netfront.c revision 323207
1/*-
2 * Copyright (c) 2004-2006 Kip Macy
3 * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/dev/xen/netfront/netfront.c 323207 2017-09-06 06:51:52Z rlibby $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/param.h>
35#include <sys/sockio.h>
36#include <sys/limits.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39#include <sys/module.h>
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43#include <sys/taskqueue.h>
44
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/if_arp.h>
48#include <net/ethernet.h>
49#include <net/if_media.h>
50#include <net/bpf.h>
51#include <net/if_types.h>
52
53#include <netinet/in.h>
54#include <netinet/ip.h>
55#include <netinet/if_ether.h>
56#include <netinet/tcp.h>
57#include <netinet/tcp_lro.h>
58
59#include <vm/vm.h>
60#include <vm/pmap.h>
61
62#include <sys/bus.h>
63
64#include <xen/xen-os.h>
65#include <xen/hypervisor.h>
66#include <xen/xen_intr.h>
67#include <xen/gnttab.h>
68#include <xen/interface/memory.h>
69#include <xen/interface/io/netif.h>
70#include <xen/xenbus/xenbusvar.h>
71
72#include "xenbus_if.h"
73
74/* Features supported by all backends.  TSO and LRO can be negotiated */
75#define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
76
77#define NET_TX_RING_SIZE __CONST_RING_SIZE(netif_tx, PAGE_SIZE)
78#define NET_RX_RING_SIZE __CONST_RING_SIZE(netif_rx, PAGE_SIZE)
79
80#define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1)
81
82/*
83 * Should the driver do LRO on the RX end
84 *  this can be toggled on the fly, but the
85 *  interface must be reset (down/up) for it
86 *  to take effect.
87 */
88static int xn_enable_lro = 1;
89TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
90
91/*
92 * Number of pairs of queues.
93 */
94static unsigned long xn_num_queues = 4;
95TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues);
96
97/**
98 * \brief The maximum allowed data fragments in a single transmit
99 *        request.
100 *
101 * This limit is imposed by the backend driver.  We assume here that
102 * we are dealing with a Linux driver domain and have set our limit
103 * to mirror the Linux MAX_SKB_FRAGS constant.
104 */
105#define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
106
107#define RX_COPY_THRESHOLD 256
108
109#define net_ratelimit() 0
110
111struct netfront_rxq;
112struct netfront_txq;
113struct netfront_info;
114struct netfront_rx_info;
115
116static void xn_txeof(struct netfront_txq *);
117static void xn_rxeof(struct netfront_rxq *);
118static void xn_alloc_rx_buffers(struct netfront_rxq *);
119static void xn_alloc_rx_buffers_callout(void *arg);
120
121static void xn_release_rx_bufs(struct netfront_rxq *);
122static void xn_release_tx_bufs(struct netfront_txq *);
123
124static void xn_rxq_intr(struct netfront_rxq *);
125static void xn_txq_intr(struct netfront_txq *);
126static void xn_intr(void *);
127static inline int xn_count_frags(struct mbuf *m);
128static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *);
129static int xn_ioctl(struct ifnet *, u_long, caddr_t);
130static void xn_ifinit_locked(struct netfront_info *);
131static void xn_ifinit(void *);
132static void xn_stop(struct netfront_info *);
133static void xn_query_features(struct netfront_info *np);
134static int xn_configure_features(struct netfront_info *np);
135static void netif_free(struct netfront_info *info);
136static int netfront_detach(device_t dev);
137
138static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *);
139static int xn_txq_mq_start(struct ifnet *, struct mbuf *);
140
141static int talk_to_backend(device_t dev, struct netfront_info *info);
142static int create_netdev(device_t dev);
143static void netif_disconnect_backend(struct netfront_info *info);
144static int setup_device(device_t dev, struct netfront_info *info,
145    unsigned long);
146static int xn_ifmedia_upd(struct ifnet *ifp);
147static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
148
149static int xn_connect(struct netfront_info *);
150static void xn_kick_rings(struct netfront_info *);
151
152static int xn_get_responses(struct netfront_rxq *,
153    struct netfront_rx_info *, RING_IDX, RING_IDX *,
154    struct mbuf **);
155
156#define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
157
158#define INVALID_P2M_ENTRY (~0UL)
159#define XN_QUEUE_NAME_LEN  8	/* xn{t,r}x_%u, allow for two digits */
160struct netfront_rxq {
161	struct netfront_info 	*info;
162	u_int			id;
163	char			name[XN_QUEUE_NAME_LEN];
164	struct mtx		lock;
165
166	int			ring_ref;
167	netif_rx_front_ring_t 	ring;
168	xen_intr_handle_t	xen_intr_handle;
169
170	grant_ref_t 		gref_head;
171	grant_ref_t 		grant_ref[NET_TX_RING_SIZE + 1];
172
173	struct mbuf		*mbufs[NET_RX_RING_SIZE + 1];
174
175	struct lro_ctrl		lro;
176
177	struct callout		rx_refill;
178};
179
180struct netfront_txq {
181	struct netfront_info 	*info;
182	u_int 			id;
183	char			name[XN_QUEUE_NAME_LEN];
184	struct mtx		lock;
185
186	int			ring_ref;
187	netif_tx_front_ring_t	ring;
188	xen_intr_handle_t 	xen_intr_handle;
189
190	grant_ref_t		gref_head;
191	grant_ref_t		grant_ref[NET_TX_RING_SIZE + 1];
192
193	struct mbuf		*mbufs[NET_TX_RING_SIZE + 1];
194	int			mbufs_cnt;
195	struct buf_ring		*br;
196
197	struct taskqueue 	*tq;
198	struct task       	defrtask;
199
200	bool			full;
201};
202
203struct netfront_info {
204	struct ifnet 		*xn_ifp;
205
206	struct mtx   		sc_lock;
207
208	u_int  num_queues;
209	struct netfront_rxq 	*rxq;
210	struct netfront_txq 	*txq;
211
212	u_int			carrier;
213	u_int			maxfrags;
214
215	device_t		xbdev;
216	uint8_t			mac[ETHER_ADDR_LEN];
217
218	int			xn_if_flags;
219
220	struct ifmedia		sc_media;
221
222	bool			xn_reset;
223};
224
225struct netfront_rx_info {
226	struct netif_rx_response rx;
227	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
228};
229
230#define XN_RX_LOCK(_q)         mtx_lock(&(_q)->lock)
231#define XN_RX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
232
233#define XN_TX_LOCK(_q)         mtx_lock(&(_q)->lock)
234#define XN_TX_TRYLOCK(_q)      mtx_trylock(&(_q)->lock)
235#define XN_TX_UNLOCK(_q)       mtx_unlock(&(_q)->lock)
236
237#define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
238#define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
239
240#define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
241#define XN_RX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
242#define XN_TX_LOCK_ASSERT(_q)  mtx_assert(&(_q)->lock, MA_OWNED);
243
244#define netfront_carrier_on(netif)	((netif)->carrier = 1)
245#define netfront_carrier_off(netif)	((netif)->carrier = 0)
246#define netfront_carrier_ok(netif)	((netif)->carrier)
247
248/* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
249
250static inline void
251add_id_to_freelist(struct mbuf **list, uintptr_t id)
252{
253
254	KASSERT(id != 0,
255		("%s: the head item (0) must always be free.", __func__));
256	list[id] = list[0];
257	list[0]  = (struct mbuf *)id;
258}
259
260static inline unsigned short
261get_id_from_freelist(struct mbuf **list)
262{
263	uintptr_t id;
264
265	id = (uintptr_t)list[0];
266	KASSERT(id != 0,
267		("%s: the head item (0) must always remain free.", __func__));
268	list[0] = list[id];
269	return (id);
270}
271
272static inline int
273xn_rxidx(RING_IDX idx)
274{
275
276	return idx & (NET_RX_RING_SIZE - 1);
277}
278
279static inline struct mbuf *
280xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri)
281{
282	int i;
283	struct mbuf *m;
284
285	i = xn_rxidx(ri);
286	m = rxq->mbufs[i];
287	rxq->mbufs[i] = NULL;
288	return (m);
289}
290
291static inline grant_ref_t
292xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri)
293{
294	int i = xn_rxidx(ri);
295	grant_ref_t ref = rxq->grant_ref[i];
296
297	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
298	rxq->grant_ref[i] = GRANT_REF_INVALID;
299	return (ref);
300}
301
302#define IPRINTK(fmt, args...) \
303    printf("[XEN] " fmt, ##args)
304#ifdef INVARIANTS
305#define WPRINTK(fmt, args...) \
306    printf("[XEN] " fmt, ##args)
307#else
308#define WPRINTK(fmt, args...)
309#endif
310#ifdef DEBUG
311#define DPRINTK(fmt, args...) \
312    printf("[XEN] %s: " fmt, __func__, ##args)
313#else
314#define DPRINTK(fmt, args...)
315#endif
316
317/**
318 * Read the 'mac' node at the given device's node in the store, and parse that
319 * as colon-separated octets, placing result the given mac array.  mac must be
320 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
321 * Return 0 on success, or errno on error.
322 */
323static int
324xen_net_read_mac(device_t dev, uint8_t mac[])
325{
326	int error, i;
327	char *s, *e, *macstr;
328	const char *path;
329
330	path = xenbus_get_node(dev);
331	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
332	if (error == ENOENT) {
333		/*
334		 * Deal with missing mac XenStore nodes on devices with
335		 * HVM emulation (the 'ioemu' configuration attribute)
336		 * enabled.
337		 *
338		 * The HVM emulator may execute in a stub device model
339		 * domain which lacks the permission, only given to Dom0,
340		 * to update the guest's XenStore tree.  For this reason,
341		 * the HVM emulator doesn't even attempt to write the
342		 * front-side mac node, even when operating in Dom0.
343		 * However, there should always be a mac listed in the
344		 * backend tree.  Fallback to this version if our query
345		 * of the front side XenStore location doesn't find
346		 * anything.
347		 */
348		path = xenbus_get_otherend_path(dev);
349		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
350	}
351	if (error != 0) {
352		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
353		return (error);
354	}
355
356	s = macstr;
357	for (i = 0; i < ETHER_ADDR_LEN; i++) {
358		mac[i] = strtoul(s, &e, 16);
359		if (s == e || (e[0] != ':' && e[0] != 0)) {
360			free(macstr, M_XENBUS);
361			return (ENOENT);
362		}
363		s = &e[1];
364	}
365	free(macstr, M_XENBUS);
366	return (0);
367}
368
369/**
370 * Entry point to this code when a new device is created.  Allocate the basic
371 * structures and the ring buffers for communication with the backend, and
372 * inform the backend of the appropriate details for those.  Switch to
373 * Connected state.
374 */
375static int
376netfront_probe(device_t dev)
377{
378
379	if (xen_hvm_domain() && xen_disable_pv_nics != 0)
380		return (ENXIO);
381
382	if (!strcmp(xenbus_get_type(dev), "vif")) {
383		device_set_desc(dev, "Virtual Network Interface");
384		return (0);
385	}
386
387	return (ENXIO);
388}
389
390static int
391netfront_attach(device_t dev)
392{
393	int err;
394
395	err = create_netdev(dev);
396	if (err != 0) {
397		xenbus_dev_fatal(dev, err, "creating netdev");
398		return (err);
399	}
400
401	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
402	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
403	    OID_AUTO, "enable_lro", CTLFLAG_RW,
404	    &xn_enable_lro, 0, "Large Receive Offload");
405
406	SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev),
407	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
408	    OID_AUTO, "num_queues", CTLFLAG_RD,
409	    &xn_num_queues, "Number of pairs of queues");
410
411	return (0);
412}
413
414static int
415netfront_suspend(device_t dev)
416{
417	struct netfront_info *np = device_get_softc(dev);
418	u_int i;
419
420	for (i = 0; i < np->num_queues; i++) {
421		XN_RX_LOCK(&np->rxq[i]);
422		XN_TX_LOCK(&np->txq[i]);
423	}
424	netfront_carrier_off(np);
425	for (i = 0; i < np->num_queues; i++) {
426		XN_RX_UNLOCK(&np->rxq[i]);
427		XN_TX_UNLOCK(&np->txq[i]);
428	}
429	return (0);
430}
431
432/**
433 * We are reconnecting to the backend, due to a suspend/resume, or a backend
434 * driver restart.  We tear down our netif structure and recreate it, but
435 * leave the device-layer structures intact so that this is transparent to the
436 * rest of the kernel.
437 */
438static int
439netfront_resume(device_t dev)
440{
441	struct netfront_info *info = device_get_softc(dev);
442	u_int i;
443
444	if (xen_suspend_cancelled) {
445		for (i = 0; i < info->num_queues; i++) {
446			XN_RX_LOCK(&info->rxq[i]);
447			XN_TX_LOCK(&info->txq[i]);
448		}
449		netfront_carrier_on(info);
450		for (i = 0; i < info->num_queues; i++) {
451			XN_RX_UNLOCK(&info->rxq[i]);
452			XN_TX_UNLOCK(&info->txq[i]);
453		}
454		return (0);
455	}
456
457	netif_disconnect_backend(info);
458	return (0);
459}
460
461static int
462write_queue_xenstore_keys(device_t dev,
463    struct netfront_rxq *rxq,
464    struct netfront_txq *txq,
465    struct xs_transaction *xst, bool hierarchy)
466{
467	int err;
468	const char *message;
469	const char *node = xenbus_get_node(dev);
470	char *path;
471	size_t path_size;
472
473	KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids"));
474	/* Split event channel support is not yet there. */
475	KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle,
476	    ("Split event channels are not supported"));
477
478	if (hierarchy) {
479		path_size = strlen(node) + 10;
480		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
481		snprintf(path, path_size, "%s/queue-%u", node, rxq->id);
482	} else {
483		path_size = strlen(node) + 1;
484		path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO);
485		snprintf(path, path_size, "%s", node);
486	}
487
488	err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref);
489	if (err != 0) {
490		message = "writing tx ring-ref";
491		goto error;
492	}
493	err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref);
494	if (err != 0) {
495		message = "writing rx ring-ref";
496		goto error;
497	}
498	err = xs_printf(*xst, path, "event-channel", "%u",
499	    xen_intr_port(rxq->xen_intr_handle));
500	if (err != 0) {
501		message = "writing event-channel";
502		goto error;
503	}
504
505	free(path, M_DEVBUF);
506
507	return (0);
508
509error:
510	free(path, M_DEVBUF);
511	xenbus_dev_fatal(dev, err, "%s", message);
512
513	return (err);
514}
515
516/* Common code used when first setting up, and when resuming. */
517static int
518talk_to_backend(device_t dev, struct netfront_info *info)
519{
520	const char *message;
521	struct xs_transaction xst;
522	const char *node = xenbus_get_node(dev);
523	int err;
524	unsigned long num_queues, max_queues = 0;
525	unsigned int i;
526
527	err = xen_net_read_mac(dev, info->mac);
528	if (err != 0) {
529		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
530		goto out;
531	}
532
533	err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev),
534	    "multi-queue-max-queues", NULL, "%lu", &max_queues);
535	if (err != 0)
536		max_queues = 1;
537	num_queues = xn_num_queues;
538	if (num_queues > max_queues)
539		num_queues = max_queues;
540
541	err = setup_device(dev, info, num_queues);
542	if (err != 0)
543		goto out;
544
545 again:
546	err = xs_transaction_start(&xst);
547	if (err != 0) {
548		xenbus_dev_fatal(dev, err, "starting transaction");
549		goto free;
550	}
551
552	if (info->num_queues == 1) {
553		err = write_queue_xenstore_keys(dev, &info->rxq[0],
554		    &info->txq[0], &xst, false);
555		if (err != 0)
556			goto abort_transaction_no_def_error;
557	} else {
558		err = xs_printf(xst, node, "multi-queue-num-queues",
559		    "%u", info->num_queues);
560		if (err != 0) {
561			message = "writing multi-queue-num-queues";
562			goto abort_transaction;
563		}
564
565		for (i = 0; i < info->num_queues; i++) {
566			err = write_queue_xenstore_keys(dev, &info->rxq[i],
567			    &info->txq[i], &xst, true);
568			if (err != 0)
569				goto abort_transaction_no_def_error;
570		}
571	}
572
573	err = xs_printf(xst, node, "request-rx-copy", "%u", 1);
574	if (err != 0) {
575		message = "writing request-rx-copy";
576		goto abort_transaction;
577	}
578	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
579	if (err != 0) {
580		message = "writing feature-rx-notify";
581		goto abort_transaction;
582	}
583	err = xs_printf(xst, node, "feature-sg", "%d", 1);
584	if (err != 0) {
585		message = "writing feature-sg";
586		goto abort_transaction;
587	}
588	if ((info->xn_ifp->if_capenable & IFCAP_LRO) != 0) {
589		err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
590		if (err != 0) {
591			message = "writing feature-gso-tcpv4";
592			goto abort_transaction;
593		}
594	}
595	if ((info->xn_ifp->if_capenable & IFCAP_RXCSUM) == 0) {
596		err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1);
597		if (err != 0) {
598			message = "writing feature-no-csum-offload";
599			goto abort_transaction;
600		}
601	}
602
603	err = xs_transaction_end(xst, 0);
604	if (err != 0) {
605		if (err == EAGAIN)
606			goto again;
607		xenbus_dev_fatal(dev, err, "completing transaction");
608		goto free;
609	}
610
611	return 0;
612
613 abort_transaction:
614	xenbus_dev_fatal(dev, err, "%s", message);
615 abort_transaction_no_def_error:
616	xs_transaction_end(xst, 1);
617 free:
618	netif_free(info);
619 out:
620	return (err);
621}
622
623static void
624xn_rxq_intr(struct netfront_rxq *rxq)
625{
626
627	XN_RX_LOCK(rxq);
628	xn_rxeof(rxq);
629	XN_RX_UNLOCK(rxq);
630}
631
632static void
633xn_txq_start(struct netfront_txq *txq)
634{
635	struct netfront_info *np = txq->info;
636	struct ifnet *ifp = np->xn_ifp;
637
638	XN_TX_LOCK_ASSERT(txq);
639	if (!drbr_empty(ifp, txq->br))
640		xn_txq_mq_start_locked(txq, NULL);
641}
642
643static void
644xn_txq_intr(struct netfront_txq *txq)
645{
646
647	XN_TX_LOCK(txq);
648	if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring))
649		xn_txeof(txq);
650	xn_txq_start(txq);
651	XN_TX_UNLOCK(txq);
652}
653
654static void
655xn_txq_tq_deferred(void *xtxq, int pending)
656{
657	struct netfront_txq *txq = xtxq;
658
659	XN_TX_LOCK(txq);
660	xn_txq_start(txq);
661	XN_TX_UNLOCK(txq);
662}
663
664static void
665disconnect_rxq(struct netfront_rxq *rxq)
666{
667
668	xn_release_rx_bufs(rxq);
669	gnttab_free_grant_references(rxq->gref_head);
670	gnttab_end_foreign_access(rxq->ring_ref, NULL);
671	/*
672	 * No split event channel support at the moment, handle will
673	 * be unbound in tx. So no need to call xen_intr_unbind here,
674	 * but we do want to reset the handler to 0.
675	 */
676	rxq->xen_intr_handle = 0;
677}
678
679static void
680destroy_rxq(struct netfront_rxq *rxq)
681{
682
683	callout_drain(&rxq->rx_refill);
684	free(rxq->ring.sring, M_DEVBUF);
685}
686
687static void
688destroy_rxqs(struct netfront_info *np)
689{
690	int i;
691
692	for (i = 0; i < np->num_queues; i++)
693		destroy_rxq(&np->rxq[i]);
694
695	free(np->rxq, M_DEVBUF);
696	np->rxq = NULL;
697}
698
699static int
700setup_rxqs(device_t dev, struct netfront_info *info,
701	   unsigned long num_queues)
702{
703	int q, i;
704	int error;
705	netif_rx_sring_t *rxs;
706	struct netfront_rxq *rxq;
707
708	info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues,
709	    M_DEVBUF, M_WAITOK|M_ZERO);
710
711	for (q = 0; q < num_queues; q++) {
712		rxq = &info->rxq[q];
713
714		rxq->id = q;
715		rxq->info = info;
716		rxq->ring_ref = GRANT_REF_INVALID;
717		rxq->ring.sring = NULL;
718		snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q);
719		mtx_init(&rxq->lock, rxq->name, "netfront receive lock",
720		    MTX_DEF);
721
722		for (i = 0; i <= NET_RX_RING_SIZE; i++) {
723			rxq->mbufs[i] = NULL;
724			rxq->grant_ref[i] = GRANT_REF_INVALID;
725		}
726
727		/* Start resources allocation */
728
729		if (gnttab_alloc_grant_references(NET_RX_RING_SIZE,
730		    &rxq->gref_head) != 0) {
731			device_printf(dev, "allocating rx gref");
732			error = ENOMEM;
733			goto fail;
734		}
735
736		rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
737		    M_WAITOK|M_ZERO);
738		SHARED_RING_INIT(rxs);
739		FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE);
740
741		error = xenbus_grant_ring(dev, virt_to_mfn(rxs),
742		    &rxq->ring_ref);
743		if (error != 0) {
744			device_printf(dev, "granting rx ring page");
745			goto fail_grant_ring;
746		}
747
748		callout_init(&rxq->rx_refill, 1);
749	}
750
751	return (0);
752
753fail_grant_ring:
754	gnttab_free_grant_references(rxq->gref_head);
755	free(rxq->ring.sring, M_DEVBUF);
756fail:
757	for (; q >= 0; q--) {
758		disconnect_rxq(&info->rxq[q]);
759		destroy_rxq(&info->rxq[q]);
760	}
761
762	free(info->rxq, M_DEVBUF);
763	return (error);
764}
765
766static void
767disconnect_txq(struct netfront_txq *txq)
768{
769
770	xn_release_tx_bufs(txq);
771	gnttab_free_grant_references(txq->gref_head);
772	gnttab_end_foreign_access(txq->ring_ref, NULL);
773	xen_intr_unbind(&txq->xen_intr_handle);
774}
775
776static void
777destroy_txq(struct netfront_txq *txq)
778{
779
780	free(txq->ring.sring, M_DEVBUF);
781	buf_ring_free(txq->br, M_DEVBUF);
782	taskqueue_drain_all(txq->tq);
783	taskqueue_free(txq->tq);
784}
785
786static void
787destroy_txqs(struct netfront_info *np)
788{
789	int i;
790
791	for (i = 0; i < np->num_queues; i++)
792		destroy_txq(&np->txq[i]);
793
794	free(np->txq, M_DEVBUF);
795	np->txq = NULL;
796}
797
798static int
799setup_txqs(device_t dev, struct netfront_info *info,
800	   unsigned long num_queues)
801{
802	int q, i;
803	int error;
804	netif_tx_sring_t *txs;
805	struct netfront_txq *txq;
806
807	info->txq = malloc(sizeof(struct netfront_txq) * num_queues,
808	    M_DEVBUF, M_WAITOK|M_ZERO);
809
810	for (q = 0; q < num_queues; q++) {
811		txq = &info->txq[q];
812
813		txq->id = q;
814		txq->info = info;
815
816		txq->ring_ref = GRANT_REF_INVALID;
817		txq->ring.sring = NULL;
818
819		snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q);
820
821		mtx_init(&txq->lock, txq->name, "netfront transmit lock",
822		    MTX_DEF);
823
824		for (i = 0; i <= NET_TX_RING_SIZE; i++) {
825			txq->mbufs[i] = (void *) ((u_long) i+1);
826			txq->grant_ref[i] = GRANT_REF_INVALID;
827		}
828		txq->mbufs[NET_TX_RING_SIZE] = (void *)0;
829
830		/* Start resources allocation. */
831
832		if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
833		    &txq->gref_head) != 0) {
834			device_printf(dev, "failed to allocate tx grant refs\n");
835			error = ENOMEM;
836			goto fail;
837		}
838
839		txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF,
840		    M_WAITOK|M_ZERO);
841		SHARED_RING_INIT(txs);
842		FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE);
843
844		error = xenbus_grant_ring(dev, virt_to_mfn(txs),
845		    &txq->ring_ref);
846		if (error != 0) {
847			device_printf(dev, "failed to grant tx ring\n");
848			goto fail_grant_ring;
849		}
850
851		txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF,
852		    M_WAITOK, &txq->lock);
853		TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq);
854
855		txq->tq = taskqueue_create(txq->name, M_WAITOK,
856		    taskqueue_thread_enqueue, &txq->tq);
857
858		error = taskqueue_start_threads(&txq->tq, 1, PI_NET,
859		    "%s txq %d", device_get_nameunit(dev), txq->id);
860		if (error != 0) {
861			device_printf(dev, "failed to start tx taskq %d\n",
862			    txq->id);
863			goto fail_start_thread;
864		}
865
866		error = xen_intr_alloc_and_bind_local_port(dev,
867		    xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr,
868		    &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY,
869		    &txq->xen_intr_handle);
870
871		if (error != 0) {
872			device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n");
873			goto fail_bind_port;
874		}
875	}
876
877	return (0);
878
879fail_bind_port:
880	taskqueue_drain_all(txq->tq);
881fail_start_thread:
882	buf_ring_free(txq->br, M_DEVBUF);
883	taskqueue_free(txq->tq);
884	gnttab_end_foreign_access(txq->ring_ref, NULL);
885fail_grant_ring:
886	gnttab_free_grant_references(txq->gref_head);
887	free(txq->ring.sring, M_DEVBUF);
888fail:
889	for (; q >= 0; q--) {
890		disconnect_txq(&info->txq[q]);
891		destroy_txq(&info->txq[q]);
892	}
893
894	free(info->txq, M_DEVBUF);
895	return (error);
896}
897
898static int
899setup_device(device_t dev, struct netfront_info *info,
900    unsigned long num_queues)
901{
902	int error;
903	int q;
904
905	if (info->txq)
906		destroy_txqs(info);
907
908	if (info->rxq)
909		destroy_rxqs(info);
910
911	info->num_queues = 0;
912
913	error = setup_rxqs(dev, info, num_queues);
914	if (error != 0)
915		goto out;
916	error = setup_txqs(dev, info, num_queues);
917	if (error != 0)
918		goto out;
919
920	info->num_queues = num_queues;
921
922	/* No split event channel at the moment. */
923	for (q = 0; q < num_queues; q++)
924		info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle;
925
926	return (0);
927
928out:
929	KASSERT(error != 0, ("Error path taken without providing an error code"));
930	return (error);
931}
932
933#ifdef INET
934/**
935 * If this interface has an ipv4 address, send an arp for it. This
936 * helps to get the network going again after migrating hosts.
937 */
938static void
939netfront_send_fake_arp(device_t dev, struct netfront_info *info)
940{
941	struct ifnet *ifp;
942	struct ifaddr *ifa;
943
944	ifp = info->xn_ifp;
945	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
946		if (ifa->ifa_addr->sa_family == AF_INET) {
947			arp_ifinit(ifp, ifa);
948		}
949	}
950}
951#endif
952
953/**
954 * Callback received when the backend's state changes.
955 */
956static void
957netfront_backend_changed(device_t dev, XenbusState newstate)
958{
959	struct netfront_info *sc = device_get_softc(dev);
960
961	DPRINTK("newstate=%d\n", newstate);
962
963	switch (newstate) {
964	case XenbusStateInitialising:
965	case XenbusStateInitialised:
966	case XenbusStateUnknown:
967	case XenbusStateReconfigured:
968	case XenbusStateReconfiguring:
969		break;
970	case XenbusStateInitWait:
971		if (xenbus_get_state(dev) != XenbusStateInitialising)
972			break;
973		if (xn_connect(sc) != 0)
974			break;
975		/* Switch to connected state before kicking the rings. */
976		xenbus_set_state(sc->xbdev, XenbusStateConnected);
977		xn_kick_rings(sc);
978		break;
979	case XenbusStateClosing:
980		xenbus_set_state(dev, XenbusStateClosed);
981		break;
982	case XenbusStateClosed:
983		if (sc->xn_reset) {
984			netif_disconnect_backend(sc);
985			xenbus_set_state(dev, XenbusStateInitialising);
986			sc->xn_reset = false;
987		}
988		break;
989	case XenbusStateConnected:
990#ifdef INET
991		netfront_send_fake_arp(dev, sc);
992#endif
993		break;
994	}
995}
996
997/**
998 * \brief Verify that there is sufficient space in the Tx ring
999 *        buffer for a maximally sized request to be enqueued.
1000 *
1001 * A transmit request requires a transmit descriptor for each packet
1002 * fragment, plus up to 2 entries for "options" (e.g. TSO).
1003 */
1004static inline int
1005xn_tx_slot_available(struct netfront_txq *txq)
1006{
1007
1008	return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2));
1009}
1010
1011static void
1012xn_release_tx_bufs(struct netfront_txq *txq)
1013{
1014	int i;
1015
1016	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
1017		struct mbuf *m;
1018
1019		m = txq->mbufs[i];
1020
1021		/*
1022		 * We assume that no kernel addresses are
1023		 * less than NET_TX_RING_SIZE.  Any entry
1024		 * in the table that is below this number
1025		 * must be an index from free-list tracking.
1026		 */
1027		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
1028			continue;
1029		gnttab_end_foreign_access_ref(txq->grant_ref[i]);
1030		gnttab_release_grant_reference(&txq->gref_head,
1031		    txq->grant_ref[i]);
1032		txq->grant_ref[i] = GRANT_REF_INVALID;
1033		add_id_to_freelist(txq->mbufs, i);
1034		txq->mbufs_cnt--;
1035		if (txq->mbufs_cnt < 0) {
1036			panic("%s: tx_chain_cnt must be >= 0", __func__);
1037		}
1038		m_free(m);
1039	}
1040}
1041
1042static struct mbuf *
1043xn_alloc_one_rx_buffer(struct netfront_rxq *rxq)
1044{
1045	struct mbuf *m;
1046
1047	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1048	if (m == NULL)
1049		return NULL;
1050	m->m_len = m->m_pkthdr.len = MJUMPAGESIZE;
1051
1052	return (m);
1053}
1054
1055static void
1056xn_alloc_rx_buffers(struct netfront_rxq *rxq)
1057{
1058	RING_IDX req_prod;
1059	int notify;
1060
1061	XN_RX_LOCK_ASSERT(rxq);
1062
1063	if (__predict_false(rxq->info->carrier == 0))
1064		return;
1065
1066	for (req_prod = rxq->ring.req_prod_pvt;
1067	     req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE;
1068	     req_prod++) {
1069		struct mbuf *m;
1070		unsigned short id;
1071		grant_ref_t ref;
1072		struct netif_rx_request *req;
1073		unsigned long pfn;
1074
1075		m = xn_alloc_one_rx_buffer(rxq);
1076		if (m == NULL)
1077			break;
1078
1079		id = xn_rxidx(req_prod);
1080
1081		KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain"));
1082		rxq->mbufs[id] = m;
1083
1084		ref = gnttab_claim_grant_reference(&rxq->gref_head);
1085		KASSERT(ref != GNTTAB_LIST_END,
1086		    ("reserved grant references exhuasted"));
1087		rxq->grant_ref[id] = ref;
1088
1089		pfn = atop(vtophys(mtod(m, vm_offset_t)));
1090		req = RING_GET_REQUEST(&rxq->ring, req_prod);
1091
1092		gnttab_grant_foreign_access_ref(ref,
1093		    xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0);
1094		req->id = id;
1095		req->gref = ref;
1096	}
1097
1098	rxq->ring.req_prod_pvt = req_prod;
1099
1100	/* Not enough requests? Try again later. */
1101	if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) {
1102		callout_reset_curcpu(&rxq->rx_refill, hz/10,
1103		    xn_alloc_rx_buffers_callout, rxq);
1104		return;
1105	}
1106
1107	wmb();		/* barrier so backend seens requests */
1108
1109	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify);
1110	if (notify)
1111		xen_intr_signal(rxq->xen_intr_handle);
1112}
1113
1114static void xn_alloc_rx_buffers_callout(void *arg)
1115{
1116	struct netfront_rxq *rxq;
1117
1118	rxq = (struct netfront_rxq *)arg;
1119	XN_RX_LOCK(rxq);
1120	xn_alloc_rx_buffers(rxq);
1121	XN_RX_UNLOCK(rxq);
1122}
1123
1124static void
1125xn_release_rx_bufs(struct netfront_rxq *rxq)
1126{
1127	int i,  ref;
1128	struct mbuf *m;
1129
1130	for (i = 0; i < NET_RX_RING_SIZE; i++) {
1131		m = rxq->mbufs[i];
1132
1133		if (m == NULL)
1134			continue;
1135
1136		ref = rxq->grant_ref[i];
1137		if (ref == GRANT_REF_INVALID)
1138			continue;
1139
1140		gnttab_end_foreign_access_ref(ref);
1141		gnttab_release_grant_reference(&rxq->gref_head, ref);
1142		rxq->mbufs[i] = NULL;
1143		rxq->grant_ref[i] = GRANT_REF_INVALID;
1144		m_freem(m);
1145	}
1146}
1147
1148static void
1149xn_rxeof(struct netfront_rxq *rxq)
1150{
1151	struct ifnet *ifp;
1152	struct netfront_info *np = rxq->info;
1153#if (defined(INET) || defined(INET6))
1154	struct lro_ctrl *lro = &rxq->lro;
1155#endif
1156	struct netfront_rx_info rinfo;
1157	struct netif_rx_response *rx = &rinfo.rx;
1158	struct netif_extra_info *extras = rinfo.extras;
1159	RING_IDX i, rp;
1160	struct mbuf *m;
1161	struct mbufq mbufq_rxq, mbufq_errq;
1162	int err, work_to_do;
1163
1164	XN_RX_LOCK_ASSERT(rxq);
1165
1166	if (!netfront_carrier_ok(np))
1167		return;
1168
1169	/* XXX: there should be some sane limit. */
1170	mbufq_init(&mbufq_errq, INT_MAX);
1171	mbufq_init(&mbufq_rxq, INT_MAX);
1172
1173	ifp = np->xn_ifp;
1174
1175	do {
1176		rp = rxq->ring.sring->rsp_prod;
1177		rmb();	/* Ensure we see queued responses up to 'rp'. */
1178
1179		i = rxq->ring.rsp_cons;
1180		while ((i != rp)) {
1181			memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx));
1182			memset(extras, 0, sizeof(rinfo.extras));
1183
1184			m = NULL;
1185			err = xn_get_responses(rxq, &rinfo, rp, &i, &m);
1186
1187			if (__predict_false(err)) {
1188				if (m)
1189					(void )mbufq_enqueue(&mbufq_errq, m);
1190				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1191				continue;
1192			}
1193
1194			m->m_pkthdr.rcvif = ifp;
1195			if (rx->flags & NETRXF_data_validated) {
1196				/*
1197				 * According to mbuf(9) the correct way to tell
1198				 * the stack that the checksum of an inbound
1199				 * packet is correct, without it actually being
1200				 * present (because the underlying interface
1201				 * doesn't provide it), is to set the
1202				 * CSUM_DATA_VALID and CSUM_PSEUDO_HDR flags,
1203				 * and the csum_data field to 0xffff.
1204				 */
1205				m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
1206				    | CSUM_PSEUDO_HDR);
1207				m->m_pkthdr.csum_data = 0xffff;
1208			}
1209			if ((rx->flags & NETRXF_extra_info) != 0 &&
1210			    (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type ==
1211			    XEN_NETIF_EXTRA_TYPE_GSO)) {
1212				m->m_pkthdr.tso_segsz =
1213				extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size;
1214				m->m_pkthdr.csum_flags |= CSUM_TSO;
1215			}
1216
1217			(void )mbufq_enqueue(&mbufq_rxq, m);
1218		}
1219
1220		rxq->ring.rsp_cons = i;
1221
1222		xn_alloc_rx_buffers(rxq);
1223
1224		RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do);
1225	} while (work_to_do);
1226
1227	mbufq_drain(&mbufq_errq);
1228	/*
1229	 * Process all the mbufs after the remapping is complete.
1230	 * Break the mbuf chain first though.
1231	 */
1232	while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) {
1233		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1234#if (defined(INET) || defined(INET6))
1235		/* Use LRO if possible */
1236		if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1237		    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1238			/*
1239			 * If LRO fails, pass up to the stack
1240			 * directly.
1241			 */
1242			(*ifp->if_input)(ifp, m);
1243		}
1244#else
1245		(*ifp->if_input)(ifp, m);
1246#endif
1247	}
1248
1249#if (defined(INET) || defined(INET6))
1250	/*
1251	 * Flush any outstanding LRO work
1252	 */
1253	tcp_lro_flush_all(lro);
1254#endif
1255}
1256
1257static void
1258xn_txeof(struct netfront_txq *txq)
1259{
1260	RING_IDX i, prod;
1261	unsigned short id;
1262	struct ifnet *ifp;
1263	netif_tx_response_t *txr;
1264	struct mbuf *m;
1265	struct netfront_info *np = txq->info;
1266
1267	XN_TX_LOCK_ASSERT(txq);
1268
1269	if (!netfront_carrier_ok(np))
1270		return;
1271
1272	ifp = np->xn_ifp;
1273
1274	do {
1275		prod = txq->ring.sring->rsp_prod;
1276		rmb(); /* Ensure we see responses up to 'rp'. */
1277
1278		for (i = txq->ring.rsp_cons; i != prod; i++) {
1279			txr = RING_GET_RESPONSE(&txq->ring, i);
1280			if (txr->status == NETIF_RSP_NULL)
1281				continue;
1282
1283			if (txr->status != NETIF_RSP_OKAY) {
1284				printf("%s: WARNING: response is %d!\n",
1285				       __func__, txr->status);
1286			}
1287			id = txr->id;
1288			m = txq->mbufs[id];
1289			KASSERT(m != NULL, ("mbuf not found in chain"));
1290			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1291				("mbuf already on the free list, but we're "
1292				"trying to free it again!"));
1293			M_ASSERTVALID(m);
1294
1295			if (__predict_false(gnttab_query_foreign_access(
1296			    txq->grant_ref[id]) != 0)) {
1297				panic("%s: grant id %u still in use by the "
1298				    "backend", __func__, id);
1299			}
1300			gnttab_end_foreign_access_ref(txq->grant_ref[id]);
1301			gnttab_release_grant_reference(
1302				&txq->gref_head, txq->grant_ref[id]);
1303			txq->grant_ref[id] = GRANT_REF_INVALID;
1304
1305			txq->mbufs[id] = NULL;
1306			add_id_to_freelist(txq->mbufs, id);
1307			txq->mbufs_cnt--;
1308			m_free(m);
1309			/* Only mark the txq active if we've freed up at least one slot to try */
1310			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1311		}
1312		txq->ring.rsp_cons = prod;
1313
1314		/*
1315		 * Set a new event, then check for race with update of
1316		 * tx_cons. Note that it is essential to schedule a
1317		 * callback, no matter how few buffers are pending. Even if
1318		 * there is space in the transmit ring, higher layers may
1319		 * be blocked because too much data is outstanding: in such
1320		 * cases notification from Xen is likely to be the only kick
1321		 * that we'll get.
1322		 */
1323		txq->ring.sring->rsp_event =
1324		    prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1;
1325
1326		mb();
1327	} while (prod != txq->ring.sring->rsp_prod);
1328
1329	if (txq->full &&
1330	    ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1331		txq->full = false;
1332		xn_txq_start(txq);
1333	}
1334}
1335
1336static void
1337xn_intr(void *xsc)
1338{
1339	struct netfront_txq *txq = xsc;
1340	struct netfront_info *np = txq->info;
1341	struct netfront_rxq *rxq = &np->rxq[txq->id];
1342
1343	/* kick both tx and rx */
1344	xn_rxq_intr(rxq);
1345	xn_txq_intr(txq);
1346}
1347
1348static void
1349xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m,
1350    grant_ref_t ref)
1351{
1352	int new = xn_rxidx(rxq->ring.req_prod_pvt);
1353
1354	KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL"));
1355	rxq->mbufs[new] = m;
1356	rxq->grant_ref[new] = ref;
1357	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new;
1358	RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref;
1359	rxq->ring.req_prod_pvt++;
1360}
1361
1362static int
1363xn_get_extras(struct netfront_rxq *rxq,
1364    struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1365{
1366	struct netif_extra_info *extra;
1367
1368	int err = 0;
1369
1370	do {
1371		struct mbuf *m;
1372		grant_ref_t ref;
1373
1374		if (__predict_false(*cons + 1 == rp)) {
1375			err = EINVAL;
1376			break;
1377		}
1378
1379		extra = (struct netif_extra_info *)
1380		RING_GET_RESPONSE(&rxq->ring, ++(*cons));
1381
1382		if (__predict_false(!extra->type ||
1383			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1384			err = EINVAL;
1385		} else {
1386			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1387		}
1388
1389		m = xn_get_rx_mbuf(rxq, *cons);
1390		ref = xn_get_rx_ref(rxq,  *cons);
1391		xn_move_rx_slot(rxq, m, ref);
1392	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1393
1394	return err;
1395}
1396
1397static int
1398xn_get_responses(struct netfront_rxq *rxq,
1399    struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1400    struct mbuf  **list)
1401{
1402	struct netif_rx_response *rx = &rinfo->rx;
1403	struct netif_extra_info *extras = rinfo->extras;
1404	struct mbuf *m, *m0, *m_prev;
1405	grant_ref_t ref = xn_get_rx_ref(rxq, *cons);
1406	RING_IDX ref_cons = *cons;
1407	int frags = 1;
1408	int err = 0;
1409	u_long ret;
1410
1411	m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons);
1412
1413	if (rx->flags & NETRXF_extra_info) {
1414		err = xn_get_extras(rxq, extras, rp, cons);
1415	}
1416
1417	if (m0 != NULL) {
1418		m0->m_pkthdr.len = 0;
1419		m0->m_next = NULL;
1420	}
1421
1422	for (;;) {
1423#if 0
1424		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1425			rx->status, rx->offset, frags);
1426#endif
1427		if (__predict_false(rx->status < 0 ||
1428			rx->offset + rx->status > PAGE_SIZE)) {
1429
1430			xn_move_rx_slot(rxq, m, ref);
1431			if (m0 == m)
1432				m0 = NULL;
1433			m = NULL;
1434			err = EINVAL;
1435			goto next_skip_queue;
1436		}
1437
1438		/*
1439		 * This definitely indicates a bug, either in this driver or in
1440		 * the backend driver. In future this should flag the bad
1441		 * situation to the system controller to reboot the backed.
1442		 */
1443		if (ref == GRANT_REF_INVALID) {
1444			printf("%s: Bad rx response id %d.\n", __func__, rx->id);
1445			err = EINVAL;
1446			goto next;
1447		}
1448
1449		ret = gnttab_end_foreign_access_ref(ref);
1450		KASSERT(ret, ("Unable to end access to grant references"));
1451
1452		gnttab_release_grant_reference(&rxq->gref_head, ref);
1453
1454next:
1455		if (m == NULL)
1456			break;
1457
1458		m->m_len = rx->status;
1459		m->m_data += rx->offset;
1460		m0->m_pkthdr.len += rx->status;
1461
1462next_skip_queue:
1463		if (!(rx->flags & NETRXF_more_data))
1464			break;
1465
1466		if (*cons + frags == rp) {
1467			if (net_ratelimit())
1468				WPRINTK("Need more frags\n");
1469			err = ENOENT;
1470			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1471			       __func__, *cons, frags, rp);
1472			break;
1473		}
1474		/*
1475		 * Note that m can be NULL, if rx->status < 0 or if
1476		 * rx->offset + rx->status > PAGE_SIZE above.
1477		 */
1478		m_prev = m;
1479
1480		rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags);
1481		m = xn_get_rx_mbuf(rxq, *cons + frags);
1482
1483		/*
1484		 * m_prev == NULL can happen if rx->status < 0 or if
1485		 * rx->offset + * rx->status > PAGE_SIZE above.
1486		 */
1487		if (m_prev != NULL)
1488			m_prev->m_next = m;
1489
1490		/*
1491		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1492		 * rx->status > PAGE_SIZE above.
1493		 */
1494		if (m0 == NULL)
1495			m0 = m;
1496		m->m_next = NULL;
1497		ref = xn_get_rx_ref(rxq, *cons + frags);
1498		ref_cons = *cons + frags;
1499		frags++;
1500	}
1501	*list = m0;
1502	*cons += frags;
1503
1504	return (err);
1505}
1506
1507/**
1508 * \brief Count the number of fragments in an mbuf chain.
1509 *
1510 * Surprisingly, there isn't an M* macro for this.
1511 */
1512static inline int
1513xn_count_frags(struct mbuf *m)
1514{
1515	int nfrags;
1516
1517	for (nfrags = 0; m != NULL; m = m->m_next)
1518		nfrags++;
1519
1520	return (nfrags);
1521}
1522
1523/**
1524 * Given an mbuf chain, make sure we have enough room and then push
1525 * it onto the transmit ring.
1526 */
1527static int
1528xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head)
1529{
1530	struct mbuf *m;
1531	struct netfront_info *np = txq->info;
1532	struct ifnet *ifp = np->xn_ifp;
1533	u_int nfrags;
1534	int otherend_id;
1535
1536	/**
1537	 * Defragment the mbuf if necessary.
1538	 */
1539	nfrags = xn_count_frags(m_head);
1540
1541	/*
1542	 * Check to see whether this request is longer than netback
1543	 * can handle, and try to defrag it.
1544	 */
1545	/**
1546	 * It is a bit lame, but the netback driver in Linux can't
1547	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1548	 * the Linux network stack.
1549	 */
1550	if (nfrags > np->maxfrags) {
1551		m = m_defrag(m_head, M_NOWAIT);
1552		if (!m) {
1553			/*
1554			 * Defrag failed, so free the mbuf and
1555			 * therefore drop the packet.
1556			 */
1557			m_freem(m_head);
1558			return (EMSGSIZE);
1559		}
1560		m_head = m;
1561	}
1562
1563	/* Determine how many fragments now exist */
1564	nfrags = xn_count_frags(m_head);
1565
1566	/*
1567	 * Check to see whether the defragmented packet has too many
1568	 * segments for the Linux netback driver.
1569	 */
1570	/**
1571	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1572	 * of mbufs longer than Linux can handle.  Make sure we don't
1573	 * pass a too-long chain over to the other side by dropping the
1574	 * packet.  It doesn't look like there is currently a way to
1575	 * tell the TCP stack to generate a shorter chain of packets.
1576	 */
1577	if (nfrags > MAX_TX_REQ_FRAGS) {
1578#ifdef DEBUG
1579		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1580		       "won't be able to handle it, dropping\n",
1581		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1582#endif
1583		m_freem(m_head);
1584		return (EMSGSIZE);
1585	}
1586
1587	/*
1588	 * This check should be redundant.  We've already verified that we
1589	 * have enough slots in the ring to handle a packet of maximum
1590	 * size, and that our packet is less than the maximum size.  Keep
1591	 * it in here as an assert for now just to make certain that
1592	 * chain_cnt is accurate.
1593	 */
1594	KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE,
1595		("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1596		 "(%d)!", __func__, (int) txq->mbufs_cnt,
1597                    (int) nfrags, (int) NET_TX_RING_SIZE));
1598
1599	/*
1600	 * Start packing the mbufs in this chain into
1601	 * the fragment pointers. Stop when we run out
1602	 * of fragments or hit the end of the mbuf chain.
1603	 */
1604	m = m_head;
1605	otherend_id = xenbus_get_otherend_id(np->xbdev);
1606	for (m = m_head; m; m = m->m_next) {
1607		netif_tx_request_t *tx;
1608		uintptr_t id;
1609		grant_ref_t ref;
1610		u_long mfn; /* XXX Wrong type? */
1611
1612		tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt);
1613		id = get_id_from_freelist(txq->mbufs);
1614		if (id == 0)
1615			panic("%s: was allocated the freelist head!\n",
1616			    __func__);
1617		txq->mbufs_cnt++;
1618		if (txq->mbufs_cnt > NET_TX_RING_SIZE)
1619			panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
1620			    __func__);
1621		txq->mbufs[id] = m;
1622		tx->id = id;
1623		ref = gnttab_claim_grant_reference(&txq->gref_head);
1624		KASSERT((short)ref >= 0, ("Negative ref"));
1625		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1626		gnttab_grant_foreign_access_ref(ref, otherend_id,
1627		    mfn, GNTMAP_readonly);
1628		tx->gref = txq->grant_ref[id] = ref;
1629		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1630		tx->flags = 0;
1631		if (m == m_head) {
1632			/*
1633			 * The first fragment has the entire packet
1634			 * size, subsequent fragments have just the
1635			 * fragment size. The backend works out the
1636			 * true size of the first fragment by
1637			 * subtracting the sizes of the other
1638			 * fragments.
1639			 */
1640			tx->size = m->m_pkthdr.len;
1641
1642			/*
1643			 * The first fragment contains the checksum flags
1644			 * and is optionally followed by extra data for
1645			 * TSO etc.
1646			 */
1647			/**
1648			 * CSUM_TSO requires checksum offloading.
1649			 * Some versions of FreeBSD fail to
1650			 * set CSUM_TCP in the CSUM_TSO case,
1651			 * so we have to test for CSUM_TSO
1652			 * explicitly.
1653			 */
1654			if (m->m_pkthdr.csum_flags
1655			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1656				tx->flags |= (NETTXF_csum_blank
1657				    | NETTXF_data_validated);
1658			}
1659			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1660				struct netif_extra_info *gso =
1661					(struct netif_extra_info *)
1662					RING_GET_REQUEST(&txq->ring,
1663							 ++txq->ring.req_prod_pvt);
1664
1665				tx->flags |= NETTXF_extra_info;
1666
1667				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1668				gso->u.gso.type =
1669					XEN_NETIF_GSO_TYPE_TCPV4;
1670				gso->u.gso.pad = 0;
1671				gso->u.gso.features = 0;
1672
1673				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1674				gso->flags = 0;
1675			}
1676		} else {
1677			tx->size = m->m_len;
1678		}
1679		if (m->m_next)
1680			tx->flags |= NETTXF_more_data;
1681
1682		txq->ring.req_prod_pvt++;
1683	}
1684	BPF_MTAP(ifp, m_head);
1685
1686	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1687	if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len);
1688	if (m_head->m_flags & M_MCAST)
1689		if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
1690
1691	xn_txeof(txq);
1692
1693	return (0);
1694}
1695
1696/* equivalent of network_open() in Linux */
1697static void
1698xn_ifinit_locked(struct netfront_info *np)
1699{
1700	struct ifnet *ifp;
1701	int i;
1702	struct netfront_rxq *rxq;
1703
1704	XN_LOCK_ASSERT(np);
1705
1706	ifp = np->xn_ifp;
1707
1708	if (ifp->if_drv_flags & IFF_DRV_RUNNING || !netfront_carrier_ok(np))
1709		return;
1710
1711	xn_stop(np);
1712
1713	for (i = 0; i < np->num_queues; i++) {
1714		rxq = &np->rxq[i];
1715		XN_RX_LOCK(rxq);
1716		xn_alloc_rx_buffers(rxq);
1717		rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1;
1718		if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring))
1719			xn_rxeof(rxq);
1720		XN_RX_UNLOCK(rxq);
1721	}
1722
1723	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1724	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1725	if_link_state_change(ifp, LINK_STATE_UP);
1726}
1727
1728static void
1729xn_ifinit(void *xsc)
1730{
1731	struct netfront_info *sc = xsc;
1732
1733	XN_LOCK(sc);
1734	xn_ifinit_locked(sc);
1735	XN_UNLOCK(sc);
1736}
1737
1738static int
1739xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1740{
1741	struct netfront_info *sc = ifp->if_softc;
1742	struct ifreq *ifr = (struct ifreq *) data;
1743	device_t dev;
1744#ifdef INET
1745	struct ifaddr *ifa = (struct ifaddr *)data;
1746#endif
1747	int mask, error = 0, reinit;
1748
1749	dev = sc->xbdev;
1750
1751	switch(cmd) {
1752	case SIOCSIFADDR:
1753#ifdef INET
1754		XN_LOCK(sc);
1755		if (ifa->ifa_addr->sa_family == AF_INET) {
1756			ifp->if_flags |= IFF_UP;
1757			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1758				xn_ifinit_locked(sc);
1759			arp_ifinit(ifp, ifa);
1760			XN_UNLOCK(sc);
1761		} else {
1762			XN_UNLOCK(sc);
1763#endif
1764			error = ether_ioctl(ifp, cmd, data);
1765#ifdef INET
1766		}
1767#endif
1768		break;
1769	case SIOCSIFMTU:
1770		if (ifp->if_mtu == ifr->ifr_mtu)
1771			break;
1772
1773		ifp->if_mtu = ifr->ifr_mtu;
1774		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1775		xn_ifinit(sc);
1776		break;
1777	case SIOCSIFFLAGS:
1778		XN_LOCK(sc);
1779		if (ifp->if_flags & IFF_UP) {
1780			/*
1781			 * If only the state of the PROMISC flag changed,
1782			 * then just use the 'set promisc mode' command
1783			 * instead of reinitializing the entire NIC. Doing
1784			 * a full re-init means reloading the firmware and
1785			 * waiting for it to start up, which may take a
1786			 * second or two.
1787			 */
1788			xn_ifinit_locked(sc);
1789		} else {
1790			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1791				xn_stop(sc);
1792			}
1793		}
1794		sc->xn_if_flags = ifp->if_flags;
1795		XN_UNLOCK(sc);
1796		break;
1797	case SIOCSIFCAP:
1798		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1799		reinit = 0;
1800
1801		if (mask & IFCAP_TXCSUM) {
1802			ifp->if_capenable ^= IFCAP_TXCSUM;
1803			ifp->if_hwassist ^= XN_CSUM_FEATURES;
1804		}
1805		if (mask & IFCAP_TSO4) {
1806			ifp->if_capenable ^= IFCAP_TSO4;
1807			ifp->if_hwassist ^= CSUM_TSO;
1808		}
1809
1810		if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) {
1811			/* These Rx features require us to renegotiate. */
1812			reinit = 1;
1813
1814			if (mask & IFCAP_RXCSUM)
1815				ifp->if_capenable ^= IFCAP_RXCSUM;
1816			if (mask & IFCAP_LRO)
1817				ifp->if_capenable ^= IFCAP_LRO;
1818		}
1819
1820		if (reinit == 0)
1821			break;
1822
1823		/*
1824		 * We must reset the interface so the backend picks up the
1825		 * new features.
1826		 */
1827		device_printf(sc->xbdev,
1828		    "performing interface reset due to feature change\n");
1829		XN_LOCK(sc);
1830		netfront_carrier_off(sc);
1831		sc->xn_reset = true;
1832		/*
1833		 * NB: the pending packet queue is not flushed, since
1834		 * the interface should still support the old options.
1835		 */
1836		XN_UNLOCK(sc);
1837		/*
1838		 * Delete the xenstore nodes that export features.
1839		 *
1840		 * NB: There's a xenbus state called
1841		 * "XenbusStateReconfiguring", which is what we should set
1842		 * here. Sadly none of the backends know how to handle it,
1843		 * and simply disconnect from the frontend, so we will just
1844		 * switch back to XenbusStateInitialising in order to force
1845		 * a reconnection.
1846		 */
1847		xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4");
1848		xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload");
1849		xenbus_set_state(dev, XenbusStateClosing);
1850
1851		/*
1852		 * Wait for the frontend to reconnect before returning
1853		 * from the ioctl. 30s should be more than enough for any
1854		 * sane backend to reconnect.
1855		 */
1856		error = tsleep(sc, 0, "xn_rst", 30*hz);
1857		break;
1858	case SIOCADDMULTI:
1859	case SIOCDELMULTI:
1860		break;
1861	case SIOCSIFMEDIA:
1862	case SIOCGIFMEDIA:
1863		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1864		break;
1865	default:
1866		error = ether_ioctl(ifp, cmd, data);
1867	}
1868
1869	return (error);
1870}
1871
1872static void
1873xn_stop(struct netfront_info *sc)
1874{
1875	struct ifnet *ifp;
1876
1877	XN_LOCK_ASSERT(sc);
1878
1879	ifp = sc->xn_ifp;
1880
1881	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1882	if_link_state_change(ifp, LINK_STATE_DOWN);
1883}
1884
1885static void
1886xn_rebuild_rx_bufs(struct netfront_rxq *rxq)
1887{
1888	int requeue_idx, i;
1889	grant_ref_t ref;
1890	netif_rx_request_t *req;
1891
1892	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1893		struct mbuf *m;
1894		u_long pfn;
1895
1896		if (rxq->mbufs[i] == NULL)
1897			continue;
1898
1899		m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i);
1900		ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i);
1901
1902		req = RING_GET_REQUEST(&rxq->ring, requeue_idx);
1903		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1904
1905		gnttab_grant_foreign_access_ref(ref,
1906		    xenbus_get_otherend_id(rxq->info->xbdev),
1907		    pfn, 0);
1908
1909		req->gref = ref;
1910		req->id   = requeue_idx;
1911
1912		requeue_idx++;
1913	}
1914
1915	rxq->ring.req_prod_pvt = requeue_idx;
1916}
1917
1918/* START of Xenolinux helper functions adapted to FreeBSD */
1919static int
1920xn_connect(struct netfront_info *np)
1921{
1922	int i, error;
1923	u_int feature_rx_copy;
1924	struct netfront_rxq *rxq;
1925	struct netfront_txq *txq;
1926
1927	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1928	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1929	if (error != 0)
1930		feature_rx_copy = 0;
1931
1932	/* We only support rx copy. */
1933	if (!feature_rx_copy)
1934		return (EPROTONOSUPPORT);
1935
1936	/* Recovery procedure: */
1937	error = talk_to_backend(np->xbdev, np);
1938	if (error != 0)
1939		return (error);
1940
1941	/* Step 1: Reinitialise variables. */
1942	xn_query_features(np);
1943	xn_configure_features(np);
1944
1945	/* Step 2: Release TX buffer */
1946	for (i = 0; i < np->num_queues; i++) {
1947		txq = &np->txq[i];
1948		xn_release_tx_bufs(txq);
1949	}
1950
1951	/* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */
1952	for (i = 0; i < np->num_queues; i++) {
1953		rxq = &np->rxq[i];
1954		xn_rebuild_rx_bufs(rxq);
1955	}
1956
1957	/* Step 4: All public and private state should now be sane.  Get
1958	 * ready to start sending and receiving packets and give the driver
1959	 * domain a kick because we've probably just requeued some
1960	 * packets.
1961	 */
1962	netfront_carrier_on(np);
1963	wakeup(np);
1964
1965	return (0);
1966}
1967
1968static void
1969xn_kick_rings(struct netfront_info *np)
1970{
1971	struct netfront_rxq *rxq;
1972	struct netfront_txq *txq;
1973	int i;
1974
1975	for (i = 0; i < np->num_queues; i++) {
1976		txq = &np->txq[i];
1977		rxq = &np->rxq[i];
1978		xen_intr_signal(txq->xen_intr_handle);
1979		XN_TX_LOCK(txq);
1980		xn_txeof(txq);
1981		XN_TX_UNLOCK(txq);
1982		XN_RX_LOCK(rxq);
1983		xn_alloc_rx_buffers(rxq);
1984		XN_RX_UNLOCK(rxq);
1985	}
1986}
1987
1988static void
1989xn_query_features(struct netfront_info *np)
1990{
1991	int val;
1992
1993	device_printf(np->xbdev, "backend features:");
1994
1995	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1996		"feature-sg", NULL, "%d", &val) != 0)
1997		val = 0;
1998
1999	np->maxfrags = 1;
2000	if (val) {
2001		np->maxfrags = MAX_TX_REQ_FRAGS;
2002		printf(" feature-sg");
2003	}
2004
2005	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2006		"feature-gso-tcpv4", NULL, "%d", &val) != 0)
2007		val = 0;
2008
2009	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2010	if (val) {
2011		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2012		printf(" feature-gso-tcp4");
2013	}
2014
2015	/*
2016	 * HW CSUM offload is assumed to be available unless
2017	 * feature-no-csum-offload is set in xenstore.
2018	 */
2019	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2020		"feature-no-csum-offload", NULL, "%d", &val) != 0)
2021		val = 0;
2022
2023	np->xn_ifp->if_capabilities |= IFCAP_HWCSUM;
2024	if (val) {
2025		np->xn_ifp->if_capabilities &= ~(IFCAP_HWCSUM);
2026		printf(" feature-no-csum-offload");
2027	}
2028
2029	printf("\n");
2030}
2031
2032static int
2033xn_configure_features(struct netfront_info *np)
2034{
2035	int err, cap_enabled;
2036#if (defined(INET) || defined(INET6))
2037	int i;
2038#endif
2039	struct ifnet *ifp;
2040
2041	ifp = np->xn_ifp;
2042	err = 0;
2043
2044	if ((ifp->if_capenable & ifp->if_capabilities) == ifp->if_capenable) {
2045		/* Current options are available, no need to do anything. */
2046		return (0);
2047	}
2048
2049	/* Try to preserve as many options as possible. */
2050	cap_enabled = ifp->if_capenable;
2051	ifp->if_capenable = ifp->if_hwassist = 0;
2052
2053#if (defined(INET) || defined(INET6))
2054	if ((cap_enabled & IFCAP_LRO) != 0)
2055		for (i = 0; i < np->num_queues; i++)
2056			tcp_lro_free(&np->rxq[i].lro);
2057	if (xn_enable_lro &&
2058	    (ifp->if_capabilities & cap_enabled & IFCAP_LRO) != 0) {
2059	    	ifp->if_capenable |= IFCAP_LRO;
2060		for (i = 0; i < np->num_queues; i++) {
2061			err = tcp_lro_init(&np->rxq[i].lro);
2062			if (err != 0) {
2063				device_printf(np->xbdev,
2064				    "LRO initialization failed\n");
2065				ifp->if_capenable &= ~IFCAP_LRO;
2066				break;
2067			}
2068			np->rxq[i].lro.ifp = ifp;
2069		}
2070	}
2071	if ((ifp->if_capabilities & cap_enabled & IFCAP_TSO4) != 0) {
2072		ifp->if_capenable |= IFCAP_TSO4;
2073		ifp->if_hwassist |= CSUM_TSO;
2074	}
2075#endif
2076	if ((ifp->if_capabilities & cap_enabled & IFCAP_TXCSUM) != 0) {
2077		ifp->if_capenable |= IFCAP_TXCSUM;
2078		ifp->if_hwassist |= XN_CSUM_FEATURES;
2079	}
2080	if ((ifp->if_capabilities & cap_enabled & IFCAP_RXCSUM) != 0)
2081		ifp->if_capenable |= IFCAP_RXCSUM;
2082
2083	return (err);
2084}
2085
2086static int
2087xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m)
2088{
2089	struct netfront_info *np;
2090	struct ifnet *ifp;
2091	struct buf_ring *br;
2092	int error, notify;
2093
2094	np = txq->info;
2095	br = txq->br;
2096	ifp = np->xn_ifp;
2097	error = 0;
2098
2099	XN_TX_LOCK_ASSERT(txq);
2100
2101	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2102	    !netfront_carrier_ok(np)) {
2103		if (m != NULL)
2104			error = drbr_enqueue(ifp, br, m);
2105		return (error);
2106	}
2107
2108	if (m != NULL) {
2109		error = drbr_enqueue(ifp, br, m);
2110		if (error != 0)
2111			return (error);
2112	}
2113
2114	while ((m = drbr_peek(ifp, br)) != NULL) {
2115		if (!xn_tx_slot_available(txq)) {
2116			drbr_putback(ifp, br, m);
2117			break;
2118		}
2119
2120		error = xn_assemble_tx_request(txq, m);
2121		/* xn_assemble_tx_request always consumes the mbuf*/
2122		if (error != 0) {
2123			drbr_advance(ifp, br);
2124			break;
2125		}
2126
2127		RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify);
2128		if (notify)
2129			xen_intr_signal(txq->xen_intr_handle);
2130
2131		drbr_advance(ifp, br);
2132	}
2133
2134	if (RING_FULL(&txq->ring))
2135		txq->full = true;
2136
2137	return (0);
2138}
2139
2140static int
2141xn_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
2142{
2143	struct netfront_info *np;
2144	struct netfront_txq *txq;
2145	int i, npairs, error;
2146
2147	np = ifp->if_softc;
2148	npairs = np->num_queues;
2149
2150	if (!netfront_carrier_ok(np))
2151		return (ENOBUFS);
2152
2153	KASSERT(npairs != 0, ("called with 0 available queues"));
2154
2155	/* check if flowid is set */
2156	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2157		i = m->m_pkthdr.flowid % npairs;
2158	else
2159		i = curcpu % npairs;
2160
2161	txq = &np->txq[i];
2162
2163	if (XN_TX_TRYLOCK(txq) != 0) {
2164		error = xn_txq_mq_start_locked(txq, m);
2165		XN_TX_UNLOCK(txq);
2166	} else {
2167		error = drbr_enqueue(ifp, txq->br, m);
2168		taskqueue_enqueue(txq->tq, &txq->defrtask);
2169	}
2170
2171	return (error);
2172}
2173
2174static void
2175xn_qflush(struct ifnet *ifp)
2176{
2177	struct netfront_info *np;
2178	struct netfront_txq *txq;
2179	struct mbuf *m;
2180	int i;
2181
2182	np = ifp->if_softc;
2183
2184	for (i = 0; i < np->num_queues; i++) {
2185		txq = &np->txq[i];
2186
2187		XN_TX_LOCK(txq);
2188		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
2189			m_freem(m);
2190		XN_TX_UNLOCK(txq);
2191	}
2192
2193	if_qflush(ifp);
2194}
2195
2196/**
2197 * Create a network device.
2198 * @param dev  Newbus device representing this virtual NIC.
2199 */
2200int
2201create_netdev(device_t dev)
2202{
2203	struct netfront_info *np;
2204	int err;
2205	struct ifnet *ifp;
2206
2207	np = device_get_softc(dev);
2208
2209	np->xbdev         = dev;
2210
2211	mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF);
2212
2213	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2214	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2215	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2216
2217	err = xen_net_read_mac(dev, np->mac);
2218	if (err != 0)
2219		goto error;
2220
2221	/* Set up ifnet structure */
2222	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2223    	ifp->if_softc = np;
2224    	if_initname(ifp, "xn",  device_get_unit(dev));
2225    	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2226    	ifp->if_ioctl = xn_ioctl;
2227
2228	ifp->if_transmit = xn_txq_mq_start;
2229	ifp->if_qflush = xn_qflush;
2230
2231    	ifp->if_init = xn_ifinit;
2232
2233    	ifp->if_hwassist = XN_CSUM_FEATURES;
2234	/* Enable all supported features at device creation. */
2235	ifp->if_capenable = ifp->if_capabilities =
2236	    IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO;
2237	ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
2238	ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS;
2239	ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
2240
2241    	ether_ifattach(ifp, np->mac);
2242	netfront_carrier_off(np);
2243
2244	return (0);
2245
2246error:
2247	KASSERT(err != 0, ("Error path with no error code specified"));
2248	return (err);
2249}
2250
2251static int
2252netfront_detach(device_t dev)
2253{
2254	struct netfront_info *info = device_get_softc(dev);
2255
2256	DPRINTK("%s\n", xenbus_get_node(dev));
2257
2258	netif_free(info);
2259
2260	return 0;
2261}
2262
2263static void
2264netif_free(struct netfront_info *np)
2265{
2266
2267	XN_LOCK(np);
2268	xn_stop(np);
2269	XN_UNLOCK(np);
2270	netif_disconnect_backend(np);
2271	ether_ifdetach(np->xn_ifp);
2272	free(np->rxq, M_DEVBUF);
2273	free(np->txq, M_DEVBUF);
2274	if_free(np->xn_ifp);
2275	np->xn_ifp = NULL;
2276	ifmedia_removeall(&np->sc_media);
2277}
2278
2279static void
2280netif_disconnect_backend(struct netfront_info *np)
2281{
2282	u_int i;
2283
2284	for (i = 0; i < np->num_queues; i++) {
2285		XN_RX_LOCK(&np->rxq[i]);
2286		XN_TX_LOCK(&np->txq[i]);
2287	}
2288	netfront_carrier_off(np);
2289	for (i = 0; i < np->num_queues; i++) {
2290		XN_RX_UNLOCK(&np->rxq[i]);
2291		XN_TX_UNLOCK(&np->txq[i]);
2292	}
2293
2294	for (i = 0; i < np->num_queues; i++) {
2295		disconnect_rxq(&np->rxq[i]);
2296		disconnect_txq(&np->txq[i]);
2297	}
2298}
2299
2300static int
2301xn_ifmedia_upd(struct ifnet *ifp)
2302{
2303
2304	return (0);
2305}
2306
2307static void
2308xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2309{
2310
2311	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2312	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2313}
2314
2315/* ** Driver registration ** */
2316static device_method_t netfront_methods[] = {
2317	/* Device interface */
2318	DEVMETHOD(device_probe,         netfront_probe),
2319	DEVMETHOD(device_attach,        netfront_attach),
2320	DEVMETHOD(device_detach,        netfront_detach),
2321	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2322	DEVMETHOD(device_suspend,       netfront_suspend),
2323	DEVMETHOD(device_resume,        netfront_resume),
2324
2325	/* Xenbus interface */
2326	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2327
2328	DEVMETHOD_END
2329};
2330
2331static driver_t netfront_driver = {
2332	"xn",
2333	netfront_methods,
2334	sizeof(struct netfront_info),
2335};
2336devclass_t netfront_devclass;
2337
2338DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL,
2339    NULL);
2340