.ds_geom)
3414		return;
3415	if (pp != NULL) {
3416		/* Nothing here. */
3417	} else if (cp != NULL) {
3418		struct g_raid3_disk *disk;
3419
3420		disk = cp->private;
3421		if (disk == NULL)
3422			return;
3423		g_topology_unlock();
3424		sx_xlock(&sc->sc_lock);
3425		sbuf_printf(sb, "%s<Type>", indent);
3426		if (disk->d_no == sc->sc_ndisks - 1)
3427			sbuf_printf(sb, "PARITY");
3428		else
3429			sbuf_printf(sb, "DATA");
3430		sbuf_printf(sb, "</Type>\n");
3431		sbuf_printf(sb, "%s<Number>%u</Number>\n", indent,
3432		    (u_int)disk->d_no);
3433		if (disk->d_state == G_RAID3_DISK_STATE_SYNCHRONIZING) {
3434			sbuf_printf(sb, "%s<Synchronized>", indent);
3435			if (disk->d_sync.ds_offset == 0)
3436				sbuf_printf(sb, "0%%");
3437			else {
3438				sbuf_printf(sb, "%u%%",
3439				    (u_int)((disk->d_sync.ds_offset * 100) /
3440				    (sc->sc_mediasize / (sc->sc_ndisks - 1))));
3441			}
3442			sbuf_printf(sb, "</Synchronized>\n");
3443		}
3444		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent,
3445		    disk->d_sync.ds_syncid);
3446		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, disk->d_genid);
3447		sbuf_printf(sb, "%s<Flags>", indent);
3448		if (disk->d_flags == 0)
3449			sbuf_printf(sb, "NONE");
3450		else {
3451			int first = 1;
3452
3453#define	ADD_FLAG(flag, name)	do {					\
3454	if ((disk->d_flags & (flag)) != 0) {				\
3455		if (!first)						\
3456			sbuf_printf(sb, ", ");				\
3457		else							\
3458			first = 0;					\
3459		sbuf_printf(sb, name);					\
3460	}								\
3461} while (0)
3462			ADD_FLAG(G_RAID3_DISK_FLAG_DIRTY, "DIRTY");
3463			ADD_FLAG(G_RAID3_DISK_FLAG_HARDCODED, "HARDCODED");
3464			ADD_FLAG(G_RAID3_DISK_FLAG_SYNCHRONIZING,
3465			    "SYNCHRONIZING");
3466			ADD_FLAG(G_RAID3_DISK_FLAG_FORCE_SYNC, "FORCE_SYNC");
3467			ADD_FLAG(G_RAID3_DISK_FLAG_BROKEN, "BROKEN");
3468#undef	ADD_FLAG
3469		}
3470		sbuf_printf(sb, "</Flags>\n");
3471		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3472		    g_raid3_disk_state2str(disk->d_state));
3473		sx_xunlock(&sc->sc_lock);
3474		g_topology_lock();
3475	} else {
3476		g_topology_unlock();
3477		sx_xlock(&sc->sc_lock);
3478		if (!g_raid3_use_malloc) {
3479			sbuf_printf(sb,
3480			    "%s<Zone4kRequested>%u</Zone4kRequested>\n", indent,
3481			    sc->sc_zones[G_RAID3_ZONE_4K].sz_requested);
3482			sbuf_printf(sb,
3483			    "%s<Zone4kFailed>%u</Zone4kFailed>\n", indent,
3484			    sc->sc_zones[G_RAID3_ZONE_4K].sz_failed);
3485			sbuf_printf(sb,
3486			    "%s<Zone16kRequested>%u</Zone16kRequested>\n", indent,
3487			    sc->sc_zones[G_RAID3_ZONE_16K].sz_requested);
3488			sbuf_printf(sb,
3489			    "%s<Zone16kFailed>%u</Zone16kFailed>\n", indent,
3490			    sc->sc_zones[G_RAID3_ZONE_16K].sz_failed);
3491			sbuf_printf(sb,
3492			    "%s<Zone64kRequested>%u</Zone64kRequested>\n", indent,
3493			    sc->sc_zones[G_RAID3_ZONE_64K].sz_requested);
3494			sbuf_printf(sb,
3495			    "%s<Zone64kFailed>%u</Zone64kFailed>\n", indent,
3496			    sc->sc_zones[G_RAID3_ZONE_64K].sz_failed);
3497		}
3498		sbuf_printf(sb, "%s<ID>%u</ID>\n", indent, (u_int)sc->sc_id);
3499		sbuf_printf(sb, "%s<SyncID>%u</SyncID>\n", indent, sc->sc_syncid);
3500		sbuf_printf(sb, "%s<GenID>%u</GenID>\n", indent, sc->sc_genid);
3501		sbuf_printf(sb, "%s<Flags>", indent);
3502		if (sc->sc_flags == 0)
3503			sbuf_printf(sb, "NONE");
3504		else {
3505			int first = 1;
3506
3507#define	ADD_FLAG(flag, name)	do {					\
3508	if ((sc->sc_flags & (flag)) != 0) {				\
3509		if (!first)						\
3510			sbuf_printf(sb, ", ");				\
3511		else							\
3512			first = 0;					\
3513		sbuf_printf(sb, name);					\
3514	}								\
3515} while (0)
3516			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOFAILSYNC, "NOFAILSYNC");
3517			ADD_FLAG(G_RAID3_DEVICE_FLAG_NOAUTOSYNC, "NOAUTOSYNC");
3518			ADD_FLAG(G_RAID3_DEVICE_FLAG_ROUND_ROBIN,
3519			    "ROUND-ROBIN");
3520			ADD_FLAG(G_RAID3_DEVICE_FLAG_VERIFY, "VERIFY");
3521#undef	ADD_FLAG
3522		}
3523		sbuf_printf(sb, "</Flags>\n");
3524		sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
3525		    sc->sc_ndisks);
3526		sbuf_printf(sb, "%s<State>%s</State>\n", indent,
3527		    g_raid3_device_state2str(sc->sc_state));
3528		sx_xunlock(&sc->sc_lock);
3529		g_topology_lock();
3530	}
3531}
3532
3533static void
3534g_raid3_shutdown_pre_sync(void *arg, int howto)
3535{
3536	struct g_class *mp;
3537	struct g_geom *gp, *gp2;
3538	struct g_raid3_softc *sc;
3539	int error;
3540
3541	mp = arg;
3542	DROP_GIANT();
3543	g_topology_lock();
3544	LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
3545		if ((sc = gp->softc) == NULL)
3546			continue;
3547		/* Skip synchronization geom. */
3548		if (gp == sc->sc_sync.ds_geom)
3549			continue;
3550		g_topology_unlock();
3551		sx_xlock(&sc->sc_lock);
3552		g_cancel_event(sc);
3553		error = g_raid3_destroy(sc, G_RAID3_DESTROY_DELAYED);
3554		if (error != 0)
3555			sx_xunlock(&sc->sc_lock);
3556		g_topology_lock();
3557	}
3558	g_topology_unlock();
3559	PICKUP_GIANT();
3560}
3561
3562static void
3563g_raid3_init(struct g_class *mp)
3564{
3565
3566	g_raid3_pre_sync = EVENTHANDLER_REGISTER(shutdown_pre_sync,
3567	    g_raid3_shutdown_pre_sync, mp, SHUTDOWN_PRI_FIRST);
3568	if (g_raid3_pre_sync == NULL)
3569		G_RAID3_DEBUG(0, "Warning! Cannot register shutdown event.");
3570}
3571
3572static void
3573g_raid3_fini(struct g_class *mp)
3574{
3575
3576	if (g_raid3_pre_sync != NULL)
3577		EVENTHANDLER_DEREGISTER(shutdown_pre_sync, g_raid3_pre_sync);
3578}
3579
3580DECLARE_GEOM_CLASS(g_raid3_class, g_raid3);
3581