procfs_mem.c revision 13627
1/*
2 * Copyright (c) 1993 Jan-Simon Pendry
3 * Copyright (c) 1993 Sean Eric Fagan
4 * Copyright (c) 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Jan-Simon Pendry and Sean Eric Fagan.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)procfs_mem.c	8.4 (Berkeley) 1/21/94
39 *
40 *	$Id: procfs_mem.c,v 1.16 1996/01/24 18:41:06 peter Exp $
41 */
42
43/*
44 * This is a lightly hacked and merged version
45 * of sef's pread/pwrite functions
46 */
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/proc.h>
53#include <sys/vnode.h>
54#include <miscfs/procfs/procfs.h>
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/vm_prot.h>
58#include <vm/lock.h>
59#include <vm/pmap.h>
60#include <vm/vm_map.h>
61#include <vm/vm_kern.h>
62#include <vm/vm_object.h>
63#include <vm/vm_page.h>
64#include <vm/vm_extern.h>
65#include <sys/user.h>
66
67static int	procfs_rwmem __P((struct proc *p, struct uio *uio));
68
69static int
70procfs_rwmem(p, uio)
71	struct proc *p;
72	struct uio *uio;
73{
74	int error;
75	int writing;
76
77	writing = uio->uio_rw == UIO_WRITE;
78
79	/*
80	 * Only map in one page at a time.  We don't have to, but it
81	 * makes things easier.  This way is trivial - right?
82	 */
83	do {
84		vm_map_t map, tmap;
85		vm_object_t object;
86		vm_offset_t kva = 0;
87		vm_offset_t uva;
88		int page_offset;		/* offset into page */
89		vm_offset_t pageno;		/* page number */
90		vm_map_entry_t out_entry;
91		vm_prot_t out_prot;
92		vm_page_t m;
93		boolean_t wired, single_use;
94		vm_pindex_t pindex;
95		u_int len;
96		int fix_prot;
97
98		uva = (vm_offset_t) uio->uio_offset;
99
100		/*
101		 * Get the page number of this segment.
102		 */
103		pageno = trunc_page(uva);
104		page_offset = uva - pageno;
105
106		/*
107		 * How many bytes to copy
108		 */
109		len = min(PAGE_SIZE - page_offset, uio->uio_resid);
110
111		if (uva >= VM_MAXUSER_ADDRESS) {
112			if (writing || (uva >= (VM_MAXUSER_ADDRESS + UPAGES * PAGE_SIZE))) {
113				error = 0;
114				break;
115			}
116
117			/* we are reading the "U area", force it into core */
118			PHOLD(p);
119
120			/* sanity check */
121			if (!(p->p_flag & P_INMEM)) {
122				/* aiee! */
123				error = EFAULT;
124				break;
125			}
126
127			/* populate the ptrace/procfs area */
128			p->p_addr->u_kproc.kp_proc = *p;
129			fill_eproc (p, &p->p_addr->u_kproc.kp_eproc);
130
131			/* locate the in-core address */
132			kva = (u_int)p->p_addr + uva - VM_MAXUSER_ADDRESS;
133
134			/* transfer it */
135			error = uiomove((caddr_t)kva, len, uio);
136
137			/* let the pages go */
138			PRELE(p);
139
140			continue;
141		}
142
143
144		/*
145		 * The map we want...
146		 */
147		map = &p->p_vmspace->vm_map;
148
149		/*
150		 * Check the permissions for the area we're interested
151		 * in.
152		 */
153		fix_prot = 0;
154		if (writing)
155			fix_prot = !vm_map_check_protection(map, pageno,
156					pageno + PAGE_SIZE, VM_PROT_WRITE);
157
158		if (fix_prot) {
159			/*
160			 * If the page is not writable, we make it so.
161			 * XXX It is possible that a page may *not* be
162			 * read/executable, if a process changes that!
163			 * We will assume, for now, that a page is either
164			 * VM_PROT_ALL, or VM_PROT_READ|VM_PROT_EXECUTE.
165			 */
166			error = vm_map_protect(map, pageno,
167					pageno + PAGE_SIZE, VM_PROT_ALL, 0);
168			if (error)
169				break;
170		}
171
172		/*
173		 * Now we need to get the page.  out_entry, out_prot, wired,
174		 * and single_use aren't used.  One would think the vm code
175		 * would be a *bit* nicer...  We use tmap because
176		 * vm_map_lookup() can change the map argument.
177		 */
178		tmap = map;
179		error = vm_map_lookup(&tmap, pageno,
180				      writing ? VM_PROT_WRITE : VM_PROT_READ,
181				      &out_entry, &object, &pindex, &out_prot,
182				      &wired, &single_use);
183		/*
184		 * We're done with tmap now.
185		 */
186		if (!error)
187			vm_map_lookup_done(tmap, out_entry);
188
189		/*
190		 * Fault the page in...
191		 */
192		if (!error && writing && object->backing_object) {
193			m = vm_page_lookup(object, pindex);
194			if (m == 0)
195				error = vm_fault(map, pageno,
196							VM_PROT_WRITE, FALSE);
197		}
198
199		/* Find space in kernel_map for the page we're interested in */
200		if (!error)
201			error = vm_map_find(kernel_map, object,
202				IDX_TO_OFF(pindex), &kva, PAGE_SIZE, 1,
203				VM_PROT_ALL, VM_PROT_ALL, 0);
204
205		if (!error) {
206			/*
207			 * Neither vm_map_lookup() nor vm_map_find() appear
208			 * to add a reference count to the object, so we do
209			 * that here and now.
210			 */
211			vm_object_reference(object);
212
213			/*
214			 * Mark the page we just found as pageable.
215			 */
216			error = vm_map_pageable(kernel_map, kva,
217				kva + PAGE_SIZE, 0);
218
219			/*
220			 * Now do the i/o move.
221			 */
222			if (!error)
223				error = uiomove((caddr_t)(kva + page_offset),
224						len, uio);
225
226			vm_map_remove(kernel_map, kva, kva + PAGE_SIZE);
227		}
228		if (fix_prot)
229			vm_map_protect(map, pageno, pageno + PAGE_SIZE,
230					VM_PROT_READ|VM_PROT_EXECUTE, 0);
231	} while (error == 0 && uio->uio_resid > 0);
232
233	return (error);
234}
235
236/*
237 * Copy data in and out of the target process.
238 * We do this by mapping the process's page into
239 * the kernel and then doing a uiomove direct
240 * from the kernel address space.
241 */
242int
243procfs_domem(curp, p, pfs, uio)
244	struct proc *curp;
245	struct proc *p;
246	struct pfsnode *pfs;
247	struct uio *uio;
248{
249	int error;
250
251	if (uio->uio_resid == 0)
252		return (0);
253
254	error = procfs_rwmem(p, uio);
255
256	return (error);
257}
258
259/*
260 * Given process (p), find the vnode from which
261 * it's text segment is being executed.
262 *
263 * It would be nice to grab this information from
264 * the VM system, however, there is no sure-fire
265 * way of doing that.  Instead, fork(), exec() and
266 * wait() all maintain the p_textvp field in the
267 * process proc structure which contains a held
268 * reference to the exec'ed vnode.
269 */
270struct vnode *
271procfs_findtextvp(p)
272	struct proc *p;
273{
274	return (p->p_textvp);
275}
276