blkback.c revision 223059
1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions, and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    substantially similar to the "NO WARRANTY" disclaimer below
13 *    ("Disclaimer") and any redistribution must be conditioned upon
14 *    including a substantially similar Disclaimer requirement for further
15 *    binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31 *          Ken Merry           (Spectra Logic Corporation)
32 */
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/xen/blkback/blkback.c 223059 2011-06-13 20:36:29Z gibbs $");
35
36/**
37 * \file blkback.c
38 *
39 * \brief Device driver supporting the vending of block storage from
40 *        a FreeBSD domain to other domains.
41 */
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47
48#include <sys/bio.h>
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/devicestat.h>
52#include <sys/disk.h>
53#include <sys/fcntl.h>
54#include <sys/filedesc.h>
55#include <sys/kdb.h>
56#include <sys/module.h>
57#include <sys/namei.h>
58#include <sys/proc.h>
59#include <sys/rman.h>
60#include <sys/taskqueue.h>
61#include <sys/types.h>
62#include <sys/vnode.h>
63#include <sys/mount.h>
64#include <sys/sysctl.h>
65#include <sys/bitstring.h>
66
67#include <geom/geom.h>
68
69#include <machine/_inttypes.h>
70#include <machine/xen/xen-os.h>
71
72#include <vm/vm.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_kern.h>
75
76#include <xen/blkif.h>
77#include <xen/evtchn.h>
78#include <xen/gnttab.h>
79#include <xen/xen_intr.h>
80
81#include <xen/interface/event_channel.h>
82#include <xen/interface/grant_table.h>
83
84#include <xen/xenbus/xenbusvar.h>
85
86/*--------------------------- Compile-time Tunables --------------------------*/
87/**
88 * The maximum number of outstanding request blocks (request headers plus
89 * additional segment blocks) we will allow in a negotiated block-front/back
90 * communication channel.
91 */
92#define	XBB_MAX_REQUESTS	256
93
94/**
95 * \brief Define to force all I/O to be performed on memory owned by the
96 *        backend device, with a copy-in/out to the remote domain's memory.
97 *
98 * \note  This option is currently required when this driver's domain is
99 *        operating in HVM mode on a system using an IOMMU.
100 *
101 * This driver uses Xen's grant table API to gain access to the memory of
102 * the remote domains it serves.  When our domain is operating in PV mode,
103 * the grant table mechanism directly updates our domain's page table entries
104 * to point to the physical pages of the remote domain.  This scheme guarantees
105 * that blkback and the backing devices it uses can safely perform DMA
106 * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
107 * insure that our domain cannot DMA to pages owned by another domain.  As
108 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
109 * table API.  For this reason, in HVM mode, we must bounce all requests into
110 * memory that is mapped into our domain at domain startup and thus has
111 * valid IOMMU mappings.
112 */
113#define XBB_USE_BOUNCE_BUFFERS
114
115/**
116 * \brief Define to enable rudimentary request logging to the console.
117 */
118#undef XBB_DEBUG
119
120/*---------------------------------- Macros ----------------------------------*/
121/**
122 * Custom malloc type for all driver allocations.
123 */
124MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
125
126#ifdef XBB_DEBUG
127#define DPRINTF(fmt, args...) \
128    printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
129#else
130#define DPRINTF(fmt, args...) do {} while(0)
131#endif
132
133/**
134 * The maximum mapped region size per request we will allow in a negotiated
135 * block-front/back communication channel.
136 */
137#define	XBB_MAX_REQUEST_SIZE		\
138	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
139
140/**
141 * The maximum number of segments (within a request header and accompanying
142 * segment blocks) per request we will allow in a negotiated block-front/back
143 * communication channel.
144 */
145#define	XBB_MAX_SEGMENTS_PER_REQUEST			\
146	(MIN(UIO_MAXIOV,				\
147	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,	\
148		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
149
150/**
151 * The maximum number of shared memory ring pages we will allow in a
152 * negotiated block-front/back communication channel.  Allow enough
153 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
154 */
155#define	XBB_MAX_RING_PAGES						    \
156	BLKIF_RING_PAGES(BLKIF_SEGS_TO_BLOCKS(XBB_MAX_SEGMENTS_PER_REQUEST) \
157		       * XBB_MAX_REQUESTS)
158/**
159 * The maximum number of ring pages that we can allow per request list.
160 * We limit this to the maximum number of segments per request, because
161 * that is already a reasonable number of segments to aggregate.  This
162 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
163 * because that would leave situations where we can't dispatch even one
164 * large request.
165 */
166#define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
167
168/*--------------------------- Forward Declarations ---------------------------*/
169struct xbb_softc;
170struct xbb_xen_req;
171
172static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
173			      ...) __attribute__((format(printf, 3, 4)));
174static int  xbb_shutdown(struct xbb_softc *xbb);
175static int  xbb_detach(device_t dev);
176
177/*------------------------------ Data Structures -----------------------------*/
178
179STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
180
181typedef enum {
182	XBB_REQLIST_NONE	= 0x00,
183	XBB_REQLIST_MAPPED	= 0x01
184} xbb_reqlist_flags;
185
186struct xbb_xen_reqlist {
187	/**
188	 * Back reference to the parent block back instance for this
189	 * request.  Used during bio_done handling.
190	 */
191	struct xbb_softc        *xbb;
192
193	/**
194	 * BLKIF_OP code for this request.
195	 */
196	int			 operation;
197
198	/**
199	 * Set to BLKIF_RSP_* to indicate request status.
200	 *
201	 * This field allows an error status to be recorded even if the
202	 * delivery of this status must be deferred.  Deferred reporting
203	 * is necessary, for example, when an error is detected during
204	 * completion processing of one bio when other bios for this
205	 * request are still outstanding.
206	 */
207	int			 status;
208
209	/**
210	 * Number of 512 byte sectors not transferred.
211	 */
212	int			 residual_512b_sectors;
213
214	/**
215	 * Starting sector number of the first request in the list.
216	 */
217	off_t			 starting_sector_number;
218
219	/**
220	 * If we're going to coalesce, the next contiguous sector would be
221	 * this one.
222	 */
223	off_t			 next_contig_sector;
224
225	/**
226	 * Number of child requests in the list.
227	 */
228	int			 num_children;
229
230	/**
231	 * Number of I/O requests dispatched to the backend.
232	 */
233	int			 pendcnt;
234
235	/**
236	 * Total number of segments for requests in the list.
237	 */
238	int			 nr_segments;
239
240	/**
241	 * Flags for this particular request list.
242	 */
243	xbb_reqlist_flags	 flags;
244
245	/**
246	 * Kernel virtual address space reserved for this request
247	 * list structure and used to map the remote domain's pages for
248	 * this I/O, into our domain's address space.
249	 */
250	uint8_t			*kva;
251
252	/**
253	 * Base, psuedo-physical address, corresponding to the start
254	 * of this request's kva region.
255	 */
256	uint64_t	 	 gnt_base;
257
258
259#ifdef XBB_USE_BOUNCE_BUFFERS
260	/**
261	 * Pre-allocated domain local memory used to proxy remote
262	 * domain memory during I/O operations.
263	 */
264	uint8_t			*bounce;
265#endif
266
267	/**
268	 * Array of grant handles (one per page) used to map this request.
269	 */
270	grant_handle_t		*gnt_handles;
271
272	/**
273	 * Device statistics request ordering type (ordered or simple).
274	 */
275	devstat_tag_type	 ds_tag_type;
276
277	/**
278	 * Device statistics request type (read, write, no_data).
279	 */
280	devstat_trans_flags	 ds_trans_type;
281
282	/**
283	 * The start time for this request.
284	 */
285	struct bintime		 ds_t0;
286
287	/**
288	 * Linked list of contiguous requests with the same operation type.
289	 */
290	struct xbb_xen_req_list	 contig_req_list;
291
292	/**
293	 * Linked list links used to aggregate idle requests in the
294	 * request list free pool (xbb->reqlist_free_stailq) and pending
295	 * requests waiting for execution (xbb->reqlist_pending_stailq).
296	 */
297	STAILQ_ENTRY(xbb_xen_reqlist) links;
298};
299
300STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
301
302/**
303 * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
304 */
305struct xbb_xen_req {
306	/**
307	 * Linked list links used to aggregate requests into a reqlist
308	 * and to store them in the request free pool.
309	 */
310	STAILQ_ENTRY(xbb_xen_req) links;
311
312	/**
313	 * The remote domain's identifier for this I/O request.
314	 */
315	uint64_t		  id;
316
317	/**
318	 * The number of pages currently mapped for this request.
319	 */
320	int			  nr_pages;
321
322	/**
323	 * The number of 512 byte sectors comprising this requests.
324	 */
325	int			  nr_512b_sectors;
326
327	/**
328	 * The number of struct bio requests still outstanding for this
329	 * request on the backend device.  This field is only used for
330	 * device (rather than file) backed I/O.
331	 */
332	int			  pendcnt;
333
334	/**
335	 * BLKIF_OP code for this request.
336	 */
337	int			  operation;
338
339	/**
340	 * Storage used for non-native ring requests.
341	 */
342	blkif_request_t		 ring_req_storage;
343
344	/**
345	 * Pointer to the Xen request in the ring.
346	 */
347	blkif_request_t		*ring_req;
348
349	/**
350	 * Consumer index for this request.
351	 */
352	RING_IDX		 req_ring_idx;
353
354	/**
355	 * The start time for this request.
356	 */
357	struct bintime		 ds_t0;
358
359	/**
360	 * Pointer back to our parent request list.
361	 */
362	struct xbb_xen_reqlist  *reqlist;
363};
364SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
365
366/**
367 * \brief Configuration data for the shared memory request ring
368 *        used to communicate with the front-end client of this
369 *        this driver.
370 */
371struct xbb_ring_config {
372	/** KVA address where ring memory is mapped. */
373	vm_offset_t	va;
374
375	/** The pseudo-physical address where ring memory is mapped.*/
376	uint64_t	gnt_addr;
377
378	/**
379	 * Grant table handles, one per-ring page, returned by the
380	 * hyperpervisor upon mapping of the ring and required to
381	 * unmap it when a connection is torn down.
382	 */
383	grant_handle_t	handle[XBB_MAX_RING_PAGES];
384
385	/**
386	 * The device bus address returned by the hypervisor when
387	 * mapping the ring and required to unmap it when a connection
388	 * is torn down.
389	 */
390	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
391
392	/** The number of ring pages mapped for the current connection. */
393	u_int		ring_pages;
394
395	/**
396	 * The grant references, one per-ring page, supplied by the
397	 * front-end, allowing us to reference the ring pages in the
398	 * front-end's domain and to map these pages into our own domain.
399	 */
400	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
401
402	/** The interrupt driven even channel used to signal ring events. */
403	evtchn_port_t   evtchn;
404};
405
406/**
407 * Per-instance connection state flags.
408 */
409typedef enum
410{
411	/**
412	 * The front-end requested a read-only mount of the
413	 * back-end device/file.
414	 */
415	XBBF_READ_ONLY         = 0x01,
416
417	/** Communication with the front-end has been established. */
418	XBBF_RING_CONNECTED    = 0x02,
419
420	/**
421	 * Front-end requests exist in the ring and are waiting for
422	 * xbb_xen_req objects to free up.
423	 */
424	XBBF_RESOURCE_SHORTAGE = 0x04,
425
426	/** Connection teardown in progress. */
427	XBBF_SHUTDOWN          = 0x08,
428
429	/** A thread is already performing shutdown processing. */
430	XBBF_IN_SHUTDOWN       = 0x10
431} xbb_flag_t;
432
433/** Backend device type.  */
434typedef enum {
435	/** Backend type unknown. */
436	XBB_TYPE_NONE		= 0x00,
437
438	/**
439	 * Backend type disk (access via cdev switch
440	 * strategy routine).
441	 */
442	XBB_TYPE_DISK		= 0x01,
443
444	/** Backend type file (access vnode operations.). */
445	XBB_TYPE_FILE		= 0x02
446} xbb_type;
447
448/**
449 * \brief Structure used to memoize information about a per-request
450 *        scatter-gather list.
451 *
452 * The chief benefit of using this data structure is it avoids having
453 * to reparse the possibly discontiguous S/G list in the original
454 * request.  Due to the way that the mapping of the memory backing an
455 * I/O transaction is handled by Xen, a second pass is unavoidable.
456 * At least this way the second walk is a simple array traversal.
457 *
458 * \note A single Scatter/Gather element in the block interface covers
459 *       at most 1 machine page.  In this context a sector (blkif
460 *       nomenclature, not what I'd choose) is a 512b aligned unit
461 *       of mapping within the machine page referenced by an S/G
462 *       element.
463 */
464struct xbb_sg {
465	/** The number of 512b data chunks mapped in this S/G element. */
466	int16_t nsect;
467
468	/**
469	 * The index (0 based) of the first 512b data chunk mapped
470	 * in this S/G element.
471	 */
472	uint8_t first_sect;
473
474	/**
475	 * The index (0 based) of the last 512b data chunk mapped
476	 * in this S/G element.
477	 */
478	uint8_t last_sect;
479};
480
481/**
482 * Character device backend specific configuration data.
483 */
484struct xbb_dev_data {
485	/** Cdev used for device backend access.  */
486	struct cdev   *cdev;
487
488	/** Cdev switch used for device backend access.  */
489	struct cdevsw *csw;
490
491	/** Used to hold a reference on opened cdev backend devices. */
492	int	       dev_ref;
493};
494
495/**
496 * File backend specific configuration data.
497 */
498struct xbb_file_data {
499	/** Credentials to use for vnode backed (file based) I/O. */
500	struct ucred   *cred;
501
502	/**
503	 * \brief Array of io vectors used to process file based I/O.
504	 *
505	 * Only a single file based request is outstanding per-xbb instance,
506	 * so we only need one of these.
507	 */
508	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
509#ifdef XBB_USE_BOUNCE_BUFFERS
510
511	/**
512	 * \brief Array of io vectors used to handle bouncing of file reads.
513	 *
514	 * Vnode operations are free to modify uio data during their
515	 * exectuion.  In the case of a read with bounce buffering active,
516	 * we need some of the data from the original uio in order to
517	 * bounce-out the read data.  This array serves as the temporary
518	 * storage for this saved data.
519	 */
520	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
521
522	/**
523	 * \brief Array of memoized bounce buffer kva offsets used
524	 *        in the file based backend.
525	 *
526	 * Due to the way that the mapping of the memory backing an
527	 * I/O transaction is handled by Xen, a second pass through
528	 * the request sg elements is unavoidable. We memoize the computed
529	 * bounce address here to reduce the cost of the second walk.
530	 */
531	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
532#endif /* XBB_USE_BOUNCE_BUFFERS */
533};
534
535/**
536 * Collection of backend type specific data.
537 */
538union xbb_backend_data {
539	struct xbb_dev_data  dev;
540	struct xbb_file_data file;
541};
542
543/**
544 * Function signature of backend specific I/O handlers.
545 */
546typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
547			      struct xbb_xen_reqlist *reqlist, int operation,
548			      int flags);
549
550/**
551 * Per-instance configuration data.
552 */
553struct xbb_softc {
554
555	/**
556	 * Task-queue used to process I/O requests.
557	 */
558	struct taskqueue	 *io_taskqueue;
559
560	/**
561	 * Single "run the request queue" task enqueued
562	 * on io_taskqueue.
563	 */
564	struct task		  io_task;
565
566	/** Device type for this instance. */
567	xbb_type		  device_type;
568
569	/** NewBus device corresponding to this instance. */
570	device_t		  dev;
571
572	/** Backend specific dispatch routine for this instance. */
573	xbb_dispatch_t		  dispatch_io;
574
575	/** The number of requests outstanding on the backend device/file. */
576	int			  active_request_count;
577
578	/** Free pool of request tracking structures. */
579	struct xbb_xen_req_list   request_free_stailq;
580
581	/** Array, sized at connection time, of request tracking structures. */
582	struct xbb_xen_req	 *requests;
583
584	/** Free pool of request list structures. */
585	struct xbb_xen_reqlist_list reqlist_free_stailq;
586
587	/** List of pending request lists awaiting execution. */
588	struct xbb_xen_reqlist_list reqlist_pending_stailq;
589
590	/** Array, sized at connection time, of request list structures. */
591	struct xbb_xen_reqlist	 *request_lists;
592
593	/**
594	 * Global pool of kva used for mapping remote domain ring
595	 * and I/O transaction data.
596	 */
597	vm_offset_t		  kva;
598
599	/** Psuedo-physical address corresponding to kva. */
600	uint64_t		  gnt_base_addr;
601
602	/** The size of the global kva pool. */
603	int			  kva_size;
604
605	/** The size of the KVA area used for request lists. */
606	int			  reqlist_kva_size;
607
608	/** The number of pages of KVA used for request lists */
609	int			  reqlist_kva_pages;
610
611	/** Bitmap of free KVA pages */
612	bitstr_t		 *kva_free;
613
614	/**
615	 * \brief Cached value of the front-end's domain id.
616	 *
617	 * This value is used at once for each mapped page in
618	 * a transaction.  We cache it to avoid incuring the
619	 * cost of an ivar access every time this is needed.
620	 */
621	domid_t			  otherend_id;
622
623	/**
624	 * \brief The blkif protocol abi in effect.
625	 *
626	 * There are situations where the back and front ends can
627	 * have a different, native abi (e.g. intel x86_64 and
628	 * 32bit x86 domains on the same machine).  The back-end
629	 * always accomodates the front-end's native abi.  That
630	 * value is pulled from the XenStore and recorded here.
631	 */
632	int			  abi;
633
634	/**
635	 * \brief The maximum number of requests and request lists allowed
636	 *        to be in flight at a time.
637	 *
638	 * This value is negotiated via the XenStore.
639	 */
640	u_int			  max_requests;
641
642	/**
643	 * \brief The maximum number of segments (1 page per segment)
644	 *	  that can be mapped by a request.
645	 *
646	 * This value is negotiated via the XenStore.
647	 */
648	u_int			  max_request_segments;
649
650	/**
651	 * \brief Maximum number of segments per request list.
652	 *
653	 * This value is derived from and will generally be larger than
654	 * max_request_segments.
655	 */
656	u_int			  max_reqlist_segments;
657
658	/**
659	 * The maximum size of any request to this back-end
660	 * device.
661	 *
662	 * This value is negotiated via the XenStore.
663	 */
664	u_int			  max_request_size;
665
666	/**
667	 * The maximum size of any request list.  This is derived directly
668	 * from max_reqlist_segments.
669	 */
670	u_int			  max_reqlist_size;
671
672	/** Various configuration and state bit flags. */
673	xbb_flag_t		  flags;
674
675	/** Ring mapping and interrupt configuration data. */
676	struct xbb_ring_config	  ring_config;
677
678	/** Runtime, cross-abi safe, structures for ring access. */
679	blkif_back_rings_t	  rings;
680
681	/** IRQ mapping for the communication ring event channel. */
682	int			  irq;
683
684	/**
685	 * \brief Backend access mode flags (e.g. write, or read-only).
686	 *
687	 * This value is passed to us by the front-end via the XenStore.
688	 */
689	char			 *dev_mode;
690
691	/**
692	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
693	 *
694	 * This value is passed to us by the front-end via the XenStore.
695	 * Currently unused.
696	 */
697	char			 *dev_type;
698
699	/**
700	 * \brief Backend device/file identifier.
701	 *
702	 * This value is passed to us by the front-end via the XenStore.
703	 * We expect this to be a POSIX path indicating the file or
704	 * device to open.
705	 */
706	char			 *dev_name;
707
708	/**
709	 * Vnode corresponding to the backend device node or file
710	 * we are acessing.
711	 */
712	struct vnode		 *vn;
713
714	union xbb_backend_data	  backend;
715
716	/** The native sector size of the backend. */
717	u_int			  sector_size;
718
719	/** log2 of sector_size.  */
720	u_int			  sector_size_shift;
721
722	/** Size in bytes of the backend device or file.  */
723	off_t			  media_size;
724
725	/**
726	 * \brief media_size expressed in terms of the backend native
727	 *	  sector size.
728	 *
729	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
730	 */
731	uint64_t		  media_num_sectors;
732
733	/**
734	 * \brief Array of memoized scatter gather data computed during the
735	 *	  conversion of blkif ring requests to internal xbb_xen_req
736	 *	  structures.
737	 *
738	 * Ring processing is serialized so we only need one of these.
739	 */
740	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
741
742	/**
743	 * Temporary grant table map used in xbb_dispatch_io().  When
744	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
745	 * stack could cause a stack overflow.
746	 */
747	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
748
749	/** Mutex protecting per-instance data. */
750	struct mtx		  lock;
751
752#ifdef XENHVM
753	/**
754	 * Resource representing allocated physical address space
755	 * associated with our per-instance kva region.
756	 */
757	struct resource		 *pseudo_phys_res;
758
759	/** Resource id for allocated physical address space. */
760	int			  pseudo_phys_res_id;
761#endif
762
763	/**
764	 * I/O statistics from BlockBack dispatch down.  These are
765	 * coalesced requests, and we start them right before execution.
766	 */
767	struct devstat		 *xbb_stats;
768
769	/**
770	 * I/O statistics coming into BlockBack.  These are the requests as
771	 * we get them from BlockFront.  They are started as soon as we
772	 * receive a request, and completed when the I/O is complete.
773	 */
774	struct devstat		 *xbb_stats_in;
775
776	/** Disable sending flush to the backend */
777	int			  disable_flush;
778
779	/** Send a real flush for every N flush requests */
780	int			  flush_interval;
781
782	/** Count of flush requests in the interval */
783	int			  flush_count;
784
785	/** Don't coalesce requests if this is set */
786	int			  no_coalesce_reqs;
787
788	/** Number of requests we have received */
789	uint64_t		  reqs_received;
790
791	/** Number of requests we have completed*/
792	uint64_t		  reqs_completed;
793
794	/** How many forced dispatches (i.e. without coalescing) have happend */
795	uint64_t		  forced_dispatch;
796
797	/** How many normal dispatches have happend */
798	uint64_t		  normal_dispatch;
799
800	/** How many total dispatches have happend */
801	uint64_t		  total_dispatch;
802
803	/** How many times we have run out of KVA */
804	uint64_t		  kva_shortages;
805
806	/** How many times we have run out of request structures */
807	uint64_t		  request_shortages;
808};
809
810/*---------------------------- Request Processing ----------------------------*/
811/**
812 * Allocate an internal transaction tracking structure from the free pool.
813 *
814 * \param xbb  Per-instance xbb configuration structure.
815 *
816 * \return  On success, a pointer to the allocated xbb_xen_req structure.
817 *          Otherwise NULL.
818 */
819static inline struct xbb_xen_req *
820xbb_get_req(struct xbb_softc *xbb)
821{
822	struct xbb_xen_req *req;
823
824	req = NULL;
825
826	mtx_assert(&xbb->lock, MA_OWNED);
827
828	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
829		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
830		xbb->active_request_count++;
831	}
832
833	return (req);
834}
835
836/**
837 * Return an allocated transaction tracking structure to the free pool.
838 *
839 * \param xbb  Per-instance xbb configuration structure.
840 * \param req  The request structure to free.
841 */
842static inline void
843xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
844{
845	mtx_assert(&xbb->lock, MA_OWNED);
846
847	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
848	xbb->active_request_count--;
849
850	KASSERT(xbb->active_request_count >= 0,
851		("xbb_release_req: negative active count"));
852}
853
854/**
855 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
856 *
857 * \param xbb	    Per-instance xbb configuration structure.
858 * \param req_list  The list of requests to free.
859 * \param nreqs	    The number of items in the list.
860 */
861static inline void
862xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
863		 int nreqs)
864{
865	mtx_assert(&xbb->lock, MA_OWNED);
866
867	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
868	xbb->active_request_count -= nreqs;
869
870	KASSERT(xbb->active_request_count >= 0,
871		("xbb_release_reqs: negative active count"));
872}
873
874/**
875 * Given a page index and 512b sector offset within that page,
876 * calculate an offset into a request's kva region.
877 *
878 * \param reqlist The request structure whose kva region will be accessed.
879 * \param pagenr  The page index used to compute the kva offset.
880 * \param sector  The 512b sector index used to compute the page relative
881 *                kva offset.
882 *
883 * \return  The computed global KVA offset.
884 */
885static inline uint8_t *
886xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
887{
888	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
889}
890
891#ifdef XBB_USE_BOUNCE_BUFFERS
892/**
893 * Given a page index and 512b sector offset within that page,
894 * calculate an offset into a request's local bounce memory region.
895 *
896 * \param reqlist The request structure whose bounce region will be accessed.
897 * \param pagenr  The page index used to compute the bounce offset.
898 * \param sector  The 512b sector index used to compute the page relative
899 *                bounce offset.
900 *
901 * \return  The computed global bounce buffer address.
902 */
903static inline uint8_t *
904xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
905{
906	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
907}
908#endif
909
910/**
911 * Given a page number and 512b sector offset within that page,
912 * calculate an offset into the request's memory region that the
913 * underlying backend device/file should use for I/O.
914 *
915 * \param reqlist The request structure whose I/O region will be accessed.
916 * \param pagenr  The page index used to compute the I/O offset.
917 * \param sector  The 512b sector index used to compute the page relative
918 *                I/O offset.
919 *
920 * \return  The computed global I/O address.
921 *
922 * Depending on configuration, this will either be a local bounce buffer
923 * or a pointer to the memory mapped in from the front-end domain for
924 * this request.
925 */
926static inline uint8_t *
927xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
928{
929#ifdef XBB_USE_BOUNCE_BUFFERS
930	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
931#else
932	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
933#endif
934}
935
936/**
937 * Given a page index and 512b sector offset within that page, calculate
938 * an offset into the local psuedo-physical address space used to map a
939 * front-end's request data into a request.
940 *
941 * \param reqlist The request list structure whose pseudo-physical region
942 *                will be accessed.
943 * \param pagenr  The page index used to compute the pseudo-physical offset.
944 * \param sector  The 512b sector index used to compute the page relative
945 *                pseudo-physical offset.
946 *
947 * \return  The computed global pseudo-phsyical address.
948 *
949 * Depending on configuration, this will either be a local bounce buffer
950 * or a pointer to the memory mapped in from the front-end domain for
951 * this request.
952 */
953static inline uintptr_t
954xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
955{
956	struct xbb_softc *xbb;
957
958	xbb = reqlist->xbb;
959
960	return ((uintptr_t)(xbb->gnt_base_addr +
961		(uintptr_t)(reqlist->kva - xbb->kva) +
962		(PAGE_SIZE * pagenr) + (sector << 9)));
963}
964
965/**
966 * Get Kernel Virtual Address space for mapping requests.
967 *
968 * \param xbb         Per-instance xbb configuration structure.
969 * \param nr_pages    Number of pages needed.
970 * \param check_only  If set, check for free KVA but don't allocate it.
971 * \param have_lock   If set, xbb lock is already held.
972 *
973 * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
974 *
975 * Note:  This should be unnecessary once we have either chaining or
976 * scatter/gather support for struct bio.  At that point we'll be able to
977 * put multiple addresses and lengths in one bio/bio chain and won't need
978 * to map everything into one virtual segment.
979 */
980static uint8_t *
981xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
982{
983	intptr_t first_clear, num_clear;
984	uint8_t *free_kva;
985	int i;
986
987	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
988
989	first_clear = 0;
990	free_kva = NULL;
991
992	mtx_lock(&xbb->lock);
993
994	/*
995	 * Look for the first available page.  If there are none, we're done.
996	 */
997	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
998
999	if (first_clear == -1)
1000		goto bailout;
1001
1002	/*
1003	 * Starting at the first available page, look for consecutive free
1004	 * pages that will satisfy the user's request.
1005	 */
1006	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1007		/*
1008		 * If this is true, the page is used, so we have to reset
1009		 * the number of clear pages and the first clear page
1010		 * (since it pointed to a region with an insufficient number
1011		 * of clear pages).
1012		 */
1013		if (bit_test(xbb->kva_free, i)) {
1014			num_clear = 0;
1015			first_clear = -1;
1016			continue;
1017		}
1018
1019		if (first_clear == -1)
1020			first_clear = i;
1021
1022		/*
1023		 * If this is true, we've found a large enough free region
1024		 * to satisfy the request.
1025		 */
1026		if (++num_clear == nr_pages) {
1027
1028			bit_nset(xbb->kva_free, first_clear,
1029				 first_clear + nr_pages - 1);
1030
1031			free_kva = xbb->kva +
1032				(uint8_t *)(first_clear * PAGE_SIZE);
1033
1034			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1035				free_kva + (nr_pages * PAGE_SIZE) <=
1036				(uint8_t *)xbb->ring_config.va,
1037				("Free KVA %p len %d out of range, "
1038				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1039				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1040				 (uintmax_t)xbb->ring_config.va));
1041			break;
1042		}
1043	}
1044
1045bailout:
1046
1047	if (free_kva == NULL) {
1048		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1049		xbb->kva_shortages++;
1050	}
1051
1052	mtx_unlock(&xbb->lock);
1053
1054	return (free_kva);
1055}
1056
1057/**
1058 * Free allocated KVA.
1059 *
1060 * \param xbb	    Per-instance xbb configuration structure.
1061 * \param kva_ptr   Pointer to allocated KVA region.
1062 * \param nr_pages  Number of pages in the KVA region.
1063 */
1064static void
1065xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1066{
1067	intptr_t start_page;
1068
1069	mtx_assert(&xbb->lock, MA_OWNED);
1070
1071	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1072	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1073
1074}
1075
1076/**
1077 * Unmap the front-end pages associated with this I/O request.
1078 *
1079 * \param req  The request structure to unmap.
1080 */
1081static void
1082xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1083{
1084	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1085	u_int			      i;
1086	u_int			      invcount;
1087	int			      error;
1088
1089	invcount = 0;
1090	for (i = 0; i < reqlist->nr_segments; i++) {
1091
1092		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1093			continue;
1094
1095		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1096		unmap[invcount].dev_bus_addr = 0;
1097		unmap[invcount].handle       = reqlist->gnt_handles[i];
1098		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1099		invcount++;
1100	}
1101
1102	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1103					  unmap, invcount);
1104	KASSERT(error == 0, ("Grant table operation failed"));
1105}
1106
1107/**
1108 * Allocate an internal transaction tracking structure from the free pool.
1109 *
1110 * \param xbb  Per-instance xbb configuration structure.
1111 *
1112 * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1113 *          Otherwise NULL.
1114 */
1115static inline struct xbb_xen_reqlist *
1116xbb_get_reqlist(struct xbb_softc *xbb)
1117{
1118	struct xbb_xen_reqlist *reqlist;
1119
1120	reqlist = NULL;
1121
1122	mtx_assert(&xbb->lock, MA_OWNED);
1123
1124	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1125
1126		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1127		reqlist->flags = XBB_REQLIST_NONE;
1128		reqlist->kva = NULL;
1129		reqlist->status = BLKIF_RSP_OKAY;
1130		reqlist->residual_512b_sectors = 0;
1131		reqlist->num_children = 0;
1132		reqlist->nr_segments = 0;
1133		STAILQ_INIT(&reqlist->contig_req_list);
1134	}
1135
1136	return (reqlist);
1137}
1138
1139/**
1140 * Return an allocated transaction tracking structure to the free pool.
1141 *
1142 * \param xbb        Per-instance xbb configuration structure.
1143 * \param req        The request list structure to free.
1144 * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1145 *                   during a resource shortage condition.
1146 */
1147static inline void
1148xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1149		    int wakeup)
1150{
1151
1152	mtx_lock(&xbb->lock);
1153
1154	if (wakeup) {
1155		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1156		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1157	}
1158
1159	if (reqlist->kva != NULL)
1160		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1161
1162	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1163
1164	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1165
1166	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1167		/*
1168		 * Shutdown is in progress.  See if we can
1169		 * progress further now that one more request
1170		 * has completed and been returned to the
1171		 * free pool.
1172		 */
1173		xbb_shutdown(xbb);
1174	}
1175
1176	mtx_unlock(&xbb->lock);
1177
1178	if (wakeup != 0)
1179		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1180}
1181
1182/**
1183 * Request resources and do basic request setup.
1184 *
1185 * \param xbb          Per-instance xbb configuration structure.
1186 * \param reqlist      Pointer to reqlist pointer.
1187 * \param ring_req     Pointer to a block ring request.
1188 * \param ring_index   The ring index of this request.
1189 *
1190 * \return  0 for success, non-zero for failure.
1191 */
1192static int
1193xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1194		  blkif_request_t *ring_req, RING_IDX ring_idx)
1195{
1196	struct xbb_xen_reqlist *nreqlist;
1197	struct xbb_xen_req     *nreq;
1198
1199	nreqlist = NULL;
1200	nreq     = NULL;
1201
1202	mtx_lock(&xbb->lock);
1203
1204	/*
1205	 * We don't allow new resources to be allocated if we're in the
1206	 * process of shutting down.
1207	 */
1208	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1209		mtx_unlock(&xbb->lock);
1210		return (1);
1211	}
1212
1213	/*
1214	 * Allocate a reqlist if the caller doesn't have one already.
1215	 */
1216	if (*reqlist == NULL) {
1217		nreqlist = xbb_get_reqlist(xbb);
1218		if (nreqlist == NULL)
1219			goto bailout_error;
1220	}
1221
1222	/* We always allocate a request. */
1223	nreq = xbb_get_req(xbb);
1224	if (nreq == NULL)
1225		goto bailout_error;
1226
1227	mtx_unlock(&xbb->lock);
1228
1229	if (*reqlist == NULL) {
1230		*reqlist = nreqlist;
1231		nreqlist->operation = ring_req->operation;
1232		nreqlist->starting_sector_number = ring_req->sector_number;
1233		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1234				   links);
1235	}
1236
1237	nreq->reqlist = *reqlist;
1238	nreq->req_ring_idx = ring_idx;
1239
1240	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1241		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1242		nreq->ring_req = &nreq->ring_req_storage;
1243	} else {
1244		nreq->ring_req = ring_req;
1245	}
1246
1247	binuptime(&nreq->ds_t0);
1248	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1249	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1250	(*reqlist)->num_children++;
1251	(*reqlist)->nr_segments += ring_req->nr_segments;
1252
1253	return (0);
1254
1255bailout_error:
1256
1257	/*
1258	 * We're out of resources, so set the shortage flag.  The next time
1259	 * a request is released, we'll try waking up the work thread to
1260	 * see if we can allocate more resources.
1261	 */
1262	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1263	xbb->request_shortages++;
1264
1265	if (nreq != NULL)
1266		xbb_release_req(xbb, nreq);
1267
1268	mtx_unlock(&xbb->lock);
1269
1270	if (nreqlist != NULL)
1271		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1272
1273	return (1);
1274}
1275
1276/**
1277 * Create and transmit a response to a blkif request.
1278 *
1279 * \param xbb     Per-instance xbb configuration structure.
1280 * \param req     The request structure to which to respond.
1281 * \param status  The status code to report.  See BLKIF_RSP_*
1282 *                in sys/xen/interface/io/blkif.h.
1283 */
1284static void
1285xbb_send_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1286{
1287	blkif_response_t *resp;
1288	int		  more_to_do;
1289	int		  notify;
1290
1291	more_to_do = 0;
1292
1293	/*
1294	 * Place on the response ring for the relevant domain.
1295	 * For now, only the spacing between entries is different
1296	 * in the different ABIs, not the response entry layout.
1297	 */
1298	mtx_lock(&xbb->lock);
1299	switch (xbb->abi) {
1300	case BLKIF_PROTOCOL_NATIVE:
1301		resp = RING_GET_RESPONSE(&xbb->rings.native,
1302					 xbb->rings.native.rsp_prod_pvt);
1303		break;
1304	case BLKIF_PROTOCOL_X86_32:
1305		resp = (blkif_response_t *)
1306		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1307				      xbb->rings.x86_32.rsp_prod_pvt);
1308		break;
1309	case BLKIF_PROTOCOL_X86_64:
1310		resp = (blkif_response_t *)
1311		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1312				      xbb->rings.x86_64.rsp_prod_pvt);
1313		break;
1314	default:
1315		panic("Unexpected blkif protocol ABI.");
1316	}
1317
1318	resp->id        = req->id;
1319	resp->operation = req->operation;
1320	resp->status    = status;
1321
1322	xbb->rings.common.rsp_prod_pvt += BLKIF_SEGS_TO_BLOCKS(req->nr_pages);
1323	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, notify);
1324
1325	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1326
1327		/*
1328		 * Tail check for pending requests. Allows frontend to avoid
1329		 * notifications if requests are already in flight (lower
1330		 * overheads and promotes batching).
1331		 */
1332		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1333	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1334
1335		more_to_do = 1;
1336	}
1337
1338	xbb->reqs_completed++;
1339
1340	mtx_unlock(&xbb->lock);
1341
1342	if (more_to_do)
1343		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1344
1345	if (notify)
1346		notify_remote_via_irq(xbb->irq);
1347}
1348
1349/**
1350 * Complete a request list.
1351 *
1352 * \param xbb        Per-instance xbb configuration structure.
1353 * \param reqlist    Allocated internal request list structure.
1354 */
1355static void
1356xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1357{
1358	struct xbb_xen_req *nreq;
1359	off_t		    sectors_sent;
1360
1361	sectors_sent = 0;
1362
1363	if (reqlist->flags & XBB_REQLIST_MAPPED)
1364		xbb_unmap_reqlist(reqlist);
1365
1366	/*
1367	 * All I/O is done, send the response.  A lock should not be
1368	 * necessary here because the request list is complete, and
1369	 * therefore this is the only context accessing this request
1370	 * right now.  The functions we call do their own locking if
1371	 * necessary.
1372	 */
1373	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1374		off_t cur_sectors_sent;
1375
1376		xbb_send_response(xbb, nreq, reqlist->status);
1377
1378		/* We don't report bytes sent if there is an error. */
1379		if (reqlist->status == BLKIF_RSP_OKAY)
1380			cur_sectors_sent = nreq->nr_512b_sectors;
1381		else
1382			cur_sectors_sent = 0;
1383
1384		sectors_sent += cur_sectors_sent;
1385
1386		devstat_end_transaction(xbb->xbb_stats_in,
1387					/*bytes*/cur_sectors_sent << 9,
1388					reqlist->ds_tag_type,
1389					reqlist->ds_trans_type,
1390					/*now*/NULL,
1391					/*then*/&nreq->ds_t0);
1392	}
1393
1394	/*
1395	 * Take out any sectors not sent.  If we wind up negative (which
1396	 * might happen if an error is reported as well as a residual), just
1397	 * report 0 sectors sent.
1398	 */
1399	sectors_sent -= reqlist->residual_512b_sectors;
1400	if (sectors_sent < 0)
1401		sectors_sent = 0;
1402
1403	devstat_end_transaction(xbb->xbb_stats,
1404				/*bytes*/ sectors_sent << 9,
1405				reqlist->ds_tag_type,
1406				reqlist->ds_trans_type,
1407				/*now*/NULL,
1408				/*then*/&reqlist->ds_t0);
1409
1410	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1411}
1412
1413/**
1414 * Completion handler for buffer I/O requests issued by the device
1415 * backend driver.
1416 *
1417 * \param bio  The buffer I/O request on which to perform completion
1418 *             processing.
1419 */
1420static void
1421xbb_bio_done(struct bio *bio)
1422{
1423	struct xbb_softc       *xbb;
1424	struct xbb_xen_reqlist *reqlist;
1425
1426	reqlist = bio->bio_caller1;
1427	xbb     = reqlist->xbb;
1428
1429	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1430
1431	/*
1432	 * This is a bit imprecise.  With aggregated I/O a single
1433	 * request list can contain multiple front-end requests and
1434	 * a multiple bios may point to a single request.  By carefully
1435	 * walking the request list, we could map residuals and errors
1436	 * back to the original front-end request, but the interface
1437	 * isn't sufficiently rich for us to properly report the error.
1438	 * So, we just treat the entire request list as having failed if an
1439	 * error occurs on any part.  And, if an error occurs, we treat
1440	 * the amount of data transferred as 0.
1441	 *
1442	 * For residuals, we report it on the overall aggregated device,
1443	 * but not on the individual requests, since we don't currently
1444	 * do the work to determine which front-end request to which the
1445	 * residual applies.
1446	 */
1447	if (bio->bio_error) {
1448		DPRINTF("BIO returned error %d for operation on device %s\n",
1449			bio->bio_error, xbb->dev_name);
1450		reqlist->status = BLKIF_RSP_ERROR;
1451
1452		if (bio->bio_error == ENXIO
1453		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1454
1455			/*
1456			 * Backend device has disappeared.  Signal the
1457			 * front-end that we (the device proxy) want to
1458			 * go away.
1459			 */
1460			xenbus_set_state(xbb->dev, XenbusStateClosing);
1461		}
1462	}
1463
1464#ifdef XBB_USE_BOUNCE_BUFFERS
1465	if (bio->bio_cmd == BIO_READ) {
1466		vm_offset_t kva_offset;
1467
1468		kva_offset = (vm_offset_t)bio->bio_data
1469			   - (vm_offset_t)reqlist->bounce;
1470		memcpy((uint8_t *)reqlist->kva + kva_offset,
1471		       bio->bio_data, bio->bio_bcount);
1472	}
1473#endif /* XBB_USE_BOUNCE_BUFFERS */
1474
1475	/*
1476	 * Decrement the pending count for the request list.  When we're
1477	 * done with the requests, send status back for all of them.
1478	 */
1479	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1480		xbb_complete_reqlist(xbb, reqlist);
1481
1482	g_destroy_bio(bio);
1483}
1484
1485/**
1486 * Parse a blkif request into an internal request structure and send
1487 * it to the backend for processing.
1488 *
1489 * \param xbb       Per-instance xbb configuration structure.
1490 * \param reqlist   Allocated internal request list structure.
1491 *
1492 * \return          On success, 0.  For resource shortages, non-zero.
1493 *
1494 * This routine performs the backend common aspects of request parsing
1495 * including compiling an internal request structure, parsing the S/G
1496 * list and any secondary ring requests in which they may reside, and
1497 * the mapping of front-end I/O pages into our domain.
1498 */
1499static int
1500xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1501{
1502	struct xbb_sg                *xbb_sg;
1503	struct gnttab_map_grant_ref  *map;
1504	struct blkif_request_segment *sg;
1505	struct blkif_request_segment *last_block_sg;
1506	struct xbb_xen_req	     *nreq;
1507	u_int			      nseg;
1508	u_int			      seg_idx;
1509	u_int			      block_segs;
1510	int			      nr_sects;
1511	int			      total_sects;
1512	int			      operation;
1513	uint8_t			      bio_flags;
1514	int			      error;
1515
1516	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1517	bio_flags            = 0;
1518	total_sects	     = 0;
1519	nr_sects	     = 0;
1520
1521	/*
1522	 * First determine whether we have enough free KVA to satisfy this
1523	 * request list.  If not, tell xbb_run_queue() so it can go to
1524	 * sleep until we have more KVA.
1525	 */
1526	reqlist->kva = NULL;
1527	if (reqlist->nr_segments != 0) {
1528		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1529		if (reqlist->kva == NULL) {
1530			/*
1531			 * If we're out of KVA, return ENOMEM.
1532			 */
1533			return (ENOMEM);
1534		}
1535	}
1536
1537	binuptime(&reqlist->ds_t0);
1538	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1539
1540	switch (reqlist->operation) {
1541	case BLKIF_OP_WRITE_BARRIER:
1542		bio_flags       |= BIO_ORDERED;
1543		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1544		/* FALLTHROUGH */
1545	case BLKIF_OP_WRITE:
1546		operation = BIO_WRITE;
1547		reqlist->ds_trans_type = DEVSTAT_WRITE;
1548		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1549			DPRINTF("Attempt to write to read only device %s\n",
1550				xbb->dev_name);
1551			reqlist->status = BLKIF_RSP_ERROR;
1552			goto send_response;
1553		}
1554		break;
1555	case BLKIF_OP_READ:
1556		operation = BIO_READ;
1557		reqlist->ds_trans_type = DEVSTAT_READ;
1558		break;
1559	case BLKIF_OP_FLUSH_DISKCACHE:
1560		/*
1561		 * If this is true, the user has requested that we disable
1562		 * flush support.  So we just complete the requests
1563		 * successfully.
1564		 */
1565		if (xbb->disable_flush != 0) {
1566			goto send_response;
1567		}
1568
1569		/*
1570		 * The user has requested that we only send a real flush
1571		 * for every N flush requests.  So keep count, and either
1572		 * complete the request immediately or queue it for the
1573		 * backend.
1574		 */
1575		if (xbb->flush_interval != 0) {
1576		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1577				goto send_response;
1578			} else
1579				xbb->flush_count = 0;
1580		}
1581
1582		operation = BIO_FLUSH;
1583		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1584		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1585		goto do_dispatch;
1586		/*NOTREACHED*/
1587	default:
1588		DPRINTF("error: unknown block io operation [%d]\n",
1589			reqlist->operation);
1590		reqlist->status = BLKIF_RSP_ERROR;
1591		goto send_response;
1592	}
1593
1594	reqlist->xbb  = xbb;
1595	xbb_sg        = xbb->xbb_sgs;
1596	map	      = xbb->maps;
1597	seg_idx	      = 0;
1598
1599	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1600		blkif_request_t		*ring_req;
1601		RING_IDX		 req_ring_idx;
1602		u_int			 req_seg_idx;
1603
1604		ring_req	      = nreq->ring_req;
1605		req_ring_idx	      = nreq->req_ring_idx;
1606		nr_sects              = 0;
1607		nseg                  = ring_req->nr_segments;
1608		nreq->id              = ring_req->id;
1609		nreq->nr_pages        = nseg;
1610		nreq->nr_512b_sectors = 0;
1611		req_seg_idx	      = 0;
1612		sg	              = NULL;
1613
1614		/* Check that number of segments is sane. */
1615		if (unlikely(nseg == 0)
1616		 || unlikely(nseg > xbb->max_request_segments)) {
1617			DPRINTF("Bad number of segments in request (%d)\n",
1618				nseg);
1619			reqlist->status = BLKIF_RSP_ERROR;
1620			goto send_response;
1621		}
1622
1623		block_segs    = MIN(nreq->nr_pages,
1624				    BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK);
1625		sg            = ring_req->seg;
1626		last_block_sg = sg + block_segs;
1627		while (1) {
1628
1629			while (sg < last_block_sg) {
1630				KASSERT(seg_idx <
1631					XBB_MAX_SEGMENTS_PER_REQLIST,
1632					("seg_idx %d is too large, max "
1633					"segs %d\n", seg_idx,
1634					XBB_MAX_SEGMENTS_PER_REQLIST));
1635
1636				xbb_sg->first_sect = sg->first_sect;
1637				xbb_sg->last_sect  = sg->last_sect;
1638				xbb_sg->nsect =
1639				    (int8_t)(sg->last_sect -
1640				    sg->first_sect + 1);
1641
1642				if ((sg->last_sect >= (PAGE_SIZE >> 9))
1643				 || (xbb_sg->nsect <= 0)) {
1644					reqlist->status = BLKIF_RSP_ERROR;
1645					goto send_response;
1646				}
1647
1648				nr_sects += xbb_sg->nsect;
1649				map->host_addr = xbb_get_gntaddr(reqlist,
1650							seg_idx, /*sector*/0);
1651				KASSERT(map->host_addr + PAGE_SIZE <=
1652					xbb->ring_config.gnt_addr,
1653					("Host address %#jx len %d overlaps "
1654					 "ring address %#jx\n",
1655					(uintmax_t)map->host_addr, PAGE_SIZE,
1656					(uintmax_t)xbb->ring_config.gnt_addr));
1657
1658				map->flags     = GNTMAP_host_map;
1659				map->ref       = sg->gref;
1660				map->dom       = xbb->otherend_id;
1661				if (operation == BIO_WRITE)
1662					map->flags |= GNTMAP_readonly;
1663				sg++;
1664				map++;
1665				xbb_sg++;
1666				seg_idx++;
1667				req_seg_idx++;
1668			}
1669
1670			block_segs = MIN(nseg - req_seg_idx,
1671					 BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK);
1672			if (block_segs == 0)
1673				break;
1674
1675			/*
1676			 * Fetch the next request block full of SG elements.
1677			 * For now, only the spacing between entries is
1678			 * different in the different ABIs, not the sg entry
1679			 * layout.
1680			 */
1681			req_ring_idx++;
1682			switch (xbb->abi) {
1683			case BLKIF_PROTOCOL_NATIVE:
1684				sg = BLKRING_GET_SG_REQUEST(&xbb->rings.native,
1685							    req_ring_idx);
1686				break;
1687			case BLKIF_PROTOCOL_X86_32:
1688			{
1689				sg = BLKRING_GET_SG_REQUEST(&xbb->rings.x86_32,
1690							    req_ring_idx);
1691				break;
1692			}
1693			case BLKIF_PROTOCOL_X86_64:
1694			{
1695				sg = BLKRING_GET_SG_REQUEST(&xbb->rings.x86_64,
1696							    req_ring_idx);
1697				break;
1698			}
1699			default:
1700				panic("Unexpected blkif protocol ABI.");
1701				/* NOTREACHED */
1702			}
1703			last_block_sg = sg + block_segs;
1704		}
1705
1706		/* Convert to the disk's sector size */
1707		nreq->nr_512b_sectors = nr_sects;
1708		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1709		total_sects += nr_sects;
1710
1711		if ((nreq->nr_512b_sectors &
1712		    ((xbb->sector_size >> 9) - 1)) != 0) {
1713			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1714				      "a multiple of the backing store sector "
1715				      "size (%d)\n", __func__,
1716				      nreq->nr_512b_sectors << 9,
1717				      xbb->sector_size);
1718			reqlist->status = BLKIF_RSP_ERROR;
1719			goto send_response;
1720		}
1721	}
1722
1723	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1724					  xbb->maps, reqlist->nr_segments);
1725	if (error != 0)
1726		panic("Grant table operation failed (%d)", error);
1727
1728	reqlist->flags |= XBB_REQLIST_MAPPED;
1729
1730	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1731	     seg_idx++, map++){
1732
1733		if (unlikely(map->status != 0)) {
1734			DPRINTF("invalid buffer -- could not remap "
1735			        "it (%d)\n", map->status);
1736			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1737			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1738				map->host_addr, map->flags, map->ref,
1739				map->dom);
1740			reqlist->status = BLKIF_RSP_ERROR;
1741			goto send_response;
1742		}
1743
1744		reqlist->gnt_handles[seg_idx] = map->handle;
1745	}
1746	if (reqlist->starting_sector_number + total_sects >
1747	    xbb->media_num_sectors) {
1748
1749		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1750			"extends past end of device %s\n",
1751			operation == BIO_READ ? "read" : "write",
1752			reqlist->starting_sector_number,
1753			reqlist->starting_sector_number + total_sects,
1754			xbb->dev_name);
1755		reqlist->status = BLKIF_RSP_ERROR;
1756		goto send_response;
1757	}
1758
1759do_dispatch:
1760
1761	error = xbb->dispatch_io(xbb,
1762				 reqlist,
1763				 operation,
1764				 bio_flags);
1765
1766	if (error != 0) {
1767		reqlist->status = BLKIF_RSP_ERROR;
1768		goto send_response;
1769	}
1770
1771	return (0);
1772
1773send_response:
1774
1775	xbb_complete_reqlist(xbb, reqlist);
1776
1777	return (0);
1778}
1779
1780static __inline int
1781xbb_count_sects(blkif_request_t *ring_req)
1782{
1783	int i;
1784	int cur_size = 0;
1785
1786	for (i = 0; i < ring_req->nr_segments; i++) {
1787		int nsect;
1788
1789		nsect = (int8_t)(ring_req->seg[i].last_sect -
1790			ring_req->seg[i].first_sect + 1);
1791		if (nsect <= 0)
1792			break;
1793
1794		cur_size += nsect;
1795	}
1796
1797	return (cur_size);
1798}
1799
1800/**
1801 * Process incoming requests from the shared communication ring in response
1802 * to a signal on the ring's event channel.
1803 *
1804 * \param context  Callback argument registerd during task initialization -
1805 *                 the xbb_softc for this instance.
1806 * \param pending  The number of taskqueue_enqueue events that have
1807 *                 occurred since this handler was last run.
1808 */
1809static void
1810xbb_run_queue(void *context, int pending)
1811{
1812	struct xbb_softc       *xbb;
1813	blkif_back_rings_t     *rings;
1814	RING_IDX		rp;
1815	uint64_t		cur_sector;
1816	int			cur_operation;
1817	struct xbb_xen_reqlist *reqlist;
1818
1819
1820	xbb	      = (struct xbb_softc *)context;
1821	rings	      = &xbb->rings;
1822
1823	/*
1824	 * Work gather and dispatch loop.  Note that we have a bias here
1825	 * towards gathering I/O sent by blockfront.  We first gather up
1826	 * everything in the ring, as long as we have resources.  Then we
1827	 * dispatch one request, and then attempt to gather up any
1828	 * additional requests that have come in while we were dispatching
1829	 * the request.
1830	 *
1831	 * This allows us to get a clearer picture (via devstat) of how
1832	 * many requests blockfront is queueing to us at any given time.
1833	 */
1834	for (;;) {
1835		int retval;
1836
1837		/*
1838		 * Initialize reqlist to the last element in the pending
1839		 * queue, if there is one.  This allows us to add more
1840		 * requests to that request list, if we have room.
1841		 */
1842		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1843				      xbb_xen_reqlist, links);
1844		if (reqlist != NULL) {
1845			cur_sector = reqlist->next_contig_sector;
1846			cur_operation = reqlist->operation;
1847		} else {
1848			cur_operation = 0;
1849			cur_sector    = 0;
1850		}
1851
1852		/*
1853		 * Cache req_prod to avoid accessing a cache line shared
1854		 * with the frontend.
1855		 */
1856		rp = rings->common.sring->req_prod;
1857
1858		/* Ensure we see queued requests up to 'rp'. */
1859		rmb();
1860
1861		/**
1862		 * Run so long as there is work to consume and the generation
1863		 * of a response will not overflow the ring.
1864		 *
1865		 * @note There's a 1 to 1 relationship between requests and
1866		 *       responses, so an overflow should never occur.  This
1867		 *       test is to protect our domain from digesting bogus
1868		 *       data.  Shouldn't we log this?
1869		 */
1870		while (rings->common.req_cons != rp
1871		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1872						  rings->common.req_cons) == 0){
1873			blkif_request_t	        ring_req_storage;
1874			blkif_request_t	       *ring_req;
1875			int			cur_size;
1876
1877			switch (xbb->abi) {
1878			case BLKIF_PROTOCOL_NATIVE:
1879				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1880				    rings->common.req_cons);
1881				break;
1882			case BLKIF_PROTOCOL_X86_32:
1883			{
1884				struct blkif_x86_32_request *ring_req32;
1885
1886				ring_req32 = RING_GET_REQUEST(
1887				    &xbb->rings.x86_32, rings->common.req_cons);
1888				blkif_get_x86_32_req(&ring_req_storage,
1889						     ring_req32);
1890				ring_req = &ring_req_storage;
1891				break;
1892			}
1893			case BLKIF_PROTOCOL_X86_64:
1894			{
1895				struct blkif_x86_64_request *ring_req64;
1896
1897				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1898				    rings->common.req_cons);
1899				blkif_get_x86_64_req(&ring_req_storage,
1900						     ring_req64);
1901				ring_req = &ring_req_storage;
1902				break;
1903			}
1904			default:
1905				panic("Unexpected blkif protocol ABI.");
1906				/* NOTREACHED */
1907			}
1908
1909			/*
1910			 * Check for situations that would require closing
1911			 * off this I/O for further coalescing:
1912			 *  - Coalescing is turned off.
1913			 *  - Current I/O is out of sequence with the previous
1914			 *    I/O.
1915			 *  - Coalesced I/O would be too large.
1916			 */
1917			if ((reqlist != NULL)
1918			 && ((xbb->no_coalesce_reqs != 0)
1919			  || ((xbb->no_coalesce_reqs == 0)
1920			   && ((ring_req->sector_number != cur_sector)
1921			    || (ring_req->operation != cur_operation)
1922			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1923			         xbb->max_reqlist_segments))))) {
1924				reqlist = NULL;
1925			}
1926
1927			/*
1928			 * Grab and check for all resources in one shot.
1929			 * If we can't get all of the resources we need,
1930			 * the shortage is noted and the thread will get
1931			 * woken up when more resources are available.
1932			 */
1933			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1934						   xbb->rings.common.req_cons);
1935
1936			if (retval != 0) {
1937				/*
1938				 * Resource shortage has been recorded.
1939				 * We'll be scheduled to run once a request
1940				 * object frees up due to a completion.
1941				 */
1942				break;
1943			}
1944
1945			/*
1946			 * Signify that	we can overwrite this request with
1947			 * a response by incrementing our consumer index.
1948			 * The response won't be generated until after
1949			 * we've already consumed all necessary data out
1950			 * of the version of the request in the ring buffer
1951			 * (for native mode).  We must update the consumer
1952			 * index  before issueing back-end I/O so there is
1953			 * no possibility that it will complete and a
1954			 * response be generated before we make room in
1955			 * the queue for that response.
1956			 */
1957			xbb->rings.common.req_cons +=
1958			    BLKIF_SEGS_TO_BLOCKS(ring_req->nr_segments);
1959			xbb->reqs_received++;
1960
1961			cur_size = xbb_count_sects(ring_req);
1962			cur_sector = ring_req->sector_number + cur_size;
1963			reqlist->next_contig_sector = cur_sector;
1964			cur_operation = ring_req->operation;
1965		}
1966
1967		/* Check for I/O to dispatch */
1968		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1969		if (reqlist == NULL) {
1970			/*
1971			 * We're out of work to do, put the task queue to
1972			 * sleep.
1973			 */
1974			break;
1975		}
1976
1977		/*
1978		 * Grab the first request off the queue and attempt
1979		 * to dispatch it.
1980		 */
1981		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1982
1983		retval = xbb_dispatch_io(xbb, reqlist);
1984		if (retval != 0) {
1985			/*
1986			 * xbb_dispatch_io() returns non-zero only when
1987			 * there is a resource shortage.  If that's the
1988			 * case, re-queue this request on the head of the
1989			 * queue, and go to sleep until we have more
1990			 * resources.
1991			 */
1992			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1993					   reqlist, links);
1994			break;
1995		} else {
1996			/*
1997			 * If we still have anything on the queue after
1998			 * removing the head entry, that is because we
1999			 * met one of the criteria to create a new
2000			 * request list (outlined above), and we'll call
2001			 * that a forced dispatch for statistical purposes.
2002			 *
2003			 * Otherwise, if there is only one element on the
2004			 * queue, we coalesced everything available on
2005			 * the ring and we'll call that a normal dispatch.
2006			 */
2007			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2008
2009			if (reqlist != NULL)
2010				xbb->forced_dispatch++;
2011			else
2012				xbb->normal_dispatch++;
2013
2014			xbb->total_dispatch++;
2015		}
2016	}
2017}
2018
2019/**
2020 * Interrupt handler bound to the shared ring's event channel.
2021 *
2022 * \param arg  Callback argument registerd during event channel
2023 *             binding - the xbb_softc for this instance.
2024 */
2025static void
2026xbb_intr(void *arg)
2027{
2028	struct xbb_softc *xbb;
2029
2030	/* Defer to kernel thread. */
2031	xbb = (struct xbb_softc *)arg;
2032	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2033}
2034
2035/*----------------------------- Backend Handlers -----------------------------*/
2036/**
2037 * Backend handler for character device access.
2038 *
2039 * \param xbb        Per-instance xbb configuration structure.
2040 * \param reqlist    Allocated internal request list structure.
2041 * \param operation  BIO_* I/O operation code.
2042 * \param bio_flags  Additional bio_flag data to pass to any generated
2043 *                   bios (e.g. BIO_ORDERED)..
2044 *
2045 * \return  0 for success, errno codes for failure.
2046 */
2047static int
2048xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2049		 int operation, int bio_flags)
2050{
2051	struct xbb_dev_data *dev_data;
2052	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2053	struct xbb_xen_req  *nreq;
2054	off_t                bio_offset;
2055	struct bio          *bio;
2056	struct xbb_sg       *xbb_sg;
2057	u_int	             nbio;
2058	u_int                bio_idx;
2059	u_int		     nseg;
2060	u_int                seg_idx;
2061	int                  error;
2062
2063	dev_data   = &xbb->backend.dev;
2064	bio_offset = (off_t)reqlist->starting_sector_number
2065		   << xbb->sector_size_shift;
2066	error      = 0;
2067	nbio       = 0;
2068	bio_idx    = 0;
2069
2070	if (operation == BIO_FLUSH) {
2071		nreq = STAILQ_FIRST(&reqlist->contig_req_list);
2072		bio = g_new_bio();
2073		if (unlikely(bio == NULL)) {
2074			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2075			error = ENOMEM;
2076			return (error);
2077		}
2078
2079		bio->bio_cmd	 = BIO_FLUSH;
2080		bio->bio_flags	|= BIO_ORDERED;
2081		bio->bio_dev	 = dev_data->cdev;
2082		bio->bio_offset	 = 0;
2083		bio->bio_data	 = 0;
2084		bio->bio_done	 = xbb_bio_done;
2085		bio->bio_caller1 = nreq;
2086		bio->bio_pblkno	 = 0;
2087
2088		nreq->pendcnt	 = 1;
2089
2090		(*dev_data->csw->d_strategy)(bio);
2091
2092		return (0);
2093	}
2094
2095	xbb_sg = xbb->xbb_sgs;
2096	bio    = NULL;
2097	nseg = reqlist->nr_segments;
2098
2099	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2100
2101		/*
2102		 * KVA will not be contiguous, so any additional
2103		 * I/O will need to be represented in a new bio.
2104		 */
2105		if ((bio != NULL)
2106		 && (xbb_sg->first_sect != 0)) {
2107			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2108				printf("%s: Discontiguous I/O request "
2109				       "from domain %d ends on "
2110				       "non-sector boundary\n",
2111				       __func__, xbb->otherend_id);
2112				error = EINVAL;
2113				goto fail_free_bios;
2114			}
2115			bio = NULL;
2116		}
2117
2118		if (bio == NULL) {
2119			/*
2120			 * Make sure that the start of this bio is
2121			 * aligned to a device sector.
2122			 */
2123			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2124				printf("%s: Misaligned I/O request "
2125				       "from domain %d\n", __func__,
2126				       xbb->otherend_id);
2127				error = EINVAL;
2128				goto fail_free_bios;
2129			}
2130
2131			bio = bios[nbio++] = g_new_bio();
2132			if (unlikely(bio == NULL)) {
2133				error = ENOMEM;
2134				goto fail_free_bios;
2135			}
2136			bio->bio_cmd     = operation;
2137			bio->bio_flags  |= bio_flags;
2138			bio->bio_dev     = dev_data->cdev;
2139			bio->bio_offset  = bio_offset;
2140			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2141						xbb_sg->first_sect);
2142			bio->bio_done    = xbb_bio_done;
2143			bio->bio_caller1 = reqlist;
2144			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2145		}
2146
2147		bio->bio_length += xbb_sg->nsect << 9;
2148		bio->bio_bcount  = bio->bio_length;
2149		bio_offset      += xbb_sg->nsect << 9;
2150
2151		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2152
2153			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2154				printf("%s: Discontiguous I/O request "
2155				       "from domain %d ends on "
2156				       "non-sector boundary\n",
2157				       __func__, xbb->otherend_id);
2158				error = EINVAL;
2159				goto fail_free_bios;
2160			}
2161			/*
2162			 * KVA will not be contiguous, so any additional
2163			 * I/O will need to be represented in a new bio.
2164			 */
2165			bio = NULL;
2166		}
2167	}
2168
2169	reqlist->pendcnt = nbio;
2170
2171	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2172	{
2173#ifdef XBB_USE_BOUNCE_BUFFERS
2174		vm_offset_t kva_offset;
2175
2176		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2177			   - (vm_offset_t)reqlist->bounce;
2178		if (operation == BIO_WRITE) {
2179			memcpy(bios[bio_idx]->bio_data,
2180			       (uint8_t *)reqlist->kva + kva_offset,
2181			       bios[bio_idx]->bio_bcount);
2182		}
2183#endif
2184		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2185	}
2186
2187	return (error);
2188
2189fail_free_bios:
2190	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2191		g_destroy_bio(bios[bio_idx]);
2192
2193	return (error);
2194}
2195
2196/**
2197 * Backend handler for file access.
2198 *
2199 * \param xbb        Per-instance xbb configuration structure.
2200 * \param reqlist    Allocated internal request list.
2201 * \param operation  BIO_* I/O operation code.
2202 * \param flags      Additional bio_flag data to pass to any generated bios
2203 *                   (e.g. BIO_ORDERED)..
2204 *
2205 * \return  0 for success, errno codes for failure.
2206 */
2207static int
2208xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2209		  int operation, int flags)
2210{
2211	struct xbb_file_data *file_data;
2212	u_int                 seg_idx;
2213	u_int		      nseg;
2214	off_t		      sectors_sent;
2215	struct uio            xuio;
2216	struct xbb_sg        *xbb_sg;
2217	struct iovec         *xiovec;
2218#ifdef XBB_USE_BOUNCE_BUFFERS
2219	void                **p_vaddr;
2220	int                   saved_uio_iovcnt;
2221#endif /* XBB_USE_BOUNCE_BUFFERS */
2222	int                   vfs_is_locked;
2223	int                   error;
2224
2225	file_data = &xbb->backend.file;
2226	sectors_sent = 0;
2227	error = 0;
2228	bzero(&xuio, sizeof(xuio));
2229
2230	switch (operation) {
2231	case BIO_READ:
2232		xuio.uio_rw = UIO_READ;
2233		break;
2234	case BIO_WRITE:
2235		xuio.uio_rw = UIO_WRITE;
2236		break;
2237	case BIO_FLUSH: {
2238		struct mount *mountpoint;
2239
2240		vfs_is_locked = VFS_LOCK_GIANT(xbb->vn->v_mount);
2241
2242		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2243
2244		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2245		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2246		VOP_UNLOCK(xbb->vn, 0);
2247
2248		vn_finished_write(mountpoint);
2249
2250		VFS_UNLOCK_GIANT(vfs_is_locked);
2251
2252		goto bailout_send_response;
2253		/* NOTREACHED */
2254	}
2255	default:
2256		panic("invalid operation %d", operation);
2257		/* NOTREACHED */
2258	}
2259	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2260			<< xbb->sector_size_shift;
2261	xuio.uio_segflg = UIO_SYSSPACE;
2262	xuio.uio_iov = file_data->xiovecs;
2263	xuio.uio_iovcnt = 0;
2264	xbb_sg = xbb->xbb_sgs;
2265	nseg = reqlist->nr_segments;
2266
2267	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2268
2269		/*
2270		 * If the first sector is not 0, the KVA will
2271		 * not be contiguous and we'll need to go on
2272		 * to another segment.
2273		 */
2274		if (xbb_sg->first_sect != 0)
2275			xiovec = NULL;
2276
2277		if (xiovec == NULL) {
2278			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2279			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2280			    seg_idx, xbb_sg->first_sect);
2281#ifdef XBB_USE_BOUNCE_BUFFERS
2282			/*
2283			 * Store the address of the incoming
2284			 * buffer at this particular offset
2285			 * as well, so we can do the copy
2286			 * later without having to do more
2287			 * work to recalculate this address.
2288		 	 */
2289			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2290			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2291			    xbb_sg->first_sect);
2292#endif /* XBB_USE_BOUNCE_BUFFERS */
2293			xiovec->iov_len = 0;
2294			xuio.uio_iovcnt++;
2295		}
2296
2297		xiovec->iov_len += xbb_sg->nsect << 9;
2298
2299		xuio.uio_resid += xbb_sg->nsect << 9;
2300
2301		/*
2302		 * If the last sector is not the full page
2303		 * size count, the next segment will not be
2304		 * contiguous in KVA and we need a new iovec.
2305		 */
2306		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2307			xiovec = NULL;
2308	}
2309
2310	xuio.uio_td = curthread;
2311
2312#ifdef XBB_USE_BOUNCE_BUFFERS
2313	saved_uio_iovcnt = xuio.uio_iovcnt;
2314
2315	if (operation == BIO_WRITE) {
2316		/* Copy the write data to the local buffer. */
2317		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2318		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2319		     seg_idx++, xiovec++, p_vaddr++) {
2320
2321			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2322		}
2323	} else {
2324		/*
2325		 * We only need to save off the iovecs in the case of a
2326		 * read, because the copy for the read happens after the
2327		 * VOP_READ().  (The uio will get modified in that call
2328		 * sequence.)
2329		 */
2330		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2331		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2332	}
2333#endif /* XBB_USE_BOUNCE_BUFFERS */
2334
2335	vfs_is_locked = VFS_LOCK_GIANT(xbb->vn->v_mount);
2336	switch (operation) {
2337	case BIO_READ:
2338
2339		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2340
2341		/*
2342		 * UFS pays attention to IO_DIRECT for reads.  If the
2343		 * DIRECTIO option is configured into the kernel, it calls
2344		 * ffs_rawread().  But that only works for single-segment
2345		 * uios with user space addresses.  In our case, with a
2346		 * kernel uio, it still reads into the buffer cache, but it
2347		 * will just try to release the buffer from the cache later
2348		 * on in ffs_read().
2349		 *
2350		 * ZFS does not pay attention to IO_DIRECT for reads.
2351		 *
2352		 * UFS does not pay attention to IO_SYNC for reads.
2353		 *
2354		 * ZFS pays attention to IO_SYNC (which translates into the
2355		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2356		 * attempts to sync the file before reading.
2357		 *
2358		 * So, to attempt to provide some barrier semantics in the
2359		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2360		 */
2361		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2362				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2363
2364		VOP_UNLOCK(xbb->vn, 0);
2365		break;
2366	case BIO_WRITE: {
2367		struct mount *mountpoint;
2368
2369		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2370
2371		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2372
2373		/*
2374		 * UFS pays attention to IO_DIRECT for writes.  The write
2375		 * is done asynchronously.  (Normally the write would just
2376		 * get put into cache.
2377		 *
2378		 * UFS pays attention to IO_SYNC for writes.  It will
2379		 * attempt to write the buffer out synchronously if that
2380		 * flag is set.
2381		 *
2382		 * ZFS does not pay attention to IO_DIRECT for writes.
2383		 *
2384		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2385		 * for writes.  It will flush the transaction from the
2386		 * cache before returning.
2387		 *
2388		 * So if we've got the BIO_ORDERED flag set, we want
2389		 * IO_SYNC in either the UFS or ZFS case.
2390		 */
2391		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2392				  IO_SYNC : 0, file_data->cred);
2393		VOP_UNLOCK(xbb->vn, 0);
2394
2395		vn_finished_write(mountpoint);
2396
2397		break;
2398	}
2399	default:
2400		panic("invalid operation %d", operation);
2401		/* NOTREACHED */
2402	}
2403	VFS_UNLOCK_GIANT(vfs_is_locked);
2404
2405#ifdef XBB_USE_BOUNCE_BUFFERS
2406	/* We only need to copy here for read operations */
2407	if (operation == BIO_READ) {
2408
2409		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2410		     xiovec = file_data->saved_xiovecs;
2411		     seg_idx < saved_uio_iovcnt; seg_idx++,
2412		     xiovec++, p_vaddr++) {
2413
2414			/*
2415			 * Note that we have to use the copy of the
2416			 * io vector we made above.  uiomove() modifies
2417			 * the uio and its referenced vector as uiomove
2418			 * performs the copy, so we can't rely on any
2419			 * state from the original uio.
2420			 */
2421			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2422		}
2423	}
2424#endif /* XBB_USE_BOUNCE_BUFFERS */
2425
2426bailout_send_response:
2427
2428	if (error != 0)
2429		reqlist->status = BLKIF_RSP_ERROR;
2430
2431	xbb_complete_reqlist(xbb, reqlist);
2432
2433	return (0);
2434}
2435
2436/*--------------------------- Backend Configuration --------------------------*/
2437/**
2438 * Close and cleanup any backend device/file specific state for this
2439 * block back instance.
2440 *
2441 * \param xbb  Per-instance xbb configuration structure.
2442 */
2443static void
2444xbb_close_backend(struct xbb_softc *xbb)
2445{
2446	DROP_GIANT();
2447	DPRINTF("closing dev=%s\n", xbb->dev_name);
2448	if (xbb->vn) {
2449		int flags = FREAD;
2450		int vfs_is_locked = 0;
2451
2452		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2453			flags |= FWRITE;
2454
2455		switch (xbb->device_type) {
2456		case XBB_TYPE_DISK:
2457			if (xbb->backend.dev.csw) {
2458				dev_relthread(xbb->backend.dev.cdev,
2459					      xbb->backend.dev.dev_ref);
2460				xbb->backend.dev.csw  = NULL;
2461				xbb->backend.dev.cdev = NULL;
2462			}
2463			break;
2464		case XBB_TYPE_FILE:
2465			vfs_is_locked = VFS_LOCK_GIANT(xbb->vn->v_mount);
2466			break;
2467		case XBB_TYPE_NONE:
2468		default:
2469			panic("Unexpected backend type.");
2470			break;
2471		}
2472
2473		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2474		xbb->vn = NULL;
2475
2476		switch (xbb->device_type) {
2477		case XBB_TYPE_DISK:
2478			break;
2479		case XBB_TYPE_FILE:
2480			VFS_UNLOCK_GIANT(vfs_is_locked);
2481			if (xbb->backend.file.cred != NULL) {
2482				crfree(xbb->backend.file.cred);
2483				xbb->backend.file.cred = NULL;
2484			}
2485			break;
2486		case XBB_TYPE_NONE:
2487		default:
2488			panic("Unexpected backend type.");
2489			break;
2490		}
2491	}
2492	PICKUP_GIANT();
2493}
2494
2495/**
2496 * Open a character device to be used for backend I/O.
2497 *
2498 * \param xbb  Per-instance xbb configuration structure.
2499 *
2500 * \return  0 for success, errno codes for failure.
2501 */
2502static int
2503xbb_open_dev(struct xbb_softc *xbb)
2504{
2505	struct vattr   vattr;
2506	struct cdev   *dev;
2507	struct cdevsw *devsw;
2508	int	       error;
2509
2510	xbb->device_type = XBB_TYPE_DISK;
2511	xbb->dispatch_io = xbb_dispatch_dev;
2512	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2513	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2514					     &xbb->backend.dev.dev_ref);
2515	if (xbb->backend.dev.csw == NULL)
2516		panic("Unable to retrieve device switch");
2517
2518	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2519	if (error) {
2520		xenbus_dev_fatal(xbb->dev, error, "error getting "
2521				 "vnode attributes for device %s",
2522				 xbb->dev_name);
2523		return (error);
2524	}
2525
2526
2527	dev = xbb->vn->v_rdev;
2528	devsw = dev->si_devsw;
2529	if (!devsw->d_ioctl) {
2530		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2531				 "device %s!", xbb->dev_name);
2532		return (ENODEV);
2533	}
2534
2535	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2536			       (caddr_t)&xbb->sector_size, FREAD,
2537			       curthread);
2538	if (error) {
2539		xenbus_dev_fatal(xbb->dev, error,
2540				 "error calling ioctl DIOCGSECTORSIZE "
2541				 "for device %s", xbb->dev_name);
2542		return (error);
2543	}
2544
2545	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2546			       (caddr_t)&xbb->media_size, FREAD,
2547			       curthread);
2548	if (error) {
2549		xenbus_dev_fatal(xbb->dev, error,
2550				 "error calling ioctl DIOCGMEDIASIZE "
2551				 "for device %s", xbb->dev_name);
2552		return (error);
2553	}
2554
2555	return (0);
2556}
2557
2558/**
2559 * Open a file to be used for backend I/O.
2560 *
2561 * \param xbb  Per-instance xbb configuration structure.
2562 *
2563 * \return  0 for success, errno codes for failure.
2564 */
2565static int
2566xbb_open_file(struct xbb_softc *xbb)
2567{
2568	struct xbb_file_data *file_data;
2569	struct vattr          vattr;
2570	int                   error;
2571
2572	file_data = &xbb->backend.file;
2573	xbb->device_type = XBB_TYPE_FILE;
2574	xbb->dispatch_io = xbb_dispatch_file;
2575	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2576	if (error != 0) {
2577		xenbus_dev_fatal(xbb->dev, error,
2578				 "error calling VOP_GETATTR()"
2579				 "for file %s", xbb->dev_name);
2580		return (error);
2581	}
2582
2583	/*
2584	 * Verify that we have the ability to upgrade to exclusive
2585	 * access on this file so we can trap errors at open instead
2586	 * of reporting them during first access.
2587	 */
2588	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2589		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2590		if (xbb->vn->v_iflag & VI_DOOMED) {
2591			error = EBADF;
2592			xenbus_dev_fatal(xbb->dev, error,
2593					 "error locking file %s",
2594					 xbb->dev_name);
2595
2596			return (error);
2597		}
2598	}
2599
2600	file_data->cred = crhold(curthread->td_ucred);
2601	xbb->media_size = vattr.va_size;
2602
2603	/*
2604	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2605	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2606	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2607	 * may not work with other OSes as well.  So just export a sector
2608	 * size of 512 bytes, which should work with any OS or
2609	 * application.  Since our backing is a file, any block size will
2610	 * work fine for the backing store.
2611	 */
2612#if 0
2613	xbb->sector_size = vattr.va_blocksize;
2614#endif
2615	xbb->sector_size = 512;
2616
2617	/*
2618	 * Sanity check.  The media size has to be at least one
2619	 * sector long.
2620	 */
2621	if (xbb->media_size < xbb->sector_size) {
2622		error = EINVAL;
2623		xenbus_dev_fatal(xbb->dev, error,
2624				 "file %s size %ju < block size %u",
2625				 xbb->dev_name,
2626				 (uintmax_t)xbb->media_size,
2627				 xbb->sector_size);
2628	}
2629	return (error);
2630}
2631
2632/**
2633 * Open the backend provider for this connection.
2634 *
2635 * \param xbb  Per-instance xbb configuration structure.
2636 *
2637 * \return  0 for success, errno codes for failure.
2638 */
2639static int
2640xbb_open_backend(struct xbb_softc *xbb)
2641{
2642	struct nameidata nd;
2643	int		 flags;
2644	int		 error;
2645	int		 vfs_is_locked;
2646
2647	flags = FREAD;
2648	error = 0;
2649
2650	DPRINTF("opening dev=%s\n", xbb->dev_name);
2651
2652	if (rootvnode == NULL) {
2653		xenbus_dev_fatal(xbb->dev, ENOENT,
2654				 "Root file system not mounted");
2655		return (ENOENT);
2656	}
2657
2658	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2659		flags |= FWRITE;
2660
2661	if (!curthread->td_proc->p_fd->fd_cdir) {
2662		curthread->td_proc->p_fd->fd_cdir = rootvnode;
2663		VREF(rootvnode);
2664	}
2665	if (!curthread->td_proc->p_fd->fd_rdir) {
2666		curthread->td_proc->p_fd->fd_rdir = rootvnode;
2667		VREF(rootvnode);
2668	}
2669	if (!curthread->td_proc->p_fd->fd_jdir) {
2670		curthread->td_proc->p_fd->fd_jdir = rootvnode;
2671		VREF(rootvnode);
2672	}
2673
2674 again:
2675	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2676	error = vn_open(&nd, &flags, 0, NULL);
2677	if (error) {
2678		/*
2679		 * This is the only reasonable guess we can make as far as
2680		 * path if the user doesn't give us a fully qualified path.
2681		 * If they want to specify a file, they need to specify the
2682		 * full path.
2683		 */
2684		if (xbb->dev_name[0] != '/') {
2685			char *dev_path = "/dev/";
2686			char *dev_name;
2687
2688			/* Try adding device path at beginning of name */
2689			dev_name = malloc(strlen(xbb->dev_name)
2690					+ strlen(dev_path) + 1,
2691					  M_XENBLOCKBACK, M_NOWAIT);
2692			if (dev_name) {
2693				sprintf(dev_name, "%s%s", dev_path,
2694					xbb->dev_name);
2695				free(xbb->dev_name, M_XENBLOCKBACK);
2696				xbb->dev_name = dev_name;
2697				goto again;
2698			}
2699		}
2700		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2701				 xbb->dev_name);
2702		return (error);
2703	}
2704
2705	vfs_is_locked = NDHASGIANT(&nd);
2706
2707	NDFREE(&nd, NDF_ONLY_PNBUF);
2708
2709	xbb->vn = nd.ni_vp;
2710
2711	/* We only support disks and files. */
2712	if (vn_isdisk(xbb->vn, &error)) {
2713		error = xbb_open_dev(xbb);
2714	} else if (xbb->vn->v_type == VREG) {
2715		error = xbb_open_file(xbb);
2716	} else {
2717		error = EINVAL;
2718		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2719				 "or file", xbb->dev_name);
2720	}
2721	VOP_UNLOCK(xbb->vn, 0);
2722	VFS_UNLOCK_GIANT(vfs_is_locked);
2723
2724	if (error != 0) {
2725		xbb_close_backend(xbb);
2726		return (error);
2727	}
2728
2729	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2730	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2731
2732	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2733		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2734		xbb->dev_name, xbb->sector_size, xbb->media_size);
2735
2736	return (0);
2737}
2738
2739/*------------------------ Inter-Domain Communication ------------------------*/
2740/**
2741 * Free dynamically allocated KVA or pseudo-physical address allocations.
2742 *
2743 * \param xbb  Per-instance xbb configuration structure.
2744 */
2745static void
2746xbb_free_communication_mem(struct xbb_softc *xbb)
2747{
2748	if (xbb->kva != 0) {
2749#ifndef XENHVM
2750		kmem_free(kernel_map, xbb->kva, xbb->kva_size);
2751#else
2752		if (xbb->pseudo_phys_res != NULL) {
2753			bus_release_resource(xbb->dev, SYS_RES_MEMORY,
2754					     xbb->pseudo_phys_res_id,
2755					     xbb->pseudo_phys_res);
2756			xbb->pseudo_phys_res = NULL;
2757		}
2758#endif
2759	}
2760	xbb->kva = 0;
2761	xbb->gnt_base_addr = 0;
2762	if (xbb->kva_free != NULL) {
2763		free(xbb->kva_free, M_XENBLOCKBACK);
2764		xbb->kva_free = NULL;
2765	}
2766}
2767
2768/**
2769 * Cleanup all inter-domain communication mechanisms.
2770 *
2771 * \param xbb  Per-instance xbb configuration structure.
2772 */
2773static int
2774xbb_disconnect(struct xbb_softc *xbb)
2775{
2776	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2777	struct gnttab_unmap_grant_ref *op;
2778	u_int			       ring_idx;
2779	int			       error;
2780
2781	DPRINTF("\n");
2782
2783	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2784		return (0);
2785
2786	if (xbb->irq != 0) {
2787		unbind_from_irqhandler(xbb->irq);
2788		xbb->irq = 0;
2789	}
2790
2791	mtx_unlock(&xbb->lock);
2792	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2793	mtx_lock(&xbb->lock);
2794
2795	/*
2796	 * No new interrupts can generate work, but we must wait
2797	 * for all currently active requests to drain.
2798	 */
2799	if (xbb->active_request_count != 0)
2800		return (EAGAIN);
2801
2802	for (ring_idx = 0, op = ops;
2803	     ring_idx < xbb->ring_config.ring_pages;
2804	     ring_idx++, op++) {
2805
2806		op->host_addr    = xbb->ring_config.gnt_addr
2807			         + (ring_idx * PAGE_SIZE);
2808		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2809		op->handle	 = xbb->ring_config.handle[ring_idx];
2810	}
2811
2812	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2813					  xbb->ring_config.ring_pages);
2814	if (error != 0)
2815		panic("Grant table op failed (%d)", error);
2816
2817	xbb_free_communication_mem(xbb);
2818
2819	if (xbb->requests != NULL) {
2820		free(xbb->requests, M_XENBLOCKBACK);
2821		xbb->requests = NULL;
2822	}
2823
2824	if (xbb->request_lists != NULL) {
2825		struct xbb_xen_reqlist *reqlist;
2826		int i;
2827
2828		/* There is one request list for ever allocated request. */
2829		for (i = 0, reqlist = xbb->request_lists;
2830		     i < xbb->max_requests; i++, reqlist++){
2831#ifdef XBB_USE_BOUNCE_BUFFERS
2832			if (reqlist->bounce != NULL) {
2833				free(reqlist->bounce, M_XENBLOCKBACK);
2834				reqlist->bounce = NULL;
2835			}
2836#endif
2837			if (reqlist->gnt_handles != NULL) {
2838				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2839				reqlist->gnt_handles = NULL;
2840			}
2841		}
2842		free(xbb->request_lists, M_XENBLOCKBACK);
2843		xbb->request_lists = NULL;
2844	}
2845
2846	xbb->flags &= ~XBBF_RING_CONNECTED;
2847	return (0);
2848}
2849
2850/**
2851 * Map shared memory ring into domain local address space, initialize
2852 * ring control structures, and bind an interrupt to the event channel
2853 * used to notify us of ring changes.
2854 *
2855 * \param xbb  Per-instance xbb configuration structure.
2856 */
2857static int
2858xbb_connect_ring(struct xbb_softc *xbb)
2859{
2860	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2861	struct gnttab_map_grant_ref *gnt;
2862	u_int			     ring_idx;
2863	int			     error;
2864
2865	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2866		return (0);
2867
2868	/*
2869	 * Kva for our ring is at the tail of the region of kva allocated
2870	 * by xbb_alloc_communication_mem().
2871	 */
2872	xbb->ring_config.va = xbb->kva
2873			    + (xbb->kva_size
2874			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2875	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2876				  + (xbb->kva_size
2877				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2878
2879	for (ring_idx = 0, gnt = gnts;
2880	     ring_idx < xbb->ring_config.ring_pages;
2881	     ring_idx++, gnt++) {
2882
2883		gnt->host_addr = xbb->ring_config.gnt_addr
2884			       + (ring_idx * PAGE_SIZE);
2885		gnt->flags     = GNTMAP_host_map;
2886		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2887		gnt->dom       = xbb->otherend_id;
2888	}
2889
2890	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2891					  xbb->ring_config.ring_pages);
2892	if (error)
2893		panic("blkback: Ring page grant table op failed (%d)", error);
2894
2895	for (ring_idx = 0, gnt = gnts;
2896	     ring_idx < xbb->ring_config.ring_pages;
2897	     ring_idx++, gnt++) {
2898		if (gnt->status != 0) {
2899			xbb->ring_config.va = 0;
2900			xenbus_dev_fatal(xbb->dev, EACCES,
2901					 "Ring shared page mapping failed. "
2902					 "Status %d.", gnt->status);
2903			return (EACCES);
2904		}
2905		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2906		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2907	}
2908
2909	/* Initialize the ring based on ABI. */
2910	switch (xbb->abi) {
2911	case BLKIF_PROTOCOL_NATIVE:
2912	{
2913		blkif_sring_t *sring;
2914		sring = (blkif_sring_t *)xbb->ring_config.va;
2915		BACK_RING_INIT(&xbb->rings.native, sring,
2916			       xbb->ring_config.ring_pages * PAGE_SIZE);
2917		break;
2918	}
2919	case BLKIF_PROTOCOL_X86_32:
2920	{
2921		blkif_x86_32_sring_t *sring_x86_32;
2922		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2923		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2924			       xbb->ring_config.ring_pages * PAGE_SIZE);
2925		break;
2926	}
2927	case BLKIF_PROTOCOL_X86_64:
2928	{
2929		blkif_x86_64_sring_t *sring_x86_64;
2930		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2931		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2932			       xbb->ring_config.ring_pages * PAGE_SIZE);
2933		break;
2934	}
2935	default:
2936		panic("Unexpected blkif protocol ABI.");
2937	}
2938
2939	xbb->flags |= XBBF_RING_CONNECTED;
2940
2941	error =
2942	    bind_interdomain_evtchn_to_irqhandler(xbb->otherend_id,
2943						  xbb->ring_config.evtchn,
2944						  device_get_nameunit(xbb->dev),
2945						  xbb_intr, /*arg*/xbb,
2946						  INTR_TYPE_BIO | INTR_MPSAFE,
2947						  &xbb->irq);
2948	if (error) {
2949		(void)xbb_disconnect(xbb);
2950		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2951		return (error);
2952	}
2953
2954	DPRINTF("rings connected!\n");
2955
2956	return 0;
2957}
2958
2959/* Needed to make bit_alloc() macro work */
2960#define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
2961				   M_NOWAIT|M_ZERO);
2962
2963/**
2964 * Size KVA and pseudo-physical address allocations based on negotiated
2965 * values for the size and number of I/O requests, and the size of our
2966 * communication ring.
2967 *
2968 * \param xbb  Per-instance xbb configuration structure.
2969 *
2970 * These address spaces are used to dynamically map pages in the
2971 * front-end's domain into our own.
2972 */
2973static int
2974xbb_alloc_communication_mem(struct xbb_softc *xbb)
2975{
2976	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2977	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2978	xbb->kva_size = xbb->reqlist_kva_size +
2979			(xbb->ring_config.ring_pages * PAGE_SIZE);
2980
2981	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
2982	if (xbb->kva_free == NULL)
2983		return (ENOMEM);
2984
2985	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2986		device_get_nameunit(xbb->dev), xbb->kva_size,
2987		xbb->reqlist_kva_size);
2988#ifndef XENHVM
2989	xbb->kva = kmem_alloc_nofault(kernel_map, xbb->kva_size);
2990	if (xbb->kva == 0)
2991		return (ENOMEM);
2992	xbb->gnt_base_addr = xbb->kva;
2993#else /* XENHVM */
2994	/*
2995	 * Reserve a range of pseudo physical memory that we can map
2996	 * into kva.  These pages will only be backed by machine
2997	 * pages ("real memory") during the lifetime of front-end requests
2998	 * via grant table operations.
2999	 */
3000	xbb->pseudo_phys_res_id = 0;
3001	xbb->pseudo_phys_res = bus_alloc_resource(xbb->dev, SYS_RES_MEMORY,
3002						  &xbb->pseudo_phys_res_id,
3003						  0, ~0, xbb->kva_size,
3004						  RF_ACTIVE);
3005	if (xbb->pseudo_phys_res == NULL) {
3006		xbb->kva = 0;
3007		return (ENOMEM);
3008	}
3009	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3010	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3011#endif /* XENHVM */
3012
3013	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3014		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3015		(uintmax_t)xbb->gnt_base_addr);
3016	return (0);
3017}
3018
3019/**
3020 * Collect front-end information from the XenStore.
3021 *
3022 * \param xbb  Per-instance xbb configuration structure.
3023 */
3024static int
3025xbb_collect_frontend_info(struct xbb_softc *xbb)
3026{
3027	char	    protocol_abi[64];
3028	const char *otherend_path;
3029	int	    error;
3030	u_int	    ring_idx;
3031
3032	otherend_path = xenbus_get_otherend_path(xbb->dev);
3033
3034	/*
3035	 * Protocol defaults valid even if all negotiation fails.
3036	 */
3037	xbb->ring_config.ring_pages = 1;
3038	xbb->max_requests	    = BLKIF_MAX_RING_REQUESTS(PAGE_SIZE);
3039	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK;
3040	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3041
3042	/*
3043	 * Mandatory data (used in all versions of the protocol) first.
3044	 */
3045	error = xs_gather(XST_NIL, otherend_path,
3046			  "ring-ref", "%" PRIu32,
3047			  &xbb->ring_config.ring_ref[0],
3048			  "event-channel", "%" PRIu32,
3049			  &xbb->ring_config.evtchn,
3050			  NULL);
3051	if (error != 0) {
3052		xenbus_dev_fatal(xbb->dev, error,
3053				 "Unable to retrieve ring information from "
3054				 "frontend %s.  Unable to connect.",
3055				 xenbus_get_otherend_path(xbb->dev));
3056		return (error);
3057	}
3058
3059	/*
3060	 * These fields are initialized to legacy protocol defaults
3061	 * so we only need to fail if reading the updated value succeeds
3062	 * and the new value is outside of its allowed range.
3063	 *
3064	 * \note xs_gather() returns on the first encountered error, so
3065	 *       we must use independant calls in order to guarantee
3066	 *       we don't miss information in a sparsly populated front-end
3067	 *       tree.
3068	 */
3069	(void)xs_scanf(XST_NIL, otherend_path,
3070		       "ring-pages", NULL, "%u",
3071		       &xbb->ring_config.ring_pages);
3072
3073	(void)xs_scanf(XST_NIL, otherend_path,
3074		       "max-requests", NULL, "%u",
3075		       &xbb->max_requests);
3076
3077	(void)xs_scanf(XST_NIL, otherend_path,
3078		       "max-request-segments", NULL, "%u",
3079		       &xbb->max_request_segments);
3080
3081	(void)xs_scanf(XST_NIL, otherend_path,
3082		       "max-request-size", NULL, "%u",
3083		       &xbb->max_request_size);
3084
3085	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3086		xenbus_dev_fatal(xbb->dev, EINVAL,
3087				 "Front-end specificed ring-pages of %u "
3088				 "exceeds backend limit of %zu.  "
3089				 "Unable to connect.",
3090				 xbb->ring_config.ring_pages,
3091				 XBB_MAX_RING_PAGES);
3092		return (EINVAL);
3093	} else if (xbb->max_requests > XBB_MAX_REQUESTS) {
3094		xenbus_dev_fatal(xbb->dev, EINVAL,
3095				 "Front-end specificed max_requests of %u "
3096				 "exceeds backend limit of %u.  "
3097				 "Unable to connect.",
3098				 xbb->max_requests,
3099				 XBB_MAX_REQUESTS);
3100		return (EINVAL);
3101	} else if (xbb->max_request_segments > XBB_MAX_SEGMENTS_PER_REQUEST) {
3102		xenbus_dev_fatal(xbb->dev, EINVAL,
3103				 "Front-end specificed max_requests_segments "
3104				 "of %u exceeds backend limit of %u.  "
3105				 "Unable to connect.",
3106				 xbb->max_request_segments,
3107				 XBB_MAX_SEGMENTS_PER_REQUEST);
3108		return (EINVAL);
3109	} else if (xbb->max_request_size > XBB_MAX_REQUEST_SIZE) {
3110		xenbus_dev_fatal(xbb->dev, EINVAL,
3111				 "Front-end specificed max_request_size "
3112				 "of %u exceeds backend limit of %u.  "
3113				 "Unable to connect.",
3114				 xbb->max_request_size,
3115				 XBB_MAX_REQUEST_SIZE);
3116		return (EINVAL);
3117	}
3118
3119	/* If using a multi-page ring, pull in the remaining references. */
3120	for (ring_idx = 1; ring_idx < xbb->ring_config.ring_pages; ring_idx++) {
3121		char ring_ref_name[]= "ring_refXX";
3122
3123		snprintf(ring_ref_name, sizeof(ring_ref_name),
3124			 "ring-ref%u", ring_idx);
3125		error = xs_scanf(XST_NIL, otherend_path,
3126				 ring_ref_name, NULL, "%" PRIu32,
3127			         &xbb->ring_config.ring_ref[ring_idx]);
3128		if (error != 0) {
3129			xenbus_dev_fatal(xbb->dev, error,
3130					 "Failed to retriev grant reference "
3131					 "for page %u of shared ring.  Unable "
3132					 "to connect.", ring_idx);
3133			return (error);
3134		}
3135	}
3136
3137	error = xs_gather(XST_NIL, otherend_path,
3138			  "protocol", "%63s", protocol_abi,
3139			  NULL);
3140	if (error != 0
3141	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3142		/*
3143		 * Assume native if the frontend has not
3144		 * published ABI data or it has published and
3145		 * matches our own ABI.
3146		 */
3147		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3148	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3149
3150		xbb->abi = BLKIF_PROTOCOL_X86_32;
3151	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3152
3153		xbb->abi = BLKIF_PROTOCOL_X86_64;
3154	} else {
3155
3156		xenbus_dev_fatal(xbb->dev, EINVAL,
3157				 "Unknown protocol ABI (%s) published by "
3158				 "frontend.  Unable to connect.", protocol_abi);
3159		return (EINVAL);
3160	}
3161	return (0);
3162}
3163
3164/**
3165 * Allocate per-request data structures given request size and number
3166 * information negotiated with the front-end.
3167 *
3168 * \param xbb  Per-instance xbb configuration structure.
3169 */
3170static int
3171xbb_alloc_requests(struct xbb_softc *xbb)
3172{
3173	struct xbb_xen_req *req;
3174	struct xbb_xen_req *last_req;
3175
3176	/*
3177	 * Allocate request book keeping datastructures.
3178	 */
3179	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3180			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3181	if (xbb->requests == NULL) {
3182		xenbus_dev_fatal(xbb->dev, ENOMEM,
3183				  "Unable to allocate request structures");
3184		return (ENOMEM);
3185	}
3186
3187	req      = xbb->requests;
3188	last_req = &xbb->requests[xbb->max_requests - 1];
3189	STAILQ_INIT(&xbb->request_free_stailq);
3190	while (req <= last_req) {
3191		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3192		req++;
3193	}
3194	return (0);
3195}
3196
3197static int
3198xbb_alloc_request_lists(struct xbb_softc *xbb)
3199{
3200	int i;
3201	struct xbb_xen_reqlist *reqlist;
3202
3203	/*
3204	 * If no requests can be merged, we need 1 request list per
3205	 * in flight request.
3206	 */
3207	xbb->request_lists = malloc(xbb->max_requests *
3208		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3209	if (xbb->request_lists == NULL) {
3210		xenbus_dev_fatal(xbb->dev, ENOMEM,
3211				  "Unable to allocate request list structures");
3212		return (ENOMEM);
3213	}
3214
3215	STAILQ_INIT(&xbb->reqlist_free_stailq);
3216	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3217	for (i = 0; i < xbb->max_requests; i++) {
3218		int seg;
3219
3220		reqlist      = &xbb->request_lists[i];
3221
3222		reqlist->xbb = xbb;
3223
3224#ifdef XBB_USE_BOUNCE_BUFFERS
3225		reqlist->bounce = malloc(xbb->max_reqlist_size,
3226					 M_XENBLOCKBACK, M_NOWAIT);
3227		if (reqlist->bounce == NULL) {
3228			xenbus_dev_fatal(xbb->dev, ENOMEM,
3229					 "Unable to allocate request "
3230					 "bounce buffers");
3231			return (ENOMEM);
3232		}
3233#endif /* XBB_USE_BOUNCE_BUFFERS */
3234
3235		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3236					      sizeof(*reqlist->gnt_handles),
3237					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3238		if (reqlist->gnt_handles == NULL) {
3239			xenbus_dev_fatal(xbb->dev, ENOMEM,
3240					  "Unable to allocate request "
3241					  "grant references");
3242			return (ENOMEM);
3243		}
3244
3245		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3246			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3247
3248		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3249	}
3250	return (0);
3251}
3252
3253/**
3254 * Supply information about the physical device to the frontend
3255 * via XenBus.
3256 *
3257 * \param xbb  Per-instance xbb configuration structure.
3258 */
3259static int
3260xbb_publish_backend_info(struct xbb_softc *xbb)
3261{
3262	struct xs_transaction xst;
3263	const char	     *our_path;
3264	const char	     *leaf;
3265	int		      error;
3266
3267	our_path = xenbus_get_node(xbb->dev);
3268	while (1) {
3269		error = xs_transaction_start(&xst);
3270		if (error != 0) {
3271			xenbus_dev_fatal(xbb->dev, error,
3272					 "Error publishing backend info "
3273					 "(start transaction)");
3274			return (error);
3275		}
3276
3277		leaf = "sectors";
3278		error = xs_printf(xst, our_path, leaf,
3279				  "%"PRIu64, xbb->media_num_sectors);
3280		if (error != 0)
3281			break;
3282
3283		/* XXX Support all VBD attributes here. */
3284		leaf = "info";
3285		error = xs_printf(xst, our_path, leaf, "%u",
3286				  xbb->flags & XBBF_READ_ONLY
3287				? VDISK_READONLY : 0);
3288		if (error != 0)
3289			break;
3290
3291		leaf = "sector-size";
3292		error = xs_printf(xst, our_path, leaf, "%u",
3293				  xbb->sector_size);
3294		if (error != 0)
3295			break;
3296
3297		error = xs_transaction_end(xst, 0);
3298		if (error == 0) {
3299			return (0);
3300		} else if (error != EAGAIN) {
3301			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3302			return (error);
3303		}
3304	}
3305
3306	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3307			our_path, leaf);
3308	xs_transaction_end(xst, 1);
3309	return (error);
3310}
3311
3312/**
3313 * Connect to our blkfront peer now that it has completed publishing
3314 * its configuration into the XenStore.
3315 *
3316 * \param xbb  Per-instance xbb configuration structure.
3317 */
3318static void
3319xbb_connect(struct xbb_softc *xbb)
3320{
3321	int		      error;
3322
3323	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3324		return;
3325
3326	if (xbb_collect_frontend_info(xbb) != 0)
3327		return;
3328
3329	xbb->flags &= ~XBBF_SHUTDOWN;
3330
3331	/*
3332	 * We limit the maximum number of reqlist segments to the maximum
3333	 * number of segments in the ring, or our absolute maximum,
3334	 * whichever is smaller.
3335	 */
3336	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3337		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3338
3339	/*
3340	 * The maximum size is simply a function of the number of segments
3341	 * we can handle.
3342	 */
3343	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3344
3345	/* Allocate resources whose size depends on front-end configuration. */
3346	error = xbb_alloc_communication_mem(xbb);
3347	if (error != 0) {
3348		xenbus_dev_fatal(xbb->dev, error,
3349				 "Unable to allocate communication memory");
3350		return;
3351	}
3352
3353	error = xbb_alloc_requests(xbb);
3354	if (error != 0) {
3355		/* Specific errors are reported by xbb_alloc_requests(). */
3356		return;
3357	}
3358
3359	error = xbb_alloc_request_lists(xbb);
3360	if (error != 0) {
3361		/* Specific errors are reported by xbb_alloc_request_lists(). */
3362		return;
3363	}
3364
3365	/*
3366	 * Connect communication channel.
3367	 */
3368	error = xbb_connect_ring(xbb);
3369	if (error != 0) {
3370		/* Specific errors are reported by xbb_connect_ring(). */
3371		return;
3372	}
3373
3374	if (xbb_publish_backend_info(xbb) != 0) {
3375		/*
3376		 * If we can't publish our data, we cannot participate
3377		 * in this connection, and waiting for a front-end state
3378		 * change will not help the situation.
3379		 */
3380		(void)xbb_disconnect(xbb);
3381		return;
3382	}
3383
3384	/* Ready for I/O. */
3385	xenbus_set_state(xbb->dev, XenbusStateConnected);
3386}
3387
3388/*-------------------------- Device Teardown Support -------------------------*/
3389/**
3390 * Perform device shutdown functions.
3391 *
3392 * \param xbb  Per-instance xbb configuration structure.
3393 *
3394 * Mark this instance as shutting down, wait for any active I/O on the
3395 * backend device/file to drain, disconnect from the front-end, and notify
3396 * any waiters (e.g. a thread invoking our detach method) that detach can
3397 * now proceed.
3398 */
3399static int
3400xbb_shutdown(struct xbb_softc *xbb)
3401{
3402	int error;
3403
3404	DPRINTF("\n");
3405
3406	/*
3407	 * Due to the need to drop our mutex during some
3408	 * xenbus operations, it is possible for two threads
3409	 * to attempt to close out shutdown processing at
3410	 * the same time.  Tell the caller that hits this
3411	 * race to try back later.
3412	 */
3413	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3414		return (EAGAIN);
3415
3416	DPRINTF("\n");
3417
3418	/* Indicate shutdown is in progress. */
3419	xbb->flags |= XBBF_SHUTDOWN;
3420
3421	/* Disconnect from the front-end. */
3422	error = xbb_disconnect(xbb);
3423	if (error != 0) {
3424		/*
3425		 * Requests still outstanding.  We'll be called again
3426		 * once they complete.
3427		 */
3428		KASSERT(error == EAGAIN,
3429			("%s: Unexpected xbb_disconnect() failure %d",
3430			 __func__, error));
3431
3432		return (error);
3433	}
3434
3435	DPRINTF("\n");
3436
3437	xbb->flags |= XBBF_IN_SHUTDOWN;
3438	mtx_unlock(&xbb->lock);
3439
3440	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3441		xenbus_set_state(xbb->dev, XenbusStateClosing);
3442
3443	mtx_lock(&xbb->lock);
3444	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3445
3446	/* Indicate to xbb_detach() that is it safe to proceed. */
3447	wakeup(xbb);
3448
3449	return (0);
3450}
3451
3452/**
3453 * Report an attach time error to the console and Xen, and cleanup
3454 * this instance by forcing immediate detach processing.
3455 *
3456 * \param xbb  Per-instance xbb configuration structure.
3457 * \param err  Errno describing the error.
3458 * \param fmt  Printf style format and arguments
3459 */
3460static void
3461xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3462{
3463	va_list ap;
3464	va_list ap_hotplug;
3465
3466	va_start(ap, fmt);
3467	va_copy(ap_hotplug, ap);
3468	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3469		  "hotplug-error", fmt, ap_hotplug);
3470	va_end(ap_hotplug);
3471	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3472		  "hotplug-status", "error");
3473
3474	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3475	va_end(ap);
3476
3477	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3478		  "online", "0");
3479	xbb_detach(xbb->dev);
3480}
3481
3482/*---------------------------- NewBus Entrypoints ----------------------------*/
3483/**
3484 * Inspect a XenBus device and claim it if is of the appropriate type.
3485 *
3486 * \param dev  NewBus device object representing a candidate XenBus device.
3487 *
3488 * \return  0 for success, errno codes for failure.
3489 */
3490static int
3491xbb_probe(device_t dev)
3492{
3493
3494        if (!strcmp(xenbus_get_type(dev), "vbd")) {
3495                device_set_desc(dev, "Backend Virtual Block Device");
3496                device_quiet(dev);
3497                return (0);
3498        }
3499
3500        return (ENXIO);
3501}
3502
3503/**
3504 * Setup sysctl variables to control various Block Back parameters.
3505 *
3506 * \param xbb  Xen Block Back softc.
3507 *
3508 */
3509static void
3510xbb_setup_sysctl(struct xbb_softc *xbb)
3511{
3512	struct sysctl_ctx_list *sysctl_ctx = NULL;
3513	struct sysctl_oid      *sysctl_tree = NULL;
3514
3515	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3516	if (sysctl_ctx == NULL)
3517		return;
3518
3519	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3520	if (sysctl_tree == NULL)
3521		return;
3522
3523	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3524		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3525		       "fake the flush command");
3526
3527	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3528		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3529		       "send a real flush for N flush requests");
3530
3531	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3532		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3533		       "Don't coalesce contiguous requests");
3534
3535	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3536			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3537			 "how many I/O requests we have received");
3538
3539	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3540			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3541			 "how many I/O requests have been completed");
3542
3543	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3544			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3545			 "how many I/O dispatches were forced");
3546
3547	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3548			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3549			 "how many I/O dispatches were normal");
3550
3551	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3552			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3553			 "total number of I/O dispatches");
3554
3555	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3556			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3557			 "how many times we have run out of KVA");
3558
3559	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3560			 "request_shortages", CTLFLAG_RW,
3561			 &xbb->request_shortages,
3562			 "how many times we have run out of requests");
3563
3564	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3565		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3566		        "maximum outstanding requests (negotiated)");
3567
3568	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3569		        "max_request_segments", CTLFLAG_RD,
3570		        &xbb->max_request_segments, 0,
3571		        "maximum number of pages per requests (negotiated)");
3572}
3573
3574/**
3575 * Attach to a XenBus device that has been claimed by our probe routine.
3576 *
3577 * \param dev  NewBus device object representing this Xen Block Back instance.
3578 *
3579 * \return  0 for success, errno codes for failure.
3580 */
3581static int
3582xbb_attach(device_t dev)
3583{
3584	struct xbb_softc	*xbb;
3585	int			 error;
3586
3587	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3588
3589	/*
3590	 * Basic initialization.
3591	 * After this block it is safe to call xbb_detach()
3592	 * to clean up any allocated data for this instance.
3593	 */
3594	xbb = device_get_softc(dev);
3595	xbb->dev = dev;
3596	xbb->otherend_id = xenbus_get_otherend_id(dev);
3597	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3598	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3599
3600	/*
3601	 * Publish protocol capabilities for consumption by the
3602	 * front-end.
3603	 */
3604	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3605			  "feature-barrier", "1");
3606	if (error) {
3607		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3608				  xenbus_get_node(xbb->dev));
3609		return (error);
3610	}
3611
3612	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3613			  "feature-flush-cache", "1");
3614	if (error) {
3615		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3616				  xenbus_get_node(xbb->dev));
3617		return (error);
3618	}
3619
3620	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3621			  "max-ring-pages", "%zu", XBB_MAX_RING_PAGES);
3622	if (error) {
3623		xbb_attach_failed(xbb, error, "writing %s/max-ring-pages",
3624				  xenbus_get_node(xbb->dev));
3625		return (error);
3626	}
3627
3628	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3629			  "max-requests", "%u", XBB_MAX_REQUESTS);
3630	if (error) {
3631		xbb_attach_failed(xbb, error, "writing %s/max-requests",
3632				  xenbus_get_node(xbb->dev));
3633		return (error);
3634	}
3635
3636	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3637			  "max-request-segments", "%u",
3638			  XBB_MAX_SEGMENTS_PER_REQUEST);
3639	if (error) {
3640		xbb_attach_failed(xbb, error, "writing %s/max-request-segments",
3641				  xenbus_get_node(xbb->dev));
3642		return (error);
3643	}
3644
3645	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3646			  "max-request-size", "%u",
3647			  XBB_MAX_REQUEST_SIZE);
3648	if (error) {
3649		xbb_attach_failed(xbb, error, "writing %s/max-request-size",
3650				  xenbus_get_node(xbb->dev));
3651		return (error);
3652	}
3653
3654	/* Collect physical device information. */
3655	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3656			  "device-type", NULL, &xbb->dev_type,
3657			  NULL);
3658	if (error != 0)
3659		xbb->dev_type = NULL;
3660
3661	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3662                          "mode", NULL, &xbb->dev_mode,
3663			  "params", NULL, &xbb->dev_name,
3664                          NULL);
3665	if (error != 0) {
3666		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3667				  xenbus_get_node(dev));
3668                return (ENXIO);
3669        }
3670
3671	/* Parse fopen style mode flags. */
3672	if (strchr(xbb->dev_mode, 'w') == NULL)
3673		xbb->flags |= XBBF_READ_ONLY;
3674
3675	/*
3676	 * Verify the physical device is present and can support
3677	 * the desired I/O mode.
3678	 */
3679	DROP_GIANT();
3680	error = xbb_open_backend(xbb);
3681	PICKUP_GIANT();
3682	if (error != 0) {
3683		xbb_attach_failed(xbb, error, "Unable to open %s",
3684				  xbb->dev_name);
3685		return (ENXIO);
3686	}
3687
3688	/* Use devstat(9) for recording statistics. */
3689	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3690					   xbb->sector_size,
3691					   DEVSTAT_ALL_SUPPORTED,
3692					   DEVSTAT_TYPE_DIRECT
3693					 | DEVSTAT_TYPE_IF_OTHER,
3694					   DEVSTAT_PRIORITY_OTHER);
3695
3696	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3697					      xbb->sector_size,
3698					      DEVSTAT_ALL_SUPPORTED,
3699					      DEVSTAT_TYPE_DIRECT
3700					    | DEVSTAT_TYPE_IF_OTHER,
3701					      DEVSTAT_PRIORITY_OTHER);
3702	/*
3703	 * Setup sysctl variables.
3704	 */
3705	xbb_setup_sysctl(xbb);
3706
3707	/*
3708	 * Create a taskqueue for doing work that must occur from a
3709	 * thread context.
3710	 */
3711	xbb->io_taskqueue = taskqueue_create(device_get_nameunit(dev), M_NOWAIT,
3712					     taskqueue_thread_enqueue,
3713					     /*context*/&xbb->io_taskqueue);
3714	if (xbb->io_taskqueue == NULL) {
3715		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3716		return (ENOMEM);
3717	}
3718
3719	taskqueue_start_threads(&xbb->io_taskqueue,
3720				/*num threads*/1,
3721				/*priority*/PWAIT,
3722				/*thread name*/
3723				"%s taskq", device_get_nameunit(dev));
3724
3725	/* Update hot-plug status to satisfy xend. */
3726	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3727			  "hotplug-status", "connected");
3728	if (error) {
3729		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3730				  xenbus_get_node(xbb->dev));
3731		return (error);
3732	}
3733
3734	/* Tell the front end that we are ready to connect. */
3735	xenbus_set_state(dev, XenbusStateInitWait);
3736
3737	return (0);
3738}
3739
3740/**
3741 * Detach from a block back device instance.
3742 *
3743 * \param dev  NewBus device object representing this Xen Block Back instance.
3744 *
3745 * \return  0 for success, errno codes for failure.
3746 *
3747 * \note A block back device may be detached at any time in its life-cycle,
3748 *       including part way through the attach process.  For this reason,
3749 *       initialization order and the intialization state checks in this
3750 *       routine must be carefully coupled so that attach time failures
3751 *       are gracefully handled.
3752 */
3753static int
3754xbb_detach(device_t dev)
3755{
3756        struct xbb_softc *xbb;
3757
3758	DPRINTF("\n");
3759
3760        xbb = device_get_softc(dev);
3761	mtx_lock(&xbb->lock);
3762	while (xbb_shutdown(xbb) == EAGAIN) {
3763		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3764		       "xbb_shutdown", 0);
3765	}
3766	mtx_unlock(&xbb->lock);
3767
3768	DPRINTF("\n");
3769
3770	if (xbb->io_taskqueue != NULL)
3771		taskqueue_free(xbb->io_taskqueue);
3772
3773	if (xbb->xbb_stats != NULL)
3774		devstat_remove_entry(xbb->xbb_stats);
3775
3776	if (xbb->xbb_stats_in != NULL)
3777		devstat_remove_entry(xbb->xbb_stats_in);
3778
3779	xbb_close_backend(xbb);
3780
3781	if (xbb->dev_mode != NULL) {
3782		free(xbb->dev_mode, M_XENBUS);
3783		xbb->dev_mode = NULL;
3784	}
3785
3786	if (xbb->dev_type != NULL) {
3787		free(xbb->dev_type, M_XENBUS);
3788		xbb->dev_type = NULL;
3789	}
3790
3791	if (xbb->dev_name != NULL) {
3792		free(xbb->dev_name, M_XENBUS);
3793		xbb->dev_name = NULL;
3794	}
3795
3796	mtx_destroy(&xbb->lock);
3797        return (0);
3798}
3799
3800/**
3801 * Prepare this block back device for suspension of this VM.
3802 *
3803 * \param dev  NewBus device object representing this Xen Block Back instance.
3804 *
3805 * \return  0 for success, errno codes for failure.
3806 */
3807static int
3808xbb_suspend(device_t dev)
3809{
3810#ifdef NOT_YET
3811        struct xbb_softc *sc = device_get_softc(dev);
3812
3813        /* Prevent new requests being issued until we fix things up. */
3814        mtx_lock(&sc->xb_io_lock);
3815        sc->connected = BLKIF_STATE_SUSPENDED;
3816        mtx_unlock(&sc->xb_io_lock);
3817#endif
3818
3819        return (0);
3820}
3821
3822/**
3823 * Perform any processing required to recover from a suspended state.
3824 *
3825 * \param dev  NewBus device object representing this Xen Block Back instance.
3826 *
3827 * \return  0 for success, errno codes for failure.
3828 */
3829static int
3830xbb_resume(device_t dev)
3831{
3832	return (0);
3833}
3834
3835/**
3836 * Handle state changes expressed via the XenStore by our front-end peer.
3837 *
3838 * \param dev             NewBus device object representing this Xen
3839 *                        Block Back instance.
3840 * \param frontend_state  The new state of the front-end.
3841 *
3842 * \return  0 for success, errno codes for failure.
3843 */
3844static void
3845xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3846{
3847	struct xbb_softc *xbb = device_get_softc(dev);
3848
3849	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3850	        xenbus_strstate(frontend_state),
3851		xenbus_strstate(xenbus_get_state(xbb->dev)));
3852
3853	switch (frontend_state) {
3854	case XenbusStateInitialising:
3855		break;
3856	case XenbusStateInitialised:
3857	case XenbusStateConnected:
3858		xbb_connect(xbb);
3859		break;
3860	case XenbusStateClosing:
3861	case XenbusStateClosed:
3862		mtx_lock(&xbb->lock);
3863		xbb_shutdown(xbb);
3864		mtx_unlock(&xbb->lock);
3865		if (frontend_state == XenbusStateClosed)
3866			xenbus_set_state(xbb->dev, XenbusStateClosed);
3867		break;
3868	default:
3869		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3870				 frontend_state);
3871		break;
3872	}
3873}
3874
3875/*---------------------------- NewBus Registration ---------------------------*/
3876static device_method_t xbb_methods[] = {
3877	/* Device interface */
3878	DEVMETHOD(device_probe,		xbb_probe),
3879	DEVMETHOD(device_attach,	xbb_attach),
3880	DEVMETHOD(device_detach,	xbb_detach),
3881	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3882	DEVMETHOD(device_suspend,	xbb_suspend),
3883	DEVMETHOD(device_resume,	xbb_resume),
3884
3885	/* Xenbus interface */
3886	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3887
3888	{ 0, 0 }
3889};
3890
3891static driver_t xbb_driver = {
3892        "xbbd",
3893        xbb_methods,
3894        sizeof(struct xbb_softc),
3895};
3896devclass_t xbb_devclass;
3897
3898DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3899