if_wpi.c revision 289128
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 289128 2015-10-11 01:58:50Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156static void	wpi_reset_rx_ring(struct wpi_softc *);
157static void	wpi_free_rx_ring(struct wpi_softc *);
158static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159		    uint8_t);
160static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162		    struct wpi_tx_ring *);
163static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165static int	wpi_read_eeprom(struct wpi_softc *,
166		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t);
169static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
170static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171		    struct ieee80211_channel *);
172static int	wpi_setregdomain(struct ieee80211com *,
173		    struct ieee80211_regdomain *, int,
174		    struct ieee80211_channel[]);
175static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
176static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177		    const uint8_t mac[IEEE80211_ADDR_LEN]);
178static void	wpi_node_free(struct ieee80211_node *);
179static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
180		    const struct ieee80211_rx_stats *,
181		    int, int);
182static void	wpi_restore_node(void *, struct ieee80211_node *);
183static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
184static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
185static void	wpi_calib_timeout(void *);
186static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
187		    struct wpi_rx_data *);
188static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
189		    struct wpi_rx_data *);
190static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
191static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
192static void	wpi_notif_intr(struct wpi_softc *);
193static void	wpi_wakeup_intr(struct wpi_softc *);
194#ifdef WPI_DEBUG
195static void	wpi_debug_registers(struct wpi_softc *);
196#endif
197static void	wpi_fatal_intr(struct wpi_softc *);
198static void	wpi_intr(void *);
199static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
200static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201		    struct ieee80211_node *);
202static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
203		    struct ieee80211_node *,
204		    const struct ieee80211_bpf_params *);
205static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206		    const struct ieee80211_bpf_params *);
207static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
208static void	wpi_watchdog_rfkill(void *);
209static void	wpi_scan_timeout(void *);
210static void	wpi_tx_timeout(void *);
211static void	wpi_parent(struct ieee80211com *);
212static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
213		    int);
214static int	wpi_mrr_setup(struct wpi_softc *);
215static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
216static int	wpi_add_broadcast_node(struct wpi_softc *, int);
217static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
218static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
219static int	wpi_updateedca(struct ieee80211com *);
220static void	wpi_set_promisc(struct wpi_softc *);
221static void	wpi_update_promisc(struct ieee80211com *);
222static void	wpi_update_mcast(struct ieee80211com *);
223static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
224static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
225static void	wpi_power_calibration(struct wpi_softc *);
226static int	wpi_set_txpower(struct wpi_softc *, int);
227static int	wpi_get_power_index(struct wpi_softc *,
228		    struct wpi_power_group *, uint8_t, int, int);
229static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
230static int	wpi_send_btcoex(struct wpi_softc *);
231static int	wpi_send_rxon(struct wpi_softc *, int, int);
232static int	wpi_config(struct wpi_softc *);
233static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
234		    struct ieee80211_channel *, uint8_t);
235static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
236static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
237		    struct ieee80211_channel *);
238static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
239static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
240static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
241static int	wpi_config_beacon(struct wpi_vap *);
242static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
243static void	wpi_update_beacon(struct ieee80211vap *, int);
244static void	wpi_newassoc(struct ieee80211_node *, int);
245static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
246static int	wpi_load_key(struct ieee80211_node *,
247		    const struct ieee80211_key *);
248static void	wpi_load_key_cb(void *, struct ieee80211_node *);
249static int	wpi_set_global_keys(struct ieee80211_node *);
250static int	wpi_del_key(struct ieee80211_node *,
251		    const struct ieee80211_key *);
252static void	wpi_del_key_cb(void *, struct ieee80211_node *);
253static int	wpi_process_key(struct ieee80211vap *,
254		    const struct ieee80211_key *, int);
255static int	wpi_key_set(struct ieee80211vap *,
256		    const struct ieee80211_key *);
257static int	wpi_key_delete(struct ieee80211vap *,
258		    const struct ieee80211_key *);
259static int	wpi_post_alive(struct wpi_softc *);
260static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
261		    uint32_t);
262static int	wpi_load_firmware(struct wpi_softc *);
263static int	wpi_read_firmware(struct wpi_softc *);
264static void	wpi_unload_firmware(struct wpi_softc *);
265static int	wpi_clock_wait(struct wpi_softc *);
266static int	wpi_apm_init(struct wpi_softc *);
267static void	wpi_apm_stop_master(struct wpi_softc *);
268static void	wpi_apm_stop(struct wpi_softc *);
269static void	wpi_nic_config(struct wpi_softc *);
270static int	wpi_hw_init(struct wpi_softc *);
271static void	wpi_hw_stop(struct wpi_softc *);
272static void	wpi_radio_on(void *, int);
273static void	wpi_radio_off(void *, int);
274static int	wpi_init(struct wpi_softc *);
275static void	wpi_stop_locked(struct wpi_softc *);
276static void	wpi_stop(struct wpi_softc *);
277static void	wpi_scan_start(struct ieee80211com *);
278static void	wpi_scan_end(struct ieee80211com *);
279static void	wpi_set_channel(struct ieee80211com *);
280static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
281static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
282static void	wpi_hw_reset(void *, int);
283
284static device_method_t wpi_methods[] = {
285	/* Device interface */
286	DEVMETHOD(device_probe,		wpi_probe),
287	DEVMETHOD(device_attach,	wpi_attach),
288	DEVMETHOD(device_detach,	wpi_detach),
289	DEVMETHOD(device_shutdown,	wpi_shutdown),
290	DEVMETHOD(device_suspend,	wpi_suspend),
291	DEVMETHOD(device_resume,	wpi_resume),
292
293	DEVMETHOD_END
294};
295
296static driver_t wpi_driver = {
297	"wpi",
298	wpi_methods,
299	sizeof (struct wpi_softc)
300};
301static devclass_t wpi_devclass;
302
303DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
304
305MODULE_VERSION(wpi, 1);
306
307MODULE_DEPEND(wpi, pci,  1, 1, 1);
308MODULE_DEPEND(wpi, wlan, 1, 1, 1);
309MODULE_DEPEND(wpi, firmware, 1, 1, 1);
310
311static int
312wpi_probe(device_t dev)
313{
314	const struct wpi_ident *ident;
315
316	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
317		if (pci_get_vendor(dev) == ident->vendor &&
318		    pci_get_device(dev) == ident->device) {
319			device_set_desc(dev, ident->name);
320			return (BUS_PROBE_DEFAULT);
321		}
322	}
323	return ENXIO;
324}
325
326static int
327wpi_attach(device_t dev)
328{
329	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
330	struct ieee80211com *ic;
331	uint8_t i;
332	int error, rid;
333#ifdef WPI_DEBUG
334	int supportsa = 1;
335	const struct wpi_ident *ident;
336#endif
337
338	sc->sc_dev = dev;
339
340#ifdef WPI_DEBUG
341	error = resource_int_value(device_get_name(sc->sc_dev),
342	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
343	if (error != 0)
344		sc->sc_debug = 0;
345#else
346	sc->sc_debug = 0;
347#endif
348
349	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
350
351	/*
352	 * Get the offset of the PCI Express Capability Structure in PCI
353	 * Configuration Space.
354	 */
355	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
356	if (error != 0) {
357		device_printf(dev, "PCIe capability structure not found!\n");
358		return error;
359	}
360
361	/*
362	 * Some card's only support 802.11b/g not a, check to see if
363	 * this is one such card. A 0x0 in the subdevice table indicates
364	 * the entire subdevice range is to be ignored.
365	 */
366#ifdef WPI_DEBUG
367	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
368		if (ident->subdevice &&
369		    pci_get_subdevice(dev) == ident->subdevice) {
370		    supportsa = 0;
371		    break;
372		}
373	}
374#endif
375
376	/* Clear device-specific "PCI retry timeout" register (41h). */
377	pci_write_config(dev, 0x41, 0, 1);
378
379	/* Enable bus-mastering. */
380	pci_enable_busmaster(dev);
381
382	rid = PCIR_BAR(0);
383	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
384	    RF_ACTIVE);
385	if (sc->mem == NULL) {
386		device_printf(dev, "can't map mem space\n");
387		return ENOMEM;
388	}
389	sc->sc_st = rman_get_bustag(sc->mem);
390	sc->sc_sh = rman_get_bushandle(sc->mem);
391
392	rid = 1;
393	if (pci_alloc_msi(dev, &rid) == 0)
394		rid = 1;
395	else
396		rid = 0;
397	/* Install interrupt handler. */
398	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
399	    (rid != 0 ? 0 : RF_SHAREABLE));
400	if (sc->irq == NULL) {
401		device_printf(dev, "can't map interrupt\n");
402		error = ENOMEM;
403		goto fail;
404	}
405
406	WPI_LOCK_INIT(sc);
407	WPI_TX_LOCK_INIT(sc);
408	WPI_RXON_LOCK_INIT(sc);
409	WPI_NT_LOCK_INIT(sc);
410	WPI_TXQ_LOCK_INIT(sc);
411	WPI_TXQ_STATE_LOCK_INIT(sc);
412
413	/* Allocate DMA memory for firmware transfers. */
414	if ((error = wpi_alloc_fwmem(sc)) != 0) {
415		device_printf(dev,
416		    "could not allocate memory for firmware, error %d\n",
417		    error);
418		goto fail;
419	}
420
421	/* Allocate shared page. */
422	if ((error = wpi_alloc_shared(sc)) != 0) {
423		device_printf(dev, "could not allocate shared page\n");
424		goto fail;
425	}
426
427	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
428	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
429		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
430			device_printf(dev,
431			    "could not allocate TX ring %d, error %d\n", i,
432			    error);
433			goto fail;
434		}
435	}
436
437	/* Allocate RX ring. */
438	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
439		device_printf(dev, "could not allocate RX ring, error %d\n",
440		    error);
441		goto fail;
442	}
443
444	/* Clear pending interrupts. */
445	WPI_WRITE(sc, WPI_INT, 0xffffffff);
446
447	ic = &sc->sc_ic;
448	ic->ic_softc = sc;
449	ic->ic_name = device_get_nameunit(dev);
450	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
451	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
452
453	/* Set device capabilities. */
454	ic->ic_caps =
455		  IEEE80211_C_STA		/* station mode supported */
456		| IEEE80211_C_IBSS		/* IBSS mode supported */
457		| IEEE80211_C_HOSTAP		/* Host access point mode */
458		| IEEE80211_C_MONITOR		/* monitor mode supported */
459		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
460		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
461		| IEEE80211_C_TXPMGT		/* tx power management */
462		| IEEE80211_C_SHSLOT		/* short slot time supported */
463		| IEEE80211_C_WPA		/* 802.11i */
464		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
465		| IEEE80211_C_WME		/* 802.11e */
466		| IEEE80211_C_PMGT		/* Station-side power mgmt */
467		;
468
469	ic->ic_cryptocaps =
470		  IEEE80211_CRYPTO_AES_CCM;
471
472	/*
473	 * Read in the eeprom and also setup the channels for
474	 * net80211. We don't set the rates as net80211 does this for us
475	 */
476	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
477		device_printf(dev, "could not read EEPROM, error %d\n",
478		    error);
479		goto fail;
480	}
481
482#ifdef WPI_DEBUG
483	if (bootverbose) {
484		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
485		    sc->domain);
486		device_printf(sc->sc_dev, "Hardware Type: %c\n",
487		    sc->type > 1 ? 'B': '?');
488		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
489		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
490		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
491		    supportsa ? "does" : "does not");
492
493		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
494		   check what sc->rev really represents - benjsc 20070615 */
495	}
496#endif
497
498	ieee80211_ifattach(ic);
499	ic->ic_vap_create = wpi_vap_create;
500	ic->ic_vap_delete = wpi_vap_delete;
501	ic->ic_parent = wpi_parent;
502	ic->ic_raw_xmit = wpi_raw_xmit;
503	ic->ic_transmit = wpi_transmit;
504	ic->ic_node_alloc = wpi_node_alloc;
505	sc->sc_node_free = ic->ic_node_free;
506	ic->ic_node_free = wpi_node_free;
507	ic->ic_wme.wme_update = wpi_updateedca;
508	ic->ic_update_promisc = wpi_update_promisc;
509	ic->ic_update_mcast = wpi_update_mcast;
510	ic->ic_newassoc = wpi_newassoc;
511	ic->ic_scan_start = wpi_scan_start;
512	ic->ic_scan_end = wpi_scan_end;
513	ic->ic_set_channel = wpi_set_channel;
514	ic->ic_scan_curchan = wpi_scan_curchan;
515	ic->ic_scan_mindwell = wpi_scan_mindwell;
516	ic->ic_setregdomain = wpi_setregdomain;
517
518	sc->sc_update_rx_ring = wpi_update_rx_ring;
519	sc->sc_update_tx_ring = wpi_update_tx_ring;
520
521	wpi_radiotap_attach(sc);
522
523	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
524	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
525	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
526	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
527	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
528	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
529	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
530
531	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
532	    taskqueue_thread_enqueue, &sc->sc_tq);
533	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
534	if (error != 0) {
535		device_printf(dev, "can't start threads, error %d\n", error);
536		goto fail;
537	}
538
539	wpi_sysctlattach(sc);
540
541	/*
542	 * Hook our interrupt after all initialization is complete.
543	 */
544	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
545	    NULL, wpi_intr, sc, &sc->sc_ih);
546	if (error != 0) {
547		device_printf(dev, "can't establish interrupt, error %d\n",
548		    error);
549		goto fail;
550	}
551
552	if (bootverbose)
553		ieee80211_announce(ic);
554
555#ifdef WPI_DEBUG
556	if (sc->sc_debug & WPI_DEBUG_HW)
557		ieee80211_announce_channels(ic);
558#endif
559
560	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
561	return 0;
562
563fail:	wpi_detach(dev);
564	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
565	return error;
566}
567
568/*
569 * Attach the interface to 802.11 radiotap.
570 */
571static void
572wpi_radiotap_attach(struct wpi_softc *sc)
573{
574	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
575	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
576
577	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
578	ieee80211_radiotap_attach(&sc->sc_ic,
579	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
580	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
581	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
582}
583
584static void
585wpi_sysctlattach(struct wpi_softc *sc)
586{
587#ifdef WPI_DEBUG
588	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
589	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
590
591	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
592	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
593		"control debugging printfs");
594#endif
595}
596
597static void
598wpi_init_beacon(struct wpi_vap *wvp)
599{
600	struct wpi_buf *bcn = &wvp->wv_bcbuf;
601	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
602
603	cmd->id = WPI_ID_BROADCAST;
604	cmd->ofdm_mask = 0xff;
605	cmd->cck_mask = 0x0f;
606	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
607
608	/*
609	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
610	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
611	 */
612	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
613
614	bcn->code = WPI_CMD_SET_BEACON;
615	bcn->ac = WPI_CMD_QUEUE_NUM;
616	bcn->size = sizeof(struct wpi_cmd_beacon);
617}
618
619static struct ieee80211vap *
620wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
621    enum ieee80211_opmode opmode, int flags,
622    const uint8_t bssid[IEEE80211_ADDR_LEN],
623    const uint8_t mac[IEEE80211_ADDR_LEN])
624{
625	struct wpi_vap *wvp;
626	struct ieee80211vap *vap;
627
628	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
629		return NULL;
630
631	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
632	vap = &wvp->wv_vap;
633	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
634
635	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
636		WPI_VAP_LOCK_INIT(wvp);
637		wpi_init_beacon(wvp);
638	}
639
640	/* Override with driver methods. */
641	vap->iv_key_set = wpi_key_set;
642	vap->iv_key_delete = wpi_key_delete;
643	if (opmode == IEEE80211_M_IBSS) {
644		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
645		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
646	}
647	wvp->wv_newstate = vap->iv_newstate;
648	vap->iv_newstate = wpi_newstate;
649	vap->iv_update_beacon = wpi_update_beacon;
650	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
651
652	ieee80211_ratectl_init(vap);
653	/* Complete setup. */
654	ieee80211_vap_attach(vap, ieee80211_media_change,
655	    ieee80211_media_status, mac);
656	ic->ic_opmode = opmode;
657	return vap;
658}
659
660static void
661wpi_vap_delete(struct ieee80211vap *vap)
662{
663	struct wpi_vap *wvp = WPI_VAP(vap);
664	struct wpi_buf *bcn = &wvp->wv_bcbuf;
665	enum ieee80211_opmode opmode = vap->iv_opmode;
666
667	ieee80211_ratectl_deinit(vap);
668	ieee80211_vap_detach(vap);
669
670	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
671		if (bcn->m != NULL)
672			m_freem(bcn->m);
673
674		WPI_VAP_LOCK_DESTROY(wvp);
675	}
676
677	free(wvp, M_80211_VAP);
678}
679
680static int
681wpi_detach(device_t dev)
682{
683	struct wpi_softc *sc = device_get_softc(dev);
684	struct ieee80211com *ic = &sc->sc_ic;
685	uint8_t qid;
686
687	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
688
689	if (ic->ic_vap_create == wpi_vap_create) {
690		ieee80211_draintask(ic, &sc->sc_radioon_task);
691
692		wpi_stop(sc);
693
694		if (sc->sc_tq != NULL) {
695			taskqueue_drain_all(sc->sc_tq);
696			taskqueue_free(sc->sc_tq);
697		}
698
699		callout_drain(&sc->watchdog_rfkill);
700		callout_drain(&sc->tx_timeout);
701		callout_drain(&sc->scan_timeout);
702		callout_drain(&sc->calib_to);
703		ieee80211_ifdetach(ic);
704	}
705
706	/* Uninstall interrupt handler. */
707	if (sc->irq != NULL) {
708		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
709		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
710		    sc->irq);
711		pci_release_msi(dev);
712	}
713
714	if (sc->txq[0].data_dmat) {
715		/* Free DMA resources. */
716		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
717			wpi_free_tx_ring(sc, &sc->txq[qid]);
718
719		wpi_free_rx_ring(sc);
720		wpi_free_shared(sc);
721	}
722
723	if (sc->fw_dma.tag)
724		wpi_free_fwmem(sc);
725
726	if (sc->mem != NULL)
727		bus_release_resource(dev, SYS_RES_MEMORY,
728		    rman_get_rid(sc->mem), sc->mem);
729
730	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
731	WPI_TXQ_STATE_LOCK_DESTROY(sc);
732	WPI_TXQ_LOCK_DESTROY(sc);
733	WPI_NT_LOCK_DESTROY(sc);
734	WPI_RXON_LOCK_DESTROY(sc);
735	WPI_TX_LOCK_DESTROY(sc);
736	WPI_LOCK_DESTROY(sc);
737	return 0;
738}
739
740static int
741wpi_shutdown(device_t dev)
742{
743	struct wpi_softc *sc = device_get_softc(dev);
744
745	wpi_stop(sc);
746	return 0;
747}
748
749static int
750wpi_suspend(device_t dev)
751{
752	struct wpi_softc *sc = device_get_softc(dev);
753	struct ieee80211com *ic = &sc->sc_ic;
754
755	ieee80211_suspend_all(ic);
756	return 0;
757}
758
759static int
760wpi_resume(device_t dev)
761{
762	struct wpi_softc *sc = device_get_softc(dev);
763	struct ieee80211com *ic = &sc->sc_ic;
764
765	/* Clear device-specific "PCI retry timeout" register (41h). */
766	pci_write_config(dev, 0x41, 0, 1);
767
768	ieee80211_resume_all(ic);
769	return 0;
770}
771
772/*
773 * Grab exclusive access to NIC memory.
774 */
775static int
776wpi_nic_lock(struct wpi_softc *sc)
777{
778	int ntries;
779
780	/* Request exclusive access to NIC. */
781	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
782
783	/* Spin until we actually get the lock. */
784	for (ntries = 0; ntries < 1000; ntries++) {
785		if ((WPI_READ(sc, WPI_GP_CNTRL) &
786		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
787		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
788			return 0;
789		DELAY(10);
790	}
791
792	device_printf(sc->sc_dev, "could not lock memory\n");
793
794	return ETIMEDOUT;
795}
796
797/*
798 * Release lock on NIC memory.
799 */
800static __inline void
801wpi_nic_unlock(struct wpi_softc *sc)
802{
803	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
804}
805
806static __inline uint32_t
807wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
808{
809	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
810	WPI_BARRIER_READ_WRITE(sc);
811	return WPI_READ(sc, WPI_PRPH_RDATA);
812}
813
814static __inline void
815wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
816{
817	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
818	WPI_BARRIER_WRITE(sc);
819	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
820}
821
822static __inline void
823wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
824{
825	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
826}
827
828static __inline void
829wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
830{
831	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
832}
833
834static __inline void
835wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
836    const uint32_t *data, uint32_t count)
837{
838	for (; count != 0; count--, data++, addr += 4)
839		wpi_prph_write(sc, addr, *data);
840}
841
842static __inline uint32_t
843wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
844{
845	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
846	WPI_BARRIER_READ_WRITE(sc);
847	return WPI_READ(sc, WPI_MEM_RDATA);
848}
849
850static __inline void
851wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
852    int count)
853{
854	for (; count > 0; count--, addr += 4)
855		*data++ = wpi_mem_read(sc, addr);
856}
857
858static int
859wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
860{
861	uint8_t *out = data;
862	uint32_t val;
863	int error, ntries;
864
865	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
866
867	if ((error = wpi_nic_lock(sc)) != 0)
868		return error;
869
870	for (; count > 0; count -= 2, addr++) {
871		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
872		for (ntries = 0; ntries < 10; ntries++) {
873			val = WPI_READ(sc, WPI_EEPROM);
874			if (val & WPI_EEPROM_READ_VALID)
875				break;
876			DELAY(5);
877		}
878		if (ntries == 10) {
879			device_printf(sc->sc_dev,
880			    "timeout reading ROM at 0x%x\n", addr);
881			return ETIMEDOUT;
882		}
883		*out++= val >> 16;
884		if (count > 1)
885			*out ++= val >> 24;
886	}
887
888	wpi_nic_unlock(sc);
889
890	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
891
892	return 0;
893}
894
895static void
896wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
897{
898	if (error != 0)
899		return;
900	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
901	*(bus_addr_t *)arg = segs[0].ds_addr;
902}
903
904/*
905 * Allocates a contiguous block of dma memory of the requested size and
906 * alignment.
907 */
908static int
909wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
910    void **kvap, bus_size_t size, bus_size_t alignment)
911{
912	int error;
913
914	dma->tag = NULL;
915	dma->size = size;
916
917	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
918	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
919	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
920	if (error != 0)
921		goto fail;
922
923	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
924	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
925	if (error != 0)
926		goto fail;
927
928	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
929	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
930	if (error != 0)
931		goto fail;
932
933	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
934
935	if (kvap != NULL)
936		*kvap = dma->vaddr;
937
938	return 0;
939
940fail:	wpi_dma_contig_free(dma);
941	return error;
942}
943
944static void
945wpi_dma_contig_free(struct wpi_dma_info *dma)
946{
947	if (dma->vaddr != NULL) {
948		bus_dmamap_sync(dma->tag, dma->map,
949		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
950		bus_dmamap_unload(dma->tag, dma->map);
951		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
952		dma->vaddr = NULL;
953	}
954	if (dma->tag != NULL) {
955		bus_dma_tag_destroy(dma->tag);
956		dma->tag = NULL;
957	}
958}
959
960/*
961 * Allocate a shared page between host and NIC.
962 */
963static int
964wpi_alloc_shared(struct wpi_softc *sc)
965{
966	/* Shared buffer must be aligned on a 4KB boundary. */
967	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
968	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
969}
970
971static void
972wpi_free_shared(struct wpi_softc *sc)
973{
974	wpi_dma_contig_free(&sc->shared_dma);
975}
976
977/*
978 * Allocate DMA-safe memory for firmware transfer.
979 */
980static int
981wpi_alloc_fwmem(struct wpi_softc *sc)
982{
983	/* Must be aligned on a 16-byte boundary. */
984	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
985	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
986}
987
988static void
989wpi_free_fwmem(struct wpi_softc *sc)
990{
991	wpi_dma_contig_free(&sc->fw_dma);
992}
993
994static int
995wpi_alloc_rx_ring(struct wpi_softc *sc)
996{
997	struct wpi_rx_ring *ring = &sc->rxq;
998	bus_size_t size;
999	int i, error;
1000
1001	ring->cur = 0;
1002	ring->update = 0;
1003
1004	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1005
1006	/* Allocate RX descriptors (16KB aligned.) */
1007	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1008	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1009	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1010	if (error != 0) {
1011		device_printf(sc->sc_dev,
1012		    "%s: could not allocate RX ring DMA memory, error %d\n",
1013		    __func__, error);
1014		goto fail;
1015	}
1016
1017	/* Create RX buffer DMA tag. */
1018	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1019	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1020	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1021	    &ring->data_dmat);
1022	if (error != 0) {
1023		device_printf(sc->sc_dev,
1024		    "%s: could not create RX buf DMA tag, error %d\n",
1025		    __func__, error);
1026		goto fail;
1027	}
1028
1029	/*
1030	 * Allocate and map RX buffers.
1031	 */
1032	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1033		struct wpi_rx_data *data = &ring->data[i];
1034		bus_addr_t paddr;
1035
1036		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1037		if (error != 0) {
1038			device_printf(sc->sc_dev,
1039			    "%s: could not create RX buf DMA map, error %d\n",
1040			    __func__, error);
1041			goto fail;
1042		}
1043
1044		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1045		if (data->m == NULL) {
1046			device_printf(sc->sc_dev,
1047			    "%s: could not allocate RX mbuf\n", __func__);
1048			error = ENOBUFS;
1049			goto fail;
1050		}
1051
1052		error = bus_dmamap_load(ring->data_dmat, data->map,
1053		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1054		    &paddr, BUS_DMA_NOWAIT);
1055		if (error != 0 && error != EFBIG) {
1056			device_printf(sc->sc_dev,
1057			    "%s: can't map mbuf (error %d)\n", __func__,
1058			    error);
1059			goto fail;
1060		}
1061
1062		/* Set physical address of RX buffer. */
1063		ring->desc[i] = htole32(paddr);
1064	}
1065
1066	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1067	    BUS_DMASYNC_PREWRITE);
1068
1069	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1070
1071	return 0;
1072
1073fail:	wpi_free_rx_ring(sc);
1074
1075	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1076
1077	return error;
1078}
1079
1080static void
1081wpi_update_rx_ring(struct wpi_softc *sc)
1082{
1083	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1084}
1085
1086static void
1087wpi_update_rx_ring_ps(struct wpi_softc *sc)
1088{
1089	struct wpi_rx_ring *ring = &sc->rxq;
1090
1091	if (ring->update != 0) {
1092		/* Wait for INT_WAKEUP event. */
1093		return;
1094	}
1095
1096	WPI_TXQ_LOCK(sc);
1097	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1098	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1099		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1100		    __func__);
1101		ring->update = 1;
1102	} else {
1103		wpi_update_rx_ring(sc);
1104		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1105	}
1106	WPI_TXQ_UNLOCK(sc);
1107}
1108
1109static void
1110wpi_reset_rx_ring(struct wpi_softc *sc)
1111{
1112	struct wpi_rx_ring *ring = &sc->rxq;
1113	int ntries;
1114
1115	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1116
1117	if (wpi_nic_lock(sc) == 0) {
1118		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1119		for (ntries = 0; ntries < 1000; ntries++) {
1120			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1121			    WPI_FH_RX_STATUS_IDLE)
1122				break;
1123			DELAY(10);
1124		}
1125		wpi_nic_unlock(sc);
1126	}
1127
1128	ring->cur = 0;
1129	ring->update = 0;
1130}
1131
1132static void
1133wpi_free_rx_ring(struct wpi_softc *sc)
1134{
1135	struct wpi_rx_ring *ring = &sc->rxq;
1136	int i;
1137
1138	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1139
1140	wpi_dma_contig_free(&ring->desc_dma);
1141
1142	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1143		struct wpi_rx_data *data = &ring->data[i];
1144
1145		if (data->m != NULL) {
1146			bus_dmamap_sync(ring->data_dmat, data->map,
1147			    BUS_DMASYNC_POSTREAD);
1148			bus_dmamap_unload(ring->data_dmat, data->map);
1149			m_freem(data->m);
1150			data->m = NULL;
1151		}
1152		if (data->map != NULL)
1153			bus_dmamap_destroy(ring->data_dmat, data->map);
1154	}
1155	if (ring->data_dmat != NULL) {
1156		bus_dma_tag_destroy(ring->data_dmat);
1157		ring->data_dmat = NULL;
1158	}
1159}
1160
1161static int
1162wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1163{
1164	bus_addr_t paddr;
1165	bus_size_t size;
1166	int i, error;
1167
1168	ring->qid = qid;
1169	ring->queued = 0;
1170	ring->cur = 0;
1171	ring->update = 0;
1172
1173	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1174
1175	/* Allocate TX descriptors (16KB aligned.) */
1176	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1177	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1178	    size, WPI_RING_DMA_ALIGN);
1179	if (error != 0) {
1180		device_printf(sc->sc_dev,
1181		    "%s: could not allocate TX ring DMA memory, error %d\n",
1182		    __func__, error);
1183		goto fail;
1184	}
1185
1186	/* Update shared area with ring physical address. */
1187	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1188	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1189	    BUS_DMASYNC_PREWRITE);
1190
1191	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1192	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1193	    size, 4);
1194	if (error != 0) {
1195		device_printf(sc->sc_dev,
1196		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1197		    __func__, error);
1198		goto fail;
1199	}
1200
1201	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1202	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1203	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1204	    &ring->data_dmat);
1205	if (error != 0) {
1206		device_printf(sc->sc_dev,
1207		    "%s: could not create TX buf DMA tag, error %d\n",
1208		    __func__, error);
1209		goto fail;
1210	}
1211
1212	paddr = ring->cmd_dma.paddr;
1213	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1214		struct wpi_tx_data *data = &ring->data[i];
1215
1216		data->cmd_paddr = paddr;
1217		paddr += sizeof (struct wpi_tx_cmd);
1218
1219		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1220		if (error != 0) {
1221			device_printf(sc->sc_dev,
1222			    "%s: could not create TX buf DMA map, error %d\n",
1223			    __func__, error);
1224			goto fail;
1225		}
1226	}
1227
1228	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1229
1230	return 0;
1231
1232fail:	wpi_free_tx_ring(sc, ring);
1233	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1234	return error;
1235}
1236
1237static void
1238wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1239{
1240	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1241}
1242
1243static void
1244wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1245{
1246
1247	if (ring->update != 0) {
1248		/* Wait for INT_WAKEUP event. */
1249		return;
1250	}
1251
1252	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1253	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1254		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1255		    __func__, ring->qid);
1256		ring->update = 1;
1257	} else {
1258		wpi_update_tx_ring(sc, ring);
1259		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1260	}
1261}
1262
1263static void
1264wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1265{
1266	int i;
1267
1268	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1269
1270	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1271		struct wpi_tx_data *data = &ring->data[i];
1272
1273		if (data->m != NULL) {
1274			bus_dmamap_sync(ring->data_dmat, data->map,
1275			    BUS_DMASYNC_POSTWRITE);
1276			bus_dmamap_unload(ring->data_dmat, data->map);
1277			m_freem(data->m);
1278			data->m = NULL;
1279		}
1280		if (data->ni != NULL) {
1281			ieee80211_free_node(data->ni);
1282			data->ni = NULL;
1283		}
1284	}
1285	/* Clear TX descriptors. */
1286	memset(ring->desc, 0, ring->desc_dma.size);
1287	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1288	    BUS_DMASYNC_PREWRITE);
1289	ring->queued = 0;
1290	ring->cur = 0;
1291	ring->update = 0;
1292}
1293
1294static void
1295wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1296{
1297	int i;
1298
1299	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1300
1301	wpi_dma_contig_free(&ring->desc_dma);
1302	wpi_dma_contig_free(&ring->cmd_dma);
1303
1304	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1305		struct wpi_tx_data *data = &ring->data[i];
1306
1307		if (data->m != NULL) {
1308			bus_dmamap_sync(ring->data_dmat, data->map,
1309			    BUS_DMASYNC_POSTWRITE);
1310			bus_dmamap_unload(ring->data_dmat, data->map);
1311			m_freem(data->m);
1312		}
1313		if (data->map != NULL)
1314			bus_dmamap_destroy(ring->data_dmat, data->map);
1315	}
1316	if (ring->data_dmat != NULL) {
1317		bus_dma_tag_destroy(ring->data_dmat);
1318		ring->data_dmat = NULL;
1319	}
1320}
1321
1322/*
1323 * Extract various information from EEPROM.
1324 */
1325static int
1326wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1327{
1328#define WPI_CHK(res) do {		\
1329	if ((error = res) != 0)		\
1330		goto fail;		\
1331} while (0)
1332	uint8_t i;
1333	int error;
1334
1335	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1336
1337	/* Adapter has to be powered on for EEPROM access to work. */
1338	if ((error = wpi_apm_init(sc)) != 0) {
1339		device_printf(sc->sc_dev,
1340		    "%s: could not power ON adapter, error %d\n", __func__,
1341		    error);
1342		return error;
1343	}
1344
1345	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1346		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1347		error = EIO;
1348		goto fail;
1349	}
1350	/* Clear HW ownership of EEPROM. */
1351	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1352
1353	/* Read the hardware capabilities, revision and SKU type. */
1354	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1355	    sizeof(sc->cap)));
1356	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1357	    sizeof(sc->rev)));
1358	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1359	    sizeof(sc->type)));
1360
1361	sc->rev = le16toh(sc->rev);
1362	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1363	    sc->rev, sc->type);
1364
1365	/* Read the regulatory domain (4 ASCII characters.) */
1366	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1367	    sizeof(sc->domain)));
1368
1369	/* Read MAC address. */
1370	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1371	    IEEE80211_ADDR_LEN));
1372
1373	/* Read the list of authorized channels. */
1374	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1375		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1376
1377	/* Read the list of TX power groups. */
1378	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1379		WPI_CHK(wpi_read_eeprom_group(sc, i));
1380
1381fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1382
1383	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1384	    __func__);
1385
1386	return error;
1387#undef WPI_CHK
1388}
1389
1390/*
1391 * Translate EEPROM flags to net80211.
1392 */
1393static uint32_t
1394wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1395{
1396	uint32_t nflags;
1397
1398	nflags = 0;
1399	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1400		nflags |= IEEE80211_CHAN_PASSIVE;
1401	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1402		nflags |= IEEE80211_CHAN_NOADHOC;
1403	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1404		nflags |= IEEE80211_CHAN_DFS;
1405		/* XXX apparently IBSS may still be marked */
1406		nflags |= IEEE80211_CHAN_NOADHOC;
1407	}
1408
1409	/* XXX HOSTAP uses WPI_MODE_IBSS */
1410	if (nflags & IEEE80211_CHAN_NOADHOC)
1411		nflags |= IEEE80211_CHAN_NOHOSTAP;
1412
1413	return nflags;
1414}
1415
1416static void
1417wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n)
1418{
1419	struct ieee80211com *ic = &sc->sc_ic;
1420	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1421	const struct wpi_chan_band *band = &wpi_bands[n];
1422	struct ieee80211_channel *c;
1423	uint32_t nflags;
1424	uint8_t chan, i;
1425
1426	for (i = 0; i < band->nchan; i++) {
1427		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1428			DPRINTF(sc, WPI_DEBUG_EEPROM,
1429			    "Channel Not Valid: %d, band %d\n",
1430			     band->chan[i],n);
1431			continue;
1432		}
1433
1434		chan = band->chan[i];
1435		nflags = wpi_eeprom_channel_flags(&channels[i]);
1436
1437		c = &ic->ic_channels[ic->ic_nchans++];
1438		c->ic_ieee = chan;
1439		c->ic_maxregpower = channels[i].maxpwr;
1440		c->ic_maxpower = 2*c->ic_maxregpower;
1441
1442		if (n == 0) {	/* 2GHz band */
1443			c->ic_freq = ieee80211_ieee2mhz(chan,
1444			    IEEE80211_CHAN_G);
1445
1446			/* G =>'s B is supported */
1447			c->ic_flags = IEEE80211_CHAN_B | nflags;
1448			c = &ic->ic_channels[ic->ic_nchans++];
1449			c[0] = c[-1];
1450			c->ic_flags = IEEE80211_CHAN_G | nflags;
1451		} else {	/* 5GHz band */
1452			c->ic_freq = ieee80211_ieee2mhz(chan,
1453			    IEEE80211_CHAN_A);
1454
1455			c->ic_flags = IEEE80211_CHAN_A | nflags;
1456		}
1457
1458		/* Save maximum allowed TX power for this channel. */
1459		sc->maxpwr[chan] = channels[i].maxpwr;
1460
1461		DPRINTF(sc, WPI_DEBUG_EEPROM,
1462		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1463		    " offset %d\n", chan, c->ic_freq,
1464		    channels[i].flags, sc->maxpwr[chan],
1465		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1466	}
1467}
1468
1469/**
1470 * Read the eeprom to find out what channels are valid for the given
1471 * band and update net80211 with what we find.
1472 */
1473static int
1474wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1475{
1476	struct ieee80211com *ic = &sc->sc_ic;
1477	const struct wpi_chan_band *band = &wpi_bands[n];
1478	int error;
1479
1480	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1481
1482	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1483	    band->nchan * sizeof (struct wpi_eeprom_chan));
1484	if (error != 0) {
1485		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1486		return error;
1487	}
1488
1489	wpi_read_eeprom_band(sc, n);
1490
1491	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1492
1493	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1494
1495	return 0;
1496}
1497
1498static struct wpi_eeprom_chan *
1499wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1500{
1501	int i, j;
1502
1503	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1504		for (i = 0; i < wpi_bands[j].nchan; i++)
1505			if (wpi_bands[j].chan[i] == c->ic_ieee)
1506				return &sc->eeprom_channels[j][i];
1507
1508	return NULL;
1509}
1510
1511/*
1512 * Enforce flags read from EEPROM.
1513 */
1514static int
1515wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1516    int nchan, struct ieee80211_channel chans[])
1517{
1518	struct wpi_softc *sc = ic->ic_softc;
1519	int i;
1520
1521	for (i = 0; i < nchan; i++) {
1522		struct ieee80211_channel *c = &chans[i];
1523		struct wpi_eeprom_chan *channel;
1524
1525		channel = wpi_find_eeprom_channel(sc, c);
1526		if (channel == NULL) {
1527			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1528			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1529			return EINVAL;
1530		}
1531		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1532	}
1533
1534	return 0;
1535}
1536
1537static int
1538wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1539{
1540	struct wpi_power_group *group = &sc->groups[n];
1541	struct wpi_eeprom_group rgroup;
1542	int i, error;
1543
1544	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1545
1546	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1547	    &rgroup, sizeof rgroup)) != 0) {
1548		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1549		return error;
1550	}
1551
1552	/* Save TX power group information. */
1553	group->chan   = rgroup.chan;
1554	group->maxpwr = rgroup.maxpwr;
1555	/* Retrieve temperature at which the samples were taken. */
1556	group->temp   = (int16_t)le16toh(rgroup.temp);
1557
1558	DPRINTF(sc, WPI_DEBUG_EEPROM,
1559	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1560	    group->maxpwr, group->temp);
1561
1562	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1563		group->samples[i].index = rgroup.samples[i].index;
1564		group->samples[i].power = rgroup.samples[i].power;
1565
1566		DPRINTF(sc, WPI_DEBUG_EEPROM,
1567		    "\tsample %d: index=%d power=%d\n", i,
1568		    group->samples[i].index, group->samples[i].power);
1569	}
1570
1571	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1572
1573	return 0;
1574}
1575
1576static __inline uint8_t
1577wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1578{
1579	uint8_t newid = WPI_ID_IBSS_MIN;
1580
1581	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1582		if ((sc->nodesmsk & (1 << newid)) == 0) {
1583			sc->nodesmsk |= 1 << newid;
1584			return newid;
1585		}
1586	}
1587
1588	return WPI_ID_UNDEFINED;
1589}
1590
1591static __inline uint8_t
1592wpi_add_node_entry_sta(struct wpi_softc *sc)
1593{
1594	sc->nodesmsk |= 1 << WPI_ID_BSS;
1595
1596	return WPI_ID_BSS;
1597}
1598
1599static __inline int
1600wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1601{
1602	if (id == WPI_ID_UNDEFINED)
1603		return 0;
1604
1605	return (sc->nodesmsk >> id) & 1;
1606}
1607
1608static __inline void
1609wpi_clear_node_table(struct wpi_softc *sc)
1610{
1611	sc->nodesmsk = 0;
1612}
1613
1614static __inline void
1615wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1616{
1617	sc->nodesmsk &= ~(1 << id);
1618}
1619
1620static struct ieee80211_node *
1621wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1622{
1623	struct wpi_node *wn;
1624
1625	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1626	    M_NOWAIT | M_ZERO);
1627
1628	if (wn == NULL)
1629		return NULL;
1630
1631	wn->id = WPI_ID_UNDEFINED;
1632
1633	return &wn->ni;
1634}
1635
1636static void
1637wpi_node_free(struct ieee80211_node *ni)
1638{
1639	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1640	struct wpi_node *wn = WPI_NODE(ni);
1641
1642	if (wn->id != WPI_ID_UNDEFINED) {
1643		WPI_NT_LOCK(sc);
1644		if (wpi_check_node_entry(sc, wn->id)) {
1645			wpi_del_node_entry(sc, wn->id);
1646			wpi_del_node(sc, ni);
1647		}
1648		WPI_NT_UNLOCK(sc);
1649	}
1650
1651	sc->sc_node_free(ni);
1652}
1653
1654static __inline int
1655wpi_check_bss_filter(struct wpi_softc *sc)
1656{
1657	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1658}
1659
1660static void
1661wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1662    const struct ieee80211_rx_stats *rxs,
1663    int rssi, int nf)
1664{
1665	struct ieee80211vap *vap = ni->ni_vap;
1666	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1667	struct wpi_vap *wvp = WPI_VAP(vap);
1668	uint64_t ni_tstamp, rx_tstamp;
1669
1670	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1671
1672	if (vap->iv_state == IEEE80211_S_RUN &&
1673	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1674	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1675		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1676		rx_tstamp = le64toh(sc->rx_tstamp);
1677
1678		if (ni_tstamp >= rx_tstamp) {
1679			DPRINTF(sc, WPI_DEBUG_STATE,
1680			    "ibss merge, tsf %ju tstamp %ju\n",
1681			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1682			(void) ieee80211_ibss_merge(ni);
1683		}
1684	}
1685}
1686
1687static void
1688wpi_restore_node(void *arg, struct ieee80211_node *ni)
1689{
1690	struct wpi_softc *sc = arg;
1691	struct wpi_node *wn = WPI_NODE(ni);
1692	int error;
1693
1694	WPI_NT_LOCK(sc);
1695	if (wn->id != WPI_ID_UNDEFINED) {
1696		wn->id = WPI_ID_UNDEFINED;
1697		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1698			device_printf(sc->sc_dev,
1699			    "%s: could not add IBSS node, error %d\n",
1700			    __func__, error);
1701		}
1702	}
1703	WPI_NT_UNLOCK(sc);
1704}
1705
1706static void
1707wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1708{
1709	struct ieee80211com *ic = &sc->sc_ic;
1710
1711	/* Set group keys once. */
1712	WPI_NT_LOCK(sc);
1713	wvp->wv_gtk = 0;
1714	WPI_NT_UNLOCK(sc);
1715
1716	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1717	ieee80211_crypto_reload_keys(ic);
1718}
1719
1720/**
1721 * Called by net80211 when ever there is a change to 80211 state machine
1722 */
1723static int
1724wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1725{
1726	struct wpi_vap *wvp = WPI_VAP(vap);
1727	struct ieee80211com *ic = vap->iv_ic;
1728	struct wpi_softc *sc = ic->ic_softc;
1729	int error = 0;
1730
1731	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1732
1733	WPI_TXQ_LOCK(sc);
1734	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1735		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1736		WPI_TXQ_UNLOCK(sc);
1737
1738		return ENXIO;
1739	}
1740	WPI_TXQ_UNLOCK(sc);
1741
1742	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1743		ieee80211_state_name[vap->iv_state],
1744		ieee80211_state_name[nstate]);
1745
1746	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1747		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1748			device_printf(sc->sc_dev,
1749			    "%s: could not set power saving level\n",
1750			    __func__);
1751			return error;
1752		}
1753
1754		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1755	}
1756
1757	switch (nstate) {
1758	case IEEE80211_S_SCAN:
1759		WPI_RXON_LOCK(sc);
1760		if (wpi_check_bss_filter(sc) != 0) {
1761			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1762			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1763				device_printf(sc->sc_dev,
1764				    "%s: could not send RXON\n", __func__);
1765			}
1766		}
1767		WPI_RXON_UNLOCK(sc);
1768		break;
1769
1770	case IEEE80211_S_ASSOC:
1771		if (vap->iv_state != IEEE80211_S_RUN)
1772			break;
1773		/* FALLTHROUGH */
1774	case IEEE80211_S_AUTH:
1775		/*
1776		 * NB: do not optimize AUTH -> AUTH state transmission -
1777		 * this will break powersave with non-QoS AP!
1778		 */
1779
1780		/*
1781		 * The node must be registered in the firmware before auth.
1782		 * Also the associd must be cleared on RUN -> ASSOC
1783		 * transitions.
1784		 */
1785		if ((error = wpi_auth(sc, vap)) != 0) {
1786			device_printf(sc->sc_dev,
1787			    "%s: could not move to AUTH state, error %d\n",
1788			    __func__, error);
1789		}
1790		break;
1791
1792	case IEEE80211_S_RUN:
1793		/*
1794		 * RUN -> RUN transition:
1795		 * STA mode: Just restart the timers.
1796		 * IBSS mode: Process IBSS merge.
1797		 */
1798		if (vap->iv_state == IEEE80211_S_RUN) {
1799			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1800				WPI_RXON_LOCK(sc);
1801				wpi_calib_timeout(sc);
1802				WPI_RXON_UNLOCK(sc);
1803				break;
1804			} else {
1805				/*
1806				 * Drop the BSS_FILTER bit
1807				 * (there is no another way to change bssid).
1808				 */
1809				WPI_RXON_LOCK(sc);
1810				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1811				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1812					device_printf(sc->sc_dev,
1813					    "%s: could not send RXON\n",
1814					    __func__);
1815				}
1816				WPI_RXON_UNLOCK(sc);
1817
1818				/* Restore all what was lost. */
1819				wpi_restore_node_table(sc, wvp);
1820
1821				/* XXX set conditionally? */
1822				wpi_updateedca(ic);
1823			}
1824		}
1825
1826		/*
1827		 * !RUN -> RUN requires setting the association id
1828		 * which is done with a firmware cmd.  We also defer
1829		 * starting the timers until that work is done.
1830		 */
1831		if ((error = wpi_run(sc, vap)) != 0) {
1832			device_printf(sc->sc_dev,
1833			    "%s: could not move to RUN state\n", __func__);
1834		}
1835		break;
1836
1837	default:
1838		break;
1839	}
1840	if (error != 0) {
1841		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1842		return error;
1843	}
1844
1845	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1846
1847	return wvp->wv_newstate(vap, nstate, arg);
1848}
1849
1850static void
1851wpi_calib_timeout(void *arg)
1852{
1853	struct wpi_softc *sc = arg;
1854
1855	if (wpi_check_bss_filter(sc) == 0)
1856		return;
1857
1858	wpi_power_calibration(sc);
1859
1860	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1861}
1862
1863static __inline uint8_t
1864rate2plcp(const uint8_t rate)
1865{
1866	switch (rate) {
1867	case 12:	return 0xd;
1868	case 18:	return 0xf;
1869	case 24:	return 0x5;
1870	case 36:	return 0x7;
1871	case 48:	return 0x9;
1872	case 72:	return 0xb;
1873	case 96:	return 0x1;
1874	case 108:	return 0x3;
1875	case 2:		return 10;
1876	case 4:		return 20;
1877	case 11:	return 55;
1878	case 22:	return 110;
1879	default:	return 0;
1880	}
1881}
1882
1883static __inline uint8_t
1884plcp2rate(const uint8_t plcp)
1885{
1886	switch (plcp) {
1887	case 0xd:	return 12;
1888	case 0xf:	return 18;
1889	case 0x5:	return 24;
1890	case 0x7:	return 36;
1891	case 0x9:	return 48;
1892	case 0xb:	return 72;
1893	case 0x1:	return 96;
1894	case 0x3:	return 108;
1895	case 10:	return 2;
1896	case 20:	return 4;
1897	case 55:	return 11;
1898	case 110:	return 22;
1899	default:	return 0;
1900	}
1901}
1902
1903/* Quickly determine if a given rate is CCK or OFDM. */
1904#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1905
1906static void
1907wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1908    struct wpi_rx_data *data)
1909{
1910	struct ieee80211com *ic = &sc->sc_ic;
1911	struct wpi_rx_ring *ring = &sc->rxq;
1912	struct wpi_rx_stat *stat;
1913	struct wpi_rx_head *head;
1914	struct wpi_rx_tail *tail;
1915	struct ieee80211_frame *wh;
1916	struct ieee80211_node *ni;
1917	struct mbuf *m, *m1;
1918	bus_addr_t paddr;
1919	uint32_t flags;
1920	uint16_t len;
1921	int error;
1922
1923	stat = (struct wpi_rx_stat *)(desc + 1);
1924
1925	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1926		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1927		goto fail1;
1928	}
1929
1930	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1931	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1932	len = le16toh(head->len);
1933	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1934	flags = le32toh(tail->flags);
1935
1936	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1937	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1938	    le32toh(desc->len), len, (int8_t)stat->rssi,
1939	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1940
1941	/* Discard frames with a bad FCS early. */
1942	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1943		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1944		    __func__, flags);
1945		goto fail1;
1946	}
1947	/* Discard frames that are too short. */
1948	if (len < sizeof (struct ieee80211_frame_ack)) {
1949		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1950		    __func__, len);
1951		goto fail1;
1952	}
1953
1954	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1955	if (__predict_false(m1 == NULL)) {
1956		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1957		    __func__);
1958		goto fail1;
1959	}
1960	bus_dmamap_unload(ring->data_dmat, data->map);
1961
1962	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1963	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1964	if (__predict_false(error != 0 && error != EFBIG)) {
1965		device_printf(sc->sc_dev,
1966		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1967		m_freem(m1);
1968
1969		/* Try to reload the old mbuf. */
1970		error = bus_dmamap_load(ring->data_dmat, data->map,
1971		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1972		    &paddr, BUS_DMA_NOWAIT);
1973		if (error != 0 && error != EFBIG) {
1974			panic("%s: could not load old RX mbuf", __func__);
1975		}
1976		/* Physical address may have changed. */
1977		ring->desc[ring->cur] = htole32(paddr);
1978		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1979		    BUS_DMASYNC_PREWRITE);
1980		goto fail1;
1981	}
1982
1983	m = data->m;
1984	data->m = m1;
1985	/* Update RX descriptor. */
1986	ring->desc[ring->cur] = htole32(paddr);
1987	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1988	    BUS_DMASYNC_PREWRITE);
1989
1990	/* Finalize mbuf. */
1991	m->m_data = (caddr_t)(head + 1);
1992	m->m_pkthdr.len = m->m_len = len;
1993
1994	/* Grab a reference to the source node. */
1995	wh = mtod(m, struct ieee80211_frame *);
1996
1997	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1998	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1999		/* Check whether decryption was successful or not. */
2000		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2001			DPRINTF(sc, WPI_DEBUG_RECV,
2002			    "CCMP decryption failed 0x%x\n", flags);
2003			goto fail2;
2004		}
2005		m->m_flags |= M_WEP;
2006	}
2007
2008	if (len >= sizeof(struct ieee80211_frame_min))
2009		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2010	else
2011		ni = NULL;
2012
2013	sc->rx_tstamp = tail->tstamp;
2014
2015	if (ieee80211_radiotap_active(ic)) {
2016		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2017
2018		tap->wr_flags = 0;
2019		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2020			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2021		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2022		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2023		tap->wr_tsft = tail->tstamp;
2024		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2025		tap->wr_rate = plcp2rate(head->plcp);
2026	}
2027
2028	WPI_UNLOCK(sc);
2029
2030	/* Send the frame to the 802.11 layer. */
2031	if (ni != NULL) {
2032		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2033		/* Node is no longer needed. */
2034		ieee80211_free_node(ni);
2035	} else
2036		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2037
2038	WPI_LOCK(sc);
2039
2040	return;
2041
2042fail2:	m_freem(m);
2043
2044fail1:	counter_u64_add(ic->ic_ierrors, 1);
2045}
2046
2047static void
2048wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2049    struct wpi_rx_data *data)
2050{
2051	/* Ignore */
2052}
2053
2054static void
2055wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2056{
2057	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2058	struct wpi_tx_data *data = &ring->data[desc->idx];
2059	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2060	struct mbuf *m;
2061	struct ieee80211_node *ni;
2062	struct ieee80211vap *vap;
2063	struct ieee80211com *ic;
2064	uint32_t status = le32toh(stat->status);
2065	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2066
2067	KASSERT(data->ni != NULL, ("no node"));
2068	KASSERT(data->m != NULL, ("no mbuf"));
2069
2070	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2071
2072	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2073	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2074	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2075	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2076
2077	/* Unmap and free mbuf. */
2078	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2079	bus_dmamap_unload(ring->data_dmat, data->map);
2080	m = data->m, data->m = NULL;
2081	ni = data->ni, data->ni = NULL;
2082	vap = ni->ni_vap;
2083	ic = vap->iv_ic;
2084
2085	/*
2086	 * Update rate control statistics for the node.
2087	 */
2088	if (status & WPI_TX_STATUS_FAIL) {
2089		ieee80211_ratectl_tx_complete(vap, ni,
2090		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2091	} else
2092		ieee80211_ratectl_tx_complete(vap, ni,
2093		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2094
2095	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2096
2097	WPI_TXQ_STATE_LOCK(sc);
2098	if (--ring->queued > 0)
2099		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2100	else
2101		callout_stop(&sc->tx_timeout);
2102	WPI_TXQ_STATE_UNLOCK(sc);
2103
2104	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2105}
2106
2107/*
2108 * Process a "command done" firmware notification.  This is where we wakeup
2109 * processes waiting for a synchronous command completion.
2110 */
2111static void
2112wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2113{
2114	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2115	struct wpi_tx_data *data;
2116	struct wpi_tx_cmd *cmd;
2117
2118	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2119				   "type %s len %d\n", desc->qid, desc->idx,
2120				   desc->flags, wpi_cmd_str(desc->type),
2121				   le32toh(desc->len));
2122
2123	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2124		return;	/* Not a command ack. */
2125
2126	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2127
2128	data = &ring->data[desc->idx];
2129	cmd = &ring->cmd[desc->idx];
2130
2131	/* If the command was mapped in an mbuf, free it. */
2132	if (data->m != NULL) {
2133		bus_dmamap_sync(ring->data_dmat, data->map,
2134		    BUS_DMASYNC_POSTWRITE);
2135		bus_dmamap_unload(ring->data_dmat, data->map);
2136		m_freem(data->m);
2137		data->m = NULL;
2138	}
2139
2140	wakeup(cmd);
2141
2142	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2143		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2144
2145		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2146		    BUS_DMASYNC_POSTREAD);
2147
2148		WPI_TXQ_LOCK(sc);
2149		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2150			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2151			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2152		} else {
2153			sc->sc_update_rx_ring = wpi_update_rx_ring;
2154			sc->sc_update_tx_ring = wpi_update_tx_ring;
2155		}
2156		WPI_TXQ_UNLOCK(sc);
2157	}
2158}
2159
2160static void
2161wpi_notif_intr(struct wpi_softc *sc)
2162{
2163	struct ieee80211com *ic = &sc->sc_ic;
2164	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2165	uint32_t hw;
2166
2167	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2168	    BUS_DMASYNC_POSTREAD);
2169
2170	hw = le32toh(sc->shared->next) & 0xfff;
2171	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2172
2173	while (sc->rxq.cur != hw) {
2174		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2175
2176		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2177		struct wpi_rx_desc *desc;
2178
2179		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2180		    BUS_DMASYNC_POSTREAD);
2181		desc = mtod(data->m, struct wpi_rx_desc *);
2182
2183		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2184		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2185		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2186		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2187
2188		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2189			/* Reply to a command. */
2190			wpi_cmd_done(sc, desc);
2191		}
2192
2193		switch (desc->type) {
2194		case WPI_RX_DONE:
2195			/* An 802.11 frame has been received. */
2196			wpi_rx_done(sc, desc, data);
2197
2198			if (__predict_false(sc->sc_running == 0)) {
2199				/* wpi_stop() was called. */
2200				return;
2201			}
2202
2203			break;
2204
2205		case WPI_TX_DONE:
2206			/* An 802.11 frame has been transmitted. */
2207			wpi_tx_done(sc, desc);
2208			break;
2209
2210		case WPI_RX_STATISTICS:
2211		case WPI_BEACON_STATISTICS:
2212			wpi_rx_statistics(sc, desc, data);
2213			break;
2214
2215		case WPI_BEACON_MISSED:
2216		{
2217			struct wpi_beacon_missed *miss =
2218			    (struct wpi_beacon_missed *)(desc + 1);
2219			uint32_t expected, misses, received, threshold;
2220
2221			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2222			    BUS_DMASYNC_POSTREAD);
2223
2224			misses = le32toh(miss->consecutive);
2225			expected = le32toh(miss->expected);
2226			received = le32toh(miss->received);
2227			threshold = MAX(2, vap->iv_bmissthreshold);
2228
2229			DPRINTF(sc, WPI_DEBUG_BMISS,
2230			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2231			    __func__, misses, le32toh(miss->total), received,
2232			    expected);
2233
2234			if (misses >= threshold ||
2235			    (received == 0 && expected >= threshold)) {
2236				WPI_RXON_LOCK(sc);
2237				if (callout_pending(&sc->scan_timeout)) {
2238					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2239					    0, 1);
2240				}
2241				WPI_RXON_UNLOCK(sc);
2242				if (vap->iv_state == IEEE80211_S_RUN &&
2243				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2244					ieee80211_beacon_miss(ic);
2245			}
2246
2247			break;
2248		}
2249#ifdef WPI_DEBUG
2250		case WPI_BEACON_SENT:
2251		{
2252			struct wpi_tx_stat *stat =
2253			    (struct wpi_tx_stat *)(desc + 1);
2254			uint64_t *tsf = (uint64_t *)(stat + 1);
2255			uint32_t *mode = (uint32_t *)(tsf + 1);
2256
2257			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2258			    BUS_DMASYNC_POSTREAD);
2259
2260			DPRINTF(sc, WPI_DEBUG_BEACON,
2261			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2262			    "duration %u, status %x, tsf %ju, mode %x\n",
2263			    stat->rtsfailcnt, stat->ackfailcnt,
2264			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2265			    le32toh(stat->status), le64toh(*tsf),
2266			    le32toh(*mode));
2267
2268			break;
2269		}
2270#endif
2271		case WPI_UC_READY:
2272		{
2273			struct wpi_ucode_info *uc =
2274			    (struct wpi_ucode_info *)(desc + 1);
2275
2276			/* The microcontroller is ready. */
2277			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2278			    BUS_DMASYNC_POSTREAD);
2279			DPRINTF(sc, WPI_DEBUG_RESET,
2280			    "microcode alive notification version=%d.%d "
2281			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2282			    uc->subtype, le32toh(uc->valid));
2283
2284			if (le32toh(uc->valid) != 1) {
2285				device_printf(sc->sc_dev,
2286				    "microcontroller initialization failed\n");
2287				wpi_stop_locked(sc);
2288				return;
2289			}
2290			/* Save the address of the error log in SRAM. */
2291			sc->errptr = le32toh(uc->errptr);
2292			break;
2293		}
2294		case WPI_STATE_CHANGED:
2295		{
2296			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2297			    BUS_DMASYNC_POSTREAD);
2298
2299			uint32_t *status = (uint32_t *)(desc + 1);
2300
2301			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2302			    le32toh(*status));
2303
2304			if (le32toh(*status) & 1) {
2305				WPI_NT_LOCK(sc);
2306				wpi_clear_node_table(sc);
2307				WPI_NT_UNLOCK(sc);
2308				taskqueue_enqueue(sc->sc_tq,
2309				    &sc->sc_radiooff_task);
2310				return;
2311			}
2312			break;
2313		}
2314#ifdef WPI_DEBUG
2315		case WPI_START_SCAN:
2316		{
2317			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2318			    BUS_DMASYNC_POSTREAD);
2319
2320			struct wpi_start_scan *scan =
2321			    (struct wpi_start_scan *)(desc + 1);
2322			DPRINTF(sc, WPI_DEBUG_SCAN,
2323			    "%s: scanning channel %d status %x\n",
2324			    __func__, scan->chan, le32toh(scan->status));
2325
2326			break;
2327		}
2328#endif
2329		case WPI_STOP_SCAN:
2330		{
2331			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2332			    BUS_DMASYNC_POSTREAD);
2333
2334			struct wpi_stop_scan *scan =
2335			    (struct wpi_stop_scan *)(desc + 1);
2336
2337			DPRINTF(sc, WPI_DEBUG_SCAN,
2338			    "scan finished nchan=%d status=%d chan=%d\n",
2339			    scan->nchan, scan->status, scan->chan);
2340
2341			WPI_RXON_LOCK(sc);
2342			callout_stop(&sc->scan_timeout);
2343			WPI_RXON_UNLOCK(sc);
2344			if (scan->status == WPI_SCAN_ABORTED)
2345				ieee80211_cancel_scan(vap);
2346			else
2347				ieee80211_scan_next(vap);
2348			break;
2349		}
2350		}
2351
2352		if (sc->rxq.cur % 8 == 0) {
2353			/* Tell the firmware what we have processed. */
2354			sc->sc_update_rx_ring(sc);
2355		}
2356	}
2357}
2358
2359/*
2360 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2361 * from power-down sleep mode.
2362 */
2363static void
2364wpi_wakeup_intr(struct wpi_softc *sc)
2365{
2366	int qid;
2367
2368	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2369	    "%s: ucode wakeup from power-down sleep\n", __func__);
2370
2371	/* Wakeup RX and TX rings. */
2372	if (sc->rxq.update) {
2373		sc->rxq.update = 0;
2374		wpi_update_rx_ring(sc);
2375	}
2376	WPI_TXQ_LOCK(sc);
2377	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2378		struct wpi_tx_ring *ring = &sc->txq[qid];
2379
2380		if (ring->update) {
2381			ring->update = 0;
2382			wpi_update_tx_ring(sc, ring);
2383		}
2384	}
2385	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2386	WPI_TXQ_UNLOCK(sc);
2387}
2388
2389/*
2390 * This function prints firmware registers
2391 */
2392#ifdef WPI_DEBUG
2393static void
2394wpi_debug_registers(struct wpi_softc *sc)
2395{
2396	size_t i;
2397	static const uint32_t csr_tbl[] = {
2398		WPI_HW_IF_CONFIG,
2399		WPI_INT,
2400		WPI_INT_MASK,
2401		WPI_FH_INT,
2402		WPI_GPIO_IN,
2403		WPI_RESET,
2404		WPI_GP_CNTRL,
2405		WPI_EEPROM,
2406		WPI_EEPROM_GP,
2407		WPI_GIO,
2408		WPI_UCODE_GP1,
2409		WPI_UCODE_GP2,
2410		WPI_GIO_CHICKEN,
2411		WPI_ANA_PLL,
2412		WPI_DBG_HPET_MEM,
2413	};
2414	static const uint32_t prph_tbl[] = {
2415		WPI_APMG_CLK_CTRL,
2416		WPI_APMG_PS,
2417		WPI_APMG_PCI_STT,
2418		WPI_APMG_RFKILL,
2419	};
2420
2421	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2422
2423	for (i = 0; i < nitems(csr_tbl); i++) {
2424		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2425		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2426
2427		if ((i + 1) % 2 == 0)
2428			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2429	}
2430	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2431
2432	if (wpi_nic_lock(sc) == 0) {
2433		for (i = 0; i < nitems(prph_tbl); i++) {
2434			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2435			    wpi_get_prph_string(prph_tbl[i]),
2436			    wpi_prph_read(sc, prph_tbl[i]));
2437
2438			if ((i + 1) % 2 == 0)
2439				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2440		}
2441		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2442		wpi_nic_unlock(sc);
2443	} else {
2444		DPRINTF(sc, WPI_DEBUG_REGISTER,
2445		    "Cannot access internal registers.\n");
2446	}
2447}
2448#endif
2449
2450/*
2451 * Dump the error log of the firmware when a firmware panic occurs.  Although
2452 * we can't debug the firmware because it is neither open source nor free, it
2453 * can help us to identify certain classes of problems.
2454 */
2455static void
2456wpi_fatal_intr(struct wpi_softc *sc)
2457{
2458	struct wpi_fw_dump dump;
2459	uint32_t i, offset, count;
2460
2461	/* Check that the error log address is valid. */
2462	if (sc->errptr < WPI_FW_DATA_BASE ||
2463	    sc->errptr + sizeof (dump) >
2464	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2465		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2466		    sc->errptr);
2467		return;
2468	}
2469	if (wpi_nic_lock(sc) != 0) {
2470		printf("%s: could not read firmware error log\n", __func__);
2471		return;
2472	}
2473	/* Read number of entries in the log. */
2474	count = wpi_mem_read(sc, sc->errptr);
2475	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2476		printf("%s: invalid count field (count = %u)\n", __func__,
2477		    count);
2478		wpi_nic_unlock(sc);
2479		return;
2480	}
2481	/* Skip "count" field. */
2482	offset = sc->errptr + sizeof (uint32_t);
2483	printf("firmware error log (count = %u):\n", count);
2484	for (i = 0; i < count; i++) {
2485		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2486		    sizeof (dump) / sizeof (uint32_t));
2487
2488		printf("  error type = \"%s\" (0x%08X)\n",
2489		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2490		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2491		    dump.desc);
2492		printf("  error data      = 0x%08X\n",
2493		    dump.data);
2494		printf("  branch link     = 0x%08X%08X\n",
2495		    dump.blink[0], dump.blink[1]);
2496		printf("  interrupt link  = 0x%08X%08X\n",
2497		    dump.ilink[0], dump.ilink[1]);
2498		printf("  time            = %u\n", dump.time);
2499
2500		offset += sizeof (dump);
2501	}
2502	wpi_nic_unlock(sc);
2503	/* Dump driver status (TX and RX rings) while we're here. */
2504	printf("driver status:\n");
2505	WPI_TXQ_LOCK(sc);
2506	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2507		struct wpi_tx_ring *ring = &sc->txq[i];
2508		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2509		    i, ring->qid, ring->cur, ring->queued);
2510	}
2511	WPI_TXQ_UNLOCK(sc);
2512	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2513}
2514
2515static void
2516wpi_intr(void *arg)
2517{
2518	struct wpi_softc *sc = arg;
2519	uint32_t r1, r2;
2520
2521	WPI_LOCK(sc);
2522
2523	/* Disable interrupts. */
2524	WPI_WRITE(sc, WPI_INT_MASK, 0);
2525
2526	r1 = WPI_READ(sc, WPI_INT);
2527
2528	if (__predict_false(r1 == 0xffffffff ||
2529			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2530		goto end;	/* Hardware gone! */
2531
2532	r2 = WPI_READ(sc, WPI_FH_INT);
2533
2534	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2535	    r1, r2);
2536
2537	if (r1 == 0 && r2 == 0)
2538		goto done;	/* Interrupt not for us. */
2539
2540	/* Acknowledge interrupts. */
2541	WPI_WRITE(sc, WPI_INT, r1);
2542	WPI_WRITE(sc, WPI_FH_INT, r2);
2543
2544	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2545		device_printf(sc->sc_dev, "fatal firmware error\n");
2546#ifdef WPI_DEBUG
2547		wpi_debug_registers(sc);
2548#endif
2549		wpi_fatal_intr(sc);
2550		DPRINTF(sc, WPI_DEBUG_HW,
2551		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2552		    "(Hardware Error)");
2553		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2554		goto end;
2555	}
2556
2557	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2558	    (r2 & WPI_FH_INT_RX))
2559		wpi_notif_intr(sc);
2560
2561	if (r1 & WPI_INT_ALIVE)
2562		wakeup(sc);	/* Firmware is alive. */
2563
2564	if (r1 & WPI_INT_WAKEUP)
2565		wpi_wakeup_intr(sc);
2566
2567done:
2568	/* Re-enable interrupts. */
2569	if (__predict_true(sc->sc_running))
2570		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2571
2572end:	WPI_UNLOCK(sc);
2573}
2574
2575static int
2576wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2577{
2578	struct ieee80211_frame *wh;
2579	struct wpi_tx_cmd *cmd;
2580	struct wpi_tx_data *data;
2581	struct wpi_tx_desc *desc;
2582	struct wpi_tx_ring *ring;
2583	struct mbuf *m1;
2584	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2585	uint8_t pad;
2586	uint16_t hdrlen;
2587	int error, i, nsegs, totlen;
2588
2589	WPI_TXQ_LOCK(sc);
2590
2591	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2592
2593	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2594
2595	if (__predict_false(sc->sc_running == 0)) {
2596		/* wpi_stop() was called */
2597		error = ENETDOWN;
2598		goto end;
2599	}
2600
2601	wh = mtod(buf->m, struct ieee80211_frame *);
2602	hdrlen = ieee80211_anyhdrsize(wh);
2603	totlen = buf->m->m_pkthdr.len;
2604
2605	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2606		error = EINVAL;
2607		goto end;
2608	}
2609
2610	if (hdrlen & 3) {
2611		/* First segment length must be a multiple of 4. */
2612		pad = 4 - (hdrlen & 3);
2613	} else
2614		pad = 0;
2615
2616	ring = &sc->txq[buf->ac];
2617	desc = &ring->desc[ring->cur];
2618	data = &ring->data[ring->cur];
2619
2620	/* Prepare TX firmware command. */
2621	cmd = &ring->cmd[ring->cur];
2622	cmd->code = buf->code;
2623	cmd->flags = 0;
2624	cmd->qid = ring->qid;
2625	cmd->idx = ring->cur;
2626
2627	memcpy(cmd->data, buf->data, buf->size);
2628
2629	/* Save and trim IEEE802.11 header. */
2630	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2631	m_adj(buf->m, hdrlen);
2632
2633	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2634	    segs, &nsegs, BUS_DMA_NOWAIT);
2635	if (error != 0 && error != EFBIG) {
2636		device_printf(sc->sc_dev,
2637		    "%s: can't map mbuf (error %d)\n", __func__, error);
2638		goto end;
2639	}
2640	if (error != 0) {
2641		/* Too many DMA segments, linearize mbuf. */
2642		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2643		if (m1 == NULL) {
2644			device_printf(sc->sc_dev,
2645			    "%s: could not defrag mbuf\n", __func__);
2646			error = ENOBUFS;
2647			goto end;
2648		}
2649		buf->m = m1;
2650
2651		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2652		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2653		if (__predict_false(error != 0)) {
2654			/* XXX fix this (applicable to the iwn(4) too) */
2655			/*
2656			 * NB: Do not return error;
2657			 * original mbuf does not exist anymore.
2658			 */
2659			device_printf(sc->sc_dev,
2660			    "%s: can't map mbuf (error %d)\n", __func__,
2661			    error);
2662			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2663				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2664				    IFCOUNTER_OERRORS, 1);
2665				ieee80211_free_node(buf->ni);
2666			}
2667			m_freem(buf->m);
2668			error = 0;
2669			goto end;
2670		}
2671	}
2672
2673	KASSERT(nsegs < WPI_MAX_SCATTER,
2674	    ("too many DMA segments, nsegs (%d) should be less than %d",
2675	     nsegs, WPI_MAX_SCATTER));
2676
2677	data->m = buf->m;
2678	data->ni = buf->ni;
2679
2680	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2681	    __func__, ring->qid, ring->cur, totlen, nsegs);
2682
2683	/* Fill TX descriptor. */
2684	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2685	/* First DMA segment is used by the TX command. */
2686	desc->segs[0].addr = htole32(data->cmd_paddr);
2687	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2688	/* Other DMA segments are for data payload. */
2689	seg = &segs[0];
2690	for (i = 1; i <= nsegs; i++) {
2691		desc->segs[i].addr = htole32(seg->ds_addr);
2692		desc->segs[i].len  = htole32(seg->ds_len);
2693		seg++;
2694	}
2695
2696	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2697	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2698	    BUS_DMASYNC_PREWRITE);
2699	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2700	    BUS_DMASYNC_PREWRITE);
2701
2702	/* Kick TX ring. */
2703	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2704	sc->sc_update_tx_ring(sc, ring);
2705
2706	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2707		WPI_TXQ_STATE_LOCK(sc);
2708		ring->queued++;
2709		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2710		WPI_TXQ_STATE_UNLOCK(sc);
2711	}
2712
2713end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2714	    __func__);
2715
2716	WPI_TXQ_UNLOCK(sc);
2717
2718	return (error);
2719}
2720
2721/*
2722 * Construct the data packet for a transmit buffer.
2723 */
2724static int
2725wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2726{
2727	const struct ieee80211_txparam *tp;
2728	struct ieee80211vap *vap = ni->ni_vap;
2729	struct ieee80211com *ic = ni->ni_ic;
2730	struct wpi_node *wn = WPI_NODE(ni);
2731	struct ieee80211_channel *chan;
2732	struct ieee80211_frame *wh;
2733	struct ieee80211_key *k = NULL;
2734	struct wpi_buf tx_data;
2735	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2736	uint32_t flags;
2737	uint16_t ac, qos;
2738	uint8_t tid, type, rate;
2739	int swcrypt, ismcast, totlen;
2740
2741	wh = mtod(m, struct ieee80211_frame *);
2742	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2743	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2744	swcrypt = 1;
2745
2746	/* Select EDCA Access Category and TX ring for this frame. */
2747	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2748		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2749		tid = qos & IEEE80211_QOS_TID;
2750	} else {
2751		qos = 0;
2752		tid = 0;
2753	}
2754	ac = M_WME_GETAC(m);
2755
2756	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2757		ni->ni_chan : ic->ic_curchan;
2758	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2759
2760	/* Choose a TX rate index. */
2761	if (type == IEEE80211_FC0_TYPE_MGT)
2762		rate = tp->mgmtrate;
2763	else if (ismcast)
2764		rate = tp->mcastrate;
2765	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2766		rate = tp->ucastrate;
2767	else if (m->m_flags & M_EAPOL)
2768		rate = tp->mgmtrate;
2769	else {
2770		/* XXX pass pktlen */
2771		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2772		rate = ni->ni_txrate;
2773	}
2774
2775	/* Encrypt the frame if need be. */
2776	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2777		/* Retrieve key for TX. */
2778		k = ieee80211_crypto_encap(ni, m);
2779		if (k == NULL)
2780			return (ENOBUFS);
2781
2782		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2783
2784		/* 802.11 header may have moved. */
2785		wh = mtod(m, struct ieee80211_frame *);
2786	}
2787	totlen = m->m_pkthdr.len;
2788
2789	if (ieee80211_radiotap_active_vap(vap)) {
2790		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2791
2792		tap->wt_flags = 0;
2793		tap->wt_rate = rate;
2794		if (k != NULL)
2795			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2796
2797		ieee80211_radiotap_tx(vap, m);
2798	}
2799
2800	flags = 0;
2801	if (!ismcast) {
2802		/* Unicast frame, check if an ACK is expected. */
2803		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2804		    IEEE80211_QOS_ACKPOLICY_NOACK)
2805			flags |= WPI_TX_NEED_ACK;
2806	}
2807
2808	if (!IEEE80211_QOS_HAS_SEQ(wh))
2809		flags |= WPI_TX_AUTO_SEQ;
2810	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2811		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2812
2813	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2814	if (!ismcast) {
2815		/* NB: Group frames are sent using CCK in 802.11b/g. */
2816		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2817			flags |= WPI_TX_NEED_RTS;
2818		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2819		    WPI_RATE_IS_OFDM(rate)) {
2820			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2821				flags |= WPI_TX_NEED_CTS;
2822			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2823				flags |= WPI_TX_NEED_RTS;
2824		}
2825
2826		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2827			flags |= WPI_TX_FULL_TXOP;
2828	}
2829
2830	memset(tx, 0, sizeof (struct wpi_cmd_data));
2831	if (type == IEEE80211_FC0_TYPE_MGT) {
2832		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2833
2834		/* Tell HW to set timestamp in probe responses. */
2835		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2836			flags |= WPI_TX_INSERT_TSTAMP;
2837		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2838		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2839			tx->timeout = htole16(3);
2840		else
2841			tx->timeout = htole16(2);
2842	}
2843
2844	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2845		tx->id = WPI_ID_BROADCAST;
2846	else {
2847		if (wn->id == WPI_ID_UNDEFINED) {
2848			device_printf(sc->sc_dev,
2849			    "%s: undefined node id\n", __func__);
2850			return (EINVAL);
2851		}
2852
2853		tx->id = wn->id;
2854	}
2855
2856	if (!swcrypt) {
2857		switch (k->wk_cipher->ic_cipher) {
2858		case IEEE80211_CIPHER_AES_CCM:
2859			tx->security = WPI_CIPHER_CCMP;
2860			break;
2861
2862		default:
2863			break;
2864		}
2865
2866		memcpy(tx->key, k->wk_key, k->wk_keylen);
2867	}
2868
2869	tx->len = htole16(totlen);
2870	tx->flags = htole32(flags);
2871	tx->plcp = rate2plcp(rate);
2872	tx->tid = tid;
2873	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2874	tx->ofdm_mask = 0xff;
2875	tx->cck_mask = 0x0f;
2876	tx->rts_ntries = 7;
2877	tx->data_ntries = tp->maxretry;
2878
2879	tx_data.ni = ni;
2880	tx_data.m = m;
2881	tx_data.size = sizeof(struct wpi_cmd_data);
2882	tx_data.code = WPI_CMD_TX_DATA;
2883	tx_data.ac = ac;
2884
2885	return wpi_cmd2(sc, &tx_data);
2886}
2887
2888static int
2889wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2890    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2891{
2892	struct ieee80211vap *vap = ni->ni_vap;
2893	struct ieee80211_key *k = NULL;
2894	struct ieee80211_frame *wh;
2895	struct wpi_buf tx_data;
2896	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2897	uint32_t flags;
2898	uint8_t ac, type, rate;
2899	int swcrypt, totlen;
2900
2901	wh = mtod(m, struct ieee80211_frame *);
2902	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2903	swcrypt = 1;
2904
2905	ac = params->ibp_pri & 3;
2906
2907	/* Choose a TX rate index. */
2908	rate = params->ibp_rate0;
2909
2910	flags = 0;
2911	if (!IEEE80211_QOS_HAS_SEQ(wh))
2912		flags |= WPI_TX_AUTO_SEQ;
2913	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2914		flags |= WPI_TX_NEED_ACK;
2915	if (params->ibp_flags & IEEE80211_BPF_RTS)
2916		flags |= WPI_TX_NEED_RTS;
2917	if (params->ibp_flags & IEEE80211_BPF_CTS)
2918		flags |= WPI_TX_NEED_CTS;
2919	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2920		flags |= WPI_TX_FULL_TXOP;
2921
2922	/* Encrypt the frame if need be. */
2923	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2924		/* Retrieve key for TX. */
2925		k = ieee80211_crypto_encap(ni, m);
2926		if (k == NULL)
2927			return (ENOBUFS);
2928
2929		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2930
2931		/* 802.11 header may have moved. */
2932		wh = mtod(m, struct ieee80211_frame *);
2933	}
2934	totlen = m->m_pkthdr.len;
2935
2936	if (ieee80211_radiotap_active_vap(vap)) {
2937		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2938
2939		tap->wt_flags = 0;
2940		tap->wt_rate = rate;
2941		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2942			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2943
2944		ieee80211_radiotap_tx(vap, m);
2945	}
2946
2947	memset(tx, 0, sizeof (struct wpi_cmd_data));
2948	if (type == IEEE80211_FC0_TYPE_MGT) {
2949		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2950
2951		/* Tell HW to set timestamp in probe responses. */
2952		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2953			flags |= WPI_TX_INSERT_TSTAMP;
2954		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2955		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2956			tx->timeout = htole16(3);
2957		else
2958			tx->timeout = htole16(2);
2959	}
2960
2961	if (!swcrypt) {
2962		switch (k->wk_cipher->ic_cipher) {
2963		case IEEE80211_CIPHER_AES_CCM:
2964			tx->security = WPI_CIPHER_CCMP;
2965			break;
2966
2967		default:
2968			break;
2969		}
2970
2971		memcpy(tx->key, k->wk_key, k->wk_keylen);
2972	}
2973
2974	tx->len = htole16(totlen);
2975	tx->flags = htole32(flags);
2976	tx->plcp = rate2plcp(rate);
2977	tx->id = WPI_ID_BROADCAST;
2978	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2979	tx->rts_ntries = params->ibp_try1;
2980	tx->data_ntries = params->ibp_try0;
2981
2982	tx_data.ni = ni;
2983	tx_data.m = m;
2984	tx_data.size = sizeof(struct wpi_cmd_data);
2985	tx_data.code = WPI_CMD_TX_DATA;
2986	tx_data.ac = ac;
2987
2988	return wpi_cmd2(sc, &tx_data);
2989}
2990
2991static __inline int
2992wpi_tx_ring_is_full(struct wpi_softc *sc, uint16_t ac)
2993{
2994	struct wpi_tx_ring *ring = &sc->txq[ac];
2995	int retval;
2996
2997	WPI_TXQ_STATE_LOCK(sc);
2998	retval = (ring->queued > WPI_TX_RING_HIMARK);
2999	WPI_TXQ_STATE_UNLOCK(sc);
3000
3001	return retval;
3002}
3003
3004static __inline void
3005wpi_handle_tx_failure(struct ieee80211_node *ni)
3006{
3007	/* NB: m is reclaimed on tx failure */
3008	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3009	ieee80211_free_node(ni);
3010}
3011
3012static int
3013wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3014    const struct ieee80211_bpf_params *params)
3015{
3016	struct ieee80211com *ic = ni->ni_ic;
3017	struct wpi_softc *sc = ic->ic_softc;
3018	uint16_t ac;
3019	int error = 0;
3020
3021	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3022
3023	ac = M_WME_GETAC(m);
3024
3025	WPI_TX_LOCK(sc);
3026
3027	if (sc->sc_running == 0 || wpi_tx_ring_is_full(sc, ac)) {
3028		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3029		goto unlock;
3030	}
3031
3032	if (params == NULL) {
3033		/*
3034		 * Legacy path; interpret frame contents to decide
3035		 * precisely how to send the frame.
3036		 */
3037		error = wpi_tx_data(sc, m, ni);
3038	} else {
3039		/*
3040		 * Caller supplied explicit parameters to use in
3041		 * sending the frame.
3042		 */
3043		error = wpi_tx_data_raw(sc, m, ni, params);
3044	}
3045
3046unlock:	WPI_TX_UNLOCK(sc);
3047
3048	if (error != 0) {
3049		wpi_handle_tx_failure(ni);
3050		m_freem(m);
3051		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3052
3053		return error;
3054	}
3055
3056	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3057
3058	return 0;
3059}
3060
3061static int
3062wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3063{
3064	struct wpi_softc *sc = ic->ic_softc;
3065	struct ieee80211_node *ni;
3066	uint16_t ac;
3067	int error;
3068
3069	WPI_TX_LOCK(sc);
3070	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3071
3072	/* Check if interface is up & running. */
3073	if (__predict_false(sc->sc_running == 0)) {
3074		error = ENXIO;
3075		goto unlock;
3076	}
3077
3078	/* Check for available space. */
3079	ac = M_WME_GETAC(m);
3080	if (wpi_tx_ring_is_full(sc, ac)) {
3081		error = ENOBUFS;
3082		goto unlock;
3083	}
3084
3085	error = 0;
3086	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3087	if (wpi_tx_data(sc, m, ni) != 0) {
3088		wpi_handle_tx_failure(ni);
3089		m_freem(m);
3090	}
3091
3092	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3093
3094unlock:	WPI_TX_UNLOCK(sc);
3095
3096	return (error);
3097}
3098
3099static void
3100wpi_watchdog_rfkill(void *arg)
3101{
3102	struct wpi_softc *sc = arg;
3103	struct ieee80211com *ic = &sc->sc_ic;
3104
3105	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3106
3107	/* No need to lock firmware memory. */
3108	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3109		/* Radio kill switch is still off. */
3110		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3111		    sc);
3112	} else
3113		ieee80211_runtask(ic, &sc->sc_radioon_task);
3114}
3115
3116static void
3117wpi_scan_timeout(void *arg)
3118{
3119	struct wpi_softc *sc = arg;
3120	struct ieee80211com *ic = &sc->sc_ic;
3121
3122	ic_printf(ic, "scan timeout\n");
3123	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3124}
3125
3126static void
3127wpi_tx_timeout(void *arg)
3128{
3129	struct wpi_softc *sc = arg;
3130	struct ieee80211com *ic = &sc->sc_ic;
3131
3132	ic_printf(ic, "device timeout\n");
3133	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3134}
3135
3136static void
3137wpi_parent(struct ieee80211com *ic)
3138{
3139	struct wpi_softc *sc = ic->ic_softc;
3140	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3141
3142	if (ic->ic_nrunning > 0) {
3143		if (wpi_init(sc) == 0) {
3144			ieee80211_notify_radio(ic, 1);
3145			ieee80211_start_all(ic);
3146		} else {
3147			ieee80211_notify_radio(ic, 0);
3148			ieee80211_stop(vap);
3149		}
3150	} else
3151		wpi_stop(sc);
3152}
3153
3154/*
3155 * Send a command to the firmware.
3156 */
3157static int
3158wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3159    int async)
3160{
3161	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3162	struct wpi_tx_desc *desc;
3163	struct wpi_tx_data *data;
3164	struct wpi_tx_cmd *cmd;
3165	struct mbuf *m;
3166	bus_addr_t paddr;
3167	uint16_t totlen;
3168	int error;
3169
3170	WPI_TXQ_LOCK(sc);
3171
3172	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3173
3174	if (__predict_false(sc->sc_running == 0)) {
3175		/* wpi_stop() was called */
3176		if (code == WPI_CMD_SCAN)
3177			error = ENETDOWN;
3178		else
3179			error = 0;
3180
3181		goto fail;
3182	}
3183
3184	if (async == 0)
3185		WPI_LOCK_ASSERT(sc);
3186
3187	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3188	    __func__, wpi_cmd_str(code), size, async);
3189
3190	desc = &ring->desc[ring->cur];
3191	data = &ring->data[ring->cur];
3192	totlen = 4 + size;
3193
3194	if (size > sizeof cmd->data) {
3195		/* Command is too large to fit in a descriptor. */
3196		if (totlen > MCLBYTES) {
3197			error = EINVAL;
3198			goto fail;
3199		}
3200		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3201		if (m == NULL) {
3202			error = ENOMEM;
3203			goto fail;
3204		}
3205		cmd = mtod(m, struct wpi_tx_cmd *);
3206		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3207		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3208		if (error != 0) {
3209			m_freem(m);
3210			goto fail;
3211		}
3212		data->m = m;
3213	} else {
3214		cmd = &ring->cmd[ring->cur];
3215		paddr = data->cmd_paddr;
3216	}
3217
3218	cmd->code = code;
3219	cmd->flags = 0;
3220	cmd->qid = ring->qid;
3221	cmd->idx = ring->cur;
3222	memcpy(cmd->data, buf, size);
3223
3224	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3225	desc->segs[0].addr = htole32(paddr);
3226	desc->segs[0].len  = htole32(totlen);
3227
3228	if (size > sizeof cmd->data) {
3229		bus_dmamap_sync(ring->data_dmat, data->map,
3230		    BUS_DMASYNC_PREWRITE);
3231	} else {
3232		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3233		    BUS_DMASYNC_PREWRITE);
3234	}
3235	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3236	    BUS_DMASYNC_PREWRITE);
3237
3238	/* Kick command ring. */
3239	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3240	sc->sc_update_tx_ring(sc, ring);
3241
3242	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3243
3244	WPI_TXQ_UNLOCK(sc);
3245
3246	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3247
3248fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3249
3250	WPI_TXQ_UNLOCK(sc);
3251
3252	return error;
3253}
3254
3255/*
3256 * Configure HW multi-rate retries.
3257 */
3258static int
3259wpi_mrr_setup(struct wpi_softc *sc)
3260{
3261	struct ieee80211com *ic = &sc->sc_ic;
3262	struct wpi_mrr_setup mrr;
3263	uint8_t i;
3264	int error;
3265
3266	/* CCK rates (not used with 802.11a). */
3267	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3268		mrr.rates[i].flags = 0;
3269		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3270		/* Fallback to the immediate lower CCK rate (if any.) */
3271		mrr.rates[i].next =
3272		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3273		/* Try twice at this rate before falling back to "next". */
3274		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3275	}
3276	/* OFDM rates (not used with 802.11b). */
3277	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3278		mrr.rates[i].flags = 0;
3279		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3280		/* Fallback to the immediate lower rate (if any.) */
3281		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3282		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3283		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3284			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3285		    i - 1;
3286		/* Try twice at this rate before falling back to "next". */
3287		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3288	}
3289	/* Setup MRR for control frames. */
3290	mrr.which = htole32(WPI_MRR_CTL);
3291	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3292	if (error != 0) {
3293		device_printf(sc->sc_dev,
3294		    "could not setup MRR for control frames\n");
3295		return error;
3296	}
3297	/* Setup MRR for data frames. */
3298	mrr.which = htole32(WPI_MRR_DATA);
3299	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3300	if (error != 0) {
3301		device_printf(sc->sc_dev,
3302		    "could not setup MRR for data frames\n");
3303		return error;
3304	}
3305	return 0;
3306}
3307
3308static int
3309wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3310{
3311	struct ieee80211com *ic = ni->ni_ic;
3312	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3313	struct wpi_node *wn = WPI_NODE(ni);
3314	struct wpi_node_info node;
3315	int error;
3316
3317	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3318
3319	if (wn->id == WPI_ID_UNDEFINED)
3320		return EINVAL;
3321
3322	memset(&node, 0, sizeof node);
3323	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3324	node.id = wn->id;
3325	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3326	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3327	node.action = htole32(WPI_ACTION_SET_RATE);
3328	node.antenna = WPI_ANTENNA_BOTH;
3329
3330	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3331	    wn->id, ether_sprintf(ni->ni_macaddr));
3332
3333	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3334	if (error != 0) {
3335		device_printf(sc->sc_dev,
3336		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3337		    error);
3338		return error;
3339	}
3340
3341	if (wvp->wv_gtk != 0) {
3342		error = wpi_set_global_keys(ni);
3343		if (error != 0) {
3344			device_printf(sc->sc_dev,
3345			    "%s: error while setting global keys\n", __func__);
3346			return ENXIO;
3347		}
3348	}
3349
3350	return 0;
3351}
3352
3353/*
3354 * Broadcast node is used to send group-addressed and management frames.
3355 */
3356static int
3357wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3358{
3359	struct ieee80211com *ic = &sc->sc_ic;
3360	struct wpi_node_info node;
3361
3362	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3363
3364	memset(&node, 0, sizeof node);
3365	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3366	node.id = WPI_ID_BROADCAST;
3367	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3368	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3369	node.action = htole32(WPI_ACTION_SET_RATE);
3370	node.antenna = WPI_ANTENNA_BOTH;
3371
3372	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3373
3374	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3375}
3376
3377static int
3378wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3379{
3380	struct wpi_node *wn = WPI_NODE(ni);
3381	int error;
3382
3383	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3384
3385	wn->id = wpi_add_node_entry_sta(sc);
3386
3387	if ((error = wpi_add_node(sc, ni)) != 0) {
3388		wpi_del_node_entry(sc, wn->id);
3389		wn->id = WPI_ID_UNDEFINED;
3390		return error;
3391	}
3392
3393	return 0;
3394}
3395
3396static int
3397wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3398{
3399	struct wpi_node *wn = WPI_NODE(ni);
3400	int error;
3401
3402	KASSERT(wn->id == WPI_ID_UNDEFINED,
3403	    ("the node %d was added before", wn->id));
3404
3405	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3406
3407	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3408		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3409		return ENOMEM;
3410	}
3411
3412	if ((error = wpi_add_node(sc, ni)) != 0) {
3413		wpi_del_node_entry(sc, wn->id);
3414		wn->id = WPI_ID_UNDEFINED;
3415		return error;
3416	}
3417
3418	return 0;
3419}
3420
3421static void
3422wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3423{
3424	struct wpi_node *wn = WPI_NODE(ni);
3425	struct wpi_cmd_del_node node;
3426	int error;
3427
3428	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3429
3430	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3431
3432	memset(&node, 0, sizeof node);
3433	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3434	node.count = 1;
3435
3436	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3437	    wn->id, ether_sprintf(ni->ni_macaddr));
3438
3439	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3440	if (error != 0) {
3441		device_printf(sc->sc_dev,
3442		    "%s: could not delete node %u, error %d\n", __func__,
3443		    wn->id, error);
3444	}
3445}
3446
3447static int
3448wpi_updateedca(struct ieee80211com *ic)
3449{
3450#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3451	struct wpi_softc *sc = ic->ic_softc;
3452	struct wpi_edca_params cmd;
3453	int aci, error;
3454
3455	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3456
3457	memset(&cmd, 0, sizeof cmd);
3458	cmd.flags = htole32(WPI_EDCA_UPDATE);
3459	for (aci = 0; aci < WME_NUM_AC; aci++) {
3460		const struct wmeParams *ac =
3461		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3462		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3463		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3464		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3465		cmd.ac[aci].txoplimit =
3466		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3467
3468		DPRINTF(sc, WPI_DEBUG_EDCA,
3469		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3470		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3471		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3472		    cmd.ac[aci].txoplimit);
3473	}
3474	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3475
3476	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3477
3478	return error;
3479#undef WPI_EXP2
3480}
3481
3482static void
3483wpi_set_promisc(struct wpi_softc *sc)
3484{
3485	struct ieee80211com *ic = &sc->sc_ic;
3486	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3487	uint32_t promisc_filter;
3488
3489	promisc_filter = WPI_FILTER_CTL;
3490	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3491		promisc_filter |= WPI_FILTER_PROMISC;
3492
3493	if (ic->ic_promisc > 0)
3494		sc->rxon.filter |= htole32(promisc_filter);
3495	else
3496		sc->rxon.filter &= ~htole32(promisc_filter);
3497}
3498
3499static void
3500wpi_update_promisc(struct ieee80211com *ic)
3501{
3502	struct wpi_softc *sc = ic->ic_softc;
3503
3504	WPI_RXON_LOCK(sc);
3505	wpi_set_promisc(sc);
3506
3507	if (wpi_send_rxon(sc, 1, 1) != 0) {
3508		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3509		    __func__);
3510	}
3511	WPI_RXON_UNLOCK(sc);
3512}
3513
3514static void
3515wpi_update_mcast(struct ieee80211com *ic)
3516{
3517	/* Ignore */
3518}
3519
3520static void
3521wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3522{
3523	struct wpi_cmd_led led;
3524
3525	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3526
3527	led.which = which;
3528	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3529	led.off = off;
3530	led.on = on;
3531	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3532}
3533
3534static int
3535wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3536{
3537	struct wpi_cmd_timing cmd;
3538	uint64_t val, mod;
3539
3540	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3541
3542	memset(&cmd, 0, sizeof cmd);
3543	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3544	cmd.bintval = htole16(ni->ni_intval);
3545	cmd.lintval = htole16(10);
3546
3547	/* Compute remaining time until next beacon. */
3548	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3549	mod = le64toh(cmd.tstamp) % val;
3550	cmd.binitval = htole32((uint32_t)(val - mod));
3551
3552	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3553	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3554
3555	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3556}
3557
3558/*
3559 * This function is called periodically (every 60 seconds) to adjust output
3560 * power to temperature changes.
3561 */
3562static void
3563wpi_power_calibration(struct wpi_softc *sc)
3564{
3565	int temp;
3566
3567	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3568
3569	/* Update sensor data. */
3570	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3571	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3572
3573	/* Sanity-check read value. */
3574	if (temp < -260 || temp > 25) {
3575		/* This can't be correct, ignore. */
3576		DPRINTF(sc, WPI_DEBUG_TEMP,
3577		    "out-of-range temperature reported: %d\n", temp);
3578		return;
3579	}
3580
3581	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3582
3583	/* Adjust Tx power if need be. */
3584	if (abs(temp - sc->temp) <= 6)
3585		return;
3586
3587	sc->temp = temp;
3588
3589	if (wpi_set_txpower(sc, 1) != 0) {
3590		/* just warn, too bad for the automatic calibration... */
3591		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3592	}
3593}
3594
3595/*
3596 * Set TX power for current channel.
3597 */
3598static int
3599wpi_set_txpower(struct wpi_softc *sc, int async)
3600{
3601	struct wpi_power_group *group;
3602	struct wpi_cmd_txpower cmd;
3603	uint8_t chan;
3604	int idx, is_chan_5ghz, i;
3605
3606	/* Retrieve current channel from last RXON. */
3607	chan = sc->rxon.chan;
3608	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3609
3610	/* Find the TX power group to which this channel belongs. */
3611	if (is_chan_5ghz) {
3612		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3613			if (chan <= group->chan)
3614				break;
3615	} else
3616		group = &sc->groups[0];
3617
3618	memset(&cmd, 0, sizeof cmd);
3619	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3620	cmd.chan = htole16(chan);
3621
3622	/* Set TX power for all OFDM and CCK rates. */
3623	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3624		/* Retrieve TX power for this channel/rate. */
3625		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3626
3627		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3628
3629		if (is_chan_5ghz) {
3630			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3631			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3632		} else {
3633			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3634			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3635		}
3636		DPRINTF(sc, WPI_DEBUG_TEMP,
3637		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3638	}
3639
3640	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3641}
3642
3643/*
3644 * Determine Tx power index for a given channel/rate combination.
3645 * This takes into account the regulatory information from EEPROM and the
3646 * current temperature.
3647 */
3648static int
3649wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3650    uint8_t chan, int is_chan_5ghz, int ridx)
3651{
3652/* Fixed-point arithmetic division using a n-bit fractional part. */
3653#define fdivround(a, b, n)	\
3654	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3655
3656/* Linear interpolation. */
3657#define interpolate(x, x1, y1, x2, y2, n)	\
3658	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3659
3660	struct wpi_power_sample *sample;
3661	int pwr, idx;
3662
3663	/* Default TX power is group maximum TX power minus 3dB. */
3664	pwr = group->maxpwr / 2;
3665
3666	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3667	switch (ridx) {
3668	case WPI_RIDX_OFDM36:
3669		pwr -= is_chan_5ghz ?  5 : 0;
3670		break;
3671	case WPI_RIDX_OFDM48:
3672		pwr -= is_chan_5ghz ? 10 : 7;
3673		break;
3674	case WPI_RIDX_OFDM54:
3675		pwr -= is_chan_5ghz ? 12 : 9;
3676		break;
3677	}
3678
3679	/* Never exceed the channel maximum allowed TX power. */
3680	pwr = min(pwr, sc->maxpwr[chan]);
3681
3682	/* Retrieve TX power index into gain tables from samples. */
3683	for (sample = group->samples; sample < &group->samples[3]; sample++)
3684		if (pwr > sample[1].power)
3685			break;
3686	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3687	idx = interpolate(pwr, sample[0].power, sample[0].index,
3688	    sample[1].power, sample[1].index, 19);
3689
3690	/*-
3691	 * Adjust power index based on current temperature:
3692	 * - if cooler than factory-calibrated: decrease output power
3693	 * - if warmer than factory-calibrated: increase output power
3694	 */
3695	idx -= (sc->temp - group->temp) * 11 / 100;
3696
3697	/* Decrease TX power for CCK rates (-5dB). */
3698	if (ridx >= WPI_RIDX_CCK1)
3699		idx += 10;
3700
3701	/* Make sure idx stays in a valid range. */
3702	if (idx < 0)
3703		return 0;
3704	if (idx > WPI_MAX_PWR_INDEX)
3705		return WPI_MAX_PWR_INDEX;
3706	return idx;
3707
3708#undef interpolate
3709#undef fdivround
3710}
3711
3712/*
3713 * Set STA mode power saving level (between 0 and 5).
3714 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3715 */
3716static int
3717wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3718{
3719	struct wpi_pmgt_cmd cmd;
3720	const struct wpi_pmgt *pmgt;
3721	uint32_t max, reg;
3722	uint8_t skip_dtim;
3723	int i;
3724
3725	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3726	    "%s: dtim=%d, level=%d, async=%d\n",
3727	    __func__, dtim, level, async);
3728
3729	/* Select which PS parameters to use. */
3730	if (dtim <= 10)
3731		pmgt = &wpi_pmgt[0][level];
3732	else
3733		pmgt = &wpi_pmgt[1][level];
3734
3735	memset(&cmd, 0, sizeof cmd);
3736	if (level != 0)	/* not CAM */
3737		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3738	/* Retrieve PCIe Active State Power Management (ASPM). */
3739	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3740	if (!(reg & 0x1))	/* L0s Entry disabled. */
3741		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3742
3743	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3744	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3745
3746	if (dtim == 0) {
3747		dtim = 1;
3748		skip_dtim = 0;
3749	} else
3750		skip_dtim = pmgt->skip_dtim;
3751
3752	if (skip_dtim != 0) {
3753		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3754		max = pmgt->intval[4];
3755		if (max == (uint32_t)-1)
3756			max = dtim * (skip_dtim + 1);
3757		else if (max > dtim)
3758			max = (max / dtim) * dtim;
3759	} else
3760		max = dtim;
3761
3762	for (i = 0; i < 5; i++)
3763		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3764
3765	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3766}
3767
3768static int
3769wpi_send_btcoex(struct wpi_softc *sc)
3770{
3771	struct wpi_bluetooth cmd;
3772
3773	memset(&cmd, 0, sizeof cmd);
3774	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3775	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3776	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3777	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3778	    __func__);
3779	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3780}
3781
3782static int
3783wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3784{
3785	int error;
3786
3787	if (async)
3788		WPI_RXON_LOCK_ASSERT(sc);
3789
3790	if (assoc && wpi_check_bss_filter(sc) != 0) {
3791		struct wpi_assoc rxon_assoc;
3792
3793		rxon_assoc.flags = sc->rxon.flags;
3794		rxon_assoc.filter = sc->rxon.filter;
3795		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3796		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3797		rxon_assoc.reserved = 0;
3798
3799		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3800		    sizeof (struct wpi_assoc), async);
3801		if (error != 0) {
3802			device_printf(sc->sc_dev,
3803			    "RXON_ASSOC command failed, error %d\n", error);
3804			return error;
3805		}
3806	} else {
3807		if (async) {
3808			WPI_NT_LOCK(sc);
3809			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3810			    sizeof (struct wpi_rxon), async);
3811			if (error == 0)
3812				wpi_clear_node_table(sc);
3813			WPI_NT_UNLOCK(sc);
3814		} else {
3815			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3816			    sizeof (struct wpi_rxon), async);
3817			if (error == 0)
3818				wpi_clear_node_table(sc);
3819		}
3820
3821		if (error != 0) {
3822			device_printf(sc->sc_dev,
3823			    "RXON command failed, error %d\n", error);
3824			return error;
3825		}
3826
3827		/* Add broadcast node. */
3828		error = wpi_add_broadcast_node(sc, async);
3829		if (error != 0) {
3830			device_printf(sc->sc_dev,
3831			    "could not add broadcast node, error %d\n", error);
3832			return error;
3833		}
3834	}
3835
3836	/* Configuration has changed, set Tx power accordingly. */
3837	if ((error = wpi_set_txpower(sc, async)) != 0) {
3838		device_printf(sc->sc_dev,
3839		    "%s: could not set TX power, error %d\n", __func__, error);
3840		return error;
3841	}
3842
3843	return 0;
3844}
3845
3846/**
3847 * Configure the card to listen to a particular channel, this transisions the
3848 * card in to being able to receive frames from remote devices.
3849 */
3850static int
3851wpi_config(struct wpi_softc *sc)
3852{
3853	struct ieee80211com *ic = &sc->sc_ic;
3854	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3855	struct ieee80211_channel *c = ic->ic_curchan;
3856	int error;
3857
3858	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3859
3860	/* Set power saving level to CAM during initialization. */
3861	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3862		device_printf(sc->sc_dev,
3863		    "%s: could not set power saving level\n", __func__);
3864		return error;
3865	}
3866
3867	/* Configure bluetooth coexistence. */
3868	if ((error = wpi_send_btcoex(sc)) != 0) {
3869		device_printf(sc->sc_dev,
3870		    "could not configure bluetooth coexistence\n");
3871		return error;
3872	}
3873
3874	/* Configure adapter. */
3875	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3876	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3877
3878	/* Set default channel. */
3879	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3880	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3881	if (IEEE80211_IS_CHAN_2GHZ(c))
3882		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3883
3884	sc->rxon.filter = WPI_FILTER_MULTICAST;
3885	switch (ic->ic_opmode) {
3886	case IEEE80211_M_STA:
3887		sc->rxon.mode = WPI_MODE_STA;
3888		break;
3889	case IEEE80211_M_IBSS:
3890		sc->rxon.mode = WPI_MODE_IBSS;
3891		sc->rxon.filter |= WPI_FILTER_BEACON;
3892		break;
3893	case IEEE80211_M_HOSTAP:
3894		/* XXX workaround for beaconing */
3895		sc->rxon.mode = WPI_MODE_IBSS;
3896		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3897		break;
3898	case IEEE80211_M_AHDEMO:
3899		sc->rxon.mode = WPI_MODE_HOSTAP;
3900		break;
3901	case IEEE80211_M_MONITOR:
3902		sc->rxon.mode = WPI_MODE_MONITOR;
3903		break;
3904	default:
3905		device_printf(sc->sc_dev, "unknown opmode %d\n",
3906		    ic->ic_opmode);
3907		return EINVAL;
3908	}
3909	sc->rxon.filter = htole32(sc->rxon.filter);
3910	wpi_set_promisc(sc);
3911	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3912	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3913
3914	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3915		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3916		    __func__);
3917		return error;
3918	}
3919
3920	/* Setup rate scalling. */
3921	if ((error = wpi_mrr_setup(sc)) != 0) {
3922		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3923		    error);
3924		return error;
3925	}
3926
3927	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3928
3929	return 0;
3930}
3931
3932static uint16_t
3933wpi_get_active_dwell_time(struct wpi_softc *sc,
3934    struct ieee80211_channel *c, uint8_t n_probes)
3935{
3936	/* No channel? Default to 2GHz settings. */
3937	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3938		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3939		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3940	}
3941
3942	/* 5GHz dwell time. */
3943	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3944	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3945}
3946
3947/*
3948 * Limit the total dwell time.
3949 *
3950 * Returns the dwell time in milliseconds.
3951 */
3952static uint16_t
3953wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3954{
3955	struct ieee80211com *ic = &sc->sc_ic;
3956	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3957	uint16_t bintval = 0;
3958
3959	/* bintval is in TU (1.024mS) */
3960	if (vap != NULL)
3961		bintval = vap->iv_bss->ni_intval;
3962
3963	/*
3964	 * If it's non-zero, we should calculate the minimum of
3965	 * it and the DWELL_BASE.
3966	 *
3967	 * XXX Yes, the math should take into account that bintval
3968	 * is 1.024mS, not 1mS..
3969	 */
3970	if (bintval > 0) {
3971		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3972		    bintval);
3973		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
3974	}
3975
3976	/* No association context? Default. */
3977	return dwell_time;
3978}
3979
3980static uint16_t
3981wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3982{
3983	uint16_t passive;
3984
3985	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3986		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3987	else
3988		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3989
3990	/* Clamp to the beacon interval if we're associated. */
3991	return (wpi_limit_dwell(sc, passive));
3992}
3993
3994static uint32_t
3995wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
3996{
3997	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
3998	uint32_t nbeacons = time / bintval;
3999
4000	if (mod > WPI_PAUSE_MAX_TIME)
4001		mod = WPI_PAUSE_MAX_TIME;
4002
4003	return WPI_PAUSE_SCAN(nbeacons, mod);
4004}
4005
4006/*
4007 * Send a scan request to the firmware.
4008 */
4009static int
4010wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4011{
4012	struct ieee80211com *ic = &sc->sc_ic;
4013	struct ieee80211_scan_state *ss = ic->ic_scan;
4014	struct ieee80211vap *vap = ss->ss_vap;
4015	struct wpi_scan_hdr *hdr;
4016	struct wpi_cmd_data *tx;
4017	struct wpi_scan_essid *essids;
4018	struct wpi_scan_chan *chan;
4019	struct ieee80211_frame *wh;
4020	struct ieee80211_rateset *rs;
4021	uint16_t bintval, buflen, dwell_active, dwell_passive;
4022	uint8_t *buf, *frm, i, nssid;
4023	int bgscan, error;
4024
4025	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4026
4027	/*
4028	 * We are absolutely not allowed to send a scan command when another
4029	 * scan command is pending.
4030	 */
4031	if (callout_pending(&sc->scan_timeout)) {
4032		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4033		    __func__);
4034		error = EAGAIN;
4035		goto fail;
4036	}
4037
4038	bgscan = wpi_check_bss_filter(sc);
4039	bintval = vap->iv_bss->ni_intval;
4040	if (bgscan != 0 &&
4041	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4042		error = EOPNOTSUPP;
4043		goto fail;
4044	}
4045
4046	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4047	if (buf == NULL) {
4048		device_printf(sc->sc_dev,
4049		    "%s: could not allocate buffer for scan command\n",
4050		    __func__);
4051		error = ENOMEM;
4052		goto fail;
4053	}
4054	hdr = (struct wpi_scan_hdr *)buf;
4055
4056	/*
4057	 * Move to the next channel if no packets are received within 10 msecs
4058	 * after sending the probe request.
4059	 */
4060	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4061	hdr->quiet_threshold = htole16(1);
4062
4063	if (bgscan != 0) {
4064		/*
4065		 * Max needs to be greater than active and passive and quiet!
4066		 * It's also in microseconds!
4067		 */
4068		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4069		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4070		    bintval));
4071	}
4072
4073	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4074
4075	tx = (struct wpi_cmd_data *)(hdr + 1);
4076	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4077	tx->id = WPI_ID_BROADCAST;
4078	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4079
4080	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4081		/* Send probe requests at 6Mbps. */
4082		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4083		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4084	} else {
4085		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4086		/* Send probe requests at 1Mbps. */
4087		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4088		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4089	}
4090
4091	essids = (struct wpi_scan_essid *)(tx + 1);
4092	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4093	for (i = 0; i < nssid; i++) {
4094		essids[i].id = IEEE80211_ELEMID_SSID;
4095		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4096		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4097#ifdef WPI_DEBUG
4098		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4099			printf("Scanning Essid: ");
4100			ieee80211_print_essid(essids[i].data, essids[i].len);
4101			printf("\n");
4102		}
4103#endif
4104	}
4105
4106	/*
4107	 * Build a probe request frame.  Most of the following code is a
4108	 * copy & paste of what is done in net80211.
4109	 */
4110	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4111	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4112		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4113	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4114	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4115	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4116	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4117
4118	frm = (uint8_t *)(wh + 1);
4119	frm = ieee80211_add_ssid(frm, NULL, 0);
4120	frm = ieee80211_add_rates(frm, rs);
4121	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4122		frm = ieee80211_add_xrates(frm, rs);
4123
4124	/* Set length of probe request. */
4125	tx->len = htole16(frm - (uint8_t *)wh);
4126
4127	/*
4128	 * Construct information about the channel that we
4129	 * want to scan. The firmware expects this to be directly
4130	 * after the scan probe request
4131	 */
4132	chan = (struct wpi_scan_chan *)frm;
4133	chan->chan = ieee80211_chan2ieee(ic, c);
4134	chan->flags = 0;
4135	if (nssid) {
4136		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4137		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4138	} else
4139		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4140
4141	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4142		chan->flags |= WPI_CHAN_ACTIVE;
4143
4144	/*
4145	 * Calculate the active/passive dwell times.
4146	 */
4147	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4148	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4149
4150	/* Make sure they're valid. */
4151	if (dwell_active > dwell_passive)
4152		dwell_active = dwell_passive;
4153
4154	chan->active = htole16(dwell_active);
4155	chan->passive = htole16(dwell_passive);
4156
4157	chan->dsp_gain = 0x6e;  /* Default level */
4158
4159	if (IEEE80211_IS_CHAN_5GHZ(c))
4160		chan->rf_gain = 0x3b;
4161	else
4162		chan->rf_gain = 0x28;
4163
4164	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4165	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4166
4167	hdr->nchan++;
4168
4169	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4170		/* XXX Force probe request transmission. */
4171		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4172
4173		chan++;
4174
4175		/* Reduce unnecessary delay. */
4176		chan->flags = 0;
4177		chan->passive = chan->active = hdr->quiet_time;
4178
4179		hdr->nchan++;
4180	}
4181
4182	chan++;
4183
4184	buflen = (uint8_t *)chan - buf;
4185	hdr->len = htole16(buflen);
4186
4187	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4188	    hdr->nchan);
4189	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4190	free(buf, M_DEVBUF);
4191
4192	if (error != 0)
4193		goto fail;
4194
4195	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4196
4197	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4198
4199	return 0;
4200
4201fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4202
4203	return error;
4204}
4205
4206static int
4207wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4208{
4209	struct ieee80211com *ic = vap->iv_ic;
4210	struct ieee80211_node *ni = vap->iv_bss;
4211	struct ieee80211_channel *c = ni->ni_chan;
4212	int error;
4213
4214	WPI_RXON_LOCK(sc);
4215
4216	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4217
4218	/* Update adapter configuration. */
4219	sc->rxon.associd = 0;
4220	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4221	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4222	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4223	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4224	if (IEEE80211_IS_CHAN_2GHZ(c))
4225		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4226	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4227		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4228	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4229		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4230	if (IEEE80211_IS_CHAN_A(c)) {
4231		sc->rxon.cck_mask  = 0;
4232		sc->rxon.ofdm_mask = 0x15;
4233	} else if (IEEE80211_IS_CHAN_B(c)) {
4234		sc->rxon.cck_mask  = 0x03;
4235		sc->rxon.ofdm_mask = 0;
4236	} else {
4237		/* Assume 802.11b/g. */
4238		sc->rxon.cck_mask  = 0x0f;
4239		sc->rxon.ofdm_mask = 0x15;
4240	}
4241
4242	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4243	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4244	    sc->rxon.ofdm_mask);
4245
4246	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4247		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4248		    __func__);
4249	}
4250
4251	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4252
4253	WPI_RXON_UNLOCK(sc);
4254
4255	return error;
4256}
4257
4258static int
4259wpi_config_beacon(struct wpi_vap *wvp)
4260{
4261	struct ieee80211vap *vap = &wvp->wv_vap;
4262	struct ieee80211com *ic = vap->iv_ic;
4263	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4264	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4265	struct wpi_softc *sc = ic->ic_softc;
4266	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4267	struct ieee80211_tim_ie *tie;
4268	struct mbuf *m;
4269	uint8_t *ptr;
4270	int error;
4271
4272	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4273
4274	WPI_VAP_LOCK_ASSERT(wvp);
4275
4276	cmd->len = htole16(bcn->m->m_pkthdr.len);
4277	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4278	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4279
4280	/* XXX seems to be unused */
4281	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4282		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4283		ptr = mtod(bcn->m, uint8_t *);
4284
4285		cmd->tim = htole16(bo->bo_tim - ptr);
4286		cmd->timsz = tie->tim_len;
4287	}
4288
4289	/* Necessary for recursion in ieee80211_beacon_update(). */
4290	m = bcn->m;
4291	bcn->m = m_dup(m, M_NOWAIT);
4292	if (bcn->m == NULL) {
4293		device_printf(sc->sc_dev,
4294		    "%s: could not copy beacon frame\n", __func__);
4295		error = ENOMEM;
4296		goto end;
4297	}
4298
4299	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4300		device_printf(sc->sc_dev,
4301		    "%s: could not update beacon frame, error %d", __func__,
4302		    error);
4303		m_freem(bcn->m);
4304	}
4305
4306	/* Restore mbuf. */
4307end:	bcn->m = m;
4308
4309	return error;
4310}
4311
4312static int
4313wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4314{
4315	struct ieee80211vap *vap = ni->ni_vap;
4316	struct wpi_vap *wvp = WPI_VAP(vap);
4317	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4318	struct mbuf *m;
4319	int error;
4320
4321	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4322
4323	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4324		return EINVAL;
4325
4326	m = ieee80211_beacon_alloc(ni);
4327	if (m == NULL) {
4328		device_printf(sc->sc_dev,
4329		    "%s: could not allocate beacon frame\n", __func__);
4330		return ENOMEM;
4331	}
4332
4333	WPI_VAP_LOCK(wvp);
4334	if (bcn->m != NULL)
4335		m_freem(bcn->m);
4336
4337	bcn->m = m;
4338
4339	error = wpi_config_beacon(wvp);
4340	WPI_VAP_UNLOCK(wvp);
4341
4342	return error;
4343}
4344
4345static void
4346wpi_update_beacon(struct ieee80211vap *vap, int item)
4347{
4348	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4349	struct wpi_vap *wvp = WPI_VAP(vap);
4350	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4351	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4352	struct ieee80211_node *ni = vap->iv_bss;
4353	int mcast = 0;
4354
4355	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4356
4357	WPI_VAP_LOCK(wvp);
4358	if (bcn->m == NULL) {
4359		bcn->m = ieee80211_beacon_alloc(ni);
4360		if (bcn->m == NULL) {
4361			device_printf(sc->sc_dev,
4362			    "%s: could not allocate beacon frame\n", __func__);
4363
4364			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4365			    __func__);
4366
4367			WPI_VAP_UNLOCK(wvp);
4368			return;
4369		}
4370	}
4371	WPI_VAP_UNLOCK(wvp);
4372
4373	if (item == IEEE80211_BEACON_TIM)
4374		mcast = 1;	/* TODO */
4375
4376	setbit(bo->bo_flags, item);
4377	ieee80211_beacon_update(ni, bcn->m, mcast);
4378
4379	WPI_VAP_LOCK(wvp);
4380	wpi_config_beacon(wvp);
4381	WPI_VAP_UNLOCK(wvp);
4382
4383	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4384}
4385
4386static void
4387wpi_newassoc(struct ieee80211_node *ni, int isnew)
4388{
4389	struct ieee80211vap *vap = ni->ni_vap;
4390	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4391	struct wpi_node *wn = WPI_NODE(ni);
4392	int error;
4393
4394	WPI_NT_LOCK(sc);
4395
4396	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4397
4398	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4399		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4400			device_printf(sc->sc_dev,
4401			    "%s: could not add IBSS node, error %d\n",
4402			    __func__, error);
4403		}
4404	}
4405	WPI_NT_UNLOCK(sc);
4406}
4407
4408static int
4409wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4410{
4411	struct ieee80211com *ic = vap->iv_ic;
4412	struct ieee80211_node *ni = vap->iv_bss;
4413	struct ieee80211_channel *c = ni->ni_chan;
4414	int error;
4415
4416	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4417
4418	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4419		/* Link LED blinks while monitoring. */
4420		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4421		return 0;
4422	}
4423
4424	/* XXX kernel panic workaround */
4425	if (c == IEEE80211_CHAN_ANYC) {
4426		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4427		    __func__);
4428		return EINVAL;
4429	}
4430
4431	if ((error = wpi_set_timing(sc, ni)) != 0) {
4432		device_printf(sc->sc_dev,
4433		    "%s: could not set timing, error %d\n", __func__, error);
4434		return error;
4435	}
4436
4437	/* Update adapter configuration. */
4438	WPI_RXON_LOCK(sc);
4439	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4440	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4441	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4442	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4443	if (IEEE80211_IS_CHAN_2GHZ(c))
4444		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4445	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4446		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4447	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4448		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4449	if (IEEE80211_IS_CHAN_A(c)) {
4450		sc->rxon.cck_mask  = 0;
4451		sc->rxon.ofdm_mask = 0x15;
4452	} else if (IEEE80211_IS_CHAN_B(c)) {
4453		sc->rxon.cck_mask  = 0x03;
4454		sc->rxon.ofdm_mask = 0;
4455	} else {
4456		/* Assume 802.11b/g. */
4457		sc->rxon.cck_mask  = 0x0f;
4458		sc->rxon.ofdm_mask = 0x15;
4459	}
4460	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4461
4462	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4463	    sc->rxon.chan, sc->rxon.flags);
4464
4465	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4466		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4467		    __func__);
4468		return error;
4469	}
4470
4471	/* Start periodic calibration timer. */
4472	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4473
4474	WPI_RXON_UNLOCK(sc);
4475
4476	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4477	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4478		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4479			device_printf(sc->sc_dev,
4480			    "%s: could not setup beacon, error %d\n", __func__,
4481			    error);
4482			return error;
4483		}
4484	}
4485
4486	if (vap->iv_opmode == IEEE80211_M_STA) {
4487		/* Add BSS node. */
4488		WPI_NT_LOCK(sc);
4489		error = wpi_add_sta_node(sc, ni);
4490		WPI_NT_UNLOCK(sc);
4491		if (error != 0) {
4492			device_printf(sc->sc_dev,
4493			    "%s: could not add BSS node, error %d\n", __func__,
4494			    error);
4495			return error;
4496		}
4497	}
4498
4499	/* Link LED always on while associated. */
4500	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4501
4502	/* Enable power-saving mode if requested by user. */
4503	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4504	    vap->iv_opmode != IEEE80211_M_IBSS)
4505		(void)wpi_set_pslevel(sc, 0, 3, 1);
4506
4507	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4508
4509	return 0;
4510}
4511
4512static int
4513wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4514{
4515	const struct ieee80211_cipher *cip = k->wk_cipher;
4516	struct ieee80211vap *vap = ni->ni_vap;
4517	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4518	struct wpi_node *wn = WPI_NODE(ni);
4519	struct wpi_node_info node;
4520	uint16_t kflags;
4521	int error;
4522
4523	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4524
4525	if (wpi_check_node_entry(sc, wn->id) == 0) {
4526		device_printf(sc->sc_dev, "%s: node does not exist\n",
4527		    __func__);
4528		return 0;
4529	}
4530
4531	switch (cip->ic_cipher) {
4532	case IEEE80211_CIPHER_AES_CCM:
4533		kflags = WPI_KFLAG_CCMP;
4534		break;
4535
4536	default:
4537		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4538		    cip->ic_cipher);
4539		return 0;
4540	}
4541
4542	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4543	if (k->wk_flags & IEEE80211_KEY_GROUP)
4544		kflags |= WPI_KFLAG_MULTICAST;
4545
4546	memset(&node, 0, sizeof node);
4547	node.id = wn->id;
4548	node.control = WPI_NODE_UPDATE;
4549	node.flags = WPI_FLAG_KEY_SET;
4550	node.kflags = htole16(kflags);
4551	memcpy(node.key, k->wk_key, k->wk_keylen);
4552again:
4553	DPRINTF(sc, WPI_DEBUG_KEY,
4554	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4555	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4556	    node.id, ether_sprintf(ni->ni_macaddr));
4557
4558	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4559	if (error != 0) {
4560		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4561		    error);
4562		return !error;
4563	}
4564
4565	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4566	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4567		kflags |= WPI_KFLAG_MULTICAST;
4568		node.kflags = htole16(kflags);
4569
4570		goto again;
4571	}
4572
4573	return 1;
4574}
4575
4576static void
4577wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4578{
4579	const struct ieee80211_key *k = arg;
4580	struct ieee80211vap *vap = ni->ni_vap;
4581	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4582	struct wpi_node *wn = WPI_NODE(ni);
4583	int error;
4584
4585	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4586		return;
4587
4588	WPI_NT_LOCK(sc);
4589	error = wpi_load_key(ni, k);
4590	WPI_NT_UNLOCK(sc);
4591
4592	if (error == 0) {
4593		device_printf(sc->sc_dev, "%s: error while setting key\n",
4594		    __func__);
4595	}
4596}
4597
4598static int
4599wpi_set_global_keys(struct ieee80211_node *ni)
4600{
4601	struct ieee80211vap *vap = ni->ni_vap;
4602	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4603	int error = 1;
4604
4605	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4606		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4607			error = wpi_load_key(ni, wk);
4608
4609	return !error;
4610}
4611
4612static int
4613wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4614{
4615	struct ieee80211vap *vap = ni->ni_vap;
4616	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4617	struct wpi_node *wn = WPI_NODE(ni);
4618	struct wpi_node_info node;
4619	uint16_t kflags;
4620	int error;
4621
4622	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4623
4624	if (wpi_check_node_entry(sc, wn->id) == 0) {
4625		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4626		return 1;	/* Nothing to do. */
4627	}
4628
4629	kflags = WPI_KFLAG_KID(k->wk_keyix);
4630	if (k->wk_flags & IEEE80211_KEY_GROUP)
4631		kflags |= WPI_KFLAG_MULTICAST;
4632
4633	memset(&node, 0, sizeof node);
4634	node.id = wn->id;
4635	node.control = WPI_NODE_UPDATE;
4636	node.flags = WPI_FLAG_KEY_SET;
4637	node.kflags = htole16(kflags);
4638again:
4639	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4640	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4641	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4642
4643	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4644	if (error != 0) {
4645		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4646		    error);
4647		return !error;
4648	}
4649
4650	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4651	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4652		kflags |= WPI_KFLAG_MULTICAST;
4653		node.kflags = htole16(kflags);
4654
4655		goto again;
4656	}
4657
4658	return 1;
4659}
4660
4661static void
4662wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4663{
4664	const struct ieee80211_key *k = arg;
4665	struct ieee80211vap *vap = ni->ni_vap;
4666	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4667	struct wpi_node *wn = WPI_NODE(ni);
4668	int error;
4669
4670	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4671		return;
4672
4673	WPI_NT_LOCK(sc);
4674	error = wpi_del_key(ni, k);
4675	WPI_NT_UNLOCK(sc);
4676
4677	if (error == 0) {
4678		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4679		    __func__);
4680	}
4681}
4682
4683static int
4684wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4685    int set)
4686{
4687	struct ieee80211com *ic = vap->iv_ic;
4688	struct wpi_softc *sc = ic->ic_softc;
4689	struct wpi_vap *wvp = WPI_VAP(vap);
4690	struct ieee80211_node *ni;
4691	int error, ni_ref = 0;
4692
4693	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4694
4695	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4696		/* Not for us. */
4697		return 1;
4698	}
4699
4700	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4701		/* XMIT keys are handled in wpi_tx_data(). */
4702		return 1;
4703	}
4704
4705	/* Handle group keys. */
4706	if (&vap->iv_nw_keys[0] <= k &&
4707	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4708		WPI_NT_LOCK(sc);
4709		if (set)
4710			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4711		else
4712			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4713		WPI_NT_UNLOCK(sc);
4714
4715		if (vap->iv_state == IEEE80211_S_RUN) {
4716			ieee80211_iterate_nodes(&ic->ic_sta,
4717			    set ? wpi_load_key_cb : wpi_del_key_cb,
4718			    __DECONST(void *, k));
4719		}
4720
4721		return 1;
4722	}
4723
4724	switch (vap->iv_opmode) {
4725	case IEEE80211_M_STA:
4726		ni = vap->iv_bss;
4727		break;
4728
4729	case IEEE80211_M_IBSS:
4730	case IEEE80211_M_AHDEMO:
4731	case IEEE80211_M_HOSTAP:
4732		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4733		if (ni == NULL)
4734			return 0;	/* should not happen */
4735
4736		ni_ref = 1;
4737		break;
4738
4739	default:
4740		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4741		    vap->iv_opmode);
4742		return 0;
4743	}
4744
4745	WPI_NT_LOCK(sc);
4746	if (set)
4747		error = wpi_load_key(ni, k);
4748	else
4749		error = wpi_del_key(ni, k);
4750	WPI_NT_UNLOCK(sc);
4751
4752	if (ni_ref)
4753		ieee80211_node_decref(ni);
4754
4755	return error;
4756}
4757
4758static int
4759wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4760{
4761	return wpi_process_key(vap, k, 1);
4762}
4763
4764static int
4765wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4766{
4767	return wpi_process_key(vap, k, 0);
4768}
4769
4770/*
4771 * This function is called after the runtime firmware notifies us of its
4772 * readiness (called in a process context).
4773 */
4774static int
4775wpi_post_alive(struct wpi_softc *sc)
4776{
4777	int ntries, error;
4778
4779	/* Check (again) that the radio is not disabled. */
4780	if ((error = wpi_nic_lock(sc)) != 0)
4781		return error;
4782
4783	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4784
4785	/* NB: Runtime firmware must be up and running. */
4786	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4787		device_printf(sc->sc_dev,
4788		    "RF switch: radio disabled (%s)\n", __func__);
4789		wpi_nic_unlock(sc);
4790		return EPERM;   /* :-) */
4791	}
4792	wpi_nic_unlock(sc);
4793
4794	/* Wait for thermal sensor to calibrate. */
4795	for (ntries = 0; ntries < 1000; ntries++) {
4796		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4797			break;
4798		DELAY(10);
4799	}
4800
4801	if (ntries == 1000) {
4802		device_printf(sc->sc_dev,
4803		    "timeout waiting for thermal sensor calibration\n");
4804		return ETIMEDOUT;
4805	}
4806
4807	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4808	return 0;
4809}
4810
4811/*
4812 * The firmware boot code is small and is intended to be copied directly into
4813 * the NIC internal memory (no DMA transfer).
4814 */
4815static int
4816wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4817{
4818	int error, ntries;
4819
4820	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4821
4822	size /= sizeof (uint32_t);
4823
4824	if ((error = wpi_nic_lock(sc)) != 0)
4825		return error;
4826
4827	/* Copy microcode image into NIC memory. */
4828	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4829	    (const uint32_t *)ucode, size);
4830
4831	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4832	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4833	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4834
4835	/* Start boot load now. */
4836	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4837
4838	/* Wait for transfer to complete. */
4839	for (ntries = 0; ntries < 1000; ntries++) {
4840		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4841		DPRINTF(sc, WPI_DEBUG_HW,
4842		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4843		    WPI_FH_TX_STATUS_IDLE(6),
4844		    status & WPI_FH_TX_STATUS_IDLE(6));
4845		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4846			DPRINTF(sc, WPI_DEBUG_HW,
4847			    "Status Match! - ntries = %d\n", ntries);
4848			break;
4849		}
4850		DELAY(10);
4851	}
4852	if (ntries == 1000) {
4853		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4854		    __func__);
4855		wpi_nic_unlock(sc);
4856		return ETIMEDOUT;
4857	}
4858
4859	/* Enable boot after power up. */
4860	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4861
4862	wpi_nic_unlock(sc);
4863	return 0;
4864}
4865
4866static int
4867wpi_load_firmware(struct wpi_softc *sc)
4868{
4869	struct wpi_fw_info *fw = &sc->fw;
4870	struct wpi_dma_info *dma = &sc->fw_dma;
4871	int error;
4872
4873	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4874
4875	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4876	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4877	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4878	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4879	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4880
4881	/* Tell adapter where to find initialization sections. */
4882	if ((error = wpi_nic_lock(sc)) != 0)
4883		return error;
4884	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4885	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4886	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4887	    dma->paddr + WPI_FW_DATA_MAXSZ);
4888	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4889	wpi_nic_unlock(sc);
4890
4891	/* Load firmware boot code. */
4892	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4893	if (error != 0) {
4894		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4895		    __func__);
4896		return error;
4897	}
4898
4899	/* Now press "execute". */
4900	WPI_WRITE(sc, WPI_RESET, 0);
4901
4902	/* Wait at most one second for first alive notification. */
4903	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4904		device_printf(sc->sc_dev,
4905		    "%s: timeout waiting for adapter to initialize, error %d\n",
4906		    __func__, error);
4907		return error;
4908	}
4909
4910	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4911	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4912	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4913	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4914	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4915
4916	/* Tell adapter where to find runtime sections. */
4917	if ((error = wpi_nic_lock(sc)) != 0)
4918		return error;
4919	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4920	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4921	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4922	    dma->paddr + WPI_FW_DATA_MAXSZ);
4923	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4924	    WPI_FW_UPDATED | fw->main.textsz);
4925	wpi_nic_unlock(sc);
4926
4927	return 0;
4928}
4929
4930static int
4931wpi_read_firmware(struct wpi_softc *sc)
4932{
4933	const struct firmware *fp;
4934	struct wpi_fw_info *fw = &sc->fw;
4935	const struct wpi_firmware_hdr *hdr;
4936	int error;
4937
4938	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4939
4940	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4941	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4942
4943	WPI_UNLOCK(sc);
4944	fp = firmware_get(WPI_FW_NAME);
4945	WPI_LOCK(sc);
4946
4947	if (fp == NULL) {
4948		device_printf(sc->sc_dev,
4949		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4950		return EINVAL;
4951	}
4952
4953	sc->fw_fp = fp;
4954
4955	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4956		device_printf(sc->sc_dev,
4957		    "firmware file too short: %zu bytes\n", fp->datasize);
4958		error = EINVAL;
4959		goto fail;
4960	}
4961
4962	fw->size = fp->datasize;
4963	fw->data = (const uint8_t *)fp->data;
4964
4965	/* Extract firmware header information. */
4966	hdr = (const struct wpi_firmware_hdr *)fw->data;
4967
4968	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4969	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4970
4971	fw->main.textsz = le32toh(hdr->rtextsz);
4972	fw->main.datasz = le32toh(hdr->rdatasz);
4973	fw->init.textsz = le32toh(hdr->itextsz);
4974	fw->init.datasz = le32toh(hdr->idatasz);
4975	fw->boot.textsz = le32toh(hdr->btextsz);
4976	fw->boot.datasz = 0;
4977
4978	/* Sanity-check firmware header. */
4979	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4980	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4981	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4982	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4983	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4984	    (fw->boot.textsz & 3) != 0) {
4985		device_printf(sc->sc_dev, "invalid firmware header\n");
4986		error = EINVAL;
4987		goto fail;
4988	}
4989
4990	/* Check that all firmware sections fit. */
4991	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4992	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4993		device_printf(sc->sc_dev,
4994		    "firmware file too short: %zu bytes\n", fw->size);
4995		error = EINVAL;
4996		goto fail;
4997	}
4998
4999	/* Get pointers to firmware sections. */
5000	fw->main.text = (const uint8_t *)(hdr + 1);
5001	fw->main.data = fw->main.text + fw->main.textsz;
5002	fw->init.text = fw->main.data + fw->main.datasz;
5003	fw->init.data = fw->init.text + fw->init.textsz;
5004	fw->boot.text = fw->init.data + fw->init.datasz;
5005
5006	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5007	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5008	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5009	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5010	    fw->main.textsz, fw->main.datasz,
5011	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5012
5013	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5014	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5015	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5016	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5017	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5018
5019	return 0;
5020
5021fail:	wpi_unload_firmware(sc);
5022	return error;
5023}
5024
5025/**
5026 * Free the referenced firmware image
5027 */
5028static void
5029wpi_unload_firmware(struct wpi_softc *sc)
5030{
5031	if (sc->fw_fp != NULL) {
5032		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5033		sc->fw_fp = NULL;
5034	}
5035}
5036
5037static int
5038wpi_clock_wait(struct wpi_softc *sc)
5039{
5040	int ntries;
5041
5042	/* Set "initialization complete" bit. */
5043	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5044
5045	/* Wait for clock stabilization. */
5046	for (ntries = 0; ntries < 2500; ntries++) {
5047		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5048			return 0;
5049		DELAY(100);
5050	}
5051	device_printf(sc->sc_dev,
5052	    "%s: timeout waiting for clock stabilization\n", __func__);
5053
5054	return ETIMEDOUT;
5055}
5056
5057static int
5058wpi_apm_init(struct wpi_softc *sc)
5059{
5060	uint32_t reg;
5061	int error;
5062
5063	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5064
5065	/* Disable L0s exit timer (NMI bug workaround). */
5066	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5067	/* Don't wait for ICH L0s (ICH bug workaround). */
5068	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5069
5070	/* Set FH wait threshold to max (HW bug under stress workaround). */
5071	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5072
5073	/* Retrieve PCIe Active State Power Management (ASPM). */
5074	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5075	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5076	if (reg & 0x02)	/* L1 Entry enabled. */
5077		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5078	else
5079		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5080
5081	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5082
5083	/* Wait for clock stabilization before accessing prph. */
5084	if ((error = wpi_clock_wait(sc)) != 0)
5085		return error;
5086
5087	if ((error = wpi_nic_lock(sc)) != 0)
5088		return error;
5089	/* Cleanup. */
5090	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5091	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5092
5093	/* Enable DMA and BSM (Bootstrap State Machine). */
5094	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5095	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5096	DELAY(20);
5097	/* Disable L1-Active. */
5098	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5099	wpi_nic_unlock(sc);
5100
5101	return 0;
5102}
5103
5104static void
5105wpi_apm_stop_master(struct wpi_softc *sc)
5106{
5107	int ntries;
5108
5109	/* Stop busmaster DMA activity. */
5110	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5111
5112	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5113	    WPI_GP_CNTRL_MAC_PS)
5114		return; /* Already asleep. */
5115
5116	for (ntries = 0; ntries < 100; ntries++) {
5117		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5118			return;
5119		DELAY(10);
5120	}
5121	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5122	    __func__);
5123}
5124
5125static void
5126wpi_apm_stop(struct wpi_softc *sc)
5127{
5128	wpi_apm_stop_master(sc);
5129
5130	/* Reset the entire device. */
5131	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5132	DELAY(10);
5133	/* Clear "initialization complete" bit. */
5134	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5135}
5136
5137static void
5138wpi_nic_config(struct wpi_softc *sc)
5139{
5140	uint32_t rev;
5141
5142	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5143
5144	/* voodoo from the Linux "driver".. */
5145	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5146	if ((rev & 0xc0) == 0x40)
5147		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5148	else if (!(rev & 0x80))
5149		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5150
5151	if (sc->cap == 0x80)
5152		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5153
5154	if ((sc->rev & 0xf0) == 0xd0)
5155		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5156	else
5157		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5158
5159	if (sc->type > 1)
5160		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5161}
5162
5163static int
5164wpi_hw_init(struct wpi_softc *sc)
5165{
5166	uint8_t chnl;
5167	int ntries, error;
5168
5169	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5170
5171	/* Clear pending interrupts. */
5172	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5173
5174	if ((error = wpi_apm_init(sc)) != 0) {
5175		device_printf(sc->sc_dev,
5176		    "%s: could not power ON adapter, error %d\n", __func__,
5177		    error);
5178		return error;
5179	}
5180
5181	/* Select VMAIN power source. */
5182	if ((error = wpi_nic_lock(sc)) != 0)
5183		return error;
5184	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5185	wpi_nic_unlock(sc);
5186	/* Spin until VMAIN gets selected. */
5187	for (ntries = 0; ntries < 5000; ntries++) {
5188		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5189			break;
5190		DELAY(10);
5191	}
5192	if (ntries == 5000) {
5193		device_printf(sc->sc_dev, "timeout selecting power source\n");
5194		return ETIMEDOUT;
5195	}
5196
5197	/* Perform adapter initialization. */
5198	wpi_nic_config(sc);
5199
5200	/* Initialize RX ring. */
5201	if ((error = wpi_nic_lock(sc)) != 0)
5202		return error;
5203	/* Set physical address of RX ring. */
5204	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5205	/* Set physical address of RX read pointer. */
5206	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5207	    offsetof(struct wpi_shared, next));
5208	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5209	/* Enable RX. */
5210	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5211	    WPI_FH_RX_CONFIG_DMA_ENA |
5212	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5213	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5214	    WPI_FH_RX_CONFIG_MAXFRAG |
5215	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5216	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5217	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5218	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5219	wpi_nic_unlock(sc);
5220	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5221
5222	/* Initialize TX rings. */
5223	if ((error = wpi_nic_lock(sc)) != 0)
5224		return error;
5225	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5226	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5227	/* Enable all 6 TX rings. */
5228	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5229	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5230	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5231	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5232	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5233	/* Set physical address of TX rings. */
5234	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5235	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5236
5237	/* Enable all DMA channels. */
5238	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5239		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5240		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5241		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5242	}
5243	wpi_nic_unlock(sc);
5244	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5245
5246	/* Clear "radio off" and "commands blocked" bits. */
5247	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5248	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5249
5250	/* Clear pending interrupts. */
5251	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5252	/* Enable interrupts. */
5253	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5254
5255	/* _Really_ make sure "radio off" bit is cleared! */
5256	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5257	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5258
5259	if ((error = wpi_load_firmware(sc)) != 0) {
5260		device_printf(sc->sc_dev,
5261		    "%s: could not load firmware, error %d\n", __func__,
5262		    error);
5263		return error;
5264	}
5265	/* Wait at most one second for firmware alive notification. */
5266	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5267		device_printf(sc->sc_dev,
5268		    "%s: timeout waiting for adapter to initialize, error %d\n",
5269		    __func__, error);
5270		return error;
5271	}
5272
5273	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5274
5275	/* Do post-firmware initialization. */
5276	return wpi_post_alive(sc);
5277}
5278
5279static void
5280wpi_hw_stop(struct wpi_softc *sc)
5281{
5282	uint8_t chnl, qid;
5283	int ntries;
5284
5285	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5286
5287	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5288		wpi_nic_lock(sc);
5289
5290	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5291
5292	/* Disable interrupts. */
5293	WPI_WRITE(sc, WPI_INT_MASK, 0);
5294	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5295	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5296
5297	/* Make sure we no longer hold the NIC lock. */
5298	wpi_nic_unlock(sc);
5299
5300	if (wpi_nic_lock(sc) == 0) {
5301		/* Stop TX scheduler. */
5302		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5303		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5304
5305		/* Stop all DMA channels. */
5306		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5307			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5308			for (ntries = 0; ntries < 200; ntries++) {
5309				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5310				    WPI_FH_TX_STATUS_IDLE(chnl))
5311					break;
5312				DELAY(10);
5313			}
5314		}
5315		wpi_nic_unlock(sc);
5316	}
5317
5318	/* Stop RX ring. */
5319	wpi_reset_rx_ring(sc);
5320
5321	/* Reset all TX rings. */
5322	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5323		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5324
5325	if (wpi_nic_lock(sc) == 0) {
5326		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5327		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5328		wpi_nic_unlock(sc);
5329	}
5330	DELAY(5);
5331	/* Power OFF adapter. */
5332	wpi_apm_stop(sc);
5333}
5334
5335static void
5336wpi_radio_on(void *arg0, int pending)
5337{
5338	struct wpi_softc *sc = arg0;
5339	struct ieee80211com *ic = &sc->sc_ic;
5340	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5341
5342	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5343
5344	WPI_LOCK(sc);
5345	callout_stop(&sc->watchdog_rfkill);
5346	WPI_UNLOCK(sc);
5347
5348	if (vap != NULL)
5349		ieee80211_init(vap);
5350}
5351
5352static void
5353wpi_radio_off(void *arg0, int pending)
5354{
5355	struct wpi_softc *sc = arg0;
5356	struct ieee80211com *ic = &sc->sc_ic;
5357	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5358
5359	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5360
5361	ieee80211_notify_radio(ic, 0);
5362	wpi_stop(sc);
5363	if (vap != NULL)
5364		ieee80211_stop(vap);
5365
5366	WPI_LOCK(sc);
5367	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5368	WPI_UNLOCK(sc);
5369}
5370
5371static int
5372wpi_init(struct wpi_softc *sc)
5373{
5374	int error = 0;
5375
5376	WPI_LOCK(sc);
5377
5378	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5379
5380	if (sc->sc_running != 0)
5381		goto end;
5382
5383	/* Check that the radio is not disabled by hardware switch. */
5384	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5385		device_printf(sc->sc_dev,
5386		    "RF switch: radio disabled (%s)\n", __func__);
5387		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5388		    sc);
5389		error = EINPROGRESS;
5390		goto end;
5391	}
5392
5393	/* Read firmware images from the filesystem. */
5394	if ((error = wpi_read_firmware(sc)) != 0) {
5395		device_printf(sc->sc_dev,
5396		    "%s: could not read firmware, error %d\n", __func__,
5397		    error);
5398		goto end;
5399	}
5400
5401	sc->sc_running = 1;
5402
5403	/* Initialize hardware and upload firmware. */
5404	error = wpi_hw_init(sc);
5405	wpi_unload_firmware(sc);
5406	if (error != 0) {
5407		device_printf(sc->sc_dev,
5408		    "%s: could not initialize hardware, error %d\n", __func__,
5409		    error);
5410		goto fail;
5411	}
5412
5413	/* Configure adapter now that it is ready. */
5414	if ((error = wpi_config(sc)) != 0) {
5415		device_printf(sc->sc_dev,
5416		    "%s: could not configure device, error %d\n", __func__,
5417		    error);
5418		goto fail;
5419	}
5420
5421	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5422
5423	WPI_UNLOCK(sc);
5424
5425	return 0;
5426
5427fail:	wpi_stop_locked(sc);
5428
5429end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5430	WPI_UNLOCK(sc);
5431
5432	return error;
5433}
5434
5435static void
5436wpi_stop_locked(struct wpi_softc *sc)
5437{
5438
5439	WPI_LOCK_ASSERT(sc);
5440
5441	if (sc->sc_running == 0)
5442		return;
5443
5444	WPI_TX_LOCK(sc);
5445	WPI_TXQ_LOCK(sc);
5446	sc->sc_running = 0;
5447	WPI_TXQ_UNLOCK(sc);
5448	WPI_TX_UNLOCK(sc);
5449
5450	WPI_TXQ_STATE_LOCK(sc);
5451	callout_stop(&sc->tx_timeout);
5452	WPI_TXQ_STATE_UNLOCK(sc);
5453
5454	WPI_RXON_LOCK(sc);
5455	callout_stop(&sc->scan_timeout);
5456	callout_stop(&sc->calib_to);
5457	WPI_RXON_UNLOCK(sc);
5458
5459	/* Power OFF hardware. */
5460	wpi_hw_stop(sc);
5461}
5462
5463static void
5464wpi_stop(struct wpi_softc *sc)
5465{
5466	WPI_LOCK(sc);
5467	wpi_stop_locked(sc);
5468	WPI_UNLOCK(sc);
5469}
5470
5471/*
5472 * Callback from net80211 to start a scan.
5473 */
5474static void
5475wpi_scan_start(struct ieee80211com *ic)
5476{
5477	struct wpi_softc *sc = ic->ic_softc;
5478
5479	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5480}
5481
5482/*
5483 * Callback from net80211 to terminate a scan.
5484 */
5485static void
5486wpi_scan_end(struct ieee80211com *ic)
5487{
5488	struct wpi_softc *sc = ic->ic_softc;
5489	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5490
5491	if (vap->iv_state == IEEE80211_S_RUN)
5492		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5493}
5494
5495/**
5496 * Called by the net80211 framework to indicate to the driver
5497 * that the channel should be changed
5498 */
5499static void
5500wpi_set_channel(struct ieee80211com *ic)
5501{
5502	const struct ieee80211_channel *c = ic->ic_curchan;
5503	struct wpi_softc *sc = ic->ic_softc;
5504	int error;
5505
5506	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5507
5508	WPI_LOCK(sc);
5509	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5510	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5511	WPI_UNLOCK(sc);
5512	WPI_TX_LOCK(sc);
5513	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5514	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5515	WPI_TX_UNLOCK(sc);
5516
5517	/*
5518	 * Only need to set the channel in Monitor mode. AP scanning and auth
5519	 * are already taken care of by their respective firmware commands.
5520	 */
5521	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5522		WPI_RXON_LOCK(sc);
5523		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5524		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5525			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5526			    WPI_RXON_24GHZ);
5527		} else {
5528			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5529			    WPI_RXON_24GHZ);
5530		}
5531		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5532			device_printf(sc->sc_dev,
5533			    "%s: error %d setting channel\n", __func__,
5534			    error);
5535		WPI_RXON_UNLOCK(sc);
5536	}
5537}
5538
5539/**
5540 * Called by net80211 to indicate that we need to scan the current
5541 * channel. The channel is previously be set via the wpi_set_channel
5542 * callback.
5543 */
5544static void
5545wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5546{
5547	struct ieee80211vap *vap = ss->ss_vap;
5548	struct ieee80211com *ic = vap->iv_ic;
5549	struct wpi_softc *sc = ic->ic_softc;
5550	int error;
5551
5552	WPI_RXON_LOCK(sc);
5553	error = wpi_scan(sc, ic->ic_curchan);
5554	WPI_RXON_UNLOCK(sc);
5555	if (error != 0)
5556		ieee80211_cancel_scan(vap);
5557}
5558
5559/**
5560 * Called by the net80211 framework to indicate
5561 * the minimum dwell time has been met, terminate the scan.
5562 * We don't actually terminate the scan as the firmware will notify
5563 * us when it's finished and we have no way to interrupt it.
5564 */
5565static void
5566wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5567{
5568	/* NB: don't try to abort scan; wait for firmware to finish */
5569}
5570
5571static void
5572wpi_hw_reset(void *arg, int pending)
5573{
5574	struct wpi_softc *sc = arg;
5575	struct ieee80211com *ic = &sc->sc_ic;
5576	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5577
5578	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5579
5580	ieee80211_notify_radio(ic, 0);
5581	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5582		ieee80211_cancel_scan(vap);
5583
5584	wpi_stop(sc);
5585	if (vap != NULL) {
5586		ieee80211_stop(vap);
5587		ieee80211_init(vap);
5588	}
5589}
5590