blkback.c revision 287132
1/*-
2 * Copyright (c) 2009-2012 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Ken Merry           (Spectra Logic Corporation)
32 */
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/xen/blkback/blkback.c 287132 2015-08-25 15:34:28Z araujo $");
35
36/**
37 * \file blkback.c
38 *
39 * \brief Device driver supporting the vending of block storage from
40 *        a FreeBSD domain to other domains.
41 */
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47
48#include <sys/bio.h>
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/devicestat.h>
52#include <sys/disk.h>
53#include <sys/fcntl.h>
54#include <sys/filedesc.h>
55#include <sys/kdb.h>
56#include <sys/module.h>
57#include <sys/namei.h>
58#include <sys/proc.h>
59#include <sys/rman.h>
60#include <sys/taskqueue.h>
61#include <sys/types.h>
62#include <sys/vnode.h>
63#include <sys/mount.h>
64#include <sys/sysctl.h>
65#include <sys/bitstring.h>
66#include <sys/sdt.h>
67
68#include <geom/geom.h>
69
70#include <machine/_inttypes.h>
71
72#include <vm/vm.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_kern.h>
75
76#include <xen/xen-os.h>
77#include <xen/blkif.h>
78#include <xen/gnttab.h>
79#include <xen/xen_intr.h>
80
81#include <xen/interface/event_channel.h>
82#include <xen/interface/grant_table.h>
83
84#include <xen/xenbus/xenbusvar.h>
85
86/*--------------------------- Compile-time Tunables --------------------------*/
87/**
88 * The maximum number of shared memory ring pages we will allow in a
89 * negotiated block-front/back communication channel.  Allow enough
90 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
91 */
92#define	XBB_MAX_RING_PAGES		32
93
94/**
95 * The maximum number of outstanding request blocks (request headers plus
96 * additional segment blocks) we will allow in a negotiated block-front/back
97 * communication channel.
98 */
99#define	XBB_MAX_REQUESTS 					\
100	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
101
102/**
103 * \brief Define to force all I/O to be performed on memory owned by the
104 *        backend device, with a copy-in/out to the remote domain's memory.
105 *
106 * \note  This option is currently required when this driver's domain is
107 *        operating in HVM mode on a system using an IOMMU.
108 *
109 * This driver uses Xen's grant table API to gain access to the memory of
110 * the remote domains it serves.  When our domain is operating in PV mode,
111 * the grant table mechanism directly updates our domain's page table entries
112 * to point to the physical pages of the remote domain.  This scheme guarantees
113 * that blkback and the backing devices it uses can safely perform DMA
114 * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
115 * insure that our domain cannot DMA to pages owned by another domain.  As
116 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
117 * table API.  For this reason, in HVM mode, we must bounce all requests into
118 * memory that is mapped into our domain at domain startup and thus has
119 * valid IOMMU mappings.
120 */
121#define XBB_USE_BOUNCE_BUFFERS
122
123/**
124 * \brief Define to enable rudimentary request logging to the console.
125 */
126#undef XBB_DEBUG
127
128/*---------------------------------- Macros ----------------------------------*/
129/**
130 * Custom malloc type for all driver allocations.
131 */
132static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
133
134#ifdef XBB_DEBUG
135#define DPRINTF(fmt, args...)					\
136    printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
137#else
138#define DPRINTF(fmt, args...) do {} while(0)
139#endif
140
141/**
142 * The maximum mapped region size per request we will allow in a negotiated
143 * block-front/back communication channel.
144 */
145#define	XBB_MAX_REQUEST_SIZE					\
146	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
147
148/**
149 * The maximum number of segments (within a request header and accompanying
150 * segment blocks) per request we will allow in a negotiated block-front/back
151 * communication channel.
152 */
153#define	XBB_MAX_SEGMENTS_PER_REQUEST				\
154	(MIN(UIO_MAXIOV,					\
155	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
156		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
157
158/**
159 * The maximum number of ring pages that we can allow per request list.
160 * We limit this to the maximum number of segments per request, because
161 * that is already a reasonable number of segments to aggregate.  This
162 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
163 * because that would leave situations where we can't dispatch even one
164 * large request.
165 */
166#define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
167
168/*--------------------------- Forward Declarations ---------------------------*/
169struct xbb_softc;
170struct xbb_xen_req;
171
172static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
173			      ...) __attribute__((format(printf, 3, 4)));
174static int  xbb_shutdown(struct xbb_softc *xbb);
175static int  xbb_detach(device_t dev);
176
177/*------------------------------ Data Structures -----------------------------*/
178
179STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
180
181typedef enum {
182	XBB_REQLIST_NONE	= 0x00,
183	XBB_REQLIST_MAPPED	= 0x01
184} xbb_reqlist_flags;
185
186struct xbb_xen_reqlist {
187	/**
188	 * Back reference to the parent block back instance for this
189	 * request.  Used during bio_done handling.
190	 */
191	struct xbb_softc        *xbb;
192
193	/**
194	 * BLKIF_OP code for this request.
195	 */
196	int			 operation;
197
198	/**
199	 * Set to BLKIF_RSP_* to indicate request status.
200	 *
201	 * This field allows an error status to be recorded even if the
202	 * delivery of this status must be deferred.  Deferred reporting
203	 * is necessary, for example, when an error is detected during
204	 * completion processing of one bio when other bios for this
205	 * request are still outstanding.
206	 */
207	int			 status;
208
209	/**
210	 * Number of 512 byte sectors not transferred.
211	 */
212	int			 residual_512b_sectors;
213
214	/**
215	 * Starting sector number of the first request in the list.
216	 */
217	off_t			 starting_sector_number;
218
219	/**
220	 * If we're going to coalesce, the next contiguous sector would be
221	 * this one.
222	 */
223	off_t			 next_contig_sector;
224
225	/**
226	 * Number of child requests in the list.
227	 */
228	int			 num_children;
229
230	/**
231	 * Number of I/O requests still pending on the backend.
232	 */
233	int			 pendcnt;
234
235	/**
236	 * Total number of segments for requests in the list.
237	 */
238	int			 nr_segments;
239
240	/**
241	 * Flags for this particular request list.
242	 */
243	xbb_reqlist_flags	 flags;
244
245	/**
246	 * Kernel virtual address space reserved for this request
247	 * list structure and used to map the remote domain's pages for
248	 * this I/O, into our domain's address space.
249	 */
250	uint8_t			*kva;
251
252	/**
253	 * Base, psuedo-physical address, corresponding to the start
254	 * of this request's kva region.
255	 */
256	uint64_t	 	 gnt_base;
257
258
259#ifdef XBB_USE_BOUNCE_BUFFERS
260	/**
261	 * Pre-allocated domain local memory used to proxy remote
262	 * domain memory during I/O operations.
263	 */
264	uint8_t			*bounce;
265#endif
266
267	/**
268	 * Array of grant handles (one per page) used to map this request.
269	 */
270	grant_handle_t		*gnt_handles;
271
272	/**
273	 * Device statistics request ordering type (ordered or simple).
274	 */
275	devstat_tag_type	 ds_tag_type;
276
277	/**
278	 * Device statistics request type (read, write, no_data).
279	 */
280	devstat_trans_flags	 ds_trans_type;
281
282	/**
283	 * The start time for this request.
284	 */
285	struct bintime		 ds_t0;
286
287	/**
288	 * Linked list of contiguous requests with the same operation type.
289	 */
290	struct xbb_xen_req_list	 contig_req_list;
291
292	/**
293	 * Linked list links used to aggregate idle requests in the
294	 * request list free pool (xbb->reqlist_free_stailq) and pending
295	 * requests waiting for execution (xbb->reqlist_pending_stailq).
296	 */
297	STAILQ_ENTRY(xbb_xen_reqlist) links;
298};
299
300STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
301
302/**
303 * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
304 */
305struct xbb_xen_req {
306	/**
307	 * Linked list links used to aggregate requests into a reqlist
308	 * and to store them in the request free pool.
309	 */
310	STAILQ_ENTRY(xbb_xen_req) links;
311
312	/**
313	 * The remote domain's identifier for this I/O request.
314	 */
315	uint64_t		  id;
316
317	/**
318	 * The number of pages currently mapped for this request.
319	 */
320	int			  nr_pages;
321
322	/**
323	 * The number of 512 byte sectors comprising this requests.
324	 */
325	int			  nr_512b_sectors;
326
327	/**
328	 * BLKIF_OP code for this request.
329	 */
330	int			  operation;
331
332	/**
333	 * Storage used for non-native ring requests.
334	 */
335	blkif_request_t		 ring_req_storage;
336
337	/**
338	 * Pointer to the Xen request in the ring.
339	 */
340	blkif_request_t		*ring_req;
341
342	/**
343	 * Consumer index for this request.
344	 */
345	RING_IDX		 req_ring_idx;
346
347	/**
348	 * The start time for this request.
349	 */
350	struct bintime		 ds_t0;
351
352	/**
353	 * Pointer back to our parent request list.
354	 */
355	struct xbb_xen_reqlist  *reqlist;
356};
357SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
358
359/**
360 * \brief Configuration data for the shared memory request ring
361 *        used to communicate with the front-end client of this
362 *        this driver.
363 */
364struct xbb_ring_config {
365	/** KVA address where ring memory is mapped. */
366	vm_offset_t	va;
367
368	/** The pseudo-physical address where ring memory is mapped.*/
369	uint64_t	gnt_addr;
370
371	/**
372	 * Grant table handles, one per-ring page, returned by the
373	 * hyperpervisor upon mapping of the ring and required to
374	 * unmap it when a connection is torn down.
375	 */
376	grant_handle_t	handle[XBB_MAX_RING_PAGES];
377
378	/**
379	 * The device bus address returned by the hypervisor when
380	 * mapping the ring and required to unmap it when a connection
381	 * is torn down.
382	 */
383	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
384
385	/** The number of ring pages mapped for the current connection. */
386	u_int		ring_pages;
387
388	/**
389	 * The grant references, one per-ring page, supplied by the
390	 * front-end, allowing us to reference the ring pages in the
391	 * front-end's domain and to map these pages into our own domain.
392	 */
393	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
394
395	/** The interrupt driven even channel used to signal ring events. */
396	evtchn_port_t   evtchn;
397};
398
399/**
400 * Per-instance connection state flags.
401 */
402typedef enum
403{
404	/**
405	 * The front-end requested a read-only mount of the
406	 * back-end device/file.
407	 */
408	XBBF_READ_ONLY         = 0x01,
409
410	/** Communication with the front-end has been established. */
411	XBBF_RING_CONNECTED    = 0x02,
412
413	/**
414	 * Front-end requests exist in the ring and are waiting for
415	 * xbb_xen_req objects to free up.
416	 */
417	XBBF_RESOURCE_SHORTAGE = 0x04,
418
419	/** Connection teardown in progress. */
420	XBBF_SHUTDOWN          = 0x08,
421
422	/** A thread is already performing shutdown processing. */
423	XBBF_IN_SHUTDOWN       = 0x10
424} xbb_flag_t;
425
426/** Backend device type.  */
427typedef enum {
428	/** Backend type unknown. */
429	XBB_TYPE_NONE		= 0x00,
430
431	/**
432	 * Backend type disk (access via cdev switch
433	 * strategy routine).
434	 */
435	XBB_TYPE_DISK		= 0x01,
436
437	/** Backend type file (access vnode operations.). */
438	XBB_TYPE_FILE		= 0x02
439} xbb_type;
440
441/**
442 * \brief Structure used to memoize information about a per-request
443 *        scatter-gather list.
444 *
445 * The chief benefit of using this data structure is it avoids having
446 * to reparse the possibly discontiguous S/G list in the original
447 * request.  Due to the way that the mapping of the memory backing an
448 * I/O transaction is handled by Xen, a second pass is unavoidable.
449 * At least this way the second walk is a simple array traversal.
450 *
451 * \note A single Scatter/Gather element in the block interface covers
452 *       at most 1 machine page.  In this context a sector (blkif
453 *       nomenclature, not what I'd choose) is a 512b aligned unit
454 *       of mapping within the machine page referenced by an S/G
455 *       element.
456 */
457struct xbb_sg {
458	/** The number of 512b data chunks mapped in this S/G element. */
459	int16_t nsect;
460
461	/**
462	 * The index (0 based) of the first 512b data chunk mapped
463	 * in this S/G element.
464	 */
465	uint8_t first_sect;
466
467	/**
468	 * The index (0 based) of the last 512b data chunk mapped
469	 * in this S/G element.
470	 */
471	uint8_t last_sect;
472};
473
474/**
475 * Character device backend specific configuration data.
476 */
477struct xbb_dev_data {
478	/** Cdev used for device backend access.  */
479	struct cdev   *cdev;
480
481	/** Cdev switch used for device backend access.  */
482	struct cdevsw *csw;
483
484	/** Used to hold a reference on opened cdev backend devices. */
485	int	       dev_ref;
486};
487
488/**
489 * File backend specific configuration data.
490 */
491struct xbb_file_data {
492	/** Credentials to use for vnode backed (file based) I/O. */
493	struct ucred   *cred;
494
495	/**
496	 * \brief Array of io vectors used to process file based I/O.
497	 *
498	 * Only a single file based request is outstanding per-xbb instance,
499	 * so we only need one of these.
500	 */
501	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
502#ifdef XBB_USE_BOUNCE_BUFFERS
503
504	/**
505	 * \brief Array of io vectors used to handle bouncing of file reads.
506	 *
507	 * Vnode operations are free to modify uio data during their
508	 * exectuion.  In the case of a read with bounce buffering active,
509	 * we need some of the data from the original uio in order to
510	 * bounce-out the read data.  This array serves as the temporary
511	 * storage for this saved data.
512	 */
513	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
514
515	/**
516	 * \brief Array of memoized bounce buffer kva offsets used
517	 *        in the file based backend.
518	 *
519	 * Due to the way that the mapping of the memory backing an
520	 * I/O transaction is handled by Xen, a second pass through
521	 * the request sg elements is unavoidable. We memoize the computed
522	 * bounce address here to reduce the cost of the second walk.
523	 */
524	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
525#endif /* XBB_USE_BOUNCE_BUFFERS */
526};
527
528/**
529 * Collection of backend type specific data.
530 */
531union xbb_backend_data {
532	struct xbb_dev_data  dev;
533	struct xbb_file_data file;
534};
535
536/**
537 * Function signature of backend specific I/O handlers.
538 */
539typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
540			      struct xbb_xen_reqlist *reqlist, int operation,
541			      int flags);
542
543/**
544 * Per-instance configuration data.
545 */
546struct xbb_softc {
547
548	/**
549	 * Task-queue used to process I/O requests.
550	 */
551	struct taskqueue	 *io_taskqueue;
552
553	/**
554	 * Single "run the request queue" task enqueued
555	 * on io_taskqueue.
556	 */
557	struct task		  io_task;
558
559	/** Device type for this instance. */
560	xbb_type		  device_type;
561
562	/** NewBus device corresponding to this instance. */
563	device_t		  dev;
564
565	/** Backend specific dispatch routine for this instance. */
566	xbb_dispatch_t		  dispatch_io;
567
568	/** The number of requests outstanding on the backend device/file. */
569	int			  active_request_count;
570
571	/** Free pool of request tracking structures. */
572	struct xbb_xen_req_list   request_free_stailq;
573
574	/** Array, sized at connection time, of request tracking structures. */
575	struct xbb_xen_req	 *requests;
576
577	/** Free pool of request list structures. */
578	struct xbb_xen_reqlist_list reqlist_free_stailq;
579
580	/** List of pending request lists awaiting execution. */
581	struct xbb_xen_reqlist_list reqlist_pending_stailq;
582
583	/** Array, sized at connection time, of request list structures. */
584	struct xbb_xen_reqlist	 *request_lists;
585
586	/**
587	 * Global pool of kva used for mapping remote domain ring
588	 * and I/O transaction data.
589	 */
590	vm_offset_t		  kva;
591
592	/** Psuedo-physical address corresponding to kva. */
593	uint64_t		  gnt_base_addr;
594
595	/** The size of the global kva pool. */
596	int			  kva_size;
597
598	/** The size of the KVA area used for request lists. */
599	int			  reqlist_kva_size;
600
601	/** The number of pages of KVA used for request lists */
602	int			  reqlist_kva_pages;
603
604	/** Bitmap of free KVA pages */
605	bitstr_t		 *kva_free;
606
607	/**
608	 * \brief Cached value of the front-end's domain id.
609	 *
610	 * This value is used at once for each mapped page in
611	 * a transaction.  We cache it to avoid incuring the
612	 * cost of an ivar access every time this is needed.
613	 */
614	domid_t			  otherend_id;
615
616	/**
617	 * \brief The blkif protocol abi in effect.
618	 *
619	 * There are situations where the back and front ends can
620	 * have a different, native abi (e.g. intel x86_64 and
621	 * 32bit x86 domains on the same machine).  The back-end
622	 * always accomodates the front-end's native abi.  That
623	 * value is pulled from the XenStore and recorded here.
624	 */
625	int			  abi;
626
627	/**
628	 * \brief The maximum number of requests and request lists allowed
629	 *        to be in flight at a time.
630	 *
631	 * This value is negotiated via the XenStore.
632	 */
633	u_int			  max_requests;
634
635	/**
636	 * \brief The maximum number of segments (1 page per segment)
637	 *	  that can be mapped by a request.
638	 *
639	 * This value is negotiated via the XenStore.
640	 */
641	u_int			  max_request_segments;
642
643	/**
644	 * \brief Maximum number of segments per request list.
645	 *
646	 * This value is derived from and will generally be larger than
647	 * max_request_segments.
648	 */
649	u_int			  max_reqlist_segments;
650
651	/**
652	 * The maximum size of any request to this back-end
653	 * device.
654	 *
655	 * This value is negotiated via the XenStore.
656	 */
657	u_int			  max_request_size;
658
659	/**
660	 * The maximum size of any request list.  This is derived directly
661	 * from max_reqlist_segments.
662	 */
663	u_int			  max_reqlist_size;
664
665	/** Various configuration and state bit flags. */
666	xbb_flag_t		  flags;
667
668	/** Ring mapping and interrupt configuration data. */
669	struct xbb_ring_config	  ring_config;
670
671	/** Runtime, cross-abi safe, structures for ring access. */
672	blkif_back_rings_t	  rings;
673
674	/** IRQ mapping for the communication ring event channel. */
675	xen_intr_handle_t	  xen_intr_handle;
676
677	/**
678	 * \brief Backend access mode flags (e.g. write, or read-only).
679	 *
680	 * This value is passed to us by the front-end via the XenStore.
681	 */
682	char			 *dev_mode;
683
684	/**
685	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
686	 *
687	 * This value is passed to us by the front-end via the XenStore.
688	 * Currently unused.
689	 */
690	char			 *dev_type;
691
692	/**
693	 * \brief Backend device/file identifier.
694	 *
695	 * This value is passed to us by the front-end via the XenStore.
696	 * We expect this to be a POSIX path indicating the file or
697	 * device to open.
698	 */
699	char			 *dev_name;
700
701	/**
702	 * Vnode corresponding to the backend device node or file
703	 * we are acessing.
704	 */
705	struct vnode		 *vn;
706
707	union xbb_backend_data	  backend;
708
709	/** The native sector size of the backend. */
710	u_int			  sector_size;
711
712	/** log2 of sector_size.  */
713	u_int			  sector_size_shift;
714
715	/** Size in bytes of the backend device or file.  */
716	off_t			  media_size;
717
718	/**
719	 * \brief media_size expressed in terms of the backend native
720	 *	  sector size.
721	 *
722	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
723	 */
724	uint64_t		  media_num_sectors;
725
726	/**
727	 * \brief Array of memoized scatter gather data computed during the
728	 *	  conversion of blkif ring requests to internal xbb_xen_req
729	 *	  structures.
730	 *
731	 * Ring processing is serialized so we only need one of these.
732	 */
733	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
734
735	/**
736	 * Temporary grant table map used in xbb_dispatch_io().  When
737	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
738	 * stack could cause a stack overflow.
739	 */
740	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
741
742	/** Mutex protecting per-instance data. */
743	struct mtx		  lock;
744
745	/**
746	 * Resource representing allocated physical address space
747	 * associated with our per-instance kva region.
748	 */
749	struct resource		 *pseudo_phys_res;
750
751	/** Resource id for allocated physical address space. */
752	int			  pseudo_phys_res_id;
753
754	/**
755	 * I/O statistics from BlockBack dispatch down.  These are
756	 * coalesced requests, and we start them right before execution.
757	 */
758	struct devstat		 *xbb_stats;
759
760	/**
761	 * I/O statistics coming into BlockBack.  These are the requests as
762	 * we get them from BlockFront.  They are started as soon as we
763	 * receive a request, and completed when the I/O is complete.
764	 */
765	struct devstat		 *xbb_stats_in;
766
767	/** Disable sending flush to the backend */
768	int			  disable_flush;
769
770	/** Send a real flush for every N flush requests */
771	int			  flush_interval;
772
773	/** Count of flush requests in the interval */
774	int			  flush_count;
775
776	/** Don't coalesce requests if this is set */
777	int			  no_coalesce_reqs;
778
779	/** Number of requests we have received */
780	uint64_t		  reqs_received;
781
782	/** Number of requests we have completed*/
783	uint64_t		  reqs_completed;
784
785	/** Number of requests we queued but not pushed*/
786	uint64_t		  reqs_queued_for_completion;
787
788	/** Number of requests we completed with an error status*/
789	uint64_t		  reqs_completed_with_error;
790
791	/** How many forced dispatches (i.e. without coalescing) have happend */
792	uint64_t		  forced_dispatch;
793
794	/** How many normal dispatches have happend */
795	uint64_t		  normal_dispatch;
796
797	/** How many total dispatches have happend */
798	uint64_t		  total_dispatch;
799
800	/** How many times we have run out of KVA */
801	uint64_t		  kva_shortages;
802
803	/** How many times we have run out of request structures */
804	uint64_t		  request_shortages;
805};
806
807/*---------------------------- Request Processing ----------------------------*/
808/**
809 * Allocate an internal transaction tracking structure from the free pool.
810 *
811 * \param xbb  Per-instance xbb configuration structure.
812 *
813 * \return  On success, a pointer to the allocated xbb_xen_req structure.
814 *          Otherwise NULL.
815 */
816static inline struct xbb_xen_req *
817xbb_get_req(struct xbb_softc *xbb)
818{
819	struct xbb_xen_req *req;
820
821	req = NULL;
822
823	mtx_assert(&xbb->lock, MA_OWNED);
824
825	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
826		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
827		xbb->active_request_count++;
828	}
829
830	return (req);
831}
832
833/**
834 * Return an allocated transaction tracking structure to the free pool.
835 *
836 * \param xbb  Per-instance xbb configuration structure.
837 * \param req  The request structure to free.
838 */
839static inline void
840xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
841{
842	mtx_assert(&xbb->lock, MA_OWNED);
843
844	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
845	xbb->active_request_count--;
846
847	KASSERT(xbb->active_request_count >= 0,
848		("xbb_release_req: negative active count"));
849}
850
851/**
852 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
853 *
854 * \param xbb	    Per-instance xbb configuration structure.
855 * \param req_list  The list of requests to free.
856 * \param nreqs	    The number of items in the list.
857 */
858static inline void
859xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
860		 int nreqs)
861{
862	mtx_assert(&xbb->lock, MA_OWNED);
863
864	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
865	xbb->active_request_count -= nreqs;
866
867	KASSERT(xbb->active_request_count >= 0,
868		("xbb_release_reqs: negative active count"));
869}
870
871/**
872 * Given a page index and 512b sector offset within that page,
873 * calculate an offset into a request's kva region.
874 *
875 * \param reqlist The request structure whose kva region will be accessed.
876 * \param pagenr  The page index used to compute the kva offset.
877 * \param sector  The 512b sector index used to compute the page relative
878 *                kva offset.
879 *
880 * \return  The computed global KVA offset.
881 */
882static inline uint8_t *
883xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
884{
885	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
886}
887
888#ifdef XBB_USE_BOUNCE_BUFFERS
889/**
890 * Given a page index and 512b sector offset within that page,
891 * calculate an offset into a request's local bounce memory region.
892 *
893 * \param reqlist The request structure whose bounce region will be accessed.
894 * \param pagenr  The page index used to compute the bounce offset.
895 * \param sector  The 512b sector index used to compute the page relative
896 *                bounce offset.
897 *
898 * \return  The computed global bounce buffer address.
899 */
900static inline uint8_t *
901xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
902{
903	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
904}
905#endif
906
907/**
908 * Given a page number and 512b sector offset within that page,
909 * calculate an offset into the request's memory region that the
910 * underlying backend device/file should use for I/O.
911 *
912 * \param reqlist The request structure whose I/O region will be accessed.
913 * \param pagenr  The page index used to compute the I/O offset.
914 * \param sector  The 512b sector index used to compute the page relative
915 *                I/O offset.
916 *
917 * \return  The computed global I/O address.
918 *
919 * Depending on configuration, this will either be a local bounce buffer
920 * or a pointer to the memory mapped in from the front-end domain for
921 * this request.
922 */
923static inline uint8_t *
924xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
925{
926#ifdef XBB_USE_BOUNCE_BUFFERS
927	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
928#else
929	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
930#endif
931}
932
933/**
934 * Given a page index and 512b sector offset within that page, calculate
935 * an offset into the local psuedo-physical address space used to map a
936 * front-end's request data into a request.
937 *
938 * \param reqlist The request list structure whose pseudo-physical region
939 *                will be accessed.
940 * \param pagenr  The page index used to compute the pseudo-physical offset.
941 * \param sector  The 512b sector index used to compute the page relative
942 *                pseudo-physical offset.
943 *
944 * \return  The computed global pseudo-phsyical address.
945 *
946 * Depending on configuration, this will either be a local bounce buffer
947 * or a pointer to the memory mapped in from the front-end domain for
948 * this request.
949 */
950static inline uintptr_t
951xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
952{
953	struct xbb_softc *xbb;
954
955	xbb = reqlist->xbb;
956
957	return ((uintptr_t)(xbb->gnt_base_addr +
958		(uintptr_t)(reqlist->kva - xbb->kva) +
959		(PAGE_SIZE * pagenr) + (sector << 9)));
960}
961
962/**
963 * Get Kernel Virtual Address space for mapping requests.
964 *
965 * \param xbb         Per-instance xbb configuration structure.
966 * \param nr_pages    Number of pages needed.
967 * \param check_only  If set, check for free KVA but don't allocate it.
968 * \param have_lock   If set, xbb lock is already held.
969 *
970 * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
971 *
972 * Note:  This should be unnecessary once we have either chaining or
973 * scatter/gather support for struct bio.  At that point we'll be able to
974 * put multiple addresses and lengths in one bio/bio chain and won't need
975 * to map everything into one virtual segment.
976 */
977static uint8_t *
978xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
979{
980	intptr_t first_clear;
981	intptr_t num_clear;
982	uint8_t *free_kva;
983	int      i;
984
985	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
986
987	first_clear = 0;
988	free_kva = NULL;
989
990	mtx_lock(&xbb->lock);
991
992	/*
993	 * Look for the first available page.  If there are none, we're done.
994	 */
995	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
996
997	if (first_clear == -1)
998		goto bailout;
999
1000	/*
1001	 * Starting at the first available page, look for consecutive free
1002	 * pages that will satisfy the user's request.
1003	 */
1004	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1005		/*
1006		 * If this is true, the page is used, so we have to reset
1007		 * the number of clear pages and the first clear page
1008		 * (since it pointed to a region with an insufficient number
1009		 * of clear pages).
1010		 */
1011		if (bit_test(xbb->kva_free, i)) {
1012			num_clear = 0;
1013			first_clear = -1;
1014			continue;
1015		}
1016
1017		if (first_clear == -1)
1018			first_clear = i;
1019
1020		/*
1021		 * If this is true, we've found a large enough free region
1022		 * to satisfy the request.
1023		 */
1024		if (++num_clear == nr_pages) {
1025
1026			bit_nset(xbb->kva_free, first_clear,
1027				 first_clear + nr_pages - 1);
1028
1029			free_kva = xbb->kva +
1030				(uint8_t *)(first_clear * PAGE_SIZE);
1031
1032			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1033				free_kva + (nr_pages * PAGE_SIZE) <=
1034				(uint8_t *)xbb->ring_config.va,
1035				("Free KVA %p len %d out of range, "
1036				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1037				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1038				 (uintmax_t)xbb->ring_config.va));
1039			break;
1040		}
1041	}
1042
1043bailout:
1044
1045	if (free_kva == NULL) {
1046		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1047		xbb->kva_shortages++;
1048	}
1049
1050	mtx_unlock(&xbb->lock);
1051
1052	return (free_kva);
1053}
1054
1055/**
1056 * Free allocated KVA.
1057 *
1058 * \param xbb	    Per-instance xbb configuration structure.
1059 * \param kva_ptr   Pointer to allocated KVA region.
1060 * \param nr_pages  Number of pages in the KVA region.
1061 */
1062static void
1063xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1064{
1065	intptr_t start_page;
1066
1067	mtx_assert(&xbb->lock, MA_OWNED);
1068
1069	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1070	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1071
1072}
1073
1074/**
1075 * Unmap the front-end pages associated with this I/O request.
1076 *
1077 * \param req  The request structure to unmap.
1078 */
1079static void
1080xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1081{
1082	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1083	u_int			      i;
1084	u_int			      invcount;
1085	int			      error;
1086
1087	invcount = 0;
1088	for (i = 0; i < reqlist->nr_segments; i++) {
1089
1090		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1091			continue;
1092
1093		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1094		unmap[invcount].dev_bus_addr = 0;
1095		unmap[invcount].handle       = reqlist->gnt_handles[i];
1096		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1097		invcount++;
1098	}
1099
1100	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1101					  unmap, invcount);
1102	KASSERT(error == 0, ("Grant table operation failed"));
1103}
1104
1105/**
1106 * Allocate an internal transaction tracking structure from the free pool.
1107 *
1108 * \param xbb  Per-instance xbb configuration structure.
1109 *
1110 * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1111 *          Otherwise NULL.
1112 */
1113static inline struct xbb_xen_reqlist *
1114xbb_get_reqlist(struct xbb_softc *xbb)
1115{
1116	struct xbb_xen_reqlist *reqlist;
1117
1118	reqlist = NULL;
1119
1120	mtx_assert(&xbb->lock, MA_OWNED);
1121
1122	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1123
1124		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1125		reqlist->flags = XBB_REQLIST_NONE;
1126		reqlist->kva = NULL;
1127		reqlist->status = BLKIF_RSP_OKAY;
1128		reqlist->residual_512b_sectors = 0;
1129		reqlist->num_children = 0;
1130		reqlist->nr_segments = 0;
1131		STAILQ_INIT(&reqlist->contig_req_list);
1132	}
1133
1134	return (reqlist);
1135}
1136
1137/**
1138 * Return an allocated transaction tracking structure to the free pool.
1139 *
1140 * \param xbb        Per-instance xbb configuration structure.
1141 * \param req        The request list structure to free.
1142 * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1143 *                   during a resource shortage condition.
1144 */
1145static inline void
1146xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1147		    int wakeup)
1148{
1149
1150	mtx_assert(&xbb->lock, MA_OWNED);
1151
1152	if (wakeup) {
1153		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1154		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1155	}
1156
1157	if (reqlist->kva != NULL)
1158		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1159
1160	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1161
1162	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1163
1164	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1165		/*
1166		 * Shutdown is in progress.  See if we can
1167		 * progress further now that one more request
1168		 * has completed and been returned to the
1169		 * free pool.
1170		 */
1171		xbb_shutdown(xbb);
1172	}
1173
1174	if (wakeup != 0)
1175		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1176}
1177
1178/**
1179 * Request resources and do basic request setup.
1180 *
1181 * \param xbb          Per-instance xbb configuration structure.
1182 * \param reqlist      Pointer to reqlist pointer.
1183 * \param ring_req     Pointer to a block ring request.
1184 * \param ring_index   The ring index of this request.
1185 *
1186 * \return  0 for success, non-zero for failure.
1187 */
1188static int
1189xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1190		  blkif_request_t *ring_req, RING_IDX ring_idx)
1191{
1192	struct xbb_xen_reqlist *nreqlist;
1193	struct xbb_xen_req     *nreq;
1194
1195	nreqlist = NULL;
1196	nreq     = NULL;
1197
1198	mtx_lock(&xbb->lock);
1199
1200	/*
1201	 * We don't allow new resources to be allocated if we're in the
1202	 * process of shutting down.
1203	 */
1204	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1205		mtx_unlock(&xbb->lock);
1206		return (1);
1207	}
1208
1209	/*
1210	 * Allocate a reqlist if the caller doesn't have one already.
1211	 */
1212	if (*reqlist == NULL) {
1213		nreqlist = xbb_get_reqlist(xbb);
1214		if (nreqlist == NULL)
1215			goto bailout_error;
1216	}
1217
1218	/* We always allocate a request. */
1219	nreq = xbb_get_req(xbb);
1220	if (nreq == NULL)
1221		goto bailout_error;
1222
1223	mtx_unlock(&xbb->lock);
1224
1225	if (*reqlist == NULL) {
1226		*reqlist = nreqlist;
1227		nreqlist->operation = ring_req->operation;
1228		nreqlist->starting_sector_number = ring_req->sector_number;
1229		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1230				   links);
1231	}
1232
1233	nreq->reqlist = *reqlist;
1234	nreq->req_ring_idx = ring_idx;
1235	nreq->id = ring_req->id;
1236	nreq->operation = ring_req->operation;
1237
1238	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1239		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1240		nreq->ring_req = &nreq->ring_req_storage;
1241	} else {
1242		nreq->ring_req = ring_req;
1243	}
1244
1245	binuptime(&nreq->ds_t0);
1246	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1247	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1248	(*reqlist)->num_children++;
1249	(*reqlist)->nr_segments += ring_req->nr_segments;
1250
1251	return (0);
1252
1253bailout_error:
1254
1255	/*
1256	 * We're out of resources, so set the shortage flag.  The next time
1257	 * a request is released, we'll try waking up the work thread to
1258	 * see if we can allocate more resources.
1259	 */
1260	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1261	xbb->request_shortages++;
1262
1263	if (nreq != NULL)
1264		xbb_release_req(xbb, nreq);
1265
1266	if (nreqlist != NULL)
1267		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1268
1269	mtx_unlock(&xbb->lock);
1270
1271	return (1);
1272}
1273
1274/**
1275 * Create and queue a response to a blkif request.
1276 *
1277 * \param xbb     Per-instance xbb configuration structure.
1278 * \param req     The request structure to which to respond.
1279 * \param status  The status code to report.  See BLKIF_RSP_*
1280 *                in sys/xen/interface/io/blkif.h.
1281 */
1282static void
1283xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1284{
1285	blkif_response_t *resp;
1286
1287	/*
1288	 * The mutex is required here, and should be held across this call
1289	 * until after the subsequent call to xbb_push_responses().  This
1290	 * is to guarantee that another context won't queue responses and
1291	 * push them while we're active.
1292	 *
1293	 * That could lead to the other end being notified of responses
1294	 * before the resources have been freed on this end.  The other end
1295	 * would then be able to queue additional I/O, and we may run out
1296 	 * of resources because we haven't freed them all yet.
1297	 */
1298	mtx_assert(&xbb->lock, MA_OWNED);
1299
1300	/*
1301	 * Place on the response ring for the relevant domain.
1302	 * For now, only the spacing between entries is different
1303	 * in the different ABIs, not the response entry layout.
1304	 */
1305	switch (xbb->abi) {
1306	case BLKIF_PROTOCOL_NATIVE:
1307		resp = RING_GET_RESPONSE(&xbb->rings.native,
1308					 xbb->rings.native.rsp_prod_pvt);
1309		break;
1310	case BLKIF_PROTOCOL_X86_32:
1311		resp = (blkif_response_t *)
1312		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1313				      xbb->rings.x86_32.rsp_prod_pvt);
1314		break;
1315	case BLKIF_PROTOCOL_X86_64:
1316		resp = (blkif_response_t *)
1317		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1318				      xbb->rings.x86_64.rsp_prod_pvt);
1319		break;
1320	default:
1321		panic("Unexpected blkif protocol ABI.");
1322	}
1323
1324	resp->id        = req->id;
1325	resp->operation = req->operation;
1326	resp->status    = status;
1327
1328	if (status != BLKIF_RSP_OKAY)
1329		xbb->reqs_completed_with_error++;
1330
1331	xbb->rings.common.rsp_prod_pvt++;
1332
1333	xbb->reqs_queued_for_completion++;
1334
1335}
1336
1337/**
1338 * Send queued responses to blkif requests.
1339 *
1340 * \param xbb            Per-instance xbb configuration structure.
1341 * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1342 *			 should be run, 0 if it does not need to be run.
1343 * \param notify	 Flag that is set to 1 if the other end should be
1344 * 			 notified via irq, 0 if the other end should not be
1345 *			 notified.
1346 */
1347static void
1348xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1349{
1350	int more_to_do;
1351
1352	/*
1353	 * The mutex is required here.
1354	 */
1355	mtx_assert(&xbb->lock, MA_OWNED);
1356
1357	more_to_do = 0;
1358
1359	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1360
1361	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1362
1363		/*
1364		 * Tail check for pending requests. Allows frontend to avoid
1365		 * notifications if requests are already in flight (lower
1366		 * overheads and promotes batching).
1367		 */
1368		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1369	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1370
1371		more_to_do = 1;
1372	}
1373
1374	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1375	xbb->reqs_queued_for_completion = 0;
1376
1377	*run_taskqueue = more_to_do;
1378}
1379
1380/**
1381 * Complete a request list.
1382 *
1383 * \param xbb        Per-instance xbb configuration structure.
1384 * \param reqlist    Allocated internal request list structure.
1385 */
1386static void
1387xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1388{
1389	struct xbb_xen_req *nreq;
1390	off_t		    sectors_sent;
1391	int		    notify, run_taskqueue;
1392
1393	sectors_sent = 0;
1394
1395	if (reqlist->flags & XBB_REQLIST_MAPPED)
1396		xbb_unmap_reqlist(reqlist);
1397
1398	mtx_lock(&xbb->lock);
1399
1400	/*
1401	 * All I/O is done, send the response. A lock is not necessary
1402	 * to protect the request list, because all requests have
1403	 * completed.  Therefore this is the only context accessing this
1404	 * reqlist right now.  However, in order to make sure that no one
1405	 * else queues responses onto the queue or pushes them to the other
1406	 * side while we're active, we need to hold the lock across the
1407	 * calls to xbb_queue_response() and xbb_push_responses().
1408	 */
1409	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1410		off_t cur_sectors_sent;
1411
1412		/* Put this response on the ring, but don't push yet */
1413		xbb_queue_response(xbb, nreq, reqlist->status);
1414
1415		/* We don't report bytes sent if there is an error. */
1416		if (reqlist->status == BLKIF_RSP_OKAY)
1417			cur_sectors_sent = nreq->nr_512b_sectors;
1418		else
1419			cur_sectors_sent = 0;
1420
1421		sectors_sent += cur_sectors_sent;
1422
1423		devstat_end_transaction(xbb->xbb_stats_in,
1424					/*bytes*/cur_sectors_sent << 9,
1425					reqlist->ds_tag_type,
1426					reqlist->ds_trans_type,
1427					/*now*/NULL,
1428					/*then*/&nreq->ds_t0);
1429	}
1430
1431	/*
1432	 * Take out any sectors not sent.  If we wind up negative (which
1433	 * might happen if an error is reported as well as a residual), just
1434	 * report 0 sectors sent.
1435	 */
1436	sectors_sent -= reqlist->residual_512b_sectors;
1437	if (sectors_sent < 0)
1438		sectors_sent = 0;
1439
1440	devstat_end_transaction(xbb->xbb_stats,
1441				/*bytes*/ sectors_sent << 9,
1442				reqlist->ds_tag_type,
1443				reqlist->ds_trans_type,
1444				/*now*/NULL,
1445				/*then*/&reqlist->ds_t0);
1446
1447	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1448
1449	xbb_push_responses(xbb, &run_taskqueue, &notify);
1450
1451	mtx_unlock(&xbb->lock);
1452
1453	if (run_taskqueue)
1454		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1455
1456	if (notify)
1457		xen_intr_signal(xbb->xen_intr_handle);
1458}
1459
1460/**
1461 * Completion handler for buffer I/O requests issued by the device
1462 * backend driver.
1463 *
1464 * \param bio  The buffer I/O request on which to perform completion
1465 *             processing.
1466 */
1467static void
1468xbb_bio_done(struct bio *bio)
1469{
1470	struct xbb_softc       *xbb;
1471	struct xbb_xen_reqlist *reqlist;
1472
1473	reqlist = bio->bio_caller1;
1474	xbb     = reqlist->xbb;
1475
1476	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1477
1478	/*
1479	 * This is a bit imprecise.  With aggregated I/O a single
1480	 * request list can contain multiple front-end requests and
1481	 * a multiple bios may point to a single request.  By carefully
1482	 * walking the request list, we could map residuals and errors
1483	 * back to the original front-end request, but the interface
1484	 * isn't sufficiently rich for us to properly report the error.
1485	 * So, we just treat the entire request list as having failed if an
1486	 * error occurs on any part.  And, if an error occurs, we treat
1487	 * the amount of data transferred as 0.
1488	 *
1489	 * For residuals, we report it on the overall aggregated device,
1490	 * but not on the individual requests, since we don't currently
1491	 * do the work to determine which front-end request to which the
1492	 * residual applies.
1493	 */
1494	if (bio->bio_error) {
1495		DPRINTF("BIO returned error %d for operation on device %s\n",
1496			bio->bio_error, xbb->dev_name);
1497		reqlist->status = BLKIF_RSP_ERROR;
1498
1499		if (bio->bio_error == ENXIO
1500		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1501
1502			/*
1503			 * Backend device has disappeared.  Signal the
1504			 * front-end that we (the device proxy) want to
1505			 * go away.
1506			 */
1507			xenbus_set_state(xbb->dev, XenbusStateClosing);
1508		}
1509	}
1510
1511#ifdef XBB_USE_BOUNCE_BUFFERS
1512	if (bio->bio_cmd == BIO_READ) {
1513		vm_offset_t kva_offset;
1514
1515		kva_offset = (vm_offset_t)bio->bio_data
1516			   - (vm_offset_t)reqlist->bounce;
1517		memcpy((uint8_t *)reqlist->kva + kva_offset,
1518		       bio->bio_data, bio->bio_bcount);
1519	}
1520#endif /* XBB_USE_BOUNCE_BUFFERS */
1521
1522	/*
1523	 * Decrement the pending count for the request list.  When we're
1524	 * done with the requests, send status back for all of them.
1525	 */
1526	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1527		xbb_complete_reqlist(xbb, reqlist);
1528
1529	g_destroy_bio(bio);
1530}
1531
1532/**
1533 * Parse a blkif request into an internal request structure and send
1534 * it to the backend for processing.
1535 *
1536 * \param xbb       Per-instance xbb configuration structure.
1537 * \param reqlist   Allocated internal request list structure.
1538 *
1539 * \return          On success, 0.  For resource shortages, non-zero.
1540 *
1541 * This routine performs the backend common aspects of request parsing
1542 * including compiling an internal request structure, parsing the S/G
1543 * list and any secondary ring requests in which they may reside, and
1544 * the mapping of front-end I/O pages into our domain.
1545 */
1546static int
1547xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1548{
1549	struct xbb_sg                *xbb_sg;
1550	struct gnttab_map_grant_ref  *map;
1551	struct blkif_request_segment *sg;
1552	struct blkif_request_segment *last_block_sg;
1553	struct xbb_xen_req	     *nreq;
1554	u_int			      nseg;
1555	u_int			      seg_idx;
1556	u_int			      block_segs;
1557	int			      nr_sects;
1558	int			      total_sects;
1559	int			      operation;
1560	uint8_t			      bio_flags;
1561	int			      error;
1562
1563	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1564	bio_flags            = 0;
1565	total_sects	     = 0;
1566	nr_sects	     = 0;
1567
1568	/*
1569	 * First determine whether we have enough free KVA to satisfy this
1570	 * request list.  If not, tell xbb_run_queue() so it can go to
1571	 * sleep until we have more KVA.
1572	 */
1573	reqlist->kva = NULL;
1574	if (reqlist->nr_segments != 0) {
1575		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1576		if (reqlist->kva == NULL) {
1577			/*
1578			 * If we're out of KVA, return ENOMEM.
1579			 */
1580			return (ENOMEM);
1581		}
1582	}
1583
1584	binuptime(&reqlist->ds_t0);
1585	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1586
1587	switch (reqlist->operation) {
1588	case BLKIF_OP_WRITE_BARRIER:
1589		bio_flags       |= BIO_ORDERED;
1590		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1591		/* FALLTHROUGH */
1592	case BLKIF_OP_WRITE:
1593		operation = BIO_WRITE;
1594		reqlist->ds_trans_type = DEVSTAT_WRITE;
1595		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1596			DPRINTF("Attempt to write to read only device %s\n",
1597				xbb->dev_name);
1598			reqlist->status = BLKIF_RSP_ERROR;
1599			goto send_response;
1600		}
1601		break;
1602	case BLKIF_OP_READ:
1603		operation = BIO_READ;
1604		reqlist->ds_trans_type = DEVSTAT_READ;
1605		break;
1606	case BLKIF_OP_FLUSH_DISKCACHE:
1607		/*
1608		 * If this is true, the user has requested that we disable
1609		 * flush support.  So we just complete the requests
1610		 * successfully.
1611		 */
1612		if (xbb->disable_flush != 0) {
1613			goto send_response;
1614		}
1615
1616		/*
1617		 * The user has requested that we only send a real flush
1618		 * for every N flush requests.  So keep count, and either
1619		 * complete the request immediately or queue it for the
1620		 * backend.
1621		 */
1622		if (xbb->flush_interval != 0) {
1623		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1624				goto send_response;
1625			} else
1626				xbb->flush_count = 0;
1627		}
1628
1629		operation = BIO_FLUSH;
1630		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1631		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1632		goto do_dispatch;
1633		/*NOTREACHED*/
1634	default:
1635		DPRINTF("error: unknown block io operation [%d]\n",
1636			reqlist->operation);
1637		reqlist->status = BLKIF_RSP_ERROR;
1638		goto send_response;
1639	}
1640
1641	reqlist->xbb  = xbb;
1642	xbb_sg        = xbb->xbb_sgs;
1643	map	      = xbb->maps;
1644	seg_idx	      = 0;
1645
1646	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1647		blkif_request_t		*ring_req;
1648		RING_IDX		 req_ring_idx;
1649		u_int			 req_seg_idx;
1650
1651		ring_req	      = nreq->ring_req;
1652		req_ring_idx	      = nreq->req_ring_idx;
1653		nr_sects              = 0;
1654		nseg                  = ring_req->nr_segments;
1655		nreq->nr_pages        = nseg;
1656		nreq->nr_512b_sectors = 0;
1657		req_seg_idx	      = 0;
1658		sg	              = NULL;
1659
1660		/* Check that number of segments is sane. */
1661		if (__predict_false(nseg == 0)
1662		 || __predict_false(nseg > xbb->max_request_segments)) {
1663			DPRINTF("Bad number of segments in request (%d)\n",
1664				nseg);
1665			reqlist->status = BLKIF_RSP_ERROR;
1666			goto send_response;
1667		}
1668
1669		block_segs    = nseg;
1670		sg            = ring_req->seg;
1671		last_block_sg = sg + block_segs;
1672
1673		while (sg < last_block_sg) {
1674			KASSERT(seg_idx <
1675				XBB_MAX_SEGMENTS_PER_REQLIST,
1676				("seg_idx %d is too large, max "
1677				"segs %d\n", seg_idx,
1678				XBB_MAX_SEGMENTS_PER_REQLIST));
1679
1680			xbb_sg->first_sect = sg->first_sect;
1681			xbb_sg->last_sect  = sg->last_sect;
1682			xbb_sg->nsect =
1683			    (int8_t)(sg->last_sect -
1684			    sg->first_sect + 1);
1685
1686			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1687			 || (xbb_sg->nsect <= 0)) {
1688				reqlist->status = BLKIF_RSP_ERROR;
1689				goto send_response;
1690			}
1691
1692			nr_sects += xbb_sg->nsect;
1693			map->host_addr = xbb_get_gntaddr(reqlist,
1694						seg_idx, /*sector*/0);
1695			KASSERT(map->host_addr + PAGE_SIZE <=
1696				xbb->ring_config.gnt_addr,
1697				("Host address %#jx len %d overlaps "
1698				 "ring address %#jx\n",
1699				(uintmax_t)map->host_addr, PAGE_SIZE,
1700				(uintmax_t)xbb->ring_config.gnt_addr));
1701
1702			map->flags     = GNTMAP_host_map;
1703			map->ref       = sg->gref;
1704			map->dom       = xbb->otherend_id;
1705			if (operation == BIO_WRITE)
1706				map->flags |= GNTMAP_readonly;
1707			sg++;
1708			map++;
1709			xbb_sg++;
1710			seg_idx++;
1711			req_seg_idx++;
1712		}
1713
1714		/* Convert to the disk's sector size */
1715		nreq->nr_512b_sectors = nr_sects;
1716		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1717		total_sects += nr_sects;
1718
1719		if ((nreq->nr_512b_sectors &
1720		    ((xbb->sector_size >> 9) - 1)) != 0) {
1721			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1722				      "a multiple of the backing store sector "
1723				      "size (%d)\n", __func__,
1724				      nreq->nr_512b_sectors << 9,
1725				      xbb->sector_size);
1726			reqlist->status = BLKIF_RSP_ERROR;
1727			goto send_response;
1728		}
1729	}
1730
1731	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1732					  xbb->maps, reqlist->nr_segments);
1733	if (error != 0)
1734		panic("Grant table operation failed (%d)", error);
1735
1736	reqlist->flags |= XBB_REQLIST_MAPPED;
1737
1738	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1739	     seg_idx++, map++){
1740
1741		if (__predict_false(map->status != 0)) {
1742			DPRINTF("invalid buffer -- could not remap "
1743			        "it (%d)\n", map->status);
1744			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1745			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1746				map->host_addr, map->flags, map->ref,
1747				map->dom);
1748			reqlist->status = BLKIF_RSP_ERROR;
1749			goto send_response;
1750		}
1751
1752		reqlist->gnt_handles[seg_idx] = map->handle;
1753	}
1754	if (reqlist->starting_sector_number + total_sects >
1755	    xbb->media_num_sectors) {
1756
1757		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1758			"extends past end of device %s\n",
1759			operation == BIO_READ ? "read" : "write",
1760			reqlist->starting_sector_number,
1761			reqlist->starting_sector_number + total_sects,
1762			xbb->dev_name);
1763		reqlist->status = BLKIF_RSP_ERROR;
1764		goto send_response;
1765	}
1766
1767do_dispatch:
1768
1769	error = xbb->dispatch_io(xbb,
1770				 reqlist,
1771				 operation,
1772				 bio_flags);
1773
1774	if (error != 0) {
1775		reqlist->status = BLKIF_RSP_ERROR;
1776		goto send_response;
1777	}
1778
1779	return (0);
1780
1781send_response:
1782
1783	xbb_complete_reqlist(xbb, reqlist);
1784
1785	return (0);
1786}
1787
1788static __inline int
1789xbb_count_sects(blkif_request_t *ring_req)
1790{
1791	int i;
1792	int cur_size = 0;
1793
1794	for (i = 0; i < ring_req->nr_segments; i++) {
1795		int nsect;
1796
1797		nsect = (int8_t)(ring_req->seg[i].last_sect -
1798			ring_req->seg[i].first_sect + 1);
1799		if (nsect <= 0)
1800			break;
1801
1802		cur_size += nsect;
1803	}
1804
1805	return (cur_size);
1806}
1807
1808/**
1809 * Process incoming requests from the shared communication ring in response
1810 * to a signal on the ring's event channel.
1811 *
1812 * \param context  Callback argument registerd during task initialization -
1813 *                 the xbb_softc for this instance.
1814 * \param pending  The number of taskqueue_enqueue events that have
1815 *                 occurred since this handler was last run.
1816 */
1817static void
1818xbb_run_queue(void *context, int pending)
1819{
1820	struct xbb_softc       *xbb;
1821	blkif_back_rings_t     *rings;
1822	RING_IDX		rp;
1823	uint64_t		cur_sector;
1824	int			cur_operation;
1825	struct xbb_xen_reqlist *reqlist;
1826
1827
1828	xbb   = (struct xbb_softc *)context;
1829	rings = &xbb->rings;
1830
1831	/*
1832	 * Work gather and dispatch loop.  Note that we have a bias here
1833	 * towards gathering I/O sent by blockfront.  We first gather up
1834	 * everything in the ring, as long as we have resources.  Then we
1835	 * dispatch one request, and then attempt to gather up any
1836	 * additional requests that have come in while we were dispatching
1837	 * the request.
1838	 *
1839	 * This allows us to get a clearer picture (via devstat) of how
1840	 * many requests blockfront is queueing to us at any given time.
1841	 */
1842	for (;;) {
1843		int retval;
1844
1845		/*
1846		 * Initialize reqlist to the last element in the pending
1847		 * queue, if there is one.  This allows us to add more
1848		 * requests to that request list, if we have room.
1849		 */
1850		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1851				      xbb_xen_reqlist, links);
1852		if (reqlist != NULL) {
1853			cur_sector = reqlist->next_contig_sector;
1854			cur_operation = reqlist->operation;
1855		} else {
1856			cur_operation = 0;
1857			cur_sector    = 0;
1858		}
1859
1860		/*
1861		 * Cache req_prod to avoid accessing a cache line shared
1862		 * with the frontend.
1863		 */
1864		rp = rings->common.sring->req_prod;
1865
1866		/* Ensure we see queued requests up to 'rp'. */
1867		rmb();
1868
1869		/**
1870		 * Run so long as there is work to consume and the generation
1871		 * of a response will not overflow the ring.
1872		 *
1873		 * @note There's a 1 to 1 relationship between requests and
1874		 *       responses, so an overflow should never occur.  This
1875		 *       test is to protect our domain from digesting bogus
1876		 *       data.  Shouldn't we log this?
1877		 */
1878		while (rings->common.req_cons != rp
1879		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1880						  rings->common.req_cons) == 0){
1881			blkif_request_t	        ring_req_storage;
1882			blkif_request_t	       *ring_req;
1883			int			cur_size;
1884
1885			switch (xbb->abi) {
1886			case BLKIF_PROTOCOL_NATIVE:
1887				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1888				    rings->common.req_cons);
1889				break;
1890			case BLKIF_PROTOCOL_X86_32:
1891			{
1892				struct blkif_x86_32_request *ring_req32;
1893
1894				ring_req32 = RING_GET_REQUEST(
1895				    &xbb->rings.x86_32, rings->common.req_cons);
1896				blkif_get_x86_32_req(&ring_req_storage,
1897						     ring_req32);
1898				ring_req = &ring_req_storage;
1899				break;
1900			}
1901			case BLKIF_PROTOCOL_X86_64:
1902			{
1903				struct blkif_x86_64_request *ring_req64;
1904
1905				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1906				    rings->common.req_cons);
1907				blkif_get_x86_64_req(&ring_req_storage,
1908						     ring_req64);
1909				ring_req = &ring_req_storage;
1910				break;
1911			}
1912			default:
1913				panic("Unexpected blkif protocol ABI.");
1914				/* NOTREACHED */
1915			}
1916
1917			/*
1918			 * Check for situations that would require closing
1919			 * off this I/O for further coalescing:
1920			 *  - Coalescing is turned off.
1921			 *  - Current I/O is out of sequence with the previous
1922			 *    I/O.
1923			 *  - Coalesced I/O would be too large.
1924			 */
1925			if ((reqlist != NULL)
1926			 && ((xbb->no_coalesce_reqs != 0)
1927			  || ((xbb->no_coalesce_reqs == 0)
1928			   && ((ring_req->sector_number != cur_sector)
1929			    || (ring_req->operation != cur_operation)
1930			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1931			         xbb->max_reqlist_segments))))) {
1932				reqlist = NULL;
1933			}
1934
1935			/*
1936			 * Grab and check for all resources in one shot.
1937			 * If we can't get all of the resources we need,
1938			 * the shortage is noted and the thread will get
1939			 * woken up when more resources are available.
1940			 */
1941			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1942						   xbb->rings.common.req_cons);
1943
1944			if (retval != 0) {
1945				/*
1946				 * Resource shortage has been recorded.
1947				 * We'll be scheduled to run once a request
1948				 * object frees up due to a completion.
1949				 */
1950				break;
1951			}
1952
1953			/*
1954			 * Signify that	we can overwrite this request with
1955			 * a response by incrementing our consumer index.
1956			 * The response won't be generated until after
1957			 * we've already consumed all necessary data out
1958			 * of the version of the request in the ring buffer
1959			 * (for native mode).  We must update the consumer
1960			 * index  before issueing back-end I/O so there is
1961			 * no possibility that it will complete and a
1962			 * response be generated before we make room in
1963			 * the queue for that response.
1964			 */
1965			xbb->rings.common.req_cons++;
1966			xbb->reqs_received++;
1967
1968			cur_size = xbb_count_sects(ring_req);
1969			cur_sector = ring_req->sector_number + cur_size;
1970			reqlist->next_contig_sector = cur_sector;
1971			cur_operation = ring_req->operation;
1972		}
1973
1974		/* Check for I/O to dispatch */
1975		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1976		if (reqlist == NULL) {
1977			/*
1978			 * We're out of work to do, put the task queue to
1979			 * sleep.
1980			 */
1981			break;
1982		}
1983
1984		/*
1985		 * Grab the first request off the queue and attempt
1986		 * to dispatch it.
1987		 */
1988		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1989
1990		retval = xbb_dispatch_io(xbb, reqlist);
1991		if (retval != 0) {
1992			/*
1993			 * xbb_dispatch_io() returns non-zero only when
1994			 * there is a resource shortage.  If that's the
1995			 * case, re-queue this request on the head of the
1996			 * queue, and go to sleep until we have more
1997			 * resources.
1998			 */
1999			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
2000					   reqlist, links);
2001			break;
2002		} else {
2003			/*
2004			 * If we still have anything on the queue after
2005			 * removing the head entry, that is because we
2006			 * met one of the criteria to create a new
2007			 * request list (outlined above), and we'll call
2008			 * that a forced dispatch for statistical purposes.
2009			 *
2010			 * Otherwise, if there is only one element on the
2011			 * queue, we coalesced everything available on
2012			 * the ring and we'll call that a normal dispatch.
2013			 */
2014			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2015
2016			if (reqlist != NULL)
2017				xbb->forced_dispatch++;
2018			else
2019				xbb->normal_dispatch++;
2020
2021			xbb->total_dispatch++;
2022		}
2023	}
2024}
2025
2026/**
2027 * Interrupt handler bound to the shared ring's event channel.
2028 *
2029 * \param arg  Callback argument registerd during event channel
2030 *             binding - the xbb_softc for this instance.
2031 */
2032static int
2033xbb_filter(void *arg)
2034{
2035	struct xbb_softc *xbb;
2036
2037	/* Defer to taskqueue thread. */
2038	xbb = (struct xbb_softc *)arg;
2039	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2040
2041	return (FILTER_HANDLED);
2042}
2043
2044SDT_PROVIDER_DEFINE(xbb);
2045SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2046SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2047		  "uint64_t");
2048SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2049		  "uint64_t", "uint64_t");
2050
2051/*----------------------------- Backend Handlers -----------------------------*/
2052/**
2053 * Backend handler for character device access.
2054 *
2055 * \param xbb        Per-instance xbb configuration structure.
2056 * \param reqlist    Allocated internal request list structure.
2057 * \param operation  BIO_* I/O operation code.
2058 * \param bio_flags  Additional bio_flag data to pass to any generated
2059 *                   bios (e.g. BIO_ORDERED)..
2060 *
2061 * \return  0 for success, errno codes for failure.
2062 */
2063static int
2064xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2065		 int operation, int bio_flags)
2066{
2067	struct xbb_dev_data *dev_data;
2068	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2069	off_t                bio_offset;
2070	struct bio          *bio;
2071	struct xbb_sg       *xbb_sg;
2072	u_int	             nbio;
2073	u_int                bio_idx;
2074	u_int		     nseg;
2075	u_int                seg_idx;
2076	int                  error;
2077
2078	dev_data   = &xbb->backend.dev;
2079	bio_offset = (off_t)reqlist->starting_sector_number
2080		   << xbb->sector_size_shift;
2081	error      = 0;
2082	nbio       = 0;
2083	bio_idx    = 0;
2084
2085	if (operation == BIO_FLUSH) {
2086		bio = g_new_bio();
2087		if (__predict_false(bio == NULL)) {
2088			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2089			error = ENOMEM;
2090			return (error);
2091		}
2092
2093		bio->bio_cmd	 = BIO_FLUSH;
2094		bio->bio_flags	|= BIO_ORDERED;
2095		bio->bio_dev	 = dev_data->cdev;
2096		bio->bio_offset	 = 0;
2097		bio->bio_data	 = 0;
2098		bio->bio_done	 = xbb_bio_done;
2099		bio->bio_caller1 = reqlist;
2100		bio->bio_pblkno	 = 0;
2101
2102		reqlist->pendcnt = 1;
2103
2104		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2105			   device_get_unit(xbb->dev));
2106
2107		(*dev_data->csw->d_strategy)(bio);
2108
2109		return (0);
2110	}
2111
2112	xbb_sg = xbb->xbb_sgs;
2113	bio    = NULL;
2114	nseg = reqlist->nr_segments;
2115
2116	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2117
2118		/*
2119		 * KVA will not be contiguous, so any additional
2120		 * I/O will need to be represented in a new bio.
2121		 */
2122		if ((bio != NULL)
2123		 && (xbb_sg->first_sect != 0)) {
2124			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2125				printf("%s: Discontiguous I/O request "
2126				       "from domain %d ends on "
2127				       "non-sector boundary\n",
2128				       __func__, xbb->otherend_id);
2129				error = EINVAL;
2130				goto fail_free_bios;
2131			}
2132			bio = NULL;
2133		}
2134
2135		if (bio == NULL) {
2136			/*
2137			 * Make sure that the start of this bio is
2138			 * aligned to a device sector.
2139			 */
2140			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2141				printf("%s: Misaligned I/O request "
2142				       "from domain %d\n", __func__,
2143				       xbb->otherend_id);
2144				error = EINVAL;
2145				goto fail_free_bios;
2146			}
2147
2148			bio = bios[nbio++] = g_new_bio();
2149			if (__predict_false(bio == NULL)) {
2150				error = ENOMEM;
2151				goto fail_free_bios;
2152			}
2153			bio->bio_cmd     = operation;
2154			bio->bio_flags  |= bio_flags;
2155			bio->bio_dev     = dev_data->cdev;
2156			bio->bio_offset  = bio_offset;
2157			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2158						xbb_sg->first_sect);
2159			bio->bio_done    = xbb_bio_done;
2160			bio->bio_caller1 = reqlist;
2161			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2162		}
2163
2164		bio->bio_length += xbb_sg->nsect << 9;
2165		bio->bio_bcount  = bio->bio_length;
2166		bio_offset      += xbb_sg->nsect << 9;
2167
2168		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2169
2170			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2171				printf("%s: Discontiguous I/O request "
2172				       "from domain %d ends on "
2173				       "non-sector boundary\n",
2174				       __func__, xbb->otherend_id);
2175				error = EINVAL;
2176				goto fail_free_bios;
2177			}
2178			/*
2179			 * KVA will not be contiguous, so any additional
2180			 * I/O will need to be represented in a new bio.
2181			 */
2182			bio = NULL;
2183		}
2184	}
2185
2186	reqlist->pendcnt = nbio;
2187
2188	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2189	{
2190#ifdef XBB_USE_BOUNCE_BUFFERS
2191		vm_offset_t kva_offset;
2192
2193		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2194			   - (vm_offset_t)reqlist->bounce;
2195		if (operation == BIO_WRITE) {
2196			memcpy(bios[bio_idx]->bio_data,
2197			       (uint8_t *)reqlist->kva + kva_offset,
2198			       bios[bio_idx]->bio_bcount);
2199		}
2200#endif
2201		if (operation == BIO_READ) {
2202			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2203				   device_get_unit(xbb->dev),
2204				   bios[bio_idx]->bio_offset,
2205				   bios[bio_idx]->bio_length);
2206		} else if (operation == BIO_WRITE) {
2207			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2208				   device_get_unit(xbb->dev),
2209				   bios[bio_idx]->bio_offset,
2210				   bios[bio_idx]->bio_length);
2211		}
2212		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2213	}
2214
2215	return (error);
2216
2217fail_free_bios:
2218	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2219		g_destroy_bio(bios[bio_idx]);
2220
2221	return (error);
2222}
2223
2224SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2225SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2226		  "uint64_t");
2227SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2228		  "uint64_t", "uint64_t");
2229
2230/**
2231 * Backend handler for file access.
2232 *
2233 * \param xbb        Per-instance xbb configuration structure.
2234 * \param reqlist    Allocated internal request list.
2235 * \param operation  BIO_* I/O operation code.
2236 * \param flags      Additional bio_flag data to pass to any generated bios
2237 *                   (e.g. BIO_ORDERED)..
2238 *
2239 * \return  0 for success, errno codes for failure.
2240 */
2241static int
2242xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2243		  int operation, int flags)
2244{
2245	struct xbb_file_data *file_data;
2246	u_int                 seg_idx;
2247	u_int		      nseg;
2248	struct uio            xuio;
2249	struct xbb_sg        *xbb_sg;
2250	struct iovec         *xiovec;
2251#ifdef XBB_USE_BOUNCE_BUFFERS
2252	void                **p_vaddr;
2253	int                   saved_uio_iovcnt;
2254#endif /* XBB_USE_BOUNCE_BUFFERS */
2255	int                   error;
2256
2257	file_data = &xbb->backend.file;
2258	error = 0;
2259	bzero(&xuio, sizeof(xuio));
2260
2261	switch (operation) {
2262	case BIO_READ:
2263		xuio.uio_rw = UIO_READ;
2264		break;
2265	case BIO_WRITE:
2266		xuio.uio_rw = UIO_WRITE;
2267		break;
2268	case BIO_FLUSH: {
2269		struct mount *mountpoint;
2270
2271		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2272			   device_get_unit(xbb->dev));
2273
2274		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2275
2276		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2277		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2278		VOP_UNLOCK(xbb->vn, 0);
2279
2280		vn_finished_write(mountpoint);
2281
2282		goto bailout_send_response;
2283		/* NOTREACHED */
2284	}
2285	default:
2286		panic("invalid operation %d", operation);
2287		/* NOTREACHED */
2288	}
2289	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2290			<< xbb->sector_size_shift;
2291	xuio.uio_segflg = UIO_SYSSPACE;
2292	xuio.uio_iov = file_data->xiovecs;
2293	xuio.uio_iovcnt = 0;
2294	xbb_sg = xbb->xbb_sgs;
2295	nseg = reqlist->nr_segments;
2296
2297	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2298
2299		/*
2300		 * If the first sector is not 0, the KVA will
2301		 * not be contiguous and we'll need to go on
2302		 * to another segment.
2303		 */
2304		if (xbb_sg->first_sect != 0)
2305			xiovec = NULL;
2306
2307		if (xiovec == NULL) {
2308			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2309			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2310			    seg_idx, xbb_sg->first_sect);
2311#ifdef XBB_USE_BOUNCE_BUFFERS
2312			/*
2313			 * Store the address of the incoming
2314			 * buffer at this particular offset
2315			 * as well, so we can do the copy
2316			 * later without having to do more
2317			 * work to recalculate this address.
2318		 	 */
2319			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2320			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2321			    xbb_sg->first_sect);
2322#endif /* XBB_USE_BOUNCE_BUFFERS */
2323			xiovec->iov_len = 0;
2324			xuio.uio_iovcnt++;
2325		}
2326
2327		xiovec->iov_len += xbb_sg->nsect << 9;
2328
2329		xuio.uio_resid += xbb_sg->nsect << 9;
2330
2331		/*
2332		 * If the last sector is not the full page
2333		 * size count, the next segment will not be
2334		 * contiguous in KVA and we need a new iovec.
2335		 */
2336		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2337			xiovec = NULL;
2338	}
2339
2340	xuio.uio_td = curthread;
2341
2342#ifdef XBB_USE_BOUNCE_BUFFERS
2343	saved_uio_iovcnt = xuio.uio_iovcnt;
2344
2345	if (operation == BIO_WRITE) {
2346		/* Copy the write data to the local buffer. */
2347		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2348		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2349		     seg_idx++, xiovec++, p_vaddr++) {
2350
2351			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2352		}
2353	} else {
2354		/*
2355		 * We only need to save off the iovecs in the case of a
2356		 * read, because the copy for the read happens after the
2357		 * VOP_READ().  (The uio will get modified in that call
2358		 * sequence.)
2359		 */
2360		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2361		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2362	}
2363#endif /* XBB_USE_BOUNCE_BUFFERS */
2364
2365	switch (operation) {
2366	case BIO_READ:
2367
2368		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2369			   device_get_unit(xbb->dev), xuio.uio_offset,
2370			   xuio.uio_resid);
2371
2372		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2373
2374		/*
2375		 * UFS pays attention to IO_DIRECT for reads.  If the
2376		 * DIRECTIO option is configured into the kernel, it calls
2377		 * ffs_rawread().  But that only works for single-segment
2378		 * uios with user space addresses.  In our case, with a
2379		 * kernel uio, it still reads into the buffer cache, but it
2380		 * will just try to release the buffer from the cache later
2381		 * on in ffs_read().
2382		 *
2383		 * ZFS does not pay attention to IO_DIRECT for reads.
2384		 *
2385		 * UFS does not pay attention to IO_SYNC for reads.
2386		 *
2387		 * ZFS pays attention to IO_SYNC (which translates into the
2388		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2389		 * attempts to sync the file before reading.
2390		 *
2391		 * So, to attempt to provide some barrier semantics in the
2392		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2393		 */
2394		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2395				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2396
2397		VOP_UNLOCK(xbb->vn, 0);
2398		break;
2399	case BIO_WRITE: {
2400		struct mount *mountpoint;
2401
2402		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2403			   device_get_unit(xbb->dev), xuio.uio_offset,
2404			   xuio.uio_resid);
2405
2406		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2407
2408		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2409
2410		/*
2411		 * UFS pays attention to IO_DIRECT for writes.  The write
2412		 * is done asynchronously.  (Normally the write would just
2413		 * get put into cache.
2414		 *
2415		 * UFS pays attention to IO_SYNC for writes.  It will
2416		 * attempt to write the buffer out synchronously if that
2417		 * flag is set.
2418		 *
2419		 * ZFS does not pay attention to IO_DIRECT for writes.
2420		 *
2421		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2422		 * for writes.  It will flush the transaction from the
2423		 * cache before returning.
2424		 *
2425		 * So if we've got the BIO_ORDERED flag set, we want
2426		 * IO_SYNC in either the UFS or ZFS case.
2427		 */
2428		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2429				  IO_SYNC : 0, file_data->cred);
2430		VOP_UNLOCK(xbb->vn, 0);
2431
2432		vn_finished_write(mountpoint);
2433
2434		break;
2435	}
2436	default:
2437		panic("invalid operation %d", operation);
2438		/* NOTREACHED */
2439	}
2440
2441#ifdef XBB_USE_BOUNCE_BUFFERS
2442	/* We only need to copy here for read operations */
2443	if (operation == BIO_READ) {
2444
2445		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2446		     xiovec = file_data->saved_xiovecs;
2447		     seg_idx < saved_uio_iovcnt; seg_idx++,
2448		     xiovec++, p_vaddr++) {
2449
2450			/*
2451			 * Note that we have to use the copy of the
2452			 * io vector we made above.  uiomove() modifies
2453			 * the uio and its referenced vector as uiomove
2454			 * performs the copy, so we can't rely on any
2455			 * state from the original uio.
2456			 */
2457			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2458		}
2459	}
2460#endif /* XBB_USE_BOUNCE_BUFFERS */
2461
2462bailout_send_response:
2463
2464	if (error != 0)
2465		reqlist->status = BLKIF_RSP_ERROR;
2466
2467	xbb_complete_reqlist(xbb, reqlist);
2468
2469	return (0);
2470}
2471
2472/*--------------------------- Backend Configuration --------------------------*/
2473/**
2474 * Close and cleanup any backend device/file specific state for this
2475 * block back instance.
2476 *
2477 * \param xbb  Per-instance xbb configuration structure.
2478 */
2479static void
2480xbb_close_backend(struct xbb_softc *xbb)
2481{
2482	DROP_GIANT();
2483	DPRINTF("closing dev=%s\n", xbb->dev_name);
2484	if (xbb->vn) {
2485		int flags = FREAD;
2486
2487		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2488			flags |= FWRITE;
2489
2490		switch (xbb->device_type) {
2491		case XBB_TYPE_DISK:
2492			if (xbb->backend.dev.csw) {
2493				dev_relthread(xbb->backend.dev.cdev,
2494					      xbb->backend.dev.dev_ref);
2495				xbb->backend.dev.csw  = NULL;
2496				xbb->backend.dev.cdev = NULL;
2497			}
2498			break;
2499		case XBB_TYPE_FILE:
2500			break;
2501		case XBB_TYPE_NONE:
2502		default:
2503			panic("Unexpected backend type.");
2504			break;
2505		}
2506
2507		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2508		xbb->vn = NULL;
2509
2510		switch (xbb->device_type) {
2511		case XBB_TYPE_DISK:
2512			break;
2513		case XBB_TYPE_FILE:
2514			if (xbb->backend.file.cred != NULL) {
2515				crfree(xbb->backend.file.cred);
2516				xbb->backend.file.cred = NULL;
2517			}
2518			break;
2519		case XBB_TYPE_NONE:
2520		default:
2521			panic("Unexpected backend type.");
2522			break;
2523		}
2524	}
2525	PICKUP_GIANT();
2526}
2527
2528/**
2529 * Open a character device to be used for backend I/O.
2530 *
2531 * \param xbb  Per-instance xbb configuration structure.
2532 *
2533 * \return  0 for success, errno codes for failure.
2534 */
2535static int
2536xbb_open_dev(struct xbb_softc *xbb)
2537{
2538	struct vattr   vattr;
2539	struct cdev   *dev;
2540	struct cdevsw *devsw;
2541	int	       error;
2542
2543	xbb->device_type = XBB_TYPE_DISK;
2544	xbb->dispatch_io = xbb_dispatch_dev;
2545	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2546	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2547					     &xbb->backend.dev.dev_ref);
2548	if (xbb->backend.dev.csw == NULL)
2549		panic("Unable to retrieve device switch");
2550
2551	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2552	if (error) {
2553		xenbus_dev_fatal(xbb->dev, error, "error getting "
2554				 "vnode attributes for device %s",
2555				 xbb->dev_name);
2556		return (error);
2557	}
2558
2559
2560	dev = xbb->vn->v_rdev;
2561	devsw = dev->si_devsw;
2562	if (!devsw->d_ioctl) {
2563		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2564				 "device %s!", xbb->dev_name);
2565		return (ENODEV);
2566	}
2567
2568	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2569			       (caddr_t)&xbb->sector_size, FREAD,
2570			       curthread);
2571	if (error) {
2572		xenbus_dev_fatal(xbb->dev, error,
2573				 "error calling ioctl DIOCGSECTORSIZE "
2574				 "for device %s", xbb->dev_name);
2575		return (error);
2576	}
2577
2578	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2579			       (caddr_t)&xbb->media_size, FREAD,
2580			       curthread);
2581	if (error) {
2582		xenbus_dev_fatal(xbb->dev, error,
2583				 "error calling ioctl DIOCGMEDIASIZE "
2584				 "for device %s", xbb->dev_name);
2585		return (error);
2586	}
2587
2588	return (0);
2589}
2590
2591/**
2592 * Open a file to be used for backend I/O.
2593 *
2594 * \param xbb  Per-instance xbb configuration structure.
2595 *
2596 * \return  0 for success, errno codes for failure.
2597 */
2598static int
2599xbb_open_file(struct xbb_softc *xbb)
2600{
2601	struct xbb_file_data *file_data;
2602	struct vattr          vattr;
2603	int                   error;
2604
2605	file_data = &xbb->backend.file;
2606	xbb->device_type = XBB_TYPE_FILE;
2607	xbb->dispatch_io = xbb_dispatch_file;
2608	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2609	if (error != 0) {
2610		xenbus_dev_fatal(xbb->dev, error,
2611				 "error calling VOP_GETATTR()"
2612				 "for file %s", xbb->dev_name);
2613		return (error);
2614	}
2615
2616	/*
2617	 * Verify that we have the ability to upgrade to exclusive
2618	 * access on this file so we can trap errors at open instead
2619	 * of reporting them during first access.
2620	 */
2621	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2622		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2623		if (xbb->vn->v_iflag & VI_DOOMED) {
2624			error = EBADF;
2625			xenbus_dev_fatal(xbb->dev, error,
2626					 "error locking file %s",
2627					 xbb->dev_name);
2628
2629			return (error);
2630		}
2631	}
2632
2633	file_data->cred = crhold(curthread->td_ucred);
2634	xbb->media_size = vattr.va_size;
2635
2636	/*
2637	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2638	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2639	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2640	 * may not work with other OSes as well.  So just export a sector
2641	 * size of 512 bytes, which should work with any OS or
2642	 * application.  Since our backing is a file, any block size will
2643	 * work fine for the backing store.
2644	 */
2645#if 0
2646	xbb->sector_size = vattr.va_blocksize;
2647#endif
2648	xbb->sector_size = 512;
2649
2650	/*
2651	 * Sanity check.  The media size has to be at least one
2652	 * sector long.
2653	 */
2654	if (xbb->media_size < xbb->sector_size) {
2655		error = EINVAL;
2656		xenbus_dev_fatal(xbb->dev, error,
2657				 "file %s size %ju < block size %u",
2658				 xbb->dev_name,
2659				 (uintmax_t)xbb->media_size,
2660				 xbb->sector_size);
2661	}
2662	return (error);
2663}
2664
2665/**
2666 * Open the backend provider for this connection.
2667 *
2668 * \param xbb  Per-instance xbb configuration structure.
2669 *
2670 * \return  0 for success, errno codes for failure.
2671 */
2672static int
2673xbb_open_backend(struct xbb_softc *xbb)
2674{
2675	struct nameidata nd;
2676	int		 flags;
2677	int		 error;
2678
2679	flags = FREAD;
2680	error = 0;
2681
2682	DPRINTF("opening dev=%s\n", xbb->dev_name);
2683
2684	if (rootvnode == NULL) {
2685		xenbus_dev_fatal(xbb->dev, ENOENT,
2686				 "Root file system not mounted");
2687		return (ENOENT);
2688	}
2689
2690	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2691		flags |= FWRITE;
2692
2693	pwd_ensure_dirs();
2694
2695 again:
2696	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2697	error = vn_open(&nd, &flags, 0, NULL);
2698	if (error) {
2699		/*
2700		 * This is the only reasonable guess we can make as far as
2701		 * path if the user doesn't give us a fully qualified path.
2702		 * If they want to specify a file, they need to specify the
2703		 * full path.
2704		 */
2705		if (xbb->dev_name[0] != '/') {
2706			char *dev_path = "/dev/";
2707			char *dev_name;
2708
2709			/* Try adding device path at beginning of name */
2710			dev_name = malloc(strlen(xbb->dev_name)
2711					+ strlen(dev_path) + 1,
2712					  M_XENBLOCKBACK, M_NOWAIT);
2713			if (dev_name) {
2714				sprintf(dev_name, "%s%s", dev_path,
2715					xbb->dev_name);
2716				free(xbb->dev_name, M_XENBLOCKBACK);
2717				xbb->dev_name = dev_name;
2718				goto again;
2719			}
2720		}
2721		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2722				 xbb->dev_name);
2723		return (error);
2724	}
2725
2726	NDFREE(&nd, NDF_ONLY_PNBUF);
2727
2728	xbb->vn = nd.ni_vp;
2729
2730	/* We only support disks and files. */
2731	if (vn_isdisk(xbb->vn, &error)) {
2732		error = xbb_open_dev(xbb);
2733	} else if (xbb->vn->v_type == VREG) {
2734		error = xbb_open_file(xbb);
2735	} else {
2736		error = EINVAL;
2737		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2738				 "or file", xbb->dev_name);
2739	}
2740	VOP_UNLOCK(xbb->vn, 0);
2741
2742	if (error != 0) {
2743		xbb_close_backend(xbb);
2744		return (error);
2745	}
2746
2747	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2748	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2749
2750	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2751		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2752		xbb->dev_name, xbb->sector_size, xbb->media_size);
2753
2754	return (0);
2755}
2756
2757/*------------------------ Inter-Domain Communication ------------------------*/
2758/**
2759 * Free dynamically allocated KVA or pseudo-physical address allocations.
2760 *
2761 * \param xbb  Per-instance xbb configuration structure.
2762 */
2763static void
2764xbb_free_communication_mem(struct xbb_softc *xbb)
2765{
2766	if (xbb->kva != 0) {
2767		if (xbb->pseudo_phys_res != NULL) {
2768			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2769			    xbb->pseudo_phys_res);
2770			xbb->pseudo_phys_res = NULL;
2771		}
2772	}
2773	xbb->kva = 0;
2774	xbb->gnt_base_addr = 0;
2775	if (xbb->kva_free != NULL) {
2776		free(xbb->kva_free, M_XENBLOCKBACK);
2777		xbb->kva_free = NULL;
2778	}
2779}
2780
2781/**
2782 * Cleanup all inter-domain communication mechanisms.
2783 *
2784 * \param xbb  Per-instance xbb configuration structure.
2785 */
2786static int
2787xbb_disconnect(struct xbb_softc *xbb)
2788{
2789	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2790	struct gnttab_unmap_grant_ref *op;
2791	u_int			       ring_idx;
2792	int			       error;
2793
2794	DPRINTF("\n");
2795
2796	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2797		return (0);
2798
2799	xen_intr_unbind(&xbb->xen_intr_handle);
2800
2801	mtx_unlock(&xbb->lock);
2802	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2803	mtx_lock(&xbb->lock);
2804
2805	/*
2806	 * No new interrupts can generate work, but we must wait
2807	 * for all currently active requests to drain.
2808	 */
2809	if (xbb->active_request_count != 0)
2810		return (EAGAIN);
2811
2812	for (ring_idx = 0, op = ops;
2813	     ring_idx < xbb->ring_config.ring_pages;
2814	     ring_idx++, op++) {
2815
2816		op->host_addr    = xbb->ring_config.gnt_addr
2817			         + (ring_idx * PAGE_SIZE);
2818		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2819		op->handle	 = xbb->ring_config.handle[ring_idx];
2820	}
2821
2822	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2823					  xbb->ring_config.ring_pages);
2824	if (error != 0)
2825		panic("Grant table op failed (%d)", error);
2826
2827	xbb_free_communication_mem(xbb);
2828
2829	if (xbb->requests != NULL) {
2830		free(xbb->requests, M_XENBLOCKBACK);
2831		xbb->requests = NULL;
2832	}
2833
2834	if (xbb->request_lists != NULL) {
2835		struct xbb_xen_reqlist *reqlist;
2836		int i;
2837
2838		/* There is one request list for ever allocated request. */
2839		for (i = 0, reqlist = xbb->request_lists;
2840		     i < xbb->max_requests; i++, reqlist++){
2841#ifdef XBB_USE_BOUNCE_BUFFERS
2842			if (reqlist->bounce != NULL) {
2843				free(reqlist->bounce, M_XENBLOCKBACK);
2844				reqlist->bounce = NULL;
2845			}
2846#endif
2847			if (reqlist->gnt_handles != NULL) {
2848				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2849				reqlist->gnt_handles = NULL;
2850			}
2851		}
2852		free(xbb->request_lists, M_XENBLOCKBACK);
2853		xbb->request_lists = NULL;
2854	}
2855
2856	xbb->flags &= ~XBBF_RING_CONNECTED;
2857	return (0);
2858}
2859
2860/**
2861 * Map shared memory ring into domain local address space, initialize
2862 * ring control structures, and bind an interrupt to the event channel
2863 * used to notify us of ring changes.
2864 *
2865 * \param xbb  Per-instance xbb configuration structure.
2866 */
2867static int
2868xbb_connect_ring(struct xbb_softc *xbb)
2869{
2870	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2871	struct gnttab_map_grant_ref *gnt;
2872	u_int			     ring_idx;
2873	int			     error;
2874
2875	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2876		return (0);
2877
2878	/*
2879	 * Kva for our ring is at the tail of the region of kva allocated
2880	 * by xbb_alloc_communication_mem().
2881	 */
2882	xbb->ring_config.va = xbb->kva
2883			    + (xbb->kva_size
2884			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2885	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2886				  + (xbb->kva_size
2887				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2888
2889	for (ring_idx = 0, gnt = gnts;
2890	     ring_idx < xbb->ring_config.ring_pages;
2891	     ring_idx++, gnt++) {
2892
2893		gnt->host_addr = xbb->ring_config.gnt_addr
2894			       + (ring_idx * PAGE_SIZE);
2895		gnt->flags     = GNTMAP_host_map;
2896		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2897		gnt->dom       = xbb->otherend_id;
2898	}
2899
2900	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2901					  xbb->ring_config.ring_pages);
2902	if (error)
2903		panic("blkback: Ring page grant table op failed (%d)", error);
2904
2905	for (ring_idx = 0, gnt = gnts;
2906	     ring_idx < xbb->ring_config.ring_pages;
2907	     ring_idx++, gnt++) {
2908		if (gnt->status != 0) {
2909			xbb->ring_config.va = 0;
2910			xenbus_dev_fatal(xbb->dev, EACCES,
2911					 "Ring shared page mapping failed. "
2912					 "Status %d.", gnt->status);
2913			return (EACCES);
2914		}
2915		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2916		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2917	}
2918
2919	/* Initialize the ring based on ABI. */
2920	switch (xbb->abi) {
2921	case BLKIF_PROTOCOL_NATIVE:
2922	{
2923		blkif_sring_t *sring;
2924		sring = (blkif_sring_t *)xbb->ring_config.va;
2925		BACK_RING_INIT(&xbb->rings.native, sring,
2926			       xbb->ring_config.ring_pages * PAGE_SIZE);
2927		break;
2928	}
2929	case BLKIF_PROTOCOL_X86_32:
2930	{
2931		blkif_x86_32_sring_t *sring_x86_32;
2932		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2933		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2934			       xbb->ring_config.ring_pages * PAGE_SIZE);
2935		break;
2936	}
2937	case BLKIF_PROTOCOL_X86_64:
2938	{
2939		blkif_x86_64_sring_t *sring_x86_64;
2940		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2941		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2942			       xbb->ring_config.ring_pages * PAGE_SIZE);
2943		break;
2944	}
2945	default:
2946		panic("Unexpected blkif protocol ABI.");
2947	}
2948
2949	xbb->flags |= XBBF_RING_CONNECTED;
2950
2951	error = xen_intr_bind_remote_port(xbb->dev,
2952					  xbb->otherend_id,
2953					  xbb->ring_config.evtchn,
2954					  xbb_filter,
2955					  /*ithread_handler*/NULL,
2956					  /*arg*/xbb,
2957					  INTR_TYPE_BIO | INTR_MPSAFE,
2958					  &xbb->xen_intr_handle);
2959	if (error) {
2960		(void)xbb_disconnect(xbb);
2961		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2962		return (error);
2963	}
2964
2965	DPRINTF("rings connected!\n");
2966
2967	return 0;
2968}
2969
2970/* Needed to make bit_alloc() macro work */
2971#define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
2972				   M_NOWAIT|M_ZERO);
2973
2974/**
2975 * Size KVA and pseudo-physical address allocations based on negotiated
2976 * values for the size and number of I/O requests, and the size of our
2977 * communication ring.
2978 *
2979 * \param xbb  Per-instance xbb configuration structure.
2980 *
2981 * These address spaces are used to dynamically map pages in the
2982 * front-end's domain into our own.
2983 */
2984static int
2985xbb_alloc_communication_mem(struct xbb_softc *xbb)
2986{
2987	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2988	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2989	xbb->kva_size = xbb->reqlist_kva_size +
2990			(xbb->ring_config.ring_pages * PAGE_SIZE);
2991
2992	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
2993	if (xbb->kva_free == NULL)
2994		return (ENOMEM);
2995
2996	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2997		device_get_nameunit(xbb->dev), xbb->kva_size,
2998		xbb->reqlist_kva_size);
2999	/*
3000	 * Reserve a range of pseudo physical memory that we can map
3001	 * into kva.  These pages will only be backed by machine
3002	 * pages ("real memory") during the lifetime of front-end requests
3003	 * via grant table operations.
3004	 */
3005	xbb->pseudo_phys_res_id = 0;
3006	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
3007	    xbb->kva_size);
3008	if (xbb->pseudo_phys_res == NULL) {
3009		xbb->kva = 0;
3010		return (ENOMEM);
3011	}
3012	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3013	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3014
3015	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3016		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3017		(uintmax_t)xbb->gnt_base_addr);
3018	return (0);
3019}
3020
3021/**
3022 * Collect front-end information from the XenStore.
3023 *
3024 * \param xbb  Per-instance xbb configuration structure.
3025 */
3026static int
3027xbb_collect_frontend_info(struct xbb_softc *xbb)
3028{
3029	char	    protocol_abi[64];
3030	const char *otherend_path;
3031	int	    error;
3032	u_int	    ring_idx;
3033	u_int	    ring_page_order;
3034	size_t	    ring_size;
3035
3036	otherend_path = xenbus_get_otherend_path(xbb->dev);
3037
3038	/*
3039	 * Protocol defaults valid even if all negotiation fails.
3040	 */
3041	xbb->ring_config.ring_pages = 1;
3042	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3043	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3044
3045	/*
3046	 * Mandatory data (used in all versions of the protocol) first.
3047	 */
3048	error = xs_scanf(XST_NIL, otherend_path,
3049			 "event-channel", NULL, "%" PRIu32,
3050			 &xbb->ring_config.evtchn);
3051	if (error != 0) {
3052		xenbus_dev_fatal(xbb->dev, error,
3053				 "Unable to retrieve event-channel information "
3054				 "from frontend %s.  Unable to connect.",
3055				 xenbus_get_otherend_path(xbb->dev));
3056		return (error);
3057	}
3058
3059	/*
3060	 * These fields are initialized to legacy protocol defaults
3061	 * so we only need to fail if reading the updated value succeeds
3062	 * and the new value is outside of its allowed range.
3063	 *
3064	 * \note xs_gather() returns on the first encountered error, so
3065	 *       we must use independant calls in order to guarantee
3066	 *       we don't miss information in a sparsly populated front-end
3067	 *       tree.
3068	 *
3069	 * \note xs_scanf() does not update variables for unmatched
3070	 *       fields.
3071	 */
3072	ring_page_order = 0;
3073	xbb->max_requests = 32;
3074
3075	(void)xs_scanf(XST_NIL, otherend_path,
3076		       "ring-page-order", NULL, "%u",
3077		       &ring_page_order);
3078	xbb->ring_config.ring_pages = 1 << ring_page_order;
3079	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3080	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3081
3082	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3083		xenbus_dev_fatal(xbb->dev, EINVAL,
3084				 "Front-end specified ring-pages of %u "
3085				 "exceeds backend limit of %u.  "
3086				 "Unable to connect.",
3087				 xbb->ring_config.ring_pages,
3088				 XBB_MAX_RING_PAGES);
3089		return (EINVAL);
3090	}
3091
3092	if (xbb->ring_config.ring_pages	== 1) {
3093		error = xs_gather(XST_NIL, otherend_path,
3094				  "ring-ref", "%" PRIu32,
3095				  &xbb->ring_config.ring_ref[0],
3096				  NULL);
3097		if (error != 0) {
3098			xenbus_dev_fatal(xbb->dev, error,
3099					 "Unable to retrieve ring information "
3100					 "from frontend %s.  Unable to "
3101					 "connect.",
3102					 xenbus_get_otherend_path(xbb->dev));
3103			return (error);
3104		}
3105	} else {
3106		/* Multi-page ring format. */
3107		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3108		     ring_idx++) {
3109			char ring_ref_name[]= "ring_refXX";
3110
3111			snprintf(ring_ref_name, sizeof(ring_ref_name),
3112				 "ring-ref%u", ring_idx);
3113			error = xs_scanf(XST_NIL, otherend_path,
3114					 ring_ref_name, NULL, "%" PRIu32,
3115					 &xbb->ring_config.ring_ref[ring_idx]);
3116			if (error != 0) {
3117				xenbus_dev_fatal(xbb->dev, error,
3118						 "Failed to retriev grant "
3119						 "reference for page %u of "
3120						 "shared ring.  Unable "
3121						 "to connect.", ring_idx);
3122				return (error);
3123			}
3124		}
3125	}
3126
3127	error = xs_gather(XST_NIL, otherend_path,
3128			  "protocol", "%63s", protocol_abi,
3129			  NULL);
3130	if (error != 0
3131	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3132		/*
3133		 * Assume native if the frontend has not
3134		 * published ABI data or it has published and
3135		 * matches our own ABI.
3136		 */
3137		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3138	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3139
3140		xbb->abi = BLKIF_PROTOCOL_X86_32;
3141	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3142
3143		xbb->abi = BLKIF_PROTOCOL_X86_64;
3144	} else {
3145
3146		xenbus_dev_fatal(xbb->dev, EINVAL,
3147				 "Unknown protocol ABI (%s) published by "
3148				 "frontend.  Unable to connect.", protocol_abi);
3149		return (EINVAL);
3150	}
3151	return (0);
3152}
3153
3154/**
3155 * Allocate per-request data structures given request size and number
3156 * information negotiated with the front-end.
3157 *
3158 * \param xbb  Per-instance xbb configuration structure.
3159 */
3160static int
3161xbb_alloc_requests(struct xbb_softc *xbb)
3162{
3163	struct xbb_xen_req *req;
3164	struct xbb_xen_req *last_req;
3165
3166	/*
3167	 * Allocate request book keeping datastructures.
3168	 */
3169	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3170			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3171	if (xbb->requests == NULL) {
3172		xenbus_dev_fatal(xbb->dev, ENOMEM,
3173				  "Unable to allocate request structures");
3174		return (ENOMEM);
3175	}
3176
3177	req      = xbb->requests;
3178	last_req = &xbb->requests[xbb->max_requests - 1];
3179	STAILQ_INIT(&xbb->request_free_stailq);
3180	while (req <= last_req) {
3181		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3182		req++;
3183	}
3184	return (0);
3185}
3186
3187static int
3188xbb_alloc_request_lists(struct xbb_softc *xbb)
3189{
3190	struct xbb_xen_reqlist *reqlist;
3191	int			i;
3192
3193	/*
3194	 * If no requests can be merged, we need 1 request list per
3195	 * in flight request.
3196	 */
3197	xbb->request_lists = malloc(xbb->max_requests *
3198		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3199	if (xbb->request_lists == NULL) {
3200		xenbus_dev_fatal(xbb->dev, ENOMEM,
3201				  "Unable to allocate request list structures");
3202		return (ENOMEM);
3203	}
3204
3205	STAILQ_INIT(&xbb->reqlist_free_stailq);
3206	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3207	for (i = 0; i < xbb->max_requests; i++) {
3208		int seg;
3209
3210		reqlist      = &xbb->request_lists[i];
3211
3212		reqlist->xbb = xbb;
3213
3214#ifdef XBB_USE_BOUNCE_BUFFERS
3215		reqlist->bounce = malloc(xbb->max_reqlist_size,
3216					 M_XENBLOCKBACK, M_NOWAIT);
3217		if (reqlist->bounce == NULL) {
3218			xenbus_dev_fatal(xbb->dev, ENOMEM,
3219					 "Unable to allocate request "
3220					 "bounce buffers");
3221			return (ENOMEM);
3222		}
3223#endif /* XBB_USE_BOUNCE_BUFFERS */
3224
3225		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3226					      sizeof(*reqlist->gnt_handles),
3227					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3228		if (reqlist->gnt_handles == NULL) {
3229			xenbus_dev_fatal(xbb->dev, ENOMEM,
3230					  "Unable to allocate request "
3231					  "grant references");
3232			return (ENOMEM);
3233		}
3234
3235		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3236			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3237
3238		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3239	}
3240	return (0);
3241}
3242
3243/**
3244 * Supply information about the physical device to the frontend
3245 * via XenBus.
3246 *
3247 * \param xbb  Per-instance xbb configuration structure.
3248 */
3249static int
3250xbb_publish_backend_info(struct xbb_softc *xbb)
3251{
3252	struct xs_transaction xst;
3253	const char	     *our_path;
3254	const char	     *leaf;
3255	int		      error;
3256
3257	our_path = xenbus_get_node(xbb->dev);
3258	while (1) {
3259		error = xs_transaction_start(&xst);
3260		if (error != 0) {
3261			xenbus_dev_fatal(xbb->dev, error,
3262					 "Error publishing backend info "
3263					 "(start transaction)");
3264			return (error);
3265		}
3266
3267		leaf = "sectors";
3268		error = xs_printf(xst, our_path, leaf,
3269				  "%"PRIu64, xbb->media_num_sectors);
3270		if (error != 0)
3271			break;
3272
3273		/* XXX Support all VBD attributes here. */
3274		leaf = "info";
3275		error = xs_printf(xst, our_path, leaf, "%u",
3276				  xbb->flags & XBBF_READ_ONLY
3277				? VDISK_READONLY : 0);
3278		if (error != 0)
3279			break;
3280
3281		leaf = "sector-size";
3282		error = xs_printf(xst, our_path, leaf, "%u",
3283				  xbb->sector_size);
3284		if (error != 0)
3285			break;
3286
3287		error = xs_transaction_end(xst, 0);
3288		if (error == 0) {
3289			return (0);
3290		} else if (error != EAGAIN) {
3291			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3292			return (error);
3293		}
3294	}
3295
3296	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3297			our_path, leaf);
3298	xs_transaction_end(xst, 1);
3299	return (error);
3300}
3301
3302/**
3303 * Connect to our blkfront peer now that it has completed publishing
3304 * its configuration into the XenStore.
3305 *
3306 * \param xbb  Per-instance xbb configuration structure.
3307 */
3308static void
3309xbb_connect(struct xbb_softc *xbb)
3310{
3311	int error;
3312
3313	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3314		return;
3315
3316	if (xbb_collect_frontend_info(xbb) != 0)
3317		return;
3318
3319	xbb->flags &= ~XBBF_SHUTDOWN;
3320
3321	/*
3322	 * We limit the maximum number of reqlist segments to the maximum
3323	 * number of segments in the ring, or our absolute maximum,
3324	 * whichever is smaller.
3325	 */
3326	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3327		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3328
3329	/*
3330	 * The maximum size is simply a function of the number of segments
3331	 * we can handle.
3332	 */
3333	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3334
3335	/* Allocate resources whose size depends on front-end configuration. */
3336	error = xbb_alloc_communication_mem(xbb);
3337	if (error != 0) {
3338		xenbus_dev_fatal(xbb->dev, error,
3339				 "Unable to allocate communication memory");
3340		return;
3341	}
3342
3343	error = xbb_alloc_requests(xbb);
3344	if (error != 0) {
3345		/* Specific errors are reported by xbb_alloc_requests(). */
3346		return;
3347	}
3348
3349	error = xbb_alloc_request_lists(xbb);
3350	if (error != 0) {
3351		/* Specific errors are reported by xbb_alloc_request_lists(). */
3352		return;
3353	}
3354
3355	/*
3356	 * Connect communication channel.
3357	 */
3358	error = xbb_connect_ring(xbb);
3359	if (error != 0) {
3360		/* Specific errors are reported by xbb_connect_ring(). */
3361		return;
3362	}
3363
3364	if (xbb_publish_backend_info(xbb) != 0) {
3365		/*
3366		 * If we can't publish our data, we cannot participate
3367		 * in this connection, and waiting for a front-end state
3368		 * change will not help the situation.
3369		 */
3370		(void)xbb_disconnect(xbb);
3371		return;
3372	}
3373
3374	/* Ready for I/O. */
3375	xenbus_set_state(xbb->dev, XenbusStateConnected);
3376}
3377
3378/*-------------------------- Device Teardown Support -------------------------*/
3379/**
3380 * Perform device shutdown functions.
3381 *
3382 * \param xbb  Per-instance xbb configuration structure.
3383 *
3384 * Mark this instance as shutting down, wait for any active I/O on the
3385 * backend device/file to drain, disconnect from the front-end, and notify
3386 * any waiters (e.g. a thread invoking our detach method) that detach can
3387 * now proceed.
3388 */
3389static int
3390xbb_shutdown(struct xbb_softc *xbb)
3391{
3392	XenbusState frontState;
3393	int	    error;
3394
3395	DPRINTF("\n");
3396
3397	/*
3398	 * Due to the need to drop our mutex during some
3399	 * xenbus operations, it is possible for two threads
3400	 * to attempt to close out shutdown processing at
3401	 * the same time.  Tell the caller that hits this
3402	 * race to try back later.
3403	 */
3404	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3405		return (EAGAIN);
3406
3407	xbb->flags |= XBBF_IN_SHUTDOWN;
3408	mtx_unlock(&xbb->lock);
3409
3410	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3411		xenbus_set_state(xbb->dev, XenbusStateClosing);
3412
3413	frontState = xenbus_get_otherend_state(xbb->dev);
3414	mtx_lock(&xbb->lock);
3415	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3416
3417	/* The front can submit I/O until entering the closed state. */
3418	if (frontState < XenbusStateClosed)
3419		return (EAGAIN);
3420
3421	DPRINTF("\n");
3422
3423	/* Indicate shutdown is in progress. */
3424	xbb->flags |= XBBF_SHUTDOWN;
3425
3426	/* Disconnect from the front-end. */
3427	error = xbb_disconnect(xbb);
3428	if (error != 0) {
3429		/*
3430		 * Requests still outstanding.  We'll be called again
3431		 * once they complete.
3432		 */
3433		KASSERT(error == EAGAIN,
3434			("%s: Unexpected xbb_disconnect() failure %d",
3435			 __func__, error));
3436
3437		return (error);
3438	}
3439
3440	DPRINTF("\n");
3441
3442	/* Indicate to xbb_detach() that is it safe to proceed. */
3443	wakeup(xbb);
3444
3445	return (0);
3446}
3447
3448/**
3449 * Report an attach time error to the console and Xen, and cleanup
3450 * this instance by forcing immediate detach processing.
3451 *
3452 * \param xbb  Per-instance xbb configuration structure.
3453 * \param err  Errno describing the error.
3454 * \param fmt  Printf style format and arguments
3455 */
3456static void
3457xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3458{
3459	va_list ap;
3460	va_list ap_hotplug;
3461
3462	va_start(ap, fmt);
3463	va_copy(ap_hotplug, ap);
3464	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3465		  "hotplug-error", fmt, ap_hotplug);
3466	va_end(ap_hotplug);
3467	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3468		  "hotplug-status", "error");
3469
3470	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3471	va_end(ap);
3472
3473	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3474		  "online", "0");
3475	xbb_detach(xbb->dev);
3476}
3477
3478/*---------------------------- NewBus Entrypoints ----------------------------*/
3479/**
3480 * Inspect a XenBus device and claim it if is of the appropriate type.
3481 *
3482 * \param dev  NewBus device object representing a candidate XenBus device.
3483 *
3484 * \return  0 for success, errno codes for failure.
3485 */
3486static int
3487xbb_probe(device_t dev)
3488{
3489
3490        if (!strcmp(xenbus_get_type(dev), "vbd")) {
3491                device_set_desc(dev, "Backend Virtual Block Device");
3492                device_quiet(dev);
3493                return (0);
3494        }
3495
3496        return (ENXIO);
3497}
3498
3499/**
3500 * Setup sysctl variables to control various Block Back parameters.
3501 *
3502 * \param xbb  Xen Block Back softc.
3503 *
3504 */
3505static void
3506xbb_setup_sysctl(struct xbb_softc *xbb)
3507{
3508	struct sysctl_ctx_list *sysctl_ctx = NULL;
3509	struct sysctl_oid      *sysctl_tree = NULL;
3510
3511	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3512	if (sysctl_ctx == NULL)
3513		return;
3514
3515	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3516	if (sysctl_tree == NULL)
3517		return;
3518
3519	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3520		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3521		       "fake the flush command");
3522
3523	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3524		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3525		       "send a real flush for N flush requests");
3526
3527	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3528		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3529		       "Don't coalesce contiguous requests");
3530
3531	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3532			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3533			 "how many I/O requests we have received");
3534
3535	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3536			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3537			 "how many I/O requests have been completed");
3538
3539	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3540			 "reqs_queued_for_completion", CTLFLAG_RW,
3541			 &xbb->reqs_queued_for_completion,
3542			 "how many I/O requests queued but not yet pushed");
3543
3544	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3545			 "reqs_completed_with_error", CTLFLAG_RW,
3546			 &xbb->reqs_completed_with_error,
3547			 "how many I/O requests completed with error status");
3548
3549	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3550			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3551			 "how many I/O dispatches were forced");
3552
3553	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3554			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3555			 "how many I/O dispatches were normal");
3556
3557	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3558			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3559			 "total number of I/O dispatches");
3560
3561	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3562			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3563			 "how many times we have run out of KVA");
3564
3565	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3566			 "request_shortages", CTLFLAG_RW,
3567			 &xbb->request_shortages,
3568			 "how many times we have run out of requests");
3569
3570	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3571		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3572		        "maximum outstanding requests (negotiated)");
3573
3574	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3575		        "max_request_segments", CTLFLAG_RD,
3576		        &xbb->max_request_segments, 0,
3577		        "maximum number of pages per requests (negotiated)");
3578
3579	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3580		        "max_request_size", CTLFLAG_RD,
3581		        &xbb->max_request_size, 0,
3582		        "maximum size in bytes of a request (negotiated)");
3583
3584	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3585		        "ring_pages", CTLFLAG_RD,
3586		        &xbb->ring_config.ring_pages, 0,
3587		        "communication channel pages (negotiated)");
3588}
3589
3590/**
3591 * Attach to a XenBus device that has been claimed by our probe routine.
3592 *
3593 * \param dev  NewBus device object representing this Xen Block Back instance.
3594 *
3595 * \return  0 for success, errno codes for failure.
3596 */
3597static int
3598xbb_attach(device_t dev)
3599{
3600	struct xbb_softc	*xbb;
3601	int			 error;
3602	u_int			 max_ring_page_order;
3603
3604	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3605
3606	/*
3607	 * Basic initialization.
3608	 * After this block it is safe to call xbb_detach()
3609	 * to clean up any allocated data for this instance.
3610	 */
3611	xbb = device_get_softc(dev);
3612	xbb->dev = dev;
3613	xbb->otherend_id = xenbus_get_otherend_id(dev);
3614	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3615	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3616
3617	/*
3618	 * Publish protocol capabilities for consumption by the
3619	 * front-end.
3620	 */
3621	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3622			  "feature-barrier", "1");
3623	if (error) {
3624		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3625				  xenbus_get_node(xbb->dev));
3626		return (error);
3627	}
3628
3629	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3630			  "feature-flush-cache", "1");
3631	if (error) {
3632		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3633				  xenbus_get_node(xbb->dev));
3634		return (error);
3635	}
3636
3637	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3638	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3639			  "max-ring-page-order", "%u", max_ring_page_order);
3640	if (error) {
3641		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3642				  xenbus_get_node(xbb->dev));
3643		return (error);
3644	}
3645
3646	/* Collect physical device information. */
3647	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3648			  "device-type", NULL, &xbb->dev_type,
3649			  NULL);
3650	if (error != 0)
3651		xbb->dev_type = NULL;
3652
3653	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3654                          "mode", NULL, &xbb->dev_mode,
3655			  "params", NULL, &xbb->dev_name,
3656                          NULL);
3657	if (error != 0) {
3658		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3659				  xenbus_get_node(dev));
3660                return (ENXIO);
3661        }
3662
3663	/* Parse fopen style mode flags. */
3664	if (strchr(xbb->dev_mode, 'w') == NULL)
3665		xbb->flags |= XBBF_READ_ONLY;
3666
3667	/*
3668	 * Verify the physical device is present and can support
3669	 * the desired I/O mode.
3670	 */
3671	DROP_GIANT();
3672	error = xbb_open_backend(xbb);
3673	PICKUP_GIANT();
3674	if (error != 0) {
3675		xbb_attach_failed(xbb, error, "Unable to open %s",
3676				  xbb->dev_name);
3677		return (ENXIO);
3678	}
3679
3680	/* Use devstat(9) for recording statistics. */
3681	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3682					   xbb->sector_size,
3683					   DEVSTAT_ALL_SUPPORTED,
3684					   DEVSTAT_TYPE_DIRECT
3685					 | DEVSTAT_TYPE_IF_OTHER,
3686					   DEVSTAT_PRIORITY_OTHER);
3687
3688	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3689					      xbb->sector_size,
3690					      DEVSTAT_ALL_SUPPORTED,
3691					      DEVSTAT_TYPE_DIRECT
3692					    | DEVSTAT_TYPE_IF_OTHER,
3693					      DEVSTAT_PRIORITY_OTHER);
3694	/*
3695	 * Setup sysctl variables.
3696	 */
3697	xbb_setup_sysctl(xbb);
3698
3699	/*
3700	 * Create a taskqueue for doing work that must occur from a
3701	 * thread context.
3702	 */
3703	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3704						  M_NOWAIT,
3705						  taskqueue_thread_enqueue,
3706						  /*contxt*/&xbb->io_taskqueue);
3707	if (xbb->io_taskqueue == NULL) {
3708		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3709		return (ENOMEM);
3710	}
3711
3712	taskqueue_start_threads(&xbb->io_taskqueue,
3713				/*num threads*/1,
3714				/*priority*/PWAIT,
3715				/*thread name*/
3716				"%s taskq", device_get_nameunit(dev));
3717
3718	/* Update hot-plug status to satisfy xend. */
3719	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3720			  "hotplug-status", "connected");
3721	if (error) {
3722		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3723				  xenbus_get_node(xbb->dev));
3724		return (error);
3725	}
3726
3727	/* Tell the front end that we are ready to connect. */
3728	xenbus_set_state(dev, XenbusStateInitWait);
3729
3730	return (0);
3731}
3732
3733/**
3734 * Detach from a block back device instance.
3735 *
3736 * \param dev  NewBus device object representing this Xen Block Back instance.
3737 *
3738 * \return  0 for success, errno codes for failure.
3739 *
3740 * \note A block back device may be detached at any time in its life-cycle,
3741 *       including part way through the attach process.  For this reason,
3742 *       initialization order and the intialization state checks in this
3743 *       routine must be carefully coupled so that attach time failures
3744 *       are gracefully handled.
3745 */
3746static int
3747xbb_detach(device_t dev)
3748{
3749        struct xbb_softc *xbb;
3750
3751	DPRINTF("\n");
3752
3753        xbb = device_get_softc(dev);
3754	mtx_lock(&xbb->lock);
3755	while (xbb_shutdown(xbb) == EAGAIN) {
3756		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3757		       "xbb_shutdown", 0);
3758	}
3759	mtx_unlock(&xbb->lock);
3760
3761	DPRINTF("\n");
3762
3763	if (xbb->io_taskqueue != NULL)
3764		taskqueue_free(xbb->io_taskqueue);
3765
3766	if (xbb->xbb_stats != NULL)
3767		devstat_remove_entry(xbb->xbb_stats);
3768
3769	if (xbb->xbb_stats_in != NULL)
3770		devstat_remove_entry(xbb->xbb_stats_in);
3771
3772	xbb_close_backend(xbb);
3773
3774	if (xbb->dev_mode != NULL) {
3775		free(xbb->dev_mode, M_XENSTORE);
3776		xbb->dev_mode = NULL;
3777	}
3778
3779	if (xbb->dev_type != NULL) {
3780		free(xbb->dev_type, M_XENSTORE);
3781		xbb->dev_type = NULL;
3782	}
3783
3784	if (xbb->dev_name != NULL) {
3785		free(xbb->dev_name, M_XENSTORE);
3786		xbb->dev_name = NULL;
3787	}
3788
3789	mtx_destroy(&xbb->lock);
3790        return (0);
3791}
3792
3793/**
3794 * Prepare this block back device for suspension of this VM.
3795 *
3796 * \param dev  NewBus device object representing this Xen Block Back instance.
3797 *
3798 * \return  0 for success, errno codes for failure.
3799 */
3800static int
3801xbb_suspend(device_t dev)
3802{
3803#ifdef NOT_YET
3804        struct xbb_softc *sc = device_get_softc(dev);
3805
3806        /* Prevent new requests being issued until we fix things up. */
3807        mtx_lock(&sc->xb_io_lock);
3808        sc->connected = BLKIF_STATE_SUSPENDED;
3809        mtx_unlock(&sc->xb_io_lock);
3810#endif
3811
3812        return (0);
3813}
3814
3815/**
3816 * Perform any processing required to recover from a suspended state.
3817 *
3818 * \param dev  NewBus device object representing this Xen Block Back instance.
3819 *
3820 * \return  0 for success, errno codes for failure.
3821 */
3822static int
3823xbb_resume(device_t dev)
3824{
3825	return (0);
3826}
3827
3828/**
3829 * Handle state changes expressed via the XenStore by our front-end peer.
3830 *
3831 * \param dev             NewBus device object representing this Xen
3832 *                        Block Back instance.
3833 * \param frontend_state  The new state of the front-end.
3834 *
3835 * \return  0 for success, errno codes for failure.
3836 */
3837static void
3838xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3839{
3840	struct xbb_softc *xbb = device_get_softc(dev);
3841
3842	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3843	        xenbus_strstate(frontend_state),
3844		xenbus_strstate(xenbus_get_state(xbb->dev)));
3845
3846	switch (frontend_state) {
3847	case XenbusStateInitialising:
3848		break;
3849	case XenbusStateInitialised:
3850	case XenbusStateConnected:
3851		xbb_connect(xbb);
3852		break;
3853	case XenbusStateClosing:
3854	case XenbusStateClosed:
3855		mtx_lock(&xbb->lock);
3856		xbb_shutdown(xbb);
3857		mtx_unlock(&xbb->lock);
3858		if (frontend_state == XenbusStateClosed)
3859			xenbus_set_state(xbb->dev, XenbusStateClosed);
3860		break;
3861	default:
3862		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3863				 frontend_state);
3864		break;
3865	}
3866}
3867
3868/*---------------------------- NewBus Registration ---------------------------*/
3869static device_method_t xbb_methods[] = {
3870	/* Device interface */
3871	DEVMETHOD(device_probe,		xbb_probe),
3872	DEVMETHOD(device_attach,	xbb_attach),
3873	DEVMETHOD(device_detach,	xbb_detach),
3874	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3875	DEVMETHOD(device_suspend,	xbb_suspend),
3876	DEVMETHOD(device_resume,	xbb_resume),
3877
3878	/* Xenbus interface */
3879	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3880
3881	{ 0, 0 }
3882};
3883
3884static driver_t xbb_driver = {
3885        "xbbd",
3886        xbb_methods,
3887        sizeof(struct xbb_softc),
3888};
3889devclass_t xbb_devclass;
3890
3891DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3892