blkback.c revision 282634
1/*-
2 * Copyright (c) 2009-2012 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Ken Merry           (Spectra Logic Corporation)
32 */
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/xen/blkback/blkback.c 282634 2015-05-08 14:48:40Z royger $");
35
36/**
37 * \file blkback.c
38 *
39 * \brief Device driver supporting the vending of block storage from
40 *        a FreeBSD domain to other domains.
41 */
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47
48#include <sys/bio.h>
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/devicestat.h>
52#include <sys/disk.h>
53#include <sys/fcntl.h>
54#include <sys/filedesc.h>
55#include <sys/kdb.h>
56#include <sys/module.h>
57#include <sys/namei.h>
58#include <sys/proc.h>
59#include <sys/rman.h>
60#include <sys/taskqueue.h>
61#include <sys/types.h>
62#include <sys/vnode.h>
63#include <sys/mount.h>
64#include <sys/sysctl.h>
65#include <sys/bitstring.h>
66#include <sys/sdt.h>
67
68#include <geom/geom.h>
69
70#include <machine/_inttypes.h>
71
72#include <vm/vm.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_kern.h>
75
76#include <xen/xen-os.h>
77#include <xen/blkif.h>
78#include <xen/gnttab.h>
79#include <xen/xen_intr.h>
80
81#include <xen/interface/event_channel.h>
82#include <xen/interface/grant_table.h>
83
84#include <xen/xenbus/xenbusvar.h>
85
86/*--------------------------- Compile-time Tunables --------------------------*/
87/**
88 * The maximum number of outstanding request blocks (request headers plus
89 * additional segment blocks) we will allow in a negotiated block-front/back
90 * communication channel.
91 */
92#define	XBB_MAX_REQUESTS	256
93
94/**
95 * \brief Define to force all I/O to be performed on memory owned by the
96 *        backend device, with a copy-in/out to the remote domain's memory.
97 *
98 * \note  This option is currently required when this driver's domain is
99 *        operating in HVM mode on a system using an IOMMU.
100 *
101 * This driver uses Xen's grant table API to gain access to the memory of
102 * the remote domains it serves.  When our domain is operating in PV mode,
103 * the grant table mechanism directly updates our domain's page table entries
104 * to point to the physical pages of the remote domain.  This scheme guarantees
105 * that blkback and the backing devices it uses can safely perform DMA
106 * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
107 * insure that our domain cannot DMA to pages owned by another domain.  As
108 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
109 * table API.  For this reason, in HVM mode, we must bounce all requests into
110 * memory that is mapped into our domain at domain startup and thus has
111 * valid IOMMU mappings.
112 */
113#define XBB_USE_BOUNCE_BUFFERS
114
115/**
116 * \brief Define to enable rudimentary request logging to the console.
117 */
118#undef XBB_DEBUG
119
120/*---------------------------------- Macros ----------------------------------*/
121/**
122 * Custom malloc type for all driver allocations.
123 */
124static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
125
126#ifdef XBB_DEBUG
127#define DPRINTF(fmt, args...)					\
128    printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
129#else
130#define DPRINTF(fmt, args...) do {} while(0)
131#endif
132
133/**
134 * The maximum mapped region size per request we will allow in a negotiated
135 * block-front/back communication channel.
136 */
137#define	XBB_MAX_REQUEST_SIZE					\
138	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
139
140/**
141 * The maximum number of segments (within a request header and accompanying
142 * segment blocks) per request we will allow in a negotiated block-front/back
143 * communication channel.
144 */
145#define	XBB_MAX_SEGMENTS_PER_REQUEST				\
146	(MIN(UIO_MAXIOV,					\
147	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
148		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
149
150/**
151 * The maximum number of shared memory ring pages we will allow in a
152 * negotiated block-front/back communication channel.  Allow enough
153 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
154 */
155#define	XBB_MAX_RING_PAGES						    \
156	BLKIF_RING_PAGES(BLKIF_SEGS_TO_BLOCKS(XBB_MAX_SEGMENTS_PER_REQUEST) \
157		       * XBB_MAX_REQUESTS)
158/**
159 * The maximum number of ring pages that we can allow per request list.
160 * We limit this to the maximum number of segments per request, because
161 * that is already a reasonable number of segments to aggregate.  This
162 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
163 * because that would leave situations where we can't dispatch even one
164 * large request.
165 */
166#define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
167
168/*--------------------------- Forward Declarations ---------------------------*/
169struct xbb_softc;
170struct xbb_xen_req;
171
172static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
173			      ...) __attribute__((format(printf, 3, 4)));
174static int  xbb_shutdown(struct xbb_softc *xbb);
175static int  xbb_detach(device_t dev);
176
177/*------------------------------ Data Structures -----------------------------*/
178
179STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
180
181typedef enum {
182	XBB_REQLIST_NONE	= 0x00,
183	XBB_REQLIST_MAPPED	= 0x01
184} xbb_reqlist_flags;
185
186struct xbb_xen_reqlist {
187	/**
188	 * Back reference to the parent block back instance for this
189	 * request.  Used during bio_done handling.
190	 */
191	struct xbb_softc        *xbb;
192
193	/**
194	 * BLKIF_OP code for this request.
195	 */
196	int			 operation;
197
198	/**
199	 * Set to BLKIF_RSP_* to indicate request status.
200	 *
201	 * This field allows an error status to be recorded even if the
202	 * delivery of this status must be deferred.  Deferred reporting
203	 * is necessary, for example, when an error is detected during
204	 * completion processing of one bio when other bios for this
205	 * request are still outstanding.
206	 */
207	int			 status;
208
209	/**
210	 * Number of 512 byte sectors not transferred.
211	 */
212	int			 residual_512b_sectors;
213
214	/**
215	 * Starting sector number of the first request in the list.
216	 */
217	off_t			 starting_sector_number;
218
219	/**
220	 * If we're going to coalesce, the next contiguous sector would be
221	 * this one.
222	 */
223	off_t			 next_contig_sector;
224
225	/**
226	 * Number of child requests in the list.
227	 */
228	int			 num_children;
229
230	/**
231	 * Number of I/O requests still pending on the backend.
232	 */
233	int			 pendcnt;
234
235	/**
236	 * Total number of segments for requests in the list.
237	 */
238	int			 nr_segments;
239
240	/**
241	 * Flags for this particular request list.
242	 */
243	xbb_reqlist_flags	 flags;
244
245	/**
246	 * Kernel virtual address space reserved for this request
247	 * list structure and used to map the remote domain's pages for
248	 * this I/O, into our domain's address space.
249	 */
250	uint8_t			*kva;
251
252	/**
253	 * Base, psuedo-physical address, corresponding to the start
254	 * of this request's kva region.
255	 */
256	uint64_t	 	 gnt_base;
257
258
259#ifdef XBB_USE_BOUNCE_BUFFERS
260	/**
261	 * Pre-allocated domain local memory used to proxy remote
262	 * domain memory during I/O operations.
263	 */
264	uint8_t			*bounce;
265#endif
266
267	/**
268	 * Array of grant handles (one per page) used to map this request.
269	 */
270	grant_handle_t		*gnt_handles;
271
272	/**
273	 * Device statistics request ordering type (ordered or simple).
274	 */
275	devstat_tag_type	 ds_tag_type;
276
277	/**
278	 * Device statistics request type (read, write, no_data).
279	 */
280	devstat_trans_flags	 ds_trans_type;
281
282	/**
283	 * The start time for this request.
284	 */
285	struct bintime		 ds_t0;
286
287	/**
288	 * Linked list of contiguous requests with the same operation type.
289	 */
290	struct xbb_xen_req_list	 contig_req_list;
291
292	/**
293	 * Linked list links used to aggregate idle requests in the
294	 * request list free pool (xbb->reqlist_free_stailq) and pending
295	 * requests waiting for execution (xbb->reqlist_pending_stailq).
296	 */
297	STAILQ_ENTRY(xbb_xen_reqlist) links;
298};
299
300STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
301
302/**
303 * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
304 */
305struct xbb_xen_req {
306	/**
307	 * Linked list links used to aggregate requests into a reqlist
308	 * and to store them in the request free pool.
309	 */
310	STAILQ_ENTRY(xbb_xen_req) links;
311
312	/**
313	 * The remote domain's identifier for this I/O request.
314	 */
315	uint64_t		  id;
316
317	/**
318	 * The number of pages currently mapped for this request.
319	 */
320	int			  nr_pages;
321
322	/**
323	 * The number of 512 byte sectors comprising this requests.
324	 */
325	int			  nr_512b_sectors;
326
327	/**
328	 * BLKIF_OP code for this request.
329	 */
330	int			  operation;
331
332	/**
333	 * Storage used for non-native ring requests.
334	 */
335	blkif_request_t		 ring_req_storage;
336
337	/**
338	 * Pointer to the Xen request in the ring.
339	 */
340	blkif_request_t		*ring_req;
341
342	/**
343	 * Consumer index for this request.
344	 */
345	RING_IDX		 req_ring_idx;
346
347	/**
348	 * The start time for this request.
349	 */
350	struct bintime		 ds_t0;
351
352	/**
353	 * Pointer back to our parent request list.
354	 */
355	struct xbb_xen_reqlist  *reqlist;
356};
357SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
358
359/**
360 * \brief Configuration data for the shared memory request ring
361 *        used to communicate with the front-end client of this
362 *        this driver.
363 */
364struct xbb_ring_config {
365	/** KVA address where ring memory is mapped. */
366	vm_offset_t	va;
367
368	/** The pseudo-physical address where ring memory is mapped.*/
369	uint64_t	gnt_addr;
370
371	/**
372	 * Grant table handles, one per-ring page, returned by the
373	 * hyperpervisor upon mapping of the ring and required to
374	 * unmap it when a connection is torn down.
375	 */
376	grant_handle_t	handle[XBB_MAX_RING_PAGES];
377
378	/**
379	 * The device bus address returned by the hypervisor when
380	 * mapping the ring and required to unmap it when a connection
381	 * is torn down.
382	 */
383	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
384
385	/** The number of ring pages mapped for the current connection. */
386	u_int		ring_pages;
387
388	/**
389	 * The grant references, one per-ring page, supplied by the
390	 * front-end, allowing us to reference the ring pages in the
391	 * front-end's domain and to map these pages into our own domain.
392	 */
393	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
394
395	/** The interrupt driven even channel used to signal ring events. */
396	evtchn_port_t   evtchn;
397};
398
399/**
400 * Per-instance connection state flags.
401 */
402typedef enum
403{
404	/**
405	 * The front-end requested a read-only mount of the
406	 * back-end device/file.
407	 */
408	XBBF_READ_ONLY         = 0x01,
409
410	/** Communication with the front-end has been established. */
411	XBBF_RING_CONNECTED    = 0x02,
412
413	/**
414	 * Front-end requests exist in the ring and are waiting for
415	 * xbb_xen_req objects to free up.
416	 */
417	XBBF_RESOURCE_SHORTAGE = 0x04,
418
419	/** Connection teardown in progress. */
420	XBBF_SHUTDOWN          = 0x08,
421
422	/** A thread is already performing shutdown processing. */
423	XBBF_IN_SHUTDOWN       = 0x10
424} xbb_flag_t;
425
426/** Backend device type.  */
427typedef enum {
428	/** Backend type unknown. */
429	XBB_TYPE_NONE		= 0x00,
430
431	/**
432	 * Backend type disk (access via cdev switch
433	 * strategy routine).
434	 */
435	XBB_TYPE_DISK		= 0x01,
436
437	/** Backend type file (access vnode operations.). */
438	XBB_TYPE_FILE		= 0x02
439} xbb_type;
440
441/**
442 * \brief Structure used to memoize information about a per-request
443 *        scatter-gather list.
444 *
445 * The chief benefit of using this data structure is it avoids having
446 * to reparse the possibly discontiguous S/G list in the original
447 * request.  Due to the way that the mapping of the memory backing an
448 * I/O transaction is handled by Xen, a second pass is unavoidable.
449 * At least this way the second walk is a simple array traversal.
450 *
451 * \note A single Scatter/Gather element in the block interface covers
452 *       at most 1 machine page.  In this context a sector (blkif
453 *       nomenclature, not what I'd choose) is a 512b aligned unit
454 *       of mapping within the machine page referenced by an S/G
455 *       element.
456 */
457struct xbb_sg {
458	/** The number of 512b data chunks mapped in this S/G element. */
459	int16_t nsect;
460
461	/**
462	 * The index (0 based) of the first 512b data chunk mapped
463	 * in this S/G element.
464	 */
465	uint8_t first_sect;
466
467	/**
468	 * The index (0 based) of the last 512b data chunk mapped
469	 * in this S/G element.
470	 */
471	uint8_t last_sect;
472};
473
474/**
475 * Character device backend specific configuration data.
476 */
477struct xbb_dev_data {
478	/** Cdev used for device backend access.  */
479	struct cdev   *cdev;
480
481	/** Cdev switch used for device backend access.  */
482	struct cdevsw *csw;
483
484	/** Used to hold a reference on opened cdev backend devices. */
485	int	       dev_ref;
486};
487
488/**
489 * File backend specific configuration data.
490 */
491struct xbb_file_data {
492	/** Credentials to use for vnode backed (file based) I/O. */
493	struct ucred   *cred;
494
495	/**
496	 * \brief Array of io vectors used to process file based I/O.
497	 *
498	 * Only a single file based request is outstanding per-xbb instance,
499	 * so we only need one of these.
500	 */
501	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
502#ifdef XBB_USE_BOUNCE_BUFFERS
503
504	/**
505	 * \brief Array of io vectors used to handle bouncing of file reads.
506	 *
507	 * Vnode operations are free to modify uio data during their
508	 * exectuion.  In the case of a read with bounce buffering active,
509	 * we need some of the data from the original uio in order to
510	 * bounce-out the read data.  This array serves as the temporary
511	 * storage for this saved data.
512	 */
513	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
514
515	/**
516	 * \brief Array of memoized bounce buffer kva offsets used
517	 *        in the file based backend.
518	 *
519	 * Due to the way that the mapping of the memory backing an
520	 * I/O transaction is handled by Xen, a second pass through
521	 * the request sg elements is unavoidable. We memoize the computed
522	 * bounce address here to reduce the cost of the second walk.
523	 */
524	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
525#endif /* XBB_USE_BOUNCE_BUFFERS */
526};
527
528/**
529 * Collection of backend type specific data.
530 */
531union xbb_backend_data {
532	struct xbb_dev_data  dev;
533	struct xbb_file_data file;
534};
535
536/**
537 * Function signature of backend specific I/O handlers.
538 */
539typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
540			      struct xbb_xen_reqlist *reqlist, int operation,
541			      int flags);
542
543/**
544 * Per-instance configuration data.
545 */
546struct xbb_softc {
547
548	/**
549	 * Task-queue used to process I/O requests.
550	 */
551	struct taskqueue	 *io_taskqueue;
552
553	/**
554	 * Single "run the request queue" task enqueued
555	 * on io_taskqueue.
556	 */
557	struct task		  io_task;
558
559	/** Device type for this instance. */
560	xbb_type		  device_type;
561
562	/** NewBus device corresponding to this instance. */
563	device_t		  dev;
564
565	/** Backend specific dispatch routine for this instance. */
566	xbb_dispatch_t		  dispatch_io;
567
568	/** The number of requests outstanding on the backend device/file. */
569	int			  active_request_count;
570
571	/** Free pool of request tracking structures. */
572	struct xbb_xen_req_list   request_free_stailq;
573
574	/** Array, sized at connection time, of request tracking structures. */
575	struct xbb_xen_req	 *requests;
576
577	/** Free pool of request list structures. */
578	struct xbb_xen_reqlist_list reqlist_free_stailq;
579
580	/** List of pending request lists awaiting execution. */
581	struct xbb_xen_reqlist_list reqlist_pending_stailq;
582
583	/** Array, sized at connection time, of request list structures. */
584	struct xbb_xen_reqlist	 *request_lists;
585
586	/**
587	 * Global pool of kva used for mapping remote domain ring
588	 * and I/O transaction data.
589	 */
590	vm_offset_t		  kva;
591
592	/** Psuedo-physical address corresponding to kva. */
593	uint64_t		  gnt_base_addr;
594
595	/** The size of the global kva pool. */
596	int			  kva_size;
597
598	/** The size of the KVA area used for request lists. */
599	int			  reqlist_kva_size;
600
601	/** The number of pages of KVA used for request lists */
602	int			  reqlist_kva_pages;
603
604	/** Bitmap of free KVA pages */
605	bitstr_t		 *kva_free;
606
607	/**
608	 * \brief Cached value of the front-end's domain id.
609	 *
610	 * This value is used at once for each mapped page in
611	 * a transaction.  We cache it to avoid incuring the
612	 * cost of an ivar access every time this is needed.
613	 */
614	domid_t			  otherend_id;
615
616	/**
617	 * \brief The blkif protocol abi in effect.
618	 *
619	 * There are situations where the back and front ends can
620	 * have a different, native abi (e.g. intel x86_64 and
621	 * 32bit x86 domains on the same machine).  The back-end
622	 * always accomodates the front-end's native abi.  That
623	 * value is pulled from the XenStore and recorded here.
624	 */
625	int			  abi;
626
627	/**
628	 * \brief The maximum number of requests and request lists allowed
629	 *        to be in flight at a time.
630	 *
631	 * This value is negotiated via the XenStore.
632	 */
633	u_int			  max_requests;
634
635	/**
636	 * \brief The maximum number of segments (1 page per segment)
637	 *	  that can be mapped by a request.
638	 *
639	 * This value is negotiated via the XenStore.
640	 */
641	u_int			  max_request_segments;
642
643	/**
644	 * \brief Maximum number of segments per request list.
645	 *
646	 * This value is derived from and will generally be larger than
647	 * max_request_segments.
648	 */
649	u_int			  max_reqlist_segments;
650
651	/**
652	 * The maximum size of any request to this back-end
653	 * device.
654	 *
655	 * This value is negotiated via the XenStore.
656	 */
657	u_int			  max_request_size;
658
659	/**
660	 * The maximum size of any request list.  This is derived directly
661	 * from max_reqlist_segments.
662	 */
663	u_int			  max_reqlist_size;
664
665	/** Various configuration and state bit flags. */
666	xbb_flag_t		  flags;
667
668	/** Ring mapping and interrupt configuration data. */
669	struct xbb_ring_config	  ring_config;
670
671	/** Runtime, cross-abi safe, structures for ring access. */
672	blkif_back_rings_t	  rings;
673
674	/** IRQ mapping for the communication ring event channel. */
675	xen_intr_handle_t	  xen_intr_handle;
676
677	/**
678	 * \brief Backend access mode flags (e.g. write, or read-only).
679	 *
680	 * This value is passed to us by the front-end via the XenStore.
681	 */
682	char			 *dev_mode;
683
684	/**
685	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
686	 *
687	 * This value is passed to us by the front-end via the XenStore.
688	 * Currently unused.
689	 */
690	char			 *dev_type;
691
692	/**
693	 * \brief Backend device/file identifier.
694	 *
695	 * This value is passed to us by the front-end via the XenStore.
696	 * We expect this to be a POSIX path indicating the file or
697	 * device to open.
698	 */
699	char			 *dev_name;
700
701	/**
702	 * Vnode corresponding to the backend device node or file
703	 * we are acessing.
704	 */
705	struct vnode		 *vn;
706
707	union xbb_backend_data	  backend;
708
709	/** The native sector size of the backend. */
710	u_int			  sector_size;
711
712	/** log2 of sector_size.  */
713	u_int			  sector_size_shift;
714
715	/** Size in bytes of the backend device or file.  */
716	off_t			  media_size;
717
718	/**
719	 * \brief media_size expressed in terms of the backend native
720	 *	  sector size.
721	 *
722	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
723	 */
724	uint64_t		  media_num_sectors;
725
726	/**
727	 * \brief Array of memoized scatter gather data computed during the
728	 *	  conversion of blkif ring requests to internal xbb_xen_req
729	 *	  structures.
730	 *
731	 * Ring processing is serialized so we only need one of these.
732	 */
733	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
734
735	/**
736	 * Temporary grant table map used in xbb_dispatch_io().  When
737	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
738	 * stack could cause a stack overflow.
739	 */
740	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
741
742	/** Mutex protecting per-instance data. */
743	struct mtx		  lock;
744
745	/**
746	 * Resource representing allocated physical address space
747	 * associated with our per-instance kva region.
748	 */
749	struct resource		 *pseudo_phys_res;
750
751	/** Resource id for allocated physical address space. */
752	int			  pseudo_phys_res_id;
753
754	/**
755	 * I/O statistics from BlockBack dispatch down.  These are
756	 * coalesced requests, and we start them right before execution.
757	 */
758	struct devstat		 *xbb_stats;
759
760	/**
761	 * I/O statistics coming into BlockBack.  These are the requests as
762	 * we get them from BlockFront.  They are started as soon as we
763	 * receive a request, and completed when the I/O is complete.
764	 */
765	struct devstat		 *xbb_stats_in;
766
767	/** Disable sending flush to the backend */
768	int			  disable_flush;
769
770	/** Send a real flush for every N flush requests */
771	int			  flush_interval;
772
773	/** Count of flush requests in the interval */
774	int			  flush_count;
775
776	/** Don't coalesce requests if this is set */
777	int			  no_coalesce_reqs;
778
779	/** Number of requests we have received */
780	uint64_t		  reqs_received;
781
782	/** Number of requests we have completed*/
783	uint64_t		  reqs_completed;
784
785	/** Number of requests we queued but not pushed*/
786	uint64_t		  reqs_queued_for_completion;
787
788	/** Number of requests we completed with an error status*/
789	uint64_t		  reqs_completed_with_error;
790
791	/** How many forced dispatches (i.e. without coalescing) have happend */
792	uint64_t		  forced_dispatch;
793
794	/** How many normal dispatches have happend */
795	uint64_t		  normal_dispatch;
796
797	/** How many total dispatches have happend */
798	uint64_t		  total_dispatch;
799
800	/** How many times we have run out of KVA */
801	uint64_t		  kva_shortages;
802
803	/** How many times we have run out of request structures */
804	uint64_t		  request_shortages;
805};
806
807/*---------------------------- Request Processing ----------------------------*/
808/**
809 * Allocate an internal transaction tracking structure from the free pool.
810 *
811 * \param xbb  Per-instance xbb configuration structure.
812 *
813 * \return  On success, a pointer to the allocated xbb_xen_req structure.
814 *          Otherwise NULL.
815 */
816static inline struct xbb_xen_req *
817xbb_get_req(struct xbb_softc *xbb)
818{
819	struct xbb_xen_req *req;
820
821	req = NULL;
822
823	mtx_assert(&xbb->lock, MA_OWNED);
824
825	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
826		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
827		xbb->active_request_count++;
828	}
829
830	return (req);
831}
832
833/**
834 * Return an allocated transaction tracking structure to the free pool.
835 *
836 * \param xbb  Per-instance xbb configuration structure.
837 * \param req  The request structure to free.
838 */
839static inline void
840xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
841{
842	mtx_assert(&xbb->lock, MA_OWNED);
843
844	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
845	xbb->active_request_count--;
846
847	KASSERT(xbb->active_request_count >= 0,
848		("xbb_release_req: negative active count"));
849}
850
851/**
852 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
853 *
854 * \param xbb	    Per-instance xbb configuration structure.
855 * \param req_list  The list of requests to free.
856 * \param nreqs	    The number of items in the list.
857 */
858static inline void
859xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
860		 int nreqs)
861{
862	mtx_assert(&xbb->lock, MA_OWNED);
863
864	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
865	xbb->active_request_count -= nreqs;
866
867	KASSERT(xbb->active_request_count >= 0,
868		("xbb_release_reqs: negative active count"));
869}
870
871/**
872 * Given a page index and 512b sector offset within that page,
873 * calculate an offset into a request's kva region.
874 *
875 * \param reqlist The request structure whose kva region will be accessed.
876 * \param pagenr  The page index used to compute the kva offset.
877 * \param sector  The 512b sector index used to compute the page relative
878 *                kva offset.
879 *
880 * \return  The computed global KVA offset.
881 */
882static inline uint8_t *
883xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
884{
885	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
886}
887
888#ifdef XBB_USE_BOUNCE_BUFFERS
889/**
890 * Given a page index and 512b sector offset within that page,
891 * calculate an offset into a request's local bounce memory region.
892 *
893 * \param reqlist The request structure whose bounce region will be accessed.
894 * \param pagenr  The page index used to compute the bounce offset.
895 * \param sector  The 512b sector index used to compute the page relative
896 *                bounce offset.
897 *
898 * \return  The computed global bounce buffer address.
899 */
900static inline uint8_t *
901xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
902{
903	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
904}
905#endif
906
907/**
908 * Given a page number and 512b sector offset within that page,
909 * calculate an offset into the request's memory region that the
910 * underlying backend device/file should use for I/O.
911 *
912 * \param reqlist The request structure whose I/O region will be accessed.
913 * \param pagenr  The page index used to compute the I/O offset.
914 * \param sector  The 512b sector index used to compute the page relative
915 *                I/O offset.
916 *
917 * \return  The computed global I/O address.
918 *
919 * Depending on configuration, this will either be a local bounce buffer
920 * or a pointer to the memory mapped in from the front-end domain for
921 * this request.
922 */
923static inline uint8_t *
924xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
925{
926#ifdef XBB_USE_BOUNCE_BUFFERS
927	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
928#else
929	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
930#endif
931}
932
933/**
934 * Given a page index and 512b sector offset within that page, calculate
935 * an offset into the local psuedo-physical address space used to map a
936 * front-end's request data into a request.
937 *
938 * \param reqlist The request list structure whose pseudo-physical region
939 *                will be accessed.
940 * \param pagenr  The page index used to compute the pseudo-physical offset.
941 * \param sector  The 512b sector index used to compute the page relative
942 *                pseudo-physical offset.
943 *
944 * \return  The computed global pseudo-phsyical address.
945 *
946 * Depending on configuration, this will either be a local bounce buffer
947 * or a pointer to the memory mapped in from the front-end domain for
948 * this request.
949 */
950static inline uintptr_t
951xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
952{
953	struct xbb_softc *xbb;
954
955	xbb = reqlist->xbb;
956
957	return ((uintptr_t)(xbb->gnt_base_addr +
958		(uintptr_t)(reqlist->kva - xbb->kva) +
959		(PAGE_SIZE * pagenr) + (sector << 9)));
960}
961
962/**
963 * Get Kernel Virtual Address space for mapping requests.
964 *
965 * \param xbb         Per-instance xbb configuration structure.
966 * \param nr_pages    Number of pages needed.
967 * \param check_only  If set, check for free KVA but don't allocate it.
968 * \param have_lock   If set, xbb lock is already held.
969 *
970 * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
971 *
972 * Note:  This should be unnecessary once we have either chaining or
973 * scatter/gather support for struct bio.  At that point we'll be able to
974 * put multiple addresses and lengths in one bio/bio chain and won't need
975 * to map everything into one virtual segment.
976 */
977static uint8_t *
978xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
979{
980	intptr_t first_clear;
981	intptr_t num_clear;
982	uint8_t *free_kva;
983	int      i;
984
985	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
986
987	first_clear = 0;
988	free_kva = NULL;
989
990	mtx_lock(&xbb->lock);
991
992	/*
993	 * Look for the first available page.  If there are none, we're done.
994	 */
995	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
996
997	if (first_clear == -1)
998		goto bailout;
999
1000	/*
1001	 * Starting at the first available page, look for consecutive free
1002	 * pages that will satisfy the user's request.
1003	 */
1004	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1005		/*
1006		 * If this is true, the page is used, so we have to reset
1007		 * the number of clear pages and the first clear page
1008		 * (since it pointed to a region with an insufficient number
1009		 * of clear pages).
1010		 */
1011		if (bit_test(xbb->kva_free, i)) {
1012			num_clear = 0;
1013			first_clear = -1;
1014			continue;
1015		}
1016
1017		if (first_clear == -1)
1018			first_clear = i;
1019
1020		/*
1021		 * If this is true, we've found a large enough free region
1022		 * to satisfy the request.
1023		 */
1024		if (++num_clear == nr_pages) {
1025
1026			bit_nset(xbb->kva_free, first_clear,
1027				 first_clear + nr_pages - 1);
1028
1029			free_kva = xbb->kva +
1030				(uint8_t *)(first_clear * PAGE_SIZE);
1031
1032			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1033				free_kva + (nr_pages * PAGE_SIZE) <=
1034				(uint8_t *)xbb->ring_config.va,
1035				("Free KVA %p len %d out of range, "
1036				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1037				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1038				 (uintmax_t)xbb->ring_config.va));
1039			break;
1040		}
1041	}
1042
1043bailout:
1044
1045	if (free_kva == NULL) {
1046		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1047		xbb->kva_shortages++;
1048	}
1049
1050	mtx_unlock(&xbb->lock);
1051
1052	return (free_kva);
1053}
1054
1055/**
1056 * Free allocated KVA.
1057 *
1058 * \param xbb	    Per-instance xbb configuration structure.
1059 * \param kva_ptr   Pointer to allocated KVA region.
1060 * \param nr_pages  Number of pages in the KVA region.
1061 */
1062static void
1063xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1064{
1065	intptr_t start_page;
1066
1067	mtx_assert(&xbb->lock, MA_OWNED);
1068
1069	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1070	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1071
1072}
1073
1074/**
1075 * Unmap the front-end pages associated with this I/O request.
1076 *
1077 * \param req  The request structure to unmap.
1078 */
1079static void
1080xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1081{
1082	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1083	u_int			      i;
1084	u_int			      invcount;
1085	int			      error;
1086
1087	invcount = 0;
1088	for (i = 0; i < reqlist->nr_segments; i++) {
1089
1090		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1091			continue;
1092
1093		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1094		unmap[invcount].dev_bus_addr = 0;
1095		unmap[invcount].handle       = reqlist->gnt_handles[i];
1096		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1097		invcount++;
1098	}
1099
1100	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1101					  unmap, invcount);
1102	KASSERT(error == 0, ("Grant table operation failed"));
1103}
1104
1105/**
1106 * Allocate an internal transaction tracking structure from the free pool.
1107 *
1108 * \param xbb  Per-instance xbb configuration structure.
1109 *
1110 * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1111 *          Otherwise NULL.
1112 */
1113static inline struct xbb_xen_reqlist *
1114xbb_get_reqlist(struct xbb_softc *xbb)
1115{
1116	struct xbb_xen_reqlist *reqlist;
1117
1118	reqlist = NULL;
1119
1120	mtx_assert(&xbb->lock, MA_OWNED);
1121
1122	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1123
1124		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1125		reqlist->flags = XBB_REQLIST_NONE;
1126		reqlist->kva = NULL;
1127		reqlist->status = BLKIF_RSP_OKAY;
1128		reqlist->residual_512b_sectors = 0;
1129		reqlist->num_children = 0;
1130		reqlist->nr_segments = 0;
1131		STAILQ_INIT(&reqlist->contig_req_list);
1132	}
1133
1134	return (reqlist);
1135}
1136
1137/**
1138 * Return an allocated transaction tracking structure to the free pool.
1139 *
1140 * \param xbb        Per-instance xbb configuration structure.
1141 * \param req        The request list structure to free.
1142 * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1143 *                   during a resource shortage condition.
1144 */
1145static inline void
1146xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1147		    int wakeup)
1148{
1149
1150	mtx_assert(&xbb->lock, MA_OWNED);
1151
1152	if (wakeup) {
1153		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1154		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1155	}
1156
1157	if (reqlist->kva != NULL)
1158		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1159
1160	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1161
1162	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1163
1164	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1165		/*
1166		 * Shutdown is in progress.  See if we can
1167		 * progress further now that one more request
1168		 * has completed and been returned to the
1169		 * free pool.
1170		 */
1171		xbb_shutdown(xbb);
1172	}
1173
1174	if (wakeup != 0)
1175		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1176}
1177
1178/**
1179 * Request resources and do basic request setup.
1180 *
1181 * \param xbb          Per-instance xbb configuration structure.
1182 * \param reqlist      Pointer to reqlist pointer.
1183 * \param ring_req     Pointer to a block ring request.
1184 * \param ring_index   The ring index of this request.
1185 *
1186 * \return  0 for success, non-zero for failure.
1187 */
1188static int
1189xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1190		  blkif_request_t *ring_req, RING_IDX ring_idx)
1191{
1192	struct xbb_xen_reqlist *nreqlist;
1193	struct xbb_xen_req     *nreq;
1194
1195	nreqlist = NULL;
1196	nreq     = NULL;
1197
1198	mtx_lock(&xbb->lock);
1199
1200	/*
1201	 * We don't allow new resources to be allocated if we're in the
1202	 * process of shutting down.
1203	 */
1204	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1205		mtx_unlock(&xbb->lock);
1206		return (1);
1207	}
1208
1209	/*
1210	 * Allocate a reqlist if the caller doesn't have one already.
1211	 */
1212	if (*reqlist == NULL) {
1213		nreqlist = xbb_get_reqlist(xbb);
1214		if (nreqlist == NULL)
1215			goto bailout_error;
1216	}
1217
1218	/* We always allocate a request. */
1219	nreq = xbb_get_req(xbb);
1220	if (nreq == NULL)
1221		goto bailout_error;
1222
1223	mtx_unlock(&xbb->lock);
1224
1225	if (*reqlist == NULL) {
1226		*reqlist = nreqlist;
1227		nreqlist->operation = ring_req->operation;
1228		nreqlist->starting_sector_number = ring_req->sector_number;
1229		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1230				   links);
1231	}
1232
1233	nreq->reqlist = *reqlist;
1234	nreq->req_ring_idx = ring_idx;
1235	nreq->id = ring_req->id;
1236	nreq->operation = ring_req->operation;
1237
1238	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1239		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1240		nreq->ring_req = &nreq->ring_req_storage;
1241	} else {
1242		nreq->ring_req = ring_req;
1243	}
1244
1245	binuptime(&nreq->ds_t0);
1246	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1247	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1248	(*reqlist)->num_children++;
1249	(*reqlist)->nr_segments += ring_req->nr_segments;
1250
1251	return (0);
1252
1253bailout_error:
1254
1255	/*
1256	 * We're out of resources, so set the shortage flag.  The next time
1257	 * a request is released, we'll try waking up the work thread to
1258	 * see if we can allocate more resources.
1259	 */
1260	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1261	xbb->request_shortages++;
1262
1263	if (nreq != NULL)
1264		xbb_release_req(xbb, nreq);
1265
1266	if (nreqlist != NULL)
1267		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1268
1269	mtx_unlock(&xbb->lock);
1270
1271	return (1);
1272}
1273
1274/**
1275 * Create and queue a response to a blkif request.
1276 *
1277 * \param xbb     Per-instance xbb configuration structure.
1278 * \param req     The request structure to which to respond.
1279 * \param status  The status code to report.  See BLKIF_RSP_*
1280 *                in sys/xen/interface/io/blkif.h.
1281 */
1282static void
1283xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1284{
1285	blkif_response_t *resp;
1286
1287	/*
1288	 * The mutex is required here, and should be held across this call
1289	 * until after the subsequent call to xbb_push_responses().  This
1290	 * is to guarantee that another context won't queue responses and
1291	 * push them while we're active.
1292	 *
1293	 * That could lead to the other end being notified of responses
1294	 * before the resources have been freed on this end.  The other end
1295	 * would then be able to queue additional I/O, and we may run out
1296 	 * of resources because we haven't freed them all yet.
1297	 */
1298	mtx_assert(&xbb->lock, MA_OWNED);
1299
1300	/*
1301	 * Place on the response ring for the relevant domain.
1302	 * For now, only the spacing between entries is different
1303	 * in the different ABIs, not the response entry layout.
1304	 */
1305	switch (xbb->abi) {
1306	case BLKIF_PROTOCOL_NATIVE:
1307		resp = RING_GET_RESPONSE(&xbb->rings.native,
1308					 xbb->rings.native.rsp_prod_pvt);
1309		break;
1310	case BLKIF_PROTOCOL_X86_32:
1311		resp = (blkif_response_t *)
1312		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1313				      xbb->rings.x86_32.rsp_prod_pvt);
1314		break;
1315	case BLKIF_PROTOCOL_X86_64:
1316		resp = (blkif_response_t *)
1317		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1318				      xbb->rings.x86_64.rsp_prod_pvt);
1319		break;
1320	default:
1321		panic("Unexpected blkif protocol ABI.");
1322	}
1323
1324	resp->id        = req->id;
1325	resp->operation = req->operation;
1326	resp->status    = status;
1327
1328	if (status != BLKIF_RSP_OKAY)
1329		xbb->reqs_completed_with_error++;
1330
1331	xbb->rings.common.rsp_prod_pvt += BLKIF_SEGS_TO_BLOCKS(req->nr_pages);
1332
1333	xbb->reqs_queued_for_completion++;
1334
1335}
1336
1337/**
1338 * Send queued responses to blkif requests.
1339 *
1340 * \param xbb            Per-instance xbb configuration structure.
1341 * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1342 *			 should be run, 0 if it does not need to be run.
1343 * \param notify	 Flag that is set to 1 if the other end should be
1344 * 			 notified via irq, 0 if the other end should not be
1345 *			 notified.
1346 */
1347static void
1348xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1349{
1350	int more_to_do;
1351
1352	/*
1353	 * The mutex is required here.
1354	 */
1355	mtx_assert(&xbb->lock, MA_OWNED);
1356
1357	more_to_do = 0;
1358
1359	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1360
1361	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1362
1363		/*
1364		 * Tail check for pending requests. Allows frontend to avoid
1365		 * notifications if requests are already in flight (lower
1366		 * overheads and promotes batching).
1367		 */
1368		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1369	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1370
1371		more_to_do = 1;
1372	}
1373
1374	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1375	xbb->reqs_queued_for_completion = 0;
1376
1377	*run_taskqueue = more_to_do;
1378}
1379
1380/**
1381 * Complete a request list.
1382 *
1383 * \param xbb        Per-instance xbb configuration structure.
1384 * \param reqlist    Allocated internal request list structure.
1385 */
1386static void
1387xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1388{
1389	struct xbb_xen_req *nreq;
1390	off_t		    sectors_sent;
1391	int		    notify, run_taskqueue;
1392
1393	sectors_sent = 0;
1394
1395	if (reqlist->flags & XBB_REQLIST_MAPPED)
1396		xbb_unmap_reqlist(reqlist);
1397
1398	mtx_lock(&xbb->lock);
1399
1400	/*
1401	 * All I/O is done, send the response. A lock is not necessary
1402	 * to protect the request list, because all requests have
1403	 * completed.  Therefore this is the only context accessing this
1404	 * reqlist right now.  However, in order to make sure that no one
1405	 * else queues responses onto the queue or pushes them to the other
1406	 * side while we're active, we need to hold the lock across the
1407	 * calls to xbb_queue_response() and xbb_push_responses().
1408	 */
1409	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1410		off_t cur_sectors_sent;
1411
1412		/* Put this response on the ring, but don't push yet */
1413		xbb_queue_response(xbb, nreq, reqlist->status);
1414
1415		/* We don't report bytes sent if there is an error. */
1416		if (reqlist->status == BLKIF_RSP_OKAY)
1417			cur_sectors_sent = nreq->nr_512b_sectors;
1418		else
1419			cur_sectors_sent = 0;
1420
1421		sectors_sent += cur_sectors_sent;
1422
1423		devstat_end_transaction(xbb->xbb_stats_in,
1424					/*bytes*/cur_sectors_sent << 9,
1425					reqlist->ds_tag_type,
1426					reqlist->ds_trans_type,
1427					/*now*/NULL,
1428					/*then*/&nreq->ds_t0);
1429	}
1430
1431	/*
1432	 * Take out any sectors not sent.  If we wind up negative (which
1433	 * might happen if an error is reported as well as a residual), just
1434	 * report 0 sectors sent.
1435	 */
1436	sectors_sent -= reqlist->residual_512b_sectors;
1437	if (sectors_sent < 0)
1438		sectors_sent = 0;
1439
1440	devstat_end_transaction(xbb->xbb_stats,
1441				/*bytes*/ sectors_sent << 9,
1442				reqlist->ds_tag_type,
1443				reqlist->ds_trans_type,
1444				/*now*/NULL,
1445				/*then*/&reqlist->ds_t0);
1446
1447	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1448
1449	xbb_push_responses(xbb, &run_taskqueue, &notify);
1450
1451	mtx_unlock(&xbb->lock);
1452
1453	if (run_taskqueue)
1454		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1455
1456	if (notify)
1457		xen_intr_signal(xbb->xen_intr_handle);
1458}
1459
1460/**
1461 * Completion handler for buffer I/O requests issued by the device
1462 * backend driver.
1463 *
1464 * \param bio  The buffer I/O request on which to perform completion
1465 *             processing.
1466 */
1467static void
1468xbb_bio_done(struct bio *bio)
1469{
1470	struct xbb_softc       *xbb;
1471	struct xbb_xen_reqlist *reqlist;
1472
1473	reqlist = bio->bio_caller1;
1474	xbb     = reqlist->xbb;
1475
1476	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1477
1478	/*
1479	 * This is a bit imprecise.  With aggregated I/O a single
1480	 * request list can contain multiple front-end requests and
1481	 * a multiple bios may point to a single request.  By carefully
1482	 * walking the request list, we could map residuals and errors
1483	 * back to the original front-end request, but the interface
1484	 * isn't sufficiently rich for us to properly report the error.
1485	 * So, we just treat the entire request list as having failed if an
1486	 * error occurs on any part.  And, if an error occurs, we treat
1487	 * the amount of data transferred as 0.
1488	 *
1489	 * For residuals, we report it on the overall aggregated device,
1490	 * but not on the individual requests, since we don't currently
1491	 * do the work to determine which front-end request to which the
1492	 * residual applies.
1493	 */
1494	if (bio->bio_error) {
1495		DPRINTF("BIO returned error %d for operation on device %s\n",
1496			bio->bio_error, xbb->dev_name);
1497		reqlist->status = BLKIF_RSP_ERROR;
1498
1499		if (bio->bio_error == ENXIO
1500		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1501
1502			/*
1503			 * Backend device has disappeared.  Signal the
1504			 * front-end that we (the device proxy) want to
1505			 * go away.
1506			 */
1507			xenbus_set_state(xbb->dev, XenbusStateClosing);
1508		}
1509	}
1510
1511#ifdef XBB_USE_BOUNCE_BUFFERS
1512	if (bio->bio_cmd == BIO_READ) {
1513		vm_offset_t kva_offset;
1514
1515		kva_offset = (vm_offset_t)bio->bio_data
1516			   - (vm_offset_t)reqlist->bounce;
1517		memcpy((uint8_t *)reqlist->kva + kva_offset,
1518		       bio->bio_data, bio->bio_bcount);
1519	}
1520#endif /* XBB_USE_BOUNCE_BUFFERS */
1521
1522	/*
1523	 * Decrement the pending count for the request list.  When we're
1524	 * done with the requests, send status back for all of them.
1525	 */
1526	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1527		xbb_complete_reqlist(xbb, reqlist);
1528
1529	g_destroy_bio(bio);
1530}
1531
1532/**
1533 * Parse a blkif request into an internal request structure and send
1534 * it to the backend for processing.
1535 *
1536 * \param xbb       Per-instance xbb configuration structure.
1537 * \param reqlist   Allocated internal request list structure.
1538 *
1539 * \return          On success, 0.  For resource shortages, non-zero.
1540 *
1541 * This routine performs the backend common aspects of request parsing
1542 * including compiling an internal request structure, parsing the S/G
1543 * list and any secondary ring requests in which they may reside, and
1544 * the mapping of front-end I/O pages into our domain.
1545 */
1546static int
1547xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1548{
1549	struct xbb_sg                *xbb_sg;
1550	struct gnttab_map_grant_ref  *map;
1551	struct blkif_request_segment *sg;
1552	struct blkif_request_segment *last_block_sg;
1553	struct xbb_xen_req	     *nreq;
1554	u_int			      nseg;
1555	u_int			      seg_idx;
1556	u_int			      block_segs;
1557	int			      nr_sects;
1558	int			      total_sects;
1559	int			      operation;
1560	uint8_t			      bio_flags;
1561	int			      error;
1562
1563	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1564	bio_flags            = 0;
1565	total_sects	     = 0;
1566	nr_sects	     = 0;
1567
1568	/*
1569	 * First determine whether we have enough free KVA to satisfy this
1570	 * request list.  If not, tell xbb_run_queue() so it can go to
1571	 * sleep until we have more KVA.
1572	 */
1573	reqlist->kva = NULL;
1574	if (reqlist->nr_segments != 0) {
1575		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1576		if (reqlist->kva == NULL) {
1577			/*
1578			 * If we're out of KVA, return ENOMEM.
1579			 */
1580			return (ENOMEM);
1581		}
1582	}
1583
1584	binuptime(&reqlist->ds_t0);
1585	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1586
1587	switch (reqlist->operation) {
1588	case BLKIF_OP_WRITE_BARRIER:
1589		bio_flags       |= BIO_ORDERED;
1590		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1591		/* FALLTHROUGH */
1592	case BLKIF_OP_WRITE:
1593		operation = BIO_WRITE;
1594		reqlist->ds_trans_type = DEVSTAT_WRITE;
1595		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1596			DPRINTF("Attempt to write to read only device %s\n",
1597				xbb->dev_name);
1598			reqlist->status = BLKIF_RSP_ERROR;
1599			goto send_response;
1600		}
1601		break;
1602	case BLKIF_OP_READ:
1603		operation = BIO_READ;
1604		reqlist->ds_trans_type = DEVSTAT_READ;
1605		break;
1606	case BLKIF_OP_FLUSH_DISKCACHE:
1607		/*
1608		 * If this is true, the user has requested that we disable
1609		 * flush support.  So we just complete the requests
1610		 * successfully.
1611		 */
1612		if (xbb->disable_flush != 0) {
1613			goto send_response;
1614		}
1615
1616		/*
1617		 * The user has requested that we only send a real flush
1618		 * for every N flush requests.  So keep count, and either
1619		 * complete the request immediately or queue it for the
1620		 * backend.
1621		 */
1622		if (xbb->flush_interval != 0) {
1623		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1624				goto send_response;
1625			} else
1626				xbb->flush_count = 0;
1627		}
1628
1629		operation = BIO_FLUSH;
1630		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1631		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1632		goto do_dispatch;
1633		/*NOTREACHED*/
1634	default:
1635		DPRINTF("error: unknown block io operation [%d]\n",
1636			reqlist->operation);
1637		reqlist->status = BLKIF_RSP_ERROR;
1638		goto send_response;
1639	}
1640
1641	reqlist->xbb  = xbb;
1642	xbb_sg        = xbb->xbb_sgs;
1643	map	      = xbb->maps;
1644	seg_idx	      = 0;
1645
1646	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1647		blkif_request_t		*ring_req;
1648		RING_IDX		 req_ring_idx;
1649		u_int			 req_seg_idx;
1650
1651		ring_req	      = nreq->ring_req;
1652		req_ring_idx	      = nreq->req_ring_idx;
1653		nr_sects              = 0;
1654		nseg                  = ring_req->nr_segments;
1655		nreq->nr_pages        = nseg;
1656		nreq->nr_512b_sectors = 0;
1657		req_seg_idx	      = 0;
1658		sg	              = NULL;
1659
1660		/* Check that number of segments is sane. */
1661		if (__predict_false(nseg == 0)
1662		 || __predict_false(nseg > xbb->max_request_segments)) {
1663			DPRINTF("Bad number of segments in request (%d)\n",
1664				nseg);
1665			reqlist->status = BLKIF_RSP_ERROR;
1666			goto send_response;
1667		}
1668
1669		block_segs    = MIN(nreq->nr_pages,
1670				    BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK);
1671		sg            = ring_req->seg;
1672		last_block_sg = sg + block_segs;
1673		while (1) {
1674
1675			while (sg < last_block_sg) {
1676				KASSERT(seg_idx <
1677					XBB_MAX_SEGMENTS_PER_REQLIST,
1678					("seg_idx %d is too large, max "
1679					"segs %d\n", seg_idx,
1680					XBB_MAX_SEGMENTS_PER_REQLIST));
1681
1682				xbb_sg->first_sect = sg->first_sect;
1683				xbb_sg->last_sect  = sg->last_sect;
1684				xbb_sg->nsect =
1685				    (int8_t)(sg->last_sect -
1686				    sg->first_sect + 1);
1687
1688				if ((sg->last_sect >= (PAGE_SIZE >> 9))
1689				 || (xbb_sg->nsect <= 0)) {
1690					reqlist->status = BLKIF_RSP_ERROR;
1691					goto send_response;
1692				}
1693
1694				nr_sects += xbb_sg->nsect;
1695				map->host_addr = xbb_get_gntaddr(reqlist,
1696							seg_idx, /*sector*/0);
1697				KASSERT(map->host_addr + PAGE_SIZE <=
1698					xbb->ring_config.gnt_addr,
1699					("Host address %#jx len %d overlaps "
1700					 "ring address %#jx\n",
1701					(uintmax_t)map->host_addr, PAGE_SIZE,
1702					(uintmax_t)xbb->ring_config.gnt_addr));
1703
1704				map->flags     = GNTMAP_host_map;
1705				map->ref       = sg->gref;
1706				map->dom       = xbb->otherend_id;
1707				if (operation == BIO_WRITE)
1708					map->flags |= GNTMAP_readonly;
1709				sg++;
1710				map++;
1711				xbb_sg++;
1712				seg_idx++;
1713				req_seg_idx++;
1714			}
1715
1716			block_segs = MIN(nseg - req_seg_idx,
1717					 BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK);
1718			if (block_segs == 0)
1719				break;
1720
1721			/*
1722			 * Fetch the next request block full of SG elements.
1723			 * For now, only the spacing between entries is
1724			 * different in the different ABIs, not the sg entry
1725			 * layout.
1726			 */
1727			req_ring_idx++;
1728			switch (xbb->abi) {
1729			case BLKIF_PROTOCOL_NATIVE:
1730				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.native,
1731							   req_ring_idx);
1732				break;
1733			case BLKIF_PROTOCOL_X86_32:
1734			{
1735				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_32,
1736							   req_ring_idx);
1737				break;
1738			}
1739			case BLKIF_PROTOCOL_X86_64:
1740			{
1741				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_64,
1742							   req_ring_idx);
1743				break;
1744			}
1745			default:
1746				panic("Unexpected blkif protocol ABI.");
1747				/* NOTREACHED */
1748			}
1749			last_block_sg = sg + block_segs;
1750		}
1751
1752		/* Convert to the disk's sector size */
1753		nreq->nr_512b_sectors = nr_sects;
1754		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1755		total_sects += nr_sects;
1756
1757		if ((nreq->nr_512b_sectors &
1758		    ((xbb->sector_size >> 9) - 1)) != 0) {
1759			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1760				      "a multiple of the backing store sector "
1761				      "size (%d)\n", __func__,
1762				      nreq->nr_512b_sectors << 9,
1763				      xbb->sector_size);
1764			reqlist->status = BLKIF_RSP_ERROR;
1765			goto send_response;
1766		}
1767	}
1768
1769	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1770					  xbb->maps, reqlist->nr_segments);
1771	if (error != 0)
1772		panic("Grant table operation failed (%d)", error);
1773
1774	reqlist->flags |= XBB_REQLIST_MAPPED;
1775
1776	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1777	     seg_idx++, map++){
1778
1779		if (__predict_false(map->status != 0)) {
1780			DPRINTF("invalid buffer -- could not remap "
1781			        "it (%d)\n", map->status);
1782			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1783			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1784				map->host_addr, map->flags, map->ref,
1785				map->dom);
1786			reqlist->status = BLKIF_RSP_ERROR;
1787			goto send_response;
1788		}
1789
1790		reqlist->gnt_handles[seg_idx] = map->handle;
1791	}
1792	if (reqlist->starting_sector_number + total_sects >
1793	    xbb->media_num_sectors) {
1794
1795		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1796			"extends past end of device %s\n",
1797			operation == BIO_READ ? "read" : "write",
1798			reqlist->starting_sector_number,
1799			reqlist->starting_sector_number + total_sects,
1800			xbb->dev_name);
1801		reqlist->status = BLKIF_RSP_ERROR;
1802		goto send_response;
1803	}
1804
1805do_dispatch:
1806
1807	error = xbb->dispatch_io(xbb,
1808				 reqlist,
1809				 operation,
1810				 bio_flags);
1811
1812	if (error != 0) {
1813		reqlist->status = BLKIF_RSP_ERROR;
1814		goto send_response;
1815	}
1816
1817	return (0);
1818
1819send_response:
1820
1821	xbb_complete_reqlist(xbb, reqlist);
1822
1823	return (0);
1824}
1825
1826static __inline int
1827xbb_count_sects(blkif_request_t *ring_req)
1828{
1829	int i;
1830	int cur_size = 0;
1831
1832	for (i = 0; i < ring_req->nr_segments; i++) {
1833		int nsect;
1834
1835		nsect = (int8_t)(ring_req->seg[i].last_sect -
1836			ring_req->seg[i].first_sect + 1);
1837		if (nsect <= 0)
1838			break;
1839
1840		cur_size += nsect;
1841	}
1842
1843	return (cur_size);
1844}
1845
1846/**
1847 * Process incoming requests from the shared communication ring in response
1848 * to a signal on the ring's event channel.
1849 *
1850 * \param context  Callback argument registerd during task initialization -
1851 *                 the xbb_softc for this instance.
1852 * \param pending  The number of taskqueue_enqueue events that have
1853 *                 occurred since this handler was last run.
1854 */
1855static void
1856xbb_run_queue(void *context, int pending)
1857{
1858	struct xbb_softc       *xbb;
1859	blkif_back_rings_t     *rings;
1860	RING_IDX		rp;
1861	uint64_t		cur_sector;
1862	int			cur_operation;
1863	struct xbb_xen_reqlist *reqlist;
1864
1865
1866	xbb   = (struct xbb_softc *)context;
1867	rings = &xbb->rings;
1868
1869	/*
1870	 * Work gather and dispatch loop.  Note that we have a bias here
1871	 * towards gathering I/O sent by blockfront.  We first gather up
1872	 * everything in the ring, as long as we have resources.  Then we
1873	 * dispatch one request, and then attempt to gather up any
1874	 * additional requests that have come in while we were dispatching
1875	 * the request.
1876	 *
1877	 * This allows us to get a clearer picture (via devstat) of how
1878	 * many requests blockfront is queueing to us at any given time.
1879	 */
1880	for (;;) {
1881		int retval;
1882
1883		/*
1884		 * Initialize reqlist to the last element in the pending
1885		 * queue, if there is one.  This allows us to add more
1886		 * requests to that request list, if we have room.
1887		 */
1888		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1889				      xbb_xen_reqlist, links);
1890		if (reqlist != NULL) {
1891			cur_sector = reqlist->next_contig_sector;
1892			cur_operation = reqlist->operation;
1893		} else {
1894			cur_operation = 0;
1895			cur_sector    = 0;
1896		}
1897
1898		/*
1899		 * Cache req_prod to avoid accessing a cache line shared
1900		 * with the frontend.
1901		 */
1902		rp = rings->common.sring->req_prod;
1903
1904		/* Ensure we see queued requests up to 'rp'. */
1905		rmb();
1906
1907		/**
1908		 * Run so long as there is work to consume and the generation
1909		 * of a response will not overflow the ring.
1910		 *
1911		 * @note There's a 1 to 1 relationship between requests and
1912		 *       responses, so an overflow should never occur.  This
1913		 *       test is to protect our domain from digesting bogus
1914		 *       data.  Shouldn't we log this?
1915		 */
1916		while (rings->common.req_cons != rp
1917		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1918						  rings->common.req_cons) == 0){
1919			blkif_request_t	        ring_req_storage;
1920			blkif_request_t	       *ring_req;
1921			int			cur_size;
1922
1923			switch (xbb->abi) {
1924			case BLKIF_PROTOCOL_NATIVE:
1925				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1926				    rings->common.req_cons);
1927				break;
1928			case BLKIF_PROTOCOL_X86_32:
1929			{
1930				struct blkif_x86_32_request *ring_req32;
1931
1932				ring_req32 = RING_GET_REQUEST(
1933				    &xbb->rings.x86_32, rings->common.req_cons);
1934				blkif_get_x86_32_req(&ring_req_storage,
1935						     ring_req32);
1936				ring_req = &ring_req_storage;
1937				break;
1938			}
1939			case BLKIF_PROTOCOL_X86_64:
1940			{
1941				struct blkif_x86_64_request *ring_req64;
1942
1943				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1944				    rings->common.req_cons);
1945				blkif_get_x86_64_req(&ring_req_storage,
1946						     ring_req64);
1947				ring_req = &ring_req_storage;
1948				break;
1949			}
1950			default:
1951				panic("Unexpected blkif protocol ABI.");
1952				/* NOTREACHED */
1953			}
1954
1955			/*
1956			 * Check for situations that would require closing
1957			 * off this I/O for further coalescing:
1958			 *  - Coalescing is turned off.
1959			 *  - Current I/O is out of sequence with the previous
1960			 *    I/O.
1961			 *  - Coalesced I/O would be too large.
1962			 */
1963			if ((reqlist != NULL)
1964			 && ((xbb->no_coalesce_reqs != 0)
1965			  || ((xbb->no_coalesce_reqs == 0)
1966			   && ((ring_req->sector_number != cur_sector)
1967			    || (ring_req->operation != cur_operation)
1968			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1969			         xbb->max_reqlist_segments))))) {
1970				reqlist = NULL;
1971			}
1972
1973			/*
1974			 * Grab and check for all resources in one shot.
1975			 * If we can't get all of the resources we need,
1976			 * the shortage is noted and the thread will get
1977			 * woken up when more resources are available.
1978			 */
1979			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1980						   xbb->rings.common.req_cons);
1981
1982			if (retval != 0) {
1983				/*
1984				 * Resource shortage has been recorded.
1985				 * We'll be scheduled to run once a request
1986				 * object frees up due to a completion.
1987				 */
1988				break;
1989			}
1990
1991			/*
1992			 * Signify that	we can overwrite this request with
1993			 * a response by incrementing our consumer index.
1994			 * The response won't be generated until after
1995			 * we've already consumed all necessary data out
1996			 * of the version of the request in the ring buffer
1997			 * (for native mode).  We must update the consumer
1998			 * index  before issueing back-end I/O so there is
1999			 * no possibility that it will complete and a
2000			 * response be generated before we make room in
2001			 * the queue for that response.
2002			 */
2003			xbb->rings.common.req_cons +=
2004			    BLKIF_SEGS_TO_BLOCKS(ring_req->nr_segments);
2005			xbb->reqs_received++;
2006
2007			cur_size = xbb_count_sects(ring_req);
2008			cur_sector = ring_req->sector_number + cur_size;
2009			reqlist->next_contig_sector = cur_sector;
2010			cur_operation = ring_req->operation;
2011		}
2012
2013		/* Check for I/O to dispatch */
2014		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2015		if (reqlist == NULL) {
2016			/*
2017			 * We're out of work to do, put the task queue to
2018			 * sleep.
2019			 */
2020			break;
2021		}
2022
2023		/*
2024		 * Grab the first request off the queue and attempt
2025		 * to dispatch it.
2026		 */
2027		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
2028
2029		retval = xbb_dispatch_io(xbb, reqlist);
2030		if (retval != 0) {
2031			/*
2032			 * xbb_dispatch_io() returns non-zero only when
2033			 * there is a resource shortage.  If that's the
2034			 * case, re-queue this request on the head of the
2035			 * queue, and go to sleep until we have more
2036			 * resources.
2037			 */
2038			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
2039					   reqlist, links);
2040			break;
2041		} else {
2042			/*
2043			 * If we still have anything on the queue after
2044			 * removing the head entry, that is because we
2045			 * met one of the criteria to create a new
2046			 * request list (outlined above), and we'll call
2047			 * that a forced dispatch for statistical purposes.
2048			 *
2049			 * Otherwise, if there is only one element on the
2050			 * queue, we coalesced everything available on
2051			 * the ring and we'll call that a normal dispatch.
2052			 */
2053			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2054
2055			if (reqlist != NULL)
2056				xbb->forced_dispatch++;
2057			else
2058				xbb->normal_dispatch++;
2059
2060			xbb->total_dispatch++;
2061		}
2062	}
2063}
2064
2065/**
2066 * Interrupt handler bound to the shared ring's event channel.
2067 *
2068 * \param arg  Callback argument registerd during event channel
2069 *             binding - the xbb_softc for this instance.
2070 */
2071static int
2072xbb_filter(void *arg)
2073{
2074	struct xbb_softc *xbb;
2075
2076	/* Defer to taskqueue thread. */
2077	xbb = (struct xbb_softc *)arg;
2078	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2079
2080	return (FILTER_HANDLED);
2081}
2082
2083SDT_PROVIDER_DEFINE(xbb);
2084SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2085SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2086		  "uint64_t");
2087SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2088		  "uint64_t", "uint64_t");
2089
2090/*----------------------------- Backend Handlers -----------------------------*/
2091/**
2092 * Backend handler for character device access.
2093 *
2094 * \param xbb        Per-instance xbb configuration structure.
2095 * \param reqlist    Allocated internal request list structure.
2096 * \param operation  BIO_* I/O operation code.
2097 * \param bio_flags  Additional bio_flag data to pass to any generated
2098 *                   bios (e.g. BIO_ORDERED)..
2099 *
2100 * \return  0 for success, errno codes for failure.
2101 */
2102static int
2103xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2104		 int operation, int bio_flags)
2105{
2106	struct xbb_dev_data *dev_data;
2107	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2108	off_t                bio_offset;
2109	struct bio          *bio;
2110	struct xbb_sg       *xbb_sg;
2111	u_int	             nbio;
2112	u_int                bio_idx;
2113	u_int		     nseg;
2114	u_int                seg_idx;
2115	int                  error;
2116
2117	dev_data   = &xbb->backend.dev;
2118	bio_offset = (off_t)reqlist->starting_sector_number
2119		   << xbb->sector_size_shift;
2120	error      = 0;
2121	nbio       = 0;
2122	bio_idx    = 0;
2123
2124	if (operation == BIO_FLUSH) {
2125		bio = g_new_bio();
2126		if (__predict_false(bio == NULL)) {
2127			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2128			error = ENOMEM;
2129			return (error);
2130		}
2131
2132		bio->bio_cmd	 = BIO_FLUSH;
2133		bio->bio_flags	|= BIO_ORDERED;
2134		bio->bio_dev	 = dev_data->cdev;
2135		bio->bio_offset	 = 0;
2136		bio->bio_data	 = 0;
2137		bio->bio_done	 = xbb_bio_done;
2138		bio->bio_caller1 = reqlist;
2139		bio->bio_pblkno	 = 0;
2140
2141		reqlist->pendcnt = 1;
2142
2143		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2144			   device_get_unit(xbb->dev));
2145
2146		(*dev_data->csw->d_strategy)(bio);
2147
2148		return (0);
2149	}
2150
2151	xbb_sg = xbb->xbb_sgs;
2152	bio    = NULL;
2153	nseg = reqlist->nr_segments;
2154
2155	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2156
2157		/*
2158		 * KVA will not be contiguous, so any additional
2159		 * I/O will need to be represented in a new bio.
2160		 */
2161		if ((bio != NULL)
2162		 && (xbb_sg->first_sect != 0)) {
2163			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2164				printf("%s: Discontiguous I/O request "
2165				       "from domain %d ends on "
2166				       "non-sector boundary\n",
2167				       __func__, xbb->otherend_id);
2168				error = EINVAL;
2169				goto fail_free_bios;
2170			}
2171			bio = NULL;
2172		}
2173
2174		if (bio == NULL) {
2175			/*
2176			 * Make sure that the start of this bio is
2177			 * aligned to a device sector.
2178			 */
2179			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2180				printf("%s: Misaligned I/O request "
2181				       "from domain %d\n", __func__,
2182				       xbb->otherend_id);
2183				error = EINVAL;
2184				goto fail_free_bios;
2185			}
2186
2187			bio = bios[nbio++] = g_new_bio();
2188			if (__predict_false(bio == NULL)) {
2189				error = ENOMEM;
2190				goto fail_free_bios;
2191			}
2192			bio->bio_cmd     = operation;
2193			bio->bio_flags  |= bio_flags;
2194			bio->bio_dev     = dev_data->cdev;
2195			bio->bio_offset  = bio_offset;
2196			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2197						xbb_sg->first_sect);
2198			bio->bio_done    = xbb_bio_done;
2199			bio->bio_caller1 = reqlist;
2200			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2201		}
2202
2203		bio->bio_length += xbb_sg->nsect << 9;
2204		bio->bio_bcount  = bio->bio_length;
2205		bio_offset      += xbb_sg->nsect << 9;
2206
2207		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2208
2209			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2210				printf("%s: Discontiguous I/O request "
2211				       "from domain %d ends on "
2212				       "non-sector boundary\n",
2213				       __func__, xbb->otherend_id);
2214				error = EINVAL;
2215				goto fail_free_bios;
2216			}
2217			/*
2218			 * KVA will not be contiguous, so any additional
2219			 * I/O will need to be represented in a new bio.
2220			 */
2221			bio = NULL;
2222		}
2223	}
2224
2225	reqlist->pendcnt = nbio;
2226
2227	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2228	{
2229#ifdef XBB_USE_BOUNCE_BUFFERS
2230		vm_offset_t kva_offset;
2231
2232		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2233			   - (vm_offset_t)reqlist->bounce;
2234		if (operation == BIO_WRITE) {
2235			memcpy(bios[bio_idx]->bio_data,
2236			       (uint8_t *)reqlist->kva + kva_offset,
2237			       bios[bio_idx]->bio_bcount);
2238		}
2239#endif
2240		if (operation == BIO_READ) {
2241			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2242				   device_get_unit(xbb->dev),
2243				   bios[bio_idx]->bio_offset,
2244				   bios[bio_idx]->bio_length);
2245		} else if (operation == BIO_WRITE) {
2246			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2247				   device_get_unit(xbb->dev),
2248				   bios[bio_idx]->bio_offset,
2249				   bios[bio_idx]->bio_length);
2250		}
2251		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2252	}
2253
2254	return (error);
2255
2256fail_free_bios:
2257	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2258		g_destroy_bio(bios[bio_idx]);
2259
2260	return (error);
2261}
2262
2263SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2264SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2265		  "uint64_t");
2266SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2267		  "uint64_t", "uint64_t");
2268
2269/**
2270 * Backend handler for file access.
2271 *
2272 * \param xbb        Per-instance xbb configuration structure.
2273 * \param reqlist    Allocated internal request list.
2274 * \param operation  BIO_* I/O operation code.
2275 * \param flags      Additional bio_flag data to pass to any generated bios
2276 *                   (e.g. BIO_ORDERED)..
2277 *
2278 * \return  0 for success, errno codes for failure.
2279 */
2280static int
2281xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2282		  int operation, int flags)
2283{
2284	struct xbb_file_data *file_data;
2285	u_int                 seg_idx;
2286	u_int		      nseg;
2287	off_t		      sectors_sent;
2288	struct uio            xuio;
2289	struct xbb_sg        *xbb_sg;
2290	struct iovec         *xiovec;
2291#ifdef XBB_USE_BOUNCE_BUFFERS
2292	void                **p_vaddr;
2293	int                   saved_uio_iovcnt;
2294#endif /* XBB_USE_BOUNCE_BUFFERS */
2295	int                   error;
2296
2297	file_data = &xbb->backend.file;
2298	sectors_sent = 0;
2299	error = 0;
2300	bzero(&xuio, sizeof(xuio));
2301
2302	switch (operation) {
2303	case BIO_READ:
2304		xuio.uio_rw = UIO_READ;
2305		break;
2306	case BIO_WRITE:
2307		xuio.uio_rw = UIO_WRITE;
2308		break;
2309	case BIO_FLUSH: {
2310		struct mount *mountpoint;
2311
2312		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2313			   device_get_unit(xbb->dev));
2314
2315		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2316
2317		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2318		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2319		VOP_UNLOCK(xbb->vn, 0);
2320
2321		vn_finished_write(mountpoint);
2322
2323		goto bailout_send_response;
2324		/* NOTREACHED */
2325	}
2326	default:
2327		panic("invalid operation %d", operation);
2328		/* NOTREACHED */
2329	}
2330	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2331			<< xbb->sector_size_shift;
2332	xuio.uio_segflg = UIO_SYSSPACE;
2333	xuio.uio_iov = file_data->xiovecs;
2334	xuio.uio_iovcnt = 0;
2335	xbb_sg = xbb->xbb_sgs;
2336	nseg = reqlist->nr_segments;
2337
2338	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2339
2340		/*
2341		 * If the first sector is not 0, the KVA will
2342		 * not be contiguous and we'll need to go on
2343		 * to another segment.
2344		 */
2345		if (xbb_sg->first_sect != 0)
2346			xiovec = NULL;
2347
2348		if (xiovec == NULL) {
2349			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2350			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2351			    seg_idx, xbb_sg->first_sect);
2352#ifdef XBB_USE_BOUNCE_BUFFERS
2353			/*
2354			 * Store the address of the incoming
2355			 * buffer at this particular offset
2356			 * as well, so we can do the copy
2357			 * later without having to do more
2358			 * work to recalculate this address.
2359		 	 */
2360			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2361			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2362			    xbb_sg->first_sect);
2363#endif /* XBB_USE_BOUNCE_BUFFERS */
2364			xiovec->iov_len = 0;
2365			xuio.uio_iovcnt++;
2366		}
2367
2368		xiovec->iov_len += xbb_sg->nsect << 9;
2369
2370		xuio.uio_resid += xbb_sg->nsect << 9;
2371
2372		/*
2373		 * If the last sector is not the full page
2374		 * size count, the next segment will not be
2375		 * contiguous in KVA and we need a new iovec.
2376		 */
2377		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2378			xiovec = NULL;
2379	}
2380
2381	xuio.uio_td = curthread;
2382
2383#ifdef XBB_USE_BOUNCE_BUFFERS
2384	saved_uio_iovcnt = xuio.uio_iovcnt;
2385
2386	if (operation == BIO_WRITE) {
2387		/* Copy the write data to the local buffer. */
2388		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2389		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2390		     seg_idx++, xiovec++, p_vaddr++) {
2391
2392			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2393		}
2394	} else {
2395		/*
2396		 * We only need to save off the iovecs in the case of a
2397		 * read, because the copy for the read happens after the
2398		 * VOP_READ().  (The uio will get modified in that call
2399		 * sequence.)
2400		 */
2401		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2402		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2403	}
2404#endif /* XBB_USE_BOUNCE_BUFFERS */
2405
2406	switch (operation) {
2407	case BIO_READ:
2408
2409		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2410			   device_get_unit(xbb->dev), xuio.uio_offset,
2411			   xuio.uio_resid);
2412
2413		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2414
2415		/*
2416		 * UFS pays attention to IO_DIRECT for reads.  If the
2417		 * DIRECTIO option is configured into the kernel, it calls
2418		 * ffs_rawread().  But that only works for single-segment
2419		 * uios with user space addresses.  In our case, with a
2420		 * kernel uio, it still reads into the buffer cache, but it
2421		 * will just try to release the buffer from the cache later
2422		 * on in ffs_read().
2423		 *
2424		 * ZFS does not pay attention to IO_DIRECT for reads.
2425		 *
2426		 * UFS does not pay attention to IO_SYNC for reads.
2427		 *
2428		 * ZFS pays attention to IO_SYNC (which translates into the
2429		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2430		 * attempts to sync the file before reading.
2431		 *
2432		 * So, to attempt to provide some barrier semantics in the
2433		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2434		 */
2435		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2436				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2437
2438		VOP_UNLOCK(xbb->vn, 0);
2439		break;
2440	case BIO_WRITE: {
2441		struct mount *mountpoint;
2442
2443		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2444			   device_get_unit(xbb->dev), xuio.uio_offset,
2445			   xuio.uio_resid);
2446
2447		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2448
2449		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2450
2451		/*
2452		 * UFS pays attention to IO_DIRECT for writes.  The write
2453		 * is done asynchronously.  (Normally the write would just
2454		 * get put into cache.
2455		 *
2456		 * UFS pays attention to IO_SYNC for writes.  It will
2457		 * attempt to write the buffer out synchronously if that
2458		 * flag is set.
2459		 *
2460		 * ZFS does not pay attention to IO_DIRECT for writes.
2461		 *
2462		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2463		 * for writes.  It will flush the transaction from the
2464		 * cache before returning.
2465		 *
2466		 * So if we've got the BIO_ORDERED flag set, we want
2467		 * IO_SYNC in either the UFS or ZFS case.
2468		 */
2469		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2470				  IO_SYNC : 0, file_data->cred);
2471		VOP_UNLOCK(xbb->vn, 0);
2472
2473		vn_finished_write(mountpoint);
2474
2475		break;
2476	}
2477	default:
2478		panic("invalid operation %d", operation);
2479		/* NOTREACHED */
2480	}
2481
2482#ifdef XBB_USE_BOUNCE_BUFFERS
2483	/* We only need to copy here for read operations */
2484	if (operation == BIO_READ) {
2485
2486		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2487		     xiovec = file_data->saved_xiovecs;
2488		     seg_idx < saved_uio_iovcnt; seg_idx++,
2489		     xiovec++, p_vaddr++) {
2490
2491			/*
2492			 * Note that we have to use the copy of the
2493			 * io vector we made above.  uiomove() modifies
2494			 * the uio and its referenced vector as uiomove
2495			 * performs the copy, so we can't rely on any
2496			 * state from the original uio.
2497			 */
2498			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2499		}
2500	}
2501#endif /* XBB_USE_BOUNCE_BUFFERS */
2502
2503bailout_send_response:
2504
2505	if (error != 0)
2506		reqlist->status = BLKIF_RSP_ERROR;
2507
2508	xbb_complete_reqlist(xbb, reqlist);
2509
2510	return (0);
2511}
2512
2513/*--------------------------- Backend Configuration --------------------------*/
2514/**
2515 * Close and cleanup any backend device/file specific state for this
2516 * block back instance.
2517 *
2518 * \param xbb  Per-instance xbb configuration structure.
2519 */
2520static void
2521xbb_close_backend(struct xbb_softc *xbb)
2522{
2523	DROP_GIANT();
2524	DPRINTF("closing dev=%s\n", xbb->dev_name);
2525	if (xbb->vn) {
2526		int flags = FREAD;
2527
2528		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2529			flags |= FWRITE;
2530
2531		switch (xbb->device_type) {
2532		case XBB_TYPE_DISK:
2533			if (xbb->backend.dev.csw) {
2534				dev_relthread(xbb->backend.dev.cdev,
2535					      xbb->backend.dev.dev_ref);
2536				xbb->backend.dev.csw  = NULL;
2537				xbb->backend.dev.cdev = NULL;
2538			}
2539			break;
2540		case XBB_TYPE_FILE:
2541			break;
2542		case XBB_TYPE_NONE:
2543		default:
2544			panic("Unexpected backend type.");
2545			break;
2546		}
2547
2548		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2549		xbb->vn = NULL;
2550
2551		switch (xbb->device_type) {
2552		case XBB_TYPE_DISK:
2553			break;
2554		case XBB_TYPE_FILE:
2555			if (xbb->backend.file.cred != NULL) {
2556				crfree(xbb->backend.file.cred);
2557				xbb->backend.file.cred = NULL;
2558			}
2559			break;
2560		case XBB_TYPE_NONE:
2561		default:
2562			panic("Unexpected backend type.");
2563			break;
2564		}
2565	}
2566	PICKUP_GIANT();
2567}
2568
2569/**
2570 * Open a character device to be used for backend I/O.
2571 *
2572 * \param xbb  Per-instance xbb configuration structure.
2573 *
2574 * \return  0 for success, errno codes for failure.
2575 */
2576static int
2577xbb_open_dev(struct xbb_softc *xbb)
2578{
2579	struct vattr   vattr;
2580	struct cdev   *dev;
2581	struct cdevsw *devsw;
2582	int	       error;
2583
2584	xbb->device_type = XBB_TYPE_DISK;
2585	xbb->dispatch_io = xbb_dispatch_dev;
2586	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2587	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2588					     &xbb->backend.dev.dev_ref);
2589	if (xbb->backend.dev.csw == NULL)
2590		panic("Unable to retrieve device switch");
2591
2592	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2593	if (error) {
2594		xenbus_dev_fatal(xbb->dev, error, "error getting "
2595				 "vnode attributes for device %s",
2596				 xbb->dev_name);
2597		return (error);
2598	}
2599
2600
2601	dev = xbb->vn->v_rdev;
2602	devsw = dev->si_devsw;
2603	if (!devsw->d_ioctl) {
2604		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2605				 "device %s!", xbb->dev_name);
2606		return (ENODEV);
2607	}
2608
2609	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2610			       (caddr_t)&xbb->sector_size, FREAD,
2611			       curthread);
2612	if (error) {
2613		xenbus_dev_fatal(xbb->dev, error,
2614				 "error calling ioctl DIOCGSECTORSIZE "
2615				 "for device %s", xbb->dev_name);
2616		return (error);
2617	}
2618
2619	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2620			       (caddr_t)&xbb->media_size, FREAD,
2621			       curthread);
2622	if (error) {
2623		xenbus_dev_fatal(xbb->dev, error,
2624				 "error calling ioctl DIOCGMEDIASIZE "
2625				 "for device %s", xbb->dev_name);
2626		return (error);
2627	}
2628
2629	return (0);
2630}
2631
2632/**
2633 * Open a file to be used for backend I/O.
2634 *
2635 * \param xbb  Per-instance xbb configuration structure.
2636 *
2637 * \return  0 for success, errno codes for failure.
2638 */
2639static int
2640xbb_open_file(struct xbb_softc *xbb)
2641{
2642	struct xbb_file_data *file_data;
2643	struct vattr          vattr;
2644	int                   error;
2645
2646	file_data = &xbb->backend.file;
2647	xbb->device_type = XBB_TYPE_FILE;
2648	xbb->dispatch_io = xbb_dispatch_file;
2649	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2650	if (error != 0) {
2651		xenbus_dev_fatal(xbb->dev, error,
2652				 "error calling VOP_GETATTR()"
2653				 "for file %s", xbb->dev_name);
2654		return (error);
2655	}
2656
2657	/*
2658	 * Verify that we have the ability to upgrade to exclusive
2659	 * access on this file so we can trap errors at open instead
2660	 * of reporting them during first access.
2661	 */
2662	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2663		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2664		if (xbb->vn->v_iflag & VI_DOOMED) {
2665			error = EBADF;
2666			xenbus_dev_fatal(xbb->dev, error,
2667					 "error locking file %s",
2668					 xbb->dev_name);
2669
2670			return (error);
2671		}
2672	}
2673
2674	file_data->cred = crhold(curthread->td_ucred);
2675	xbb->media_size = vattr.va_size;
2676
2677	/*
2678	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2679	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2680	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2681	 * may not work with other OSes as well.  So just export a sector
2682	 * size of 512 bytes, which should work with any OS or
2683	 * application.  Since our backing is a file, any block size will
2684	 * work fine for the backing store.
2685	 */
2686#if 0
2687	xbb->sector_size = vattr.va_blocksize;
2688#endif
2689	xbb->sector_size = 512;
2690
2691	/*
2692	 * Sanity check.  The media size has to be at least one
2693	 * sector long.
2694	 */
2695	if (xbb->media_size < xbb->sector_size) {
2696		error = EINVAL;
2697		xenbus_dev_fatal(xbb->dev, error,
2698				 "file %s size %ju < block size %u",
2699				 xbb->dev_name,
2700				 (uintmax_t)xbb->media_size,
2701				 xbb->sector_size);
2702	}
2703	return (error);
2704}
2705
2706/**
2707 * Open the backend provider for this connection.
2708 *
2709 * \param xbb  Per-instance xbb configuration structure.
2710 *
2711 * \return  0 for success, errno codes for failure.
2712 */
2713static int
2714xbb_open_backend(struct xbb_softc *xbb)
2715{
2716	struct nameidata nd;
2717	int		 flags;
2718	int		 error;
2719
2720	flags = FREAD;
2721	error = 0;
2722
2723	DPRINTF("opening dev=%s\n", xbb->dev_name);
2724
2725	if (rootvnode == NULL) {
2726		xenbus_dev_fatal(xbb->dev, ENOENT,
2727				 "Root file system not mounted");
2728		return (ENOENT);
2729	}
2730
2731	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2732		flags |= FWRITE;
2733
2734	if (!curthread->td_proc->p_fd->fd_cdir) {
2735		curthread->td_proc->p_fd->fd_cdir = rootvnode;
2736		VREF(rootvnode);
2737	}
2738	if (!curthread->td_proc->p_fd->fd_rdir) {
2739		curthread->td_proc->p_fd->fd_rdir = rootvnode;
2740		VREF(rootvnode);
2741	}
2742	if (!curthread->td_proc->p_fd->fd_jdir) {
2743		curthread->td_proc->p_fd->fd_jdir = rootvnode;
2744		VREF(rootvnode);
2745	}
2746
2747 again:
2748	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2749	error = vn_open(&nd, &flags, 0, NULL);
2750	if (error) {
2751		/*
2752		 * This is the only reasonable guess we can make as far as
2753		 * path if the user doesn't give us a fully qualified path.
2754		 * If they want to specify a file, they need to specify the
2755		 * full path.
2756		 */
2757		if (xbb->dev_name[0] != '/') {
2758			char *dev_path = "/dev/";
2759			char *dev_name;
2760
2761			/* Try adding device path at beginning of name */
2762			dev_name = malloc(strlen(xbb->dev_name)
2763					+ strlen(dev_path) + 1,
2764					  M_XENBLOCKBACK, M_NOWAIT);
2765			if (dev_name) {
2766				sprintf(dev_name, "%s%s", dev_path,
2767					xbb->dev_name);
2768				free(xbb->dev_name, M_XENBLOCKBACK);
2769				xbb->dev_name = dev_name;
2770				goto again;
2771			}
2772		}
2773		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2774				 xbb->dev_name);
2775		return (error);
2776	}
2777
2778	NDFREE(&nd, NDF_ONLY_PNBUF);
2779
2780	xbb->vn = nd.ni_vp;
2781
2782	/* We only support disks and files. */
2783	if (vn_isdisk(xbb->vn, &error)) {
2784		error = xbb_open_dev(xbb);
2785	} else if (xbb->vn->v_type == VREG) {
2786		error = xbb_open_file(xbb);
2787	} else {
2788		error = EINVAL;
2789		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2790				 "or file", xbb->dev_name);
2791	}
2792	VOP_UNLOCK(xbb->vn, 0);
2793
2794	if (error != 0) {
2795		xbb_close_backend(xbb);
2796		return (error);
2797	}
2798
2799	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2800	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2801
2802	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2803		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2804		xbb->dev_name, xbb->sector_size, xbb->media_size);
2805
2806	return (0);
2807}
2808
2809/*------------------------ Inter-Domain Communication ------------------------*/
2810/**
2811 * Free dynamically allocated KVA or pseudo-physical address allocations.
2812 *
2813 * \param xbb  Per-instance xbb configuration structure.
2814 */
2815static void
2816xbb_free_communication_mem(struct xbb_softc *xbb)
2817{
2818	if (xbb->kva != 0) {
2819		if (xbb->pseudo_phys_res != NULL) {
2820			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2821			    xbb->pseudo_phys_res);
2822			xbb->pseudo_phys_res = NULL;
2823		}
2824	}
2825	xbb->kva = 0;
2826	xbb->gnt_base_addr = 0;
2827	if (xbb->kva_free != NULL) {
2828		free(xbb->kva_free, M_XENBLOCKBACK);
2829		xbb->kva_free = NULL;
2830	}
2831}
2832
2833/**
2834 * Cleanup all inter-domain communication mechanisms.
2835 *
2836 * \param xbb  Per-instance xbb configuration structure.
2837 */
2838static int
2839xbb_disconnect(struct xbb_softc *xbb)
2840{
2841	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2842	struct gnttab_unmap_grant_ref *op;
2843	u_int			       ring_idx;
2844	int			       error;
2845
2846	DPRINTF("\n");
2847
2848	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2849		return (0);
2850
2851	xen_intr_unbind(&xbb->xen_intr_handle);
2852
2853	mtx_unlock(&xbb->lock);
2854	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2855	mtx_lock(&xbb->lock);
2856
2857	/*
2858	 * No new interrupts can generate work, but we must wait
2859	 * for all currently active requests to drain.
2860	 */
2861	if (xbb->active_request_count != 0)
2862		return (EAGAIN);
2863
2864	for (ring_idx = 0, op = ops;
2865	     ring_idx < xbb->ring_config.ring_pages;
2866	     ring_idx++, op++) {
2867
2868		op->host_addr    = xbb->ring_config.gnt_addr
2869			         + (ring_idx * PAGE_SIZE);
2870		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2871		op->handle	 = xbb->ring_config.handle[ring_idx];
2872	}
2873
2874	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2875					  xbb->ring_config.ring_pages);
2876	if (error != 0)
2877		panic("Grant table op failed (%d)", error);
2878
2879	xbb_free_communication_mem(xbb);
2880
2881	if (xbb->requests != NULL) {
2882		free(xbb->requests, M_XENBLOCKBACK);
2883		xbb->requests = NULL;
2884	}
2885
2886	if (xbb->request_lists != NULL) {
2887		struct xbb_xen_reqlist *reqlist;
2888		int i;
2889
2890		/* There is one request list for ever allocated request. */
2891		for (i = 0, reqlist = xbb->request_lists;
2892		     i < xbb->max_requests; i++, reqlist++){
2893#ifdef XBB_USE_BOUNCE_BUFFERS
2894			if (reqlist->bounce != NULL) {
2895				free(reqlist->bounce, M_XENBLOCKBACK);
2896				reqlist->bounce = NULL;
2897			}
2898#endif
2899			if (reqlist->gnt_handles != NULL) {
2900				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2901				reqlist->gnt_handles = NULL;
2902			}
2903		}
2904		free(xbb->request_lists, M_XENBLOCKBACK);
2905		xbb->request_lists = NULL;
2906	}
2907
2908	xbb->flags &= ~XBBF_RING_CONNECTED;
2909	return (0);
2910}
2911
2912/**
2913 * Map shared memory ring into domain local address space, initialize
2914 * ring control structures, and bind an interrupt to the event channel
2915 * used to notify us of ring changes.
2916 *
2917 * \param xbb  Per-instance xbb configuration structure.
2918 */
2919static int
2920xbb_connect_ring(struct xbb_softc *xbb)
2921{
2922	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2923	struct gnttab_map_grant_ref *gnt;
2924	u_int			     ring_idx;
2925	int			     error;
2926
2927	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2928		return (0);
2929
2930	/*
2931	 * Kva for our ring is at the tail of the region of kva allocated
2932	 * by xbb_alloc_communication_mem().
2933	 */
2934	xbb->ring_config.va = xbb->kva
2935			    + (xbb->kva_size
2936			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2937	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2938				  + (xbb->kva_size
2939				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2940
2941	for (ring_idx = 0, gnt = gnts;
2942	     ring_idx < xbb->ring_config.ring_pages;
2943	     ring_idx++, gnt++) {
2944
2945		gnt->host_addr = xbb->ring_config.gnt_addr
2946			       + (ring_idx * PAGE_SIZE);
2947		gnt->flags     = GNTMAP_host_map;
2948		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2949		gnt->dom       = xbb->otherend_id;
2950	}
2951
2952	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2953					  xbb->ring_config.ring_pages);
2954	if (error)
2955		panic("blkback: Ring page grant table op failed (%d)", error);
2956
2957	for (ring_idx = 0, gnt = gnts;
2958	     ring_idx < xbb->ring_config.ring_pages;
2959	     ring_idx++, gnt++) {
2960		if (gnt->status != 0) {
2961			xbb->ring_config.va = 0;
2962			xenbus_dev_fatal(xbb->dev, EACCES,
2963					 "Ring shared page mapping failed. "
2964					 "Status %d.", gnt->status);
2965			return (EACCES);
2966		}
2967		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2968		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2969	}
2970
2971	/* Initialize the ring based on ABI. */
2972	switch (xbb->abi) {
2973	case BLKIF_PROTOCOL_NATIVE:
2974	{
2975		blkif_sring_t *sring;
2976		sring = (blkif_sring_t *)xbb->ring_config.va;
2977		BACK_RING_INIT(&xbb->rings.native, sring,
2978			       xbb->ring_config.ring_pages * PAGE_SIZE);
2979		break;
2980	}
2981	case BLKIF_PROTOCOL_X86_32:
2982	{
2983		blkif_x86_32_sring_t *sring_x86_32;
2984		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2985		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2986			       xbb->ring_config.ring_pages * PAGE_SIZE);
2987		break;
2988	}
2989	case BLKIF_PROTOCOL_X86_64:
2990	{
2991		blkif_x86_64_sring_t *sring_x86_64;
2992		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2993		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2994			       xbb->ring_config.ring_pages * PAGE_SIZE);
2995		break;
2996	}
2997	default:
2998		panic("Unexpected blkif protocol ABI.");
2999	}
3000
3001	xbb->flags |= XBBF_RING_CONNECTED;
3002
3003	error = xen_intr_bind_remote_port(xbb->dev,
3004					  xbb->otherend_id,
3005					  xbb->ring_config.evtchn,
3006					  xbb_filter,
3007					  /*ithread_handler*/NULL,
3008					  /*arg*/xbb,
3009					  INTR_TYPE_BIO | INTR_MPSAFE,
3010					  &xbb->xen_intr_handle);
3011	if (error) {
3012		(void)xbb_disconnect(xbb);
3013		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
3014		return (error);
3015	}
3016
3017	DPRINTF("rings connected!\n");
3018
3019	return 0;
3020}
3021
3022/* Needed to make bit_alloc() macro work */
3023#define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
3024				   M_NOWAIT|M_ZERO);
3025
3026/**
3027 * Size KVA and pseudo-physical address allocations based on negotiated
3028 * values for the size and number of I/O requests, and the size of our
3029 * communication ring.
3030 *
3031 * \param xbb  Per-instance xbb configuration structure.
3032 *
3033 * These address spaces are used to dynamically map pages in the
3034 * front-end's domain into our own.
3035 */
3036static int
3037xbb_alloc_communication_mem(struct xbb_softc *xbb)
3038{
3039	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
3040	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
3041	xbb->kva_size = xbb->reqlist_kva_size +
3042			(xbb->ring_config.ring_pages * PAGE_SIZE);
3043
3044	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
3045	if (xbb->kva_free == NULL)
3046		return (ENOMEM);
3047
3048	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
3049		device_get_nameunit(xbb->dev), xbb->kva_size,
3050		xbb->reqlist_kva_size);
3051	/*
3052	 * Reserve a range of pseudo physical memory that we can map
3053	 * into kva.  These pages will only be backed by machine
3054	 * pages ("real memory") during the lifetime of front-end requests
3055	 * via grant table operations.
3056	 */
3057	xbb->pseudo_phys_res_id = 0;
3058	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
3059	    xbb->kva_size);
3060	if (xbb->pseudo_phys_res == NULL) {
3061		xbb->kva = 0;
3062		return (ENOMEM);
3063	}
3064	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3065	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3066
3067	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3068		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3069		(uintmax_t)xbb->gnt_base_addr);
3070	return (0);
3071}
3072
3073/**
3074 * Collect front-end information from the XenStore.
3075 *
3076 * \param xbb  Per-instance xbb configuration structure.
3077 */
3078static int
3079xbb_collect_frontend_info(struct xbb_softc *xbb)
3080{
3081	char	    protocol_abi[64];
3082	const char *otherend_path;
3083	int	    error;
3084	u_int	    ring_idx;
3085	u_int	    ring_page_order;
3086	size_t	    ring_size;
3087
3088	otherend_path = xenbus_get_otherend_path(xbb->dev);
3089
3090	/*
3091	 * Protocol defaults valid even if all negotiation fails.
3092	 */
3093	xbb->ring_config.ring_pages = 1;
3094	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK;
3095	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3096
3097	/*
3098	 * Mandatory data (used in all versions of the protocol) first.
3099	 */
3100	error = xs_scanf(XST_NIL, otherend_path,
3101			 "event-channel", NULL, "%" PRIu32,
3102			 &xbb->ring_config.evtchn);
3103	if (error != 0) {
3104		xenbus_dev_fatal(xbb->dev, error,
3105				 "Unable to retrieve event-channel information "
3106				 "from frontend %s.  Unable to connect.",
3107				 xenbus_get_otherend_path(xbb->dev));
3108		return (error);
3109	}
3110
3111	/*
3112	 * These fields are initialized to legacy protocol defaults
3113	 * so we only need to fail if reading the updated value succeeds
3114	 * and the new value is outside of its allowed range.
3115	 *
3116	 * \note xs_gather() returns on the first encountered error, so
3117	 *       we must use independant calls in order to guarantee
3118	 *       we don't miss information in a sparsly populated front-end
3119	 *       tree.
3120	 *
3121	 * \note xs_scanf() does not update variables for unmatched
3122	 *       fields.
3123	 */
3124	ring_page_order = 0;
3125	(void)xs_scanf(XST_NIL, otherend_path,
3126		       "ring-page-order", NULL, "%u",
3127		       &ring_page_order);
3128	xbb->ring_config.ring_pages = 1 << ring_page_order;
3129	(void)xs_scanf(XST_NIL, otherend_path,
3130		       "num-ring-pages", NULL, "%u",
3131		       &xbb->ring_config.ring_pages);
3132	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3133	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3134
3135	(void)xs_scanf(XST_NIL, otherend_path,
3136		       "max-requests", NULL, "%u",
3137		       &xbb->max_requests);
3138
3139	(void)xs_scanf(XST_NIL, otherend_path,
3140		       "max-request-segments", NULL, "%u",
3141		       &xbb->max_request_segments);
3142
3143	(void)xs_scanf(XST_NIL, otherend_path,
3144		       "max-request-size", NULL, "%u",
3145		       &xbb->max_request_size);
3146
3147	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3148		xenbus_dev_fatal(xbb->dev, EINVAL,
3149				 "Front-end specified ring-pages of %u "
3150				 "exceeds backend limit of %zu.  "
3151				 "Unable to connect.",
3152				 xbb->ring_config.ring_pages,
3153				 XBB_MAX_RING_PAGES);
3154		return (EINVAL);
3155	} else if (xbb->max_requests > XBB_MAX_REQUESTS) {
3156		xenbus_dev_fatal(xbb->dev, EINVAL,
3157				 "Front-end specified max_requests of %u "
3158				 "exceeds backend limit of %u.  "
3159				 "Unable to connect.",
3160				 xbb->max_requests,
3161				 XBB_MAX_REQUESTS);
3162		return (EINVAL);
3163	} else if (xbb->max_request_segments > XBB_MAX_SEGMENTS_PER_REQUEST) {
3164		xenbus_dev_fatal(xbb->dev, EINVAL,
3165				 "Front-end specified max_requests_segments "
3166				 "of %u exceeds backend limit of %u.  "
3167				 "Unable to connect.",
3168				 xbb->max_request_segments,
3169				 XBB_MAX_SEGMENTS_PER_REQUEST);
3170		return (EINVAL);
3171	} else if (xbb->max_request_size > XBB_MAX_REQUEST_SIZE) {
3172		xenbus_dev_fatal(xbb->dev, EINVAL,
3173				 "Front-end specified max_request_size "
3174				 "of %u exceeds backend limit of %u.  "
3175				 "Unable to connect.",
3176				 xbb->max_request_size,
3177				 XBB_MAX_REQUEST_SIZE);
3178		return (EINVAL);
3179	}
3180
3181	if (xbb->ring_config.ring_pages	== 1) {
3182		error = xs_gather(XST_NIL, otherend_path,
3183				  "ring-ref", "%" PRIu32,
3184				  &xbb->ring_config.ring_ref[0],
3185				  NULL);
3186		if (error != 0) {
3187			xenbus_dev_fatal(xbb->dev, error,
3188					 "Unable to retrieve ring information "
3189					 "from frontend %s.  Unable to "
3190					 "connect.",
3191					 xenbus_get_otherend_path(xbb->dev));
3192			return (error);
3193		}
3194	} else {
3195		/* Multi-page ring format. */
3196		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3197		     ring_idx++) {
3198			char ring_ref_name[]= "ring_refXX";
3199
3200			snprintf(ring_ref_name, sizeof(ring_ref_name),
3201				 "ring-ref%u", ring_idx);
3202			error = xs_scanf(XST_NIL, otherend_path,
3203					 ring_ref_name, NULL, "%" PRIu32,
3204					 &xbb->ring_config.ring_ref[ring_idx]);
3205			if (error != 0) {
3206				xenbus_dev_fatal(xbb->dev, error,
3207						 "Failed to retriev grant "
3208						 "reference for page %u of "
3209						 "shared ring.  Unable "
3210						 "to connect.", ring_idx);
3211				return (error);
3212			}
3213		}
3214	}
3215
3216	error = xs_gather(XST_NIL, otherend_path,
3217			  "protocol", "%63s", protocol_abi,
3218			  NULL);
3219	if (error != 0
3220	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3221		/*
3222		 * Assume native if the frontend has not
3223		 * published ABI data or it has published and
3224		 * matches our own ABI.
3225		 */
3226		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3227	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3228
3229		xbb->abi = BLKIF_PROTOCOL_X86_32;
3230	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3231
3232		xbb->abi = BLKIF_PROTOCOL_X86_64;
3233	} else {
3234
3235		xenbus_dev_fatal(xbb->dev, EINVAL,
3236				 "Unknown protocol ABI (%s) published by "
3237				 "frontend.  Unable to connect.", protocol_abi);
3238		return (EINVAL);
3239	}
3240	return (0);
3241}
3242
3243/**
3244 * Allocate per-request data structures given request size and number
3245 * information negotiated with the front-end.
3246 *
3247 * \param xbb  Per-instance xbb configuration structure.
3248 */
3249static int
3250xbb_alloc_requests(struct xbb_softc *xbb)
3251{
3252	struct xbb_xen_req *req;
3253	struct xbb_xen_req *last_req;
3254
3255	/*
3256	 * Allocate request book keeping datastructures.
3257	 */
3258	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3259			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3260	if (xbb->requests == NULL) {
3261		xenbus_dev_fatal(xbb->dev, ENOMEM,
3262				  "Unable to allocate request structures");
3263		return (ENOMEM);
3264	}
3265
3266	req      = xbb->requests;
3267	last_req = &xbb->requests[xbb->max_requests - 1];
3268	STAILQ_INIT(&xbb->request_free_stailq);
3269	while (req <= last_req) {
3270		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3271		req++;
3272	}
3273	return (0);
3274}
3275
3276static int
3277xbb_alloc_request_lists(struct xbb_softc *xbb)
3278{
3279	struct xbb_xen_reqlist *reqlist;
3280	int			i;
3281
3282	/*
3283	 * If no requests can be merged, we need 1 request list per
3284	 * in flight request.
3285	 */
3286	xbb->request_lists = malloc(xbb->max_requests *
3287		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3288	if (xbb->request_lists == NULL) {
3289		xenbus_dev_fatal(xbb->dev, ENOMEM,
3290				  "Unable to allocate request list structures");
3291		return (ENOMEM);
3292	}
3293
3294	STAILQ_INIT(&xbb->reqlist_free_stailq);
3295	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3296	for (i = 0; i < xbb->max_requests; i++) {
3297		int seg;
3298
3299		reqlist      = &xbb->request_lists[i];
3300
3301		reqlist->xbb = xbb;
3302
3303#ifdef XBB_USE_BOUNCE_BUFFERS
3304		reqlist->bounce = malloc(xbb->max_reqlist_size,
3305					 M_XENBLOCKBACK, M_NOWAIT);
3306		if (reqlist->bounce == NULL) {
3307			xenbus_dev_fatal(xbb->dev, ENOMEM,
3308					 "Unable to allocate request "
3309					 "bounce buffers");
3310			return (ENOMEM);
3311		}
3312#endif /* XBB_USE_BOUNCE_BUFFERS */
3313
3314		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3315					      sizeof(*reqlist->gnt_handles),
3316					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3317		if (reqlist->gnt_handles == NULL) {
3318			xenbus_dev_fatal(xbb->dev, ENOMEM,
3319					  "Unable to allocate request "
3320					  "grant references");
3321			return (ENOMEM);
3322		}
3323
3324		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3325			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3326
3327		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3328	}
3329	return (0);
3330}
3331
3332/**
3333 * Supply information about the physical device to the frontend
3334 * via XenBus.
3335 *
3336 * \param xbb  Per-instance xbb configuration structure.
3337 */
3338static int
3339xbb_publish_backend_info(struct xbb_softc *xbb)
3340{
3341	struct xs_transaction xst;
3342	const char	     *our_path;
3343	const char	     *leaf;
3344	int		      error;
3345
3346	our_path = xenbus_get_node(xbb->dev);
3347	while (1) {
3348		error = xs_transaction_start(&xst);
3349		if (error != 0) {
3350			xenbus_dev_fatal(xbb->dev, error,
3351					 "Error publishing backend info "
3352					 "(start transaction)");
3353			return (error);
3354		}
3355
3356		leaf = "sectors";
3357		error = xs_printf(xst, our_path, leaf,
3358				  "%"PRIu64, xbb->media_num_sectors);
3359		if (error != 0)
3360			break;
3361
3362		/* XXX Support all VBD attributes here. */
3363		leaf = "info";
3364		error = xs_printf(xst, our_path, leaf, "%u",
3365				  xbb->flags & XBBF_READ_ONLY
3366				? VDISK_READONLY : 0);
3367		if (error != 0)
3368			break;
3369
3370		leaf = "sector-size";
3371		error = xs_printf(xst, our_path, leaf, "%u",
3372				  xbb->sector_size);
3373		if (error != 0)
3374			break;
3375
3376		error = xs_transaction_end(xst, 0);
3377		if (error == 0) {
3378			return (0);
3379		} else if (error != EAGAIN) {
3380			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3381			return (error);
3382		}
3383	}
3384
3385	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3386			our_path, leaf);
3387	xs_transaction_end(xst, 1);
3388	return (error);
3389}
3390
3391/**
3392 * Connect to our blkfront peer now that it has completed publishing
3393 * its configuration into the XenStore.
3394 *
3395 * \param xbb  Per-instance xbb configuration structure.
3396 */
3397static void
3398xbb_connect(struct xbb_softc *xbb)
3399{
3400	int error;
3401
3402	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3403		return;
3404
3405	if (xbb_collect_frontend_info(xbb) != 0)
3406		return;
3407
3408	xbb->flags &= ~XBBF_SHUTDOWN;
3409
3410	/*
3411	 * We limit the maximum number of reqlist segments to the maximum
3412	 * number of segments in the ring, or our absolute maximum,
3413	 * whichever is smaller.
3414	 */
3415	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3416		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3417
3418	/*
3419	 * The maximum size is simply a function of the number of segments
3420	 * we can handle.
3421	 */
3422	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3423
3424	/* Allocate resources whose size depends on front-end configuration. */
3425	error = xbb_alloc_communication_mem(xbb);
3426	if (error != 0) {
3427		xenbus_dev_fatal(xbb->dev, error,
3428				 "Unable to allocate communication memory");
3429		return;
3430	}
3431
3432	error = xbb_alloc_requests(xbb);
3433	if (error != 0) {
3434		/* Specific errors are reported by xbb_alloc_requests(). */
3435		return;
3436	}
3437
3438	error = xbb_alloc_request_lists(xbb);
3439	if (error != 0) {
3440		/* Specific errors are reported by xbb_alloc_request_lists(). */
3441		return;
3442	}
3443
3444	/*
3445	 * Connect communication channel.
3446	 */
3447	error = xbb_connect_ring(xbb);
3448	if (error != 0) {
3449		/* Specific errors are reported by xbb_connect_ring(). */
3450		return;
3451	}
3452
3453	if (xbb_publish_backend_info(xbb) != 0) {
3454		/*
3455		 * If we can't publish our data, we cannot participate
3456		 * in this connection, and waiting for a front-end state
3457		 * change will not help the situation.
3458		 */
3459		(void)xbb_disconnect(xbb);
3460		return;
3461	}
3462
3463	/* Ready for I/O. */
3464	xenbus_set_state(xbb->dev, XenbusStateConnected);
3465}
3466
3467/*-------------------------- Device Teardown Support -------------------------*/
3468/**
3469 * Perform device shutdown functions.
3470 *
3471 * \param xbb  Per-instance xbb configuration structure.
3472 *
3473 * Mark this instance as shutting down, wait for any active I/O on the
3474 * backend device/file to drain, disconnect from the front-end, and notify
3475 * any waiters (e.g. a thread invoking our detach method) that detach can
3476 * now proceed.
3477 */
3478static int
3479xbb_shutdown(struct xbb_softc *xbb)
3480{
3481	XenbusState frontState;
3482	int	    error;
3483
3484	DPRINTF("\n");
3485
3486	/*
3487	 * Due to the need to drop our mutex during some
3488	 * xenbus operations, it is possible for two threads
3489	 * to attempt to close out shutdown processing at
3490	 * the same time.  Tell the caller that hits this
3491	 * race to try back later.
3492	 */
3493	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3494		return (EAGAIN);
3495
3496	xbb->flags |= XBBF_IN_SHUTDOWN;
3497	mtx_unlock(&xbb->lock);
3498
3499	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3500		xenbus_set_state(xbb->dev, XenbusStateClosing);
3501
3502	frontState = xenbus_get_otherend_state(xbb->dev);
3503	mtx_lock(&xbb->lock);
3504	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3505
3506	/* The front can submit I/O until entering the closed state. */
3507	if (frontState < XenbusStateClosed)
3508		return (EAGAIN);
3509
3510	DPRINTF("\n");
3511
3512	/* Indicate shutdown is in progress. */
3513	xbb->flags |= XBBF_SHUTDOWN;
3514
3515	/* Disconnect from the front-end. */
3516	error = xbb_disconnect(xbb);
3517	if (error != 0) {
3518		/*
3519		 * Requests still outstanding.  We'll be called again
3520		 * once they complete.
3521		 */
3522		KASSERT(error == EAGAIN,
3523			("%s: Unexpected xbb_disconnect() failure %d",
3524			 __func__, error));
3525
3526		return (error);
3527	}
3528
3529	DPRINTF("\n");
3530
3531	/* Indicate to xbb_detach() that is it safe to proceed. */
3532	wakeup(xbb);
3533
3534	return (0);
3535}
3536
3537/**
3538 * Report an attach time error to the console and Xen, and cleanup
3539 * this instance by forcing immediate detach processing.
3540 *
3541 * \param xbb  Per-instance xbb configuration structure.
3542 * \param err  Errno describing the error.
3543 * \param fmt  Printf style format and arguments
3544 */
3545static void
3546xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3547{
3548	va_list ap;
3549	va_list ap_hotplug;
3550
3551	va_start(ap, fmt);
3552	va_copy(ap_hotplug, ap);
3553	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3554		  "hotplug-error", fmt, ap_hotplug);
3555	va_end(ap_hotplug);
3556	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3557		  "hotplug-status", "error");
3558
3559	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3560	va_end(ap);
3561
3562	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3563		  "online", "0");
3564	xbb_detach(xbb->dev);
3565}
3566
3567/*---------------------------- NewBus Entrypoints ----------------------------*/
3568/**
3569 * Inspect a XenBus device and claim it if is of the appropriate type.
3570 *
3571 * \param dev  NewBus device object representing a candidate XenBus device.
3572 *
3573 * \return  0 for success, errno codes for failure.
3574 */
3575static int
3576xbb_probe(device_t dev)
3577{
3578
3579        if (!strcmp(xenbus_get_type(dev), "vbd")) {
3580                device_set_desc(dev, "Backend Virtual Block Device");
3581                device_quiet(dev);
3582                return (0);
3583        }
3584
3585        return (ENXIO);
3586}
3587
3588/**
3589 * Setup sysctl variables to control various Block Back parameters.
3590 *
3591 * \param xbb  Xen Block Back softc.
3592 *
3593 */
3594static void
3595xbb_setup_sysctl(struct xbb_softc *xbb)
3596{
3597	struct sysctl_ctx_list *sysctl_ctx = NULL;
3598	struct sysctl_oid      *sysctl_tree = NULL;
3599
3600	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3601	if (sysctl_ctx == NULL)
3602		return;
3603
3604	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3605	if (sysctl_tree == NULL)
3606		return;
3607
3608	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3609		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3610		       "fake the flush command");
3611
3612	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3613		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3614		       "send a real flush for N flush requests");
3615
3616	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3617		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3618		       "Don't coalesce contiguous requests");
3619
3620	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3621			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3622			 "how many I/O requests we have received");
3623
3624	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3625			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3626			 "how many I/O requests have been completed");
3627
3628	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3629			 "reqs_queued_for_completion", CTLFLAG_RW,
3630			 &xbb->reqs_queued_for_completion,
3631			 "how many I/O requests queued but not yet pushed");
3632
3633	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3634			 "reqs_completed_with_error", CTLFLAG_RW,
3635			 &xbb->reqs_completed_with_error,
3636			 "how many I/O requests completed with error status");
3637
3638	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3639			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3640			 "how many I/O dispatches were forced");
3641
3642	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3643			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3644			 "how many I/O dispatches were normal");
3645
3646	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3647			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3648			 "total number of I/O dispatches");
3649
3650	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3651			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3652			 "how many times we have run out of KVA");
3653
3654	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3655			 "request_shortages", CTLFLAG_RW,
3656			 &xbb->request_shortages,
3657			 "how many times we have run out of requests");
3658
3659	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3660		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3661		        "maximum outstanding requests (negotiated)");
3662
3663	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3664		        "max_request_segments", CTLFLAG_RD,
3665		        &xbb->max_request_segments, 0,
3666		        "maximum number of pages per requests (negotiated)");
3667
3668	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3669		        "max_request_size", CTLFLAG_RD,
3670		        &xbb->max_request_size, 0,
3671		        "maximum size in bytes of a request (negotiated)");
3672
3673	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3674		        "ring_pages", CTLFLAG_RD,
3675		        &xbb->ring_config.ring_pages, 0,
3676		        "communication channel pages (negotiated)");
3677}
3678
3679/**
3680 * Attach to a XenBus device that has been claimed by our probe routine.
3681 *
3682 * \param dev  NewBus device object representing this Xen Block Back instance.
3683 *
3684 * \return  0 for success, errno codes for failure.
3685 */
3686static int
3687xbb_attach(device_t dev)
3688{
3689	struct xbb_softc	*xbb;
3690	int			 error;
3691	u_int			 max_ring_page_order;
3692
3693	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3694
3695	/*
3696	 * Basic initialization.
3697	 * After this block it is safe to call xbb_detach()
3698	 * to clean up any allocated data for this instance.
3699	 */
3700	xbb = device_get_softc(dev);
3701	xbb->dev = dev;
3702	xbb->otherend_id = xenbus_get_otherend_id(dev);
3703	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3704	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3705
3706	/*
3707	 * Publish protocol capabilities for consumption by the
3708	 * front-end.
3709	 */
3710	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3711			  "feature-barrier", "1");
3712	if (error) {
3713		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3714				  xenbus_get_node(xbb->dev));
3715		return (error);
3716	}
3717
3718	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3719			  "feature-flush-cache", "1");
3720	if (error) {
3721		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3722				  xenbus_get_node(xbb->dev));
3723		return (error);
3724	}
3725
3726	/*
3727	 * Amazon EC2 client compatility.  They refer to max-ring-pages
3728	 * instead of to max-ring-page-order.
3729	 */
3730	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3731			  "max-ring-pages", "%zu", XBB_MAX_RING_PAGES);
3732	if (error) {
3733		xbb_attach_failed(xbb, error, "writing %s/max-ring-pages",
3734				  xenbus_get_node(xbb->dev));
3735		return (error);
3736	}
3737
3738	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3739	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3740			  "max-ring-page-order", "%u", max_ring_page_order);
3741	if (error) {
3742		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3743				  xenbus_get_node(xbb->dev));
3744		return (error);
3745	}
3746
3747	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3748			  "max-requests", "%u", XBB_MAX_REQUESTS);
3749	if (error) {
3750		xbb_attach_failed(xbb, error, "writing %s/max-requests",
3751				  xenbus_get_node(xbb->dev));
3752		return (error);
3753	}
3754
3755	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3756			  "max-request-segments", "%u",
3757			  XBB_MAX_SEGMENTS_PER_REQUEST);
3758	if (error) {
3759		xbb_attach_failed(xbb, error, "writing %s/max-request-segments",
3760				  xenbus_get_node(xbb->dev));
3761		return (error);
3762	}
3763
3764	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3765			  "max-request-size", "%u",
3766			  XBB_MAX_REQUEST_SIZE);
3767	if (error) {
3768		xbb_attach_failed(xbb, error, "writing %s/max-request-size",
3769				  xenbus_get_node(xbb->dev));
3770		return (error);
3771	}
3772
3773	/* Collect physical device information. */
3774	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3775			  "device-type", NULL, &xbb->dev_type,
3776			  NULL);
3777	if (error != 0)
3778		xbb->dev_type = NULL;
3779
3780	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3781                          "mode", NULL, &xbb->dev_mode,
3782			  "params", NULL, &xbb->dev_name,
3783                          NULL);
3784	if (error != 0) {
3785		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3786				  xenbus_get_node(dev));
3787                return (ENXIO);
3788        }
3789
3790	/* Parse fopen style mode flags. */
3791	if (strchr(xbb->dev_mode, 'w') == NULL)
3792		xbb->flags |= XBBF_READ_ONLY;
3793
3794	/*
3795	 * Verify the physical device is present and can support
3796	 * the desired I/O mode.
3797	 */
3798	DROP_GIANT();
3799	error = xbb_open_backend(xbb);
3800	PICKUP_GIANT();
3801	if (error != 0) {
3802		xbb_attach_failed(xbb, error, "Unable to open %s",
3803				  xbb->dev_name);
3804		return (ENXIO);
3805	}
3806
3807	/* Use devstat(9) for recording statistics. */
3808	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3809					   xbb->sector_size,
3810					   DEVSTAT_ALL_SUPPORTED,
3811					   DEVSTAT_TYPE_DIRECT
3812					 | DEVSTAT_TYPE_IF_OTHER,
3813					   DEVSTAT_PRIORITY_OTHER);
3814
3815	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3816					      xbb->sector_size,
3817					      DEVSTAT_ALL_SUPPORTED,
3818					      DEVSTAT_TYPE_DIRECT
3819					    | DEVSTAT_TYPE_IF_OTHER,
3820					      DEVSTAT_PRIORITY_OTHER);
3821	/*
3822	 * Setup sysctl variables.
3823	 */
3824	xbb_setup_sysctl(xbb);
3825
3826	/*
3827	 * Create a taskqueue for doing work that must occur from a
3828	 * thread context.
3829	 */
3830	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3831						  M_NOWAIT,
3832						  taskqueue_thread_enqueue,
3833						  /*contxt*/&xbb->io_taskqueue);
3834	if (xbb->io_taskqueue == NULL) {
3835		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3836		return (ENOMEM);
3837	}
3838
3839	taskqueue_start_threads(&xbb->io_taskqueue,
3840				/*num threads*/1,
3841				/*priority*/PWAIT,
3842				/*thread name*/
3843				"%s taskq", device_get_nameunit(dev));
3844
3845	/* Update hot-plug status to satisfy xend. */
3846	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3847			  "hotplug-status", "connected");
3848	if (error) {
3849		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3850				  xenbus_get_node(xbb->dev));
3851		return (error);
3852	}
3853
3854	/* Tell the front end that we are ready to connect. */
3855	xenbus_set_state(dev, XenbusStateInitWait);
3856
3857	return (0);
3858}
3859
3860/**
3861 * Detach from a block back device instance.
3862 *
3863 * \param dev  NewBus device object representing this Xen Block Back instance.
3864 *
3865 * \return  0 for success, errno codes for failure.
3866 *
3867 * \note A block back device may be detached at any time in its life-cycle,
3868 *       including part way through the attach process.  For this reason,
3869 *       initialization order and the intialization state checks in this
3870 *       routine must be carefully coupled so that attach time failures
3871 *       are gracefully handled.
3872 */
3873static int
3874xbb_detach(device_t dev)
3875{
3876        struct xbb_softc *xbb;
3877
3878	DPRINTF("\n");
3879
3880        xbb = device_get_softc(dev);
3881	mtx_lock(&xbb->lock);
3882	while (xbb_shutdown(xbb) == EAGAIN) {
3883		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3884		       "xbb_shutdown", 0);
3885	}
3886	mtx_unlock(&xbb->lock);
3887
3888	DPRINTF("\n");
3889
3890	if (xbb->io_taskqueue != NULL)
3891		taskqueue_free(xbb->io_taskqueue);
3892
3893	if (xbb->xbb_stats != NULL)
3894		devstat_remove_entry(xbb->xbb_stats);
3895
3896	if (xbb->xbb_stats_in != NULL)
3897		devstat_remove_entry(xbb->xbb_stats_in);
3898
3899	xbb_close_backend(xbb);
3900
3901	if (xbb->dev_mode != NULL) {
3902		free(xbb->dev_mode, M_XENSTORE);
3903		xbb->dev_mode = NULL;
3904	}
3905
3906	if (xbb->dev_type != NULL) {
3907		free(xbb->dev_type, M_XENSTORE);
3908		xbb->dev_type = NULL;
3909	}
3910
3911	if (xbb->dev_name != NULL) {
3912		free(xbb->dev_name, M_XENSTORE);
3913		xbb->dev_name = NULL;
3914	}
3915
3916	mtx_destroy(&xbb->lock);
3917        return (0);
3918}
3919
3920/**
3921 * Prepare this block back device for suspension of this VM.
3922 *
3923 * \param dev  NewBus device object representing this Xen Block Back instance.
3924 *
3925 * \return  0 for success, errno codes for failure.
3926 */
3927static int
3928xbb_suspend(device_t dev)
3929{
3930#ifdef NOT_YET
3931        struct xbb_softc *sc = device_get_softc(dev);
3932
3933        /* Prevent new requests being issued until we fix things up. */
3934        mtx_lock(&sc->xb_io_lock);
3935        sc->connected = BLKIF_STATE_SUSPENDED;
3936        mtx_unlock(&sc->xb_io_lock);
3937#endif
3938
3939        return (0);
3940}
3941
3942/**
3943 * Perform any processing required to recover from a suspended state.
3944 *
3945 * \param dev  NewBus device object representing this Xen Block Back instance.
3946 *
3947 * \return  0 for success, errno codes for failure.
3948 */
3949static int
3950xbb_resume(device_t dev)
3951{
3952	return (0);
3953}
3954
3955/**
3956 * Handle state changes expressed via the XenStore by our front-end peer.
3957 *
3958 * \param dev             NewBus device object representing this Xen
3959 *                        Block Back instance.
3960 * \param frontend_state  The new state of the front-end.
3961 *
3962 * \return  0 for success, errno codes for failure.
3963 */
3964static void
3965xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3966{
3967	struct xbb_softc *xbb = device_get_softc(dev);
3968
3969	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3970	        xenbus_strstate(frontend_state),
3971		xenbus_strstate(xenbus_get_state(xbb->dev)));
3972
3973	switch (frontend_state) {
3974	case XenbusStateInitialising:
3975		break;
3976	case XenbusStateInitialised:
3977	case XenbusStateConnected:
3978		xbb_connect(xbb);
3979		break;
3980	case XenbusStateClosing:
3981	case XenbusStateClosed:
3982		mtx_lock(&xbb->lock);
3983		xbb_shutdown(xbb);
3984		mtx_unlock(&xbb->lock);
3985		if (frontend_state == XenbusStateClosed)
3986			xenbus_set_state(xbb->dev, XenbusStateClosed);
3987		break;
3988	default:
3989		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3990				 frontend_state);
3991		break;
3992	}
3993}
3994
3995/*---------------------------- NewBus Registration ---------------------------*/
3996static device_method_t xbb_methods[] = {
3997	/* Device interface */
3998	DEVMETHOD(device_probe,		xbb_probe),
3999	DEVMETHOD(device_attach,	xbb_attach),
4000	DEVMETHOD(device_detach,	xbb_detach),
4001	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
4002	DEVMETHOD(device_suspend,	xbb_suspend),
4003	DEVMETHOD(device_resume,	xbb_resume),
4004
4005	/* Xenbus interface */
4006	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
4007
4008	{ 0, 0 }
4009};
4010
4011static driver_t xbb_driver = {
4012        "xbbd",
4013        xbb_methods,
4014        sizeof(struct xbb_softc),
4015};
4016devclass_t xbb_devclass;
4017
4018DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
4019