if_wpi.c revision 288636
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 288636 2015-10-03 22:12:25Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156static void	wpi_reset_rx_ring(struct wpi_softc *);
157static void	wpi_free_rx_ring(struct wpi_softc *);
158static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159		    int);
160static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162		    struct wpi_tx_ring *);
163static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165static int	wpi_read_eeprom(struct wpi_softc *,
166		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171		    struct ieee80211_channel *);
172static int	wpi_setregdomain(struct ieee80211com *,
173		    struct ieee80211_regdomain *, int,
174		    struct ieee80211_channel[]);
175static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179static void	wpi_node_free(struct ieee80211_node *);
180static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181		    const struct ieee80211_rx_stats *,
182		    int, int);
183static void	wpi_restore_node(void *, struct ieee80211_node *);
184static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186static void	wpi_calib_timeout(void *);
187static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188		    struct wpi_rx_data *);
189static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190		    struct wpi_rx_data *);
191static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193static void	wpi_notif_intr(struct wpi_softc *);
194static void	wpi_wakeup_intr(struct wpi_softc *);
195#ifdef WPI_DEBUG
196static void	wpi_debug_registers(struct wpi_softc *);
197#endif
198static void	wpi_fatal_intr(struct wpi_softc *);
199static void	wpi_intr(void *);
200static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
201static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202		    struct ieee80211_node *);
203static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
204		    struct ieee80211_node *,
205		    const struct ieee80211_bpf_params *);
206static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207		    const struct ieee80211_bpf_params *);
208static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
209static void	wpi_start(void *, int);
210static void	wpi_watchdog_rfkill(void *);
211static void	wpi_scan_timeout(void *);
212static void	wpi_tx_timeout(void *);
213static void	wpi_parent(struct ieee80211com *);
214static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
215static int	wpi_mrr_setup(struct wpi_softc *);
216static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
217static int	wpi_add_broadcast_node(struct wpi_softc *, int);
218static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
219static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
220static int	wpi_updateedca(struct ieee80211com *);
221static void	wpi_set_promisc(struct wpi_softc *);
222static void	wpi_update_promisc(struct ieee80211com *);
223static void	wpi_update_mcast(struct ieee80211com *);
224static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
225static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
226static void	wpi_power_calibration(struct wpi_softc *);
227static int	wpi_set_txpower(struct wpi_softc *, int);
228static int	wpi_get_power_index(struct wpi_softc *,
229		    struct wpi_power_group *, uint8_t, int, int);
230static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
231static int	wpi_send_btcoex(struct wpi_softc *);
232static int	wpi_send_rxon(struct wpi_softc *, int, int);
233static int	wpi_config(struct wpi_softc *);
234static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
235		    struct ieee80211_channel *, uint8_t);
236static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
237static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
238		    struct ieee80211_channel *);
239static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
240static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
241static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
242static int	wpi_config_beacon(struct wpi_vap *);
243static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
244static void	wpi_update_beacon(struct ieee80211vap *, int);
245static void	wpi_newassoc(struct ieee80211_node *, int);
246static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
247static int	wpi_load_key(struct ieee80211_node *,
248		    const struct ieee80211_key *);
249static void	wpi_load_key_cb(void *, struct ieee80211_node *);
250static int	wpi_set_global_keys(struct ieee80211_node *);
251static int	wpi_del_key(struct ieee80211_node *,
252		    const struct ieee80211_key *);
253static void	wpi_del_key_cb(void *, struct ieee80211_node *);
254static int	wpi_process_key(struct ieee80211vap *,
255		    const struct ieee80211_key *, int);
256static int	wpi_key_set(struct ieee80211vap *,
257		    const struct ieee80211_key *);
258static int	wpi_key_delete(struct ieee80211vap *,
259		    const struct ieee80211_key *);
260static int	wpi_post_alive(struct wpi_softc *);
261static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
262static int	wpi_load_firmware(struct wpi_softc *);
263static int	wpi_read_firmware(struct wpi_softc *);
264static void	wpi_unload_firmware(struct wpi_softc *);
265static int	wpi_clock_wait(struct wpi_softc *);
266static int	wpi_apm_init(struct wpi_softc *);
267static void	wpi_apm_stop_master(struct wpi_softc *);
268static void	wpi_apm_stop(struct wpi_softc *);
269static void	wpi_nic_config(struct wpi_softc *);
270static int	wpi_hw_init(struct wpi_softc *);
271static void	wpi_hw_stop(struct wpi_softc *);
272static void	wpi_radio_on(void *, int);
273static void	wpi_radio_off(void *, int);
274static int	wpi_init(struct wpi_softc *);
275static void	wpi_stop_locked(struct wpi_softc *);
276static void	wpi_stop(struct wpi_softc *);
277static void	wpi_scan_start(struct ieee80211com *);
278static void	wpi_scan_end(struct ieee80211com *);
279static void	wpi_set_channel(struct ieee80211com *);
280static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
281static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
282static void	wpi_hw_reset(void *, int);
283
284static device_method_t wpi_methods[] = {
285	/* Device interface */
286	DEVMETHOD(device_probe,		wpi_probe),
287	DEVMETHOD(device_attach,	wpi_attach),
288	DEVMETHOD(device_detach,	wpi_detach),
289	DEVMETHOD(device_shutdown,	wpi_shutdown),
290	DEVMETHOD(device_suspend,	wpi_suspend),
291	DEVMETHOD(device_resume,	wpi_resume),
292
293	DEVMETHOD_END
294};
295
296static driver_t wpi_driver = {
297	"wpi",
298	wpi_methods,
299	sizeof (struct wpi_softc)
300};
301static devclass_t wpi_devclass;
302
303DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
304
305MODULE_VERSION(wpi, 1);
306
307MODULE_DEPEND(wpi, pci,  1, 1, 1);
308MODULE_DEPEND(wpi, wlan, 1, 1, 1);
309MODULE_DEPEND(wpi, firmware, 1, 1, 1);
310
311static int
312wpi_probe(device_t dev)
313{
314	const struct wpi_ident *ident;
315
316	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
317		if (pci_get_vendor(dev) == ident->vendor &&
318		    pci_get_device(dev) == ident->device) {
319			device_set_desc(dev, ident->name);
320			return (BUS_PROBE_DEFAULT);
321		}
322	}
323	return ENXIO;
324}
325
326static int
327wpi_attach(device_t dev)
328{
329	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
330	struct ieee80211com *ic;
331	int i, error, rid;
332#ifdef WPI_DEBUG
333	int supportsa = 1;
334	const struct wpi_ident *ident;
335#endif
336
337	sc->sc_dev = dev;
338
339#ifdef WPI_DEBUG
340	error = resource_int_value(device_get_name(sc->sc_dev),
341	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
342	if (error != 0)
343		sc->sc_debug = 0;
344#else
345	sc->sc_debug = 0;
346#endif
347
348	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
349
350	/*
351	 * Get the offset of the PCI Express Capability Structure in PCI
352	 * Configuration Space.
353	 */
354	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
355	if (error != 0) {
356		device_printf(dev, "PCIe capability structure not found!\n");
357		return error;
358	}
359
360	/*
361	 * Some card's only support 802.11b/g not a, check to see if
362	 * this is one such card. A 0x0 in the subdevice table indicates
363	 * the entire subdevice range is to be ignored.
364	 */
365#ifdef WPI_DEBUG
366	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
367		if (ident->subdevice &&
368		    pci_get_subdevice(dev) == ident->subdevice) {
369		    supportsa = 0;
370		    break;
371		}
372	}
373#endif
374
375	/* Clear device-specific "PCI retry timeout" register (41h). */
376	pci_write_config(dev, 0x41, 0, 1);
377
378	/* Enable bus-mastering. */
379	pci_enable_busmaster(dev);
380
381	rid = PCIR_BAR(0);
382	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
383	    RF_ACTIVE);
384	if (sc->mem == NULL) {
385		device_printf(dev, "can't map mem space\n");
386		return ENOMEM;
387	}
388	sc->sc_st = rman_get_bustag(sc->mem);
389	sc->sc_sh = rman_get_bushandle(sc->mem);
390
391	i = 1;
392	rid = 0;
393	if (pci_alloc_msi(dev, &i) == 0)
394		rid = 1;
395	/* Install interrupt handler. */
396	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
397	    (rid != 0 ? 0 : RF_SHAREABLE));
398	if (sc->irq == NULL) {
399		device_printf(dev, "can't map interrupt\n");
400		error = ENOMEM;
401		goto fail;
402	}
403
404	WPI_LOCK_INIT(sc);
405	WPI_TX_LOCK_INIT(sc);
406	WPI_RXON_LOCK_INIT(sc);
407	WPI_NT_LOCK_INIT(sc);
408	WPI_TXQ_LOCK_INIT(sc);
409	WPI_TXQ_STATE_LOCK_INIT(sc);
410
411	/* Allocate DMA memory for firmware transfers. */
412	if ((error = wpi_alloc_fwmem(sc)) != 0) {
413		device_printf(dev,
414		    "could not allocate memory for firmware, error %d\n",
415		    error);
416		goto fail;
417	}
418
419	/* Allocate shared page. */
420	if ((error = wpi_alloc_shared(sc)) != 0) {
421		device_printf(dev, "could not allocate shared page\n");
422		goto fail;
423	}
424
425	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
426	for (i = 0; i < WPI_NTXQUEUES; i++) {
427		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
428			device_printf(dev,
429			    "could not allocate TX ring %d, error %d\n", i,
430			    error);
431			goto fail;
432		}
433	}
434
435	/* Allocate RX ring. */
436	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
437		device_printf(dev, "could not allocate RX ring, error %d\n",
438		    error);
439		goto fail;
440	}
441
442	/* Clear pending interrupts. */
443	WPI_WRITE(sc, WPI_INT, 0xffffffff);
444
445	ic = &sc->sc_ic;
446	ic->ic_softc = sc;
447	ic->ic_name = device_get_nameunit(dev);
448	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
449	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
450
451	/* Set device capabilities. */
452	ic->ic_caps =
453		  IEEE80211_C_STA		/* station mode supported */
454		| IEEE80211_C_IBSS		/* IBSS mode supported */
455		| IEEE80211_C_HOSTAP		/* Host access point mode */
456		| IEEE80211_C_MONITOR		/* monitor mode supported */
457		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
458		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
459		| IEEE80211_C_TXPMGT		/* tx power management */
460		| IEEE80211_C_SHSLOT		/* short slot time supported */
461		| IEEE80211_C_WPA		/* 802.11i */
462		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
463		| IEEE80211_C_WME		/* 802.11e */
464		| IEEE80211_C_PMGT		/* Station-side power mgmt */
465		;
466
467	ic->ic_cryptocaps =
468		  IEEE80211_CRYPTO_AES_CCM;
469
470	/*
471	 * Read in the eeprom and also setup the channels for
472	 * net80211. We don't set the rates as net80211 does this for us
473	 */
474	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
475		device_printf(dev, "could not read EEPROM, error %d\n",
476		    error);
477		goto fail;
478	}
479
480#ifdef WPI_DEBUG
481	if (bootverbose) {
482		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
483		    sc->domain);
484		device_printf(sc->sc_dev, "Hardware Type: %c\n",
485		    sc->type > 1 ? 'B': '?');
486		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
487		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
488		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
489		    supportsa ? "does" : "does not");
490
491		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
492		   check what sc->rev really represents - benjsc 20070615 */
493	}
494#endif
495
496	ieee80211_ifattach(ic);
497	ic->ic_vap_create = wpi_vap_create;
498	ic->ic_vap_delete = wpi_vap_delete;
499	ic->ic_parent = wpi_parent;
500	ic->ic_raw_xmit = wpi_raw_xmit;
501	ic->ic_transmit = wpi_transmit;
502	ic->ic_node_alloc = wpi_node_alloc;
503	sc->sc_node_free = ic->ic_node_free;
504	ic->ic_node_free = wpi_node_free;
505	ic->ic_wme.wme_update = wpi_updateedca;
506	ic->ic_update_promisc = wpi_update_promisc;
507	ic->ic_update_mcast = wpi_update_mcast;
508	ic->ic_newassoc = wpi_newassoc;
509	ic->ic_scan_start = wpi_scan_start;
510	ic->ic_scan_end = wpi_scan_end;
511	ic->ic_set_channel = wpi_set_channel;
512	ic->ic_scan_curchan = wpi_scan_curchan;
513	ic->ic_scan_mindwell = wpi_scan_mindwell;
514	ic->ic_setregdomain = wpi_setregdomain;
515
516	sc->sc_update_rx_ring = wpi_update_rx_ring;
517	sc->sc_update_tx_ring = wpi_update_tx_ring;
518
519	wpi_radiotap_attach(sc);
520
521	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
522	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
523	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
524	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
525	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
526	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
527	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
528	TASK_INIT(&sc->sc_start_task, 0, wpi_start, sc);
529
530	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
531	    taskqueue_thread_enqueue, &sc->sc_tq);
532	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
533	if (error != 0) {
534		device_printf(dev, "can't start threads, error %d\n", error);
535		goto fail;
536	}
537
538	wpi_sysctlattach(sc);
539
540	/*
541	 * Hook our interrupt after all initialization is complete.
542	 */
543	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
544	    NULL, wpi_intr, sc, &sc->sc_ih);
545	if (error != 0) {
546		device_printf(dev, "can't establish interrupt, error %d\n",
547		    error);
548		goto fail;
549	}
550
551	if (bootverbose)
552		ieee80211_announce(ic);
553
554#ifdef WPI_DEBUG
555	if (sc->sc_debug & WPI_DEBUG_HW)
556		ieee80211_announce_channels(ic);
557#endif
558
559	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
560	return 0;
561
562fail:	wpi_detach(dev);
563	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
564	return error;
565}
566
567/*
568 * Attach the interface to 802.11 radiotap.
569 */
570static void
571wpi_radiotap_attach(struct wpi_softc *sc)
572{
573	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
574	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
575
576	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
577	ieee80211_radiotap_attach(&sc->sc_ic,
578	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
579	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
580	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
581}
582
583static void
584wpi_sysctlattach(struct wpi_softc *sc)
585{
586#ifdef WPI_DEBUG
587	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
588	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
589
590	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
591	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
592		"control debugging printfs");
593#endif
594}
595
596static void
597wpi_init_beacon(struct wpi_vap *wvp)
598{
599	struct wpi_buf *bcn = &wvp->wv_bcbuf;
600	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
601
602	cmd->id = WPI_ID_BROADCAST;
603	cmd->ofdm_mask = 0xff;
604	cmd->cck_mask = 0x0f;
605	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
606
607	/*
608	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
609	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
610	 */
611	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
612
613	bcn->code = WPI_CMD_SET_BEACON;
614	bcn->ac = WPI_CMD_QUEUE_NUM;
615	bcn->size = sizeof(struct wpi_cmd_beacon);
616}
617
618static struct ieee80211vap *
619wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
620    enum ieee80211_opmode opmode, int flags,
621    const uint8_t bssid[IEEE80211_ADDR_LEN],
622    const uint8_t mac[IEEE80211_ADDR_LEN])
623{
624	struct wpi_vap *wvp;
625	struct ieee80211vap *vap;
626
627	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
628		return NULL;
629
630	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
631	vap = &wvp->wv_vap;
632	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
633
634	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
635		WPI_VAP_LOCK_INIT(wvp);
636		wpi_init_beacon(wvp);
637	}
638
639	/* Override with driver methods. */
640	vap->iv_key_set = wpi_key_set;
641	vap->iv_key_delete = wpi_key_delete;
642	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
643	vap->iv_recv_mgmt = wpi_recv_mgmt;
644	wvp->wv_newstate = vap->iv_newstate;
645	vap->iv_newstate = wpi_newstate;
646	vap->iv_update_beacon = wpi_update_beacon;
647	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
648
649	ieee80211_ratectl_init(vap);
650	/* Complete setup. */
651	ieee80211_vap_attach(vap, ieee80211_media_change,
652	    ieee80211_media_status, mac);
653	ic->ic_opmode = opmode;
654	return vap;
655}
656
657static void
658wpi_vap_delete(struct ieee80211vap *vap)
659{
660	struct wpi_vap *wvp = WPI_VAP(vap);
661	struct wpi_buf *bcn = &wvp->wv_bcbuf;
662	enum ieee80211_opmode opmode = vap->iv_opmode;
663
664	ieee80211_ratectl_deinit(vap);
665	ieee80211_vap_detach(vap);
666
667	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
668		if (bcn->m != NULL)
669			m_freem(bcn->m);
670
671		WPI_VAP_LOCK_DESTROY(wvp);
672	}
673
674	free(wvp, M_80211_VAP);
675}
676
677static int
678wpi_detach(device_t dev)
679{
680	struct wpi_softc *sc = device_get_softc(dev);
681	struct ieee80211com *ic = &sc->sc_ic;
682	int qid;
683
684	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
685
686	if (ic->ic_vap_create == wpi_vap_create) {
687		ieee80211_draintask(ic, &sc->sc_radioon_task);
688		ieee80211_draintask(ic, &sc->sc_start_task);
689
690		wpi_stop(sc);
691
692		if (sc->sc_tq != NULL) {
693			taskqueue_drain_all(sc->sc_tq);
694			taskqueue_free(sc->sc_tq);
695		}
696
697		callout_drain(&sc->watchdog_rfkill);
698		callout_drain(&sc->tx_timeout);
699		callout_drain(&sc->scan_timeout);
700		callout_drain(&sc->calib_to);
701		ieee80211_ifdetach(ic);
702	}
703
704	/* Uninstall interrupt handler. */
705	if (sc->irq != NULL) {
706		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
707		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
708		    sc->irq);
709		pci_release_msi(dev);
710	}
711
712	if (sc->txq[0].data_dmat) {
713		/* Free DMA resources. */
714		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
715			wpi_free_tx_ring(sc, &sc->txq[qid]);
716
717		wpi_free_rx_ring(sc);
718		wpi_free_shared(sc);
719	}
720
721	if (sc->fw_dma.tag)
722		wpi_free_fwmem(sc);
723
724	if (sc->mem != NULL)
725		bus_release_resource(dev, SYS_RES_MEMORY,
726		    rman_get_rid(sc->mem), sc->mem);
727
728	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
729	WPI_TXQ_STATE_LOCK_DESTROY(sc);
730	WPI_TXQ_LOCK_DESTROY(sc);
731	WPI_NT_LOCK_DESTROY(sc);
732	WPI_RXON_LOCK_DESTROY(sc);
733	WPI_TX_LOCK_DESTROY(sc);
734	WPI_LOCK_DESTROY(sc);
735	return 0;
736}
737
738static int
739wpi_shutdown(device_t dev)
740{
741	struct wpi_softc *sc = device_get_softc(dev);
742
743	wpi_stop(sc);
744	return 0;
745}
746
747static int
748wpi_suspend(device_t dev)
749{
750	struct wpi_softc *sc = device_get_softc(dev);
751	struct ieee80211com *ic = &sc->sc_ic;
752
753	ieee80211_suspend_all(ic);
754	return 0;
755}
756
757static int
758wpi_resume(device_t dev)
759{
760	struct wpi_softc *sc = device_get_softc(dev);
761	struct ieee80211com *ic = &sc->sc_ic;
762
763	/* Clear device-specific "PCI retry timeout" register (41h). */
764	pci_write_config(dev, 0x41, 0, 1);
765
766	ieee80211_resume_all(ic);
767	return 0;
768}
769
770/*
771 * Grab exclusive access to NIC memory.
772 */
773static int
774wpi_nic_lock(struct wpi_softc *sc)
775{
776	int ntries;
777
778	/* Request exclusive access to NIC. */
779	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
780
781	/* Spin until we actually get the lock. */
782	for (ntries = 0; ntries < 1000; ntries++) {
783		if ((WPI_READ(sc, WPI_GP_CNTRL) &
784		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
785		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
786			return 0;
787		DELAY(10);
788	}
789
790	device_printf(sc->sc_dev, "could not lock memory\n");
791
792	return ETIMEDOUT;
793}
794
795/*
796 * Release lock on NIC memory.
797 */
798static __inline void
799wpi_nic_unlock(struct wpi_softc *sc)
800{
801	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
802}
803
804static __inline uint32_t
805wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
806{
807	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
808	WPI_BARRIER_READ_WRITE(sc);
809	return WPI_READ(sc, WPI_PRPH_RDATA);
810}
811
812static __inline void
813wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
814{
815	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
816	WPI_BARRIER_WRITE(sc);
817	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
818}
819
820static __inline void
821wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
822{
823	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
824}
825
826static __inline void
827wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
828{
829	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
830}
831
832static __inline void
833wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
834    const uint32_t *data, int count)
835{
836	for (; count > 0; count--, data++, addr += 4)
837		wpi_prph_write(sc, addr, *data);
838}
839
840static __inline uint32_t
841wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
842{
843	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
844	WPI_BARRIER_READ_WRITE(sc);
845	return WPI_READ(sc, WPI_MEM_RDATA);
846}
847
848static __inline void
849wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
850    int count)
851{
852	for (; count > 0; count--, addr += 4)
853		*data++ = wpi_mem_read(sc, addr);
854}
855
856static int
857wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
858{
859	uint8_t *out = data;
860	uint32_t val;
861	int error, ntries;
862
863	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
864
865	if ((error = wpi_nic_lock(sc)) != 0)
866		return error;
867
868	for (; count > 0; count -= 2, addr++) {
869		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
870		for (ntries = 0; ntries < 10; ntries++) {
871			val = WPI_READ(sc, WPI_EEPROM);
872			if (val & WPI_EEPROM_READ_VALID)
873				break;
874			DELAY(5);
875		}
876		if (ntries == 10) {
877			device_printf(sc->sc_dev,
878			    "timeout reading ROM at 0x%x\n", addr);
879			return ETIMEDOUT;
880		}
881		*out++= val >> 16;
882		if (count > 1)
883			*out ++= val >> 24;
884	}
885
886	wpi_nic_unlock(sc);
887
888	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
889
890	return 0;
891}
892
893static void
894wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
895{
896	if (error != 0)
897		return;
898	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
899	*(bus_addr_t *)arg = segs[0].ds_addr;
900}
901
902/*
903 * Allocates a contiguous block of dma memory of the requested size and
904 * alignment.
905 */
906static int
907wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
908    void **kvap, bus_size_t size, bus_size_t alignment)
909{
910	int error;
911
912	dma->tag = NULL;
913	dma->size = size;
914
915	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
916	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
917	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
918	if (error != 0)
919		goto fail;
920
921	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
922	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
923	if (error != 0)
924		goto fail;
925
926	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
927	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
928	if (error != 0)
929		goto fail;
930
931	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
932
933	if (kvap != NULL)
934		*kvap = dma->vaddr;
935
936	return 0;
937
938fail:	wpi_dma_contig_free(dma);
939	return error;
940}
941
942static void
943wpi_dma_contig_free(struct wpi_dma_info *dma)
944{
945	if (dma->vaddr != NULL) {
946		bus_dmamap_sync(dma->tag, dma->map,
947		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
948		bus_dmamap_unload(dma->tag, dma->map);
949		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
950		dma->vaddr = NULL;
951	}
952	if (dma->tag != NULL) {
953		bus_dma_tag_destroy(dma->tag);
954		dma->tag = NULL;
955	}
956}
957
958/*
959 * Allocate a shared page between host and NIC.
960 */
961static int
962wpi_alloc_shared(struct wpi_softc *sc)
963{
964	/* Shared buffer must be aligned on a 4KB boundary. */
965	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
966	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
967}
968
969static void
970wpi_free_shared(struct wpi_softc *sc)
971{
972	wpi_dma_contig_free(&sc->shared_dma);
973}
974
975/*
976 * Allocate DMA-safe memory for firmware transfer.
977 */
978static int
979wpi_alloc_fwmem(struct wpi_softc *sc)
980{
981	/* Must be aligned on a 16-byte boundary. */
982	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
983	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
984}
985
986static void
987wpi_free_fwmem(struct wpi_softc *sc)
988{
989	wpi_dma_contig_free(&sc->fw_dma);
990}
991
992static int
993wpi_alloc_rx_ring(struct wpi_softc *sc)
994{
995	struct wpi_rx_ring *ring = &sc->rxq;
996	bus_size_t size;
997	int i, error;
998
999	ring->cur = 0;
1000	ring->update = 0;
1001
1002	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1003
1004	/* Allocate RX descriptors (16KB aligned.) */
1005	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1006	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1007	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1008	if (error != 0) {
1009		device_printf(sc->sc_dev,
1010		    "%s: could not allocate RX ring DMA memory, error %d\n",
1011		    __func__, error);
1012		goto fail;
1013	}
1014
1015	/* Create RX buffer DMA tag. */
1016	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1017	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1018	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1019	    &ring->data_dmat);
1020	if (error != 0) {
1021		device_printf(sc->sc_dev,
1022		    "%s: could not create RX buf DMA tag, error %d\n",
1023		    __func__, error);
1024		goto fail;
1025	}
1026
1027	/*
1028	 * Allocate and map RX buffers.
1029	 */
1030	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1031		struct wpi_rx_data *data = &ring->data[i];
1032		bus_addr_t paddr;
1033
1034		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1035		if (error != 0) {
1036			device_printf(sc->sc_dev,
1037			    "%s: could not create RX buf DMA map, error %d\n",
1038			    __func__, error);
1039			goto fail;
1040		}
1041
1042		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1043		if (data->m == NULL) {
1044			device_printf(sc->sc_dev,
1045			    "%s: could not allocate RX mbuf\n", __func__);
1046			error = ENOBUFS;
1047			goto fail;
1048		}
1049
1050		error = bus_dmamap_load(ring->data_dmat, data->map,
1051		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1052		    &paddr, BUS_DMA_NOWAIT);
1053		if (error != 0 && error != EFBIG) {
1054			device_printf(sc->sc_dev,
1055			    "%s: can't map mbuf (error %d)\n", __func__,
1056			    error);
1057			goto fail;
1058		}
1059
1060		/* Set physical address of RX buffer. */
1061		ring->desc[i] = htole32(paddr);
1062	}
1063
1064	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1065	    BUS_DMASYNC_PREWRITE);
1066
1067	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1068
1069	return 0;
1070
1071fail:	wpi_free_rx_ring(sc);
1072
1073	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1074
1075	return error;
1076}
1077
1078static void
1079wpi_update_rx_ring(struct wpi_softc *sc)
1080{
1081	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1082}
1083
1084static void
1085wpi_update_rx_ring_ps(struct wpi_softc *sc)
1086{
1087	struct wpi_rx_ring *ring = &sc->rxq;
1088
1089	if (ring->update != 0) {
1090		/* Wait for INT_WAKEUP event. */
1091		return;
1092	}
1093
1094	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1095	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1096		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1097		    __func__);
1098		ring->update = 1;
1099	} else {
1100		wpi_update_rx_ring(sc);
1101		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1102	}
1103}
1104
1105static void
1106wpi_reset_rx_ring(struct wpi_softc *sc)
1107{
1108	struct wpi_rx_ring *ring = &sc->rxq;
1109	int ntries;
1110
1111	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1112
1113	if (wpi_nic_lock(sc) == 0) {
1114		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1115		for (ntries = 0; ntries < 1000; ntries++) {
1116			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1117			    WPI_FH_RX_STATUS_IDLE)
1118				break;
1119			DELAY(10);
1120		}
1121		wpi_nic_unlock(sc);
1122	}
1123
1124	ring->cur = 0;
1125	ring->update = 0;
1126}
1127
1128static void
1129wpi_free_rx_ring(struct wpi_softc *sc)
1130{
1131	struct wpi_rx_ring *ring = &sc->rxq;
1132	int i;
1133
1134	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1135
1136	wpi_dma_contig_free(&ring->desc_dma);
1137
1138	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1139		struct wpi_rx_data *data = &ring->data[i];
1140
1141		if (data->m != NULL) {
1142			bus_dmamap_sync(ring->data_dmat, data->map,
1143			    BUS_DMASYNC_POSTREAD);
1144			bus_dmamap_unload(ring->data_dmat, data->map);
1145			m_freem(data->m);
1146			data->m = NULL;
1147		}
1148		if (data->map != NULL)
1149			bus_dmamap_destroy(ring->data_dmat, data->map);
1150	}
1151	if (ring->data_dmat != NULL) {
1152		bus_dma_tag_destroy(ring->data_dmat);
1153		ring->data_dmat = NULL;
1154	}
1155}
1156
1157static int
1158wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1159{
1160	bus_addr_t paddr;
1161	bus_size_t size;
1162	int i, error;
1163
1164	ring->qid = qid;
1165	ring->queued = 0;
1166	ring->cur = 0;
1167	ring->update = 0;
1168	mbufq_init(&ring->snd, ifqmaxlen);
1169
1170	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1171
1172	/* Allocate TX descriptors (16KB aligned.) */
1173	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1174	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1175	    size, WPI_RING_DMA_ALIGN);
1176	if (error != 0) {
1177		device_printf(sc->sc_dev,
1178		    "%s: could not allocate TX ring DMA memory, error %d\n",
1179		    __func__, error);
1180		goto fail;
1181	}
1182
1183	/* Update shared area with ring physical address. */
1184	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1185	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1186	    BUS_DMASYNC_PREWRITE);
1187
1188	/*
1189	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1190	 * to allocate commands space for other rings.
1191	 * XXX Do we really need to allocate descriptors for other rings?
1192	 */
1193	if (qid > WPI_CMD_QUEUE_NUM) {
1194		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1195		return 0;
1196	}
1197
1198	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1199	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1200	    size, 4);
1201	if (error != 0) {
1202		device_printf(sc->sc_dev,
1203		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1204		    __func__, error);
1205		goto fail;
1206	}
1207
1208	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1209	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1210	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1211	    &ring->data_dmat);
1212	if (error != 0) {
1213		device_printf(sc->sc_dev,
1214		    "%s: could not create TX buf DMA tag, error %d\n",
1215		    __func__, error);
1216		goto fail;
1217	}
1218
1219	paddr = ring->cmd_dma.paddr;
1220	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1221		struct wpi_tx_data *data = &ring->data[i];
1222
1223		data->cmd_paddr = paddr;
1224		paddr += sizeof (struct wpi_tx_cmd);
1225
1226		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1227		if (error != 0) {
1228			device_printf(sc->sc_dev,
1229			    "%s: could not create TX buf DMA map, error %d\n",
1230			    __func__, error);
1231			goto fail;
1232		}
1233	}
1234
1235	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1236
1237	return 0;
1238
1239fail:	wpi_free_tx_ring(sc, ring);
1240	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1241	return error;
1242}
1243
1244static void
1245wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1246{
1247	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1248}
1249
1250static void
1251wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1252{
1253
1254	if (ring->update != 0) {
1255		/* Wait for INT_WAKEUP event. */
1256		return;
1257	}
1258
1259	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1260	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1261		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1262		    __func__, ring->qid);
1263		ring->update = 1;
1264	} else {
1265		wpi_update_tx_ring(sc, ring);
1266		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1267	}
1268}
1269
1270static void
1271wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1272{
1273	int i;
1274
1275	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1276
1277	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1278		struct wpi_tx_data *data = &ring->data[i];
1279
1280		if (data->m != NULL) {
1281			bus_dmamap_sync(ring->data_dmat, data->map,
1282			    BUS_DMASYNC_POSTWRITE);
1283			bus_dmamap_unload(ring->data_dmat, data->map);
1284			m_freem(data->m);
1285			data->m = NULL;
1286		}
1287		if (data->ni != NULL) {
1288			ieee80211_free_node(data->ni);
1289			data->ni = NULL;
1290		}
1291	}
1292	/* Clear TX descriptors. */
1293	memset(ring->desc, 0, ring->desc_dma.size);
1294	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1295	    BUS_DMASYNC_PREWRITE);
1296	mbufq_drain(&ring->snd);
1297	sc->qfullmsk &= ~(1 << ring->qid);
1298	ring->queued = 0;
1299	ring->cur = 0;
1300	ring->update = 0;
1301}
1302
1303static void
1304wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1305{
1306	int i;
1307
1308	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1309
1310	wpi_dma_contig_free(&ring->desc_dma);
1311	wpi_dma_contig_free(&ring->cmd_dma);
1312
1313	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1314		struct wpi_tx_data *data = &ring->data[i];
1315
1316		if (data->m != NULL) {
1317			bus_dmamap_sync(ring->data_dmat, data->map,
1318			    BUS_DMASYNC_POSTWRITE);
1319			bus_dmamap_unload(ring->data_dmat, data->map);
1320			m_freem(data->m);
1321		}
1322		if (data->map != NULL)
1323			bus_dmamap_destroy(ring->data_dmat, data->map);
1324	}
1325	if (ring->data_dmat != NULL) {
1326		bus_dma_tag_destroy(ring->data_dmat);
1327		ring->data_dmat = NULL;
1328	}
1329}
1330
1331/*
1332 * Extract various information from EEPROM.
1333 */
1334static int
1335wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1336{
1337#define WPI_CHK(res) do {		\
1338	if ((error = res) != 0)		\
1339		goto fail;		\
1340} while (0)
1341	int error, i;
1342
1343	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1344
1345	/* Adapter has to be powered on for EEPROM access to work. */
1346	if ((error = wpi_apm_init(sc)) != 0) {
1347		device_printf(sc->sc_dev,
1348		    "%s: could not power ON adapter, error %d\n", __func__,
1349		    error);
1350		return error;
1351	}
1352
1353	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1354		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1355		error = EIO;
1356		goto fail;
1357	}
1358	/* Clear HW ownership of EEPROM. */
1359	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1360
1361	/* Read the hardware capabilities, revision and SKU type. */
1362	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1363	    sizeof(sc->cap)));
1364	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1365	    sizeof(sc->rev)));
1366	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1367	    sizeof(sc->type)));
1368
1369	sc->rev = le16toh(sc->rev);
1370	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1371	    sc->rev, sc->type);
1372
1373	/* Read the regulatory domain (4 ASCII characters.) */
1374	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1375	    sizeof(sc->domain)));
1376
1377	/* Read MAC address. */
1378	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1379	    IEEE80211_ADDR_LEN));
1380
1381	/* Read the list of authorized channels. */
1382	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1383		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1384
1385	/* Read the list of TX power groups. */
1386	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1387		WPI_CHK(wpi_read_eeprom_group(sc, i));
1388
1389fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1390
1391	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1392	    __func__);
1393
1394	return error;
1395#undef WPI_CHK
1396}
1397
1398/*
1399 * Translate EEPROM flags to net80211.
1400 */
1401static uint32_t
1402wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1403{
1404	uint32_t nflags;
1405
1406	nflags = 0;
1407	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1408		nflags |= IEEE80211_CHAN_PASSIVE;
1409	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1410		nflags |= IEEE80211_CHAN_NOADHOC;
1411	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1412		nflags |= IEEE80211_CHAN_DFS;
1413		/* XXX apparently IBSS may still be marked */
1414		nflags |= IEEE80211_CHAN_NOADHOC;
1415	}
1416
1417	/* XXX HOSTAP uses WPI_MODE_IBSS */
1418	if (nflags & IEEE80211_CHAN_NOADHOC)
1419		nflags |= IEEE80211_CHAN_NOHOSTAP;
1420
1421	return nflags;
1422}
1423
1424static void
1425wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1426{
1427	struct ieee80211com *ic = &sc->sc_ic;
1428	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1429	const struct wpi_chan_band *band = &wpi_bands[n];
1430	struct ieee80211_channel *c;
1431	uint8_t chan;
1432	int i, nflags;
1433
1434	for (i = 0; i < band->nchan; i++) {
1435		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1436			DPRINTF(sc, WPI_DEBUG_EEPROM,
1437			    "Channel Not Valid: %d, band %d\n",
1438			     band->chan[i],n);
1439			continue;
1440		}
1441
1442		chan = band->chan[i];
1443		nflags = wpi_eeprom_channel_flags(&channels[i]);
1444
1445		c = &ic->ic_channels[ic->ic_nchans++];
1446		c->ic_ieee = chan;
1447		c->ic_maxregpower = channels[i].maxpwr;
1448		c->ic_maxpower = 2*c->ic_maxregpower;
1449
1450		if (n == 0) {	/* 2GHz band */
1451			c->ic_freq = ieee80211_ieee2mhz(chan,
1452			    IEEE80211_CHAN_G);
1453
1454			/* G =>'s B is supported */
1455			c->ic_flags = IEEE80211_CHAN_B | nflags;
1456			c = &ic->ic_channels[ic->ic_nchans++];
1457			c[0] = c[-1];
1458			c->ic_flags = IEEE80211_CHAN_G | nflags;
1459		} else {	/* 5GHz band */
1460			c->ic_freq = ieee80211_ieee2mhz(chan,
1461			    IEEE80211_CHAN_A);
1462
1463			c->ic_flags = IEEE80211_CHAN_A | nflags;
1464		}
1465
1466		/* Save maximum allowed TX power for this channel. */
1467		sc->maxpwr[chan] = channels[i].maxpwr;
1468
1469		DPRINTF(sc, WPI_DEBUG_EEPROM,
1470		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1471		    " offset %d\n", chan, c->ic_freq,
1472		    channels[i].flags, sc->maxpwr[chan],
1473		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1474	}
1475}
1476
1477/**
1478 * Read the eeprom to find out what channels are valid for the given
1479 * band and update net80211 with what we find.
1480 */
1481static int
1482wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1483{
1484	struct ieee80211com *ic = &sc->sc_ic;
1485	const struct wpi_chan_band *band = &wpi_bands[n];
1486	int error;
1487
1488	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1489
1490	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1491	    band->nchan * sizeof (struct wpi_eeprom_chan));
1492	if (error != 0) {
1493		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1494		return error;
1495	}
1496
1497	wpi_read_eeprom_band(sc, n);
1498
1499	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1500
1501	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1502
1503	return 0;
1504}
1505
1506static struct wpi_eeprom_chan *
1507wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1508{
1509	int i, j;
1510
1511	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1512		for (i = 0; i < wpi_bands[j].nchan; i++)
1513			if (wpi_bands[j].chan[i] == c->ic_ieee)
1514				return &sc->eeprom_channels[j][i];
1515
1516	return NULL;
1517}
1518
1519/*
1520 * Enforce flags read from EEPROM.
1521 */
1522static int
1523wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1524    int nchan, struct ieee80211_channel chans[])
1525{
1526	struct wpi_softc *sc = ic->ic_softc;
1527	int i;
1528
1529	for (i = 0; i < nchan; i++) {
1530		struct ieee80211_channel *c = &chans[i];
1531		struct wpi_eeprom_chan *channel;
1532
1533		channel = wpi_find_eeprom_channel(sc, c);
1534		if (channel == NULL) {
1535			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1536			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1537			return EINVAL;
1538		}
1539		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1540	}
1541
1542	return 0;
1543}
1544
1545static int
1546wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1547{
1548	struct wpi_power_group *group = &sc->groups[n];
1549	struct wpi_eeprom_group rgroup;
1550	int i, error;
1551
1552	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1553
1554	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1555	    &rgroup, sizeof rgroup)) != 0) {
1556		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1557		return error;
1558	}
1559
1560	/* Save TX power group information. */
1561	group->chan   = rgroup.chan;
1562	group->maxpwr = rgroup.maxpwr;
1563	/* Retrieve temperature at which the samples were taken. */
1564	group->temp   = (int16_t)le16toh(rgroup.temp);
1565
1566	DPRINTF(sc, WPI_DEBUG_EEPROM,
1567	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1568	    group->maxpwr, group->temp);
1569
1570	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1571		group->samples[i].index = rgroup.samples[i].index;
1572		group->samples[i].power = rgroup.samples[i].power;
1573
1574		DPRINTF(sc, WPI_DEBUG_EEPROM,
1575		    "\tsample %d: index=%d power=%d\n", i,
1576		    group->samples[i].index, group->samples[i].power);
1577	}
1578
1579	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1580
1581	return 0;
1582}
1583
1584static int
1585wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1586{
1587	int newid = WPI_ID_IBSS_MIN;
1588
1589	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1590		if ((sc->nodesmsk & (1 << newid)) == 0) {
1591			sc->nodesmsk |= 1 << newid;
1592			return newid;
1593		}
1594	}
1595
1596	return WPI_ID_UNDEFINED;
1597}
1598
1599static __inline int
1600wpi_add_node_entry_sta(struct wpi_softc *sc)
1601{
1602	sc->nodesmsk |= 1 << WPI_ID_BSS;
1603
1604	return WPI_ID_BSS;
1605}
1606
1607static __inline int
1608wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1609{
1610	if (id == WPI_ID_UNDEFINED)
1611		return 0;
1612
1613	return (sc->nodesmsk >> id) & 1;
1614}
1615
1616static __inline void
1617wpi_clear_node_table(struct wpi_softc *sc)
1618{
1619	sc->nodesmsk = 0;
1620}
1621
1622static __inline void
1623wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1624{
1625	sc->nodesmsk &= ~(1 << id);
1626}
1627
1628static struct ieee80211_node *
1629wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1630{
1631	struct wpi_node *wn;
1632
1633	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1634	    M_NOWAIT | M_ZERO);
1635
1636	if (wn == NULL)
1637		return NULL;
1638
1639	wn->id = WPI_ID_UNDEFINED;
1640
1641	return &wn->ni;
1642}
1643
1644static void
1645wpi_node_free(struct ieee80211_node *ni)
1646{
1647	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1648	struct wpi_node *wn = WPI_NODE(ni);
1649
1650	if (wn->id != WPI_ID_UNDEFINED) {
1651		WPI_NT_LOCK(sc);
1652		if (wpi_check_node_entry(sc, wn->id)) {
1653			wpi_del_node_entry(sc, wn->id);
1654			wpi_del_node(sc, ni);
1655		}
1656		WPI_NT_UNLOCK(sc);
1657	}
1658
1659	sc->sc_node_free(ni);
1660}
1661
1662static __inline int
1663wpi_check_bss_filter(struct wpi_softc *sc)
1664{
1665	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1666}
1667
1668static void
1669wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1670    const struct ieee80211_rx_stats *rxs,
1671    int rssi, int nf)
1672{
1673	struct ieee80211vap *vap = ni->ni_vap;
1674	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1675	struct wpi_vap *wvp = WPI_VAP(vap);
1676	uint64_t ni_tstamp, rx_tstamp;
1677
1678	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1679
1680	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1681	    vap->iv_state == IEEE80211_S_RUN &&
1682	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1683	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1684		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1685		rx_tstamp = le64toh(sc->rx_tstamp);
1686
1687		if (ni_tstamp >= rx_tstamp) {
1688			DPRINTF(sc, WPI_DEBUG_STATE,
1689			    "ibss merge, tsf %ju tstamp %ju\n",
1690			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1691			(void) ieee80211_ibss_merge(ni);
1692		}
1693	}
1694}
1695
1696static void
1697wpi_restore_node(void *arg, struct ieee80211_node *ni)
1698{
1699	struct wpi_softc *sc = arg;
1700	struct wpi_node *wn = WPI_NODE(ni);
1701	int error;
1702
1703	WPI_NT_LOCK(sc);
1704	if (wn->id != WPI_ID_UNDEFINED) {
1705		wn->id = WPI_ID_UNDEFINED;
1706		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1707			device_printf(sc->sc_dev,
1708			    "%s: could not add IBSS node, error %d\n",
1709			    __func__, error);
1710		}
1711	}
1712	WPI_NT_UNLOCK(sc);
1713}
1714
1715static void
1716wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1717{
1718	struct ieee80211com *ic = &sc->sc_ic;
1719
1720	/* Set group keys once. */
1721	WPI_NT_LOCK(sc);
1722	wvp->wv_gtk = 0;
1723	WPI_NT_UNLOCK(sc);
1724
1725	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1726	ieee80211_crypto_reload_keys(ic);
1727}
1728
1729/**
1730 * Called by net80211 when ever there is a change to 80211 state machine
1731 */
1732static int
1733wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1734{
1735	struct wpi_vap *wvp = WPI_VAP(vap);
1736	struct ieee80211com *ic = vap->iv_ic;
1737	struct wpi_softc *sc = ic->ic_softc;
1738	int error = 0;
1739
1740	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1741
1742	WPI_TXQ_LOCK(sc);
1743	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1744		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1745		WPI_TXQ_UNLOCK(sc);
1746
1747		return ENXIO;
1748	}
1749	WPI_TXQ_UNLOCK(sc);
1750
1751	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1752		ieee80211_state_name[vap->iv_state],
1753		ieee80211_state_name[nstate]);
1754
1755	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1756		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1757			device_printf(sc->sc_dev,
1758			    "%s: could not set power saving level\n",
1759			    __func__);
1760			return error;
1761		}
1762
1763		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1764	}
1765
1766	switch (nstate) {
1767	case IEEE80211_S_SCAN:
1768		WPI_RXON_LOCK(sc);
1769		if (wpi_check_bss_filter(sc) != 0) {
1770			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1771			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1772				device_printf(sc->sc_dev,
1773				    "%s: could not send RXON\n", __func__);
1774			}
1775		}
1776		WPI_RXON_UNLOCK(sc);
1777		break;
1778
1779	case IEEE80211_S_ASSOC:
1780		if (vap->iv_state != IEEE80211_S_RUN)
1781			break;
1782		/* FALLTHROUGH */
1783	case IEEE80211_S_AUTH:
1784		/*
1785		 * NB: do not optimize AUTH -> AUTH state transmission -
1786		 * this will break powersave with non-QoS AP!
1787		 */
1788
1789		/*
1790		 * The node must be registered in the firmware before auth.
1791		 * Also the associd must be cleared on RUN -> ASSOC
1792		 * transitions.
1793		 */
1794		if ((error = wpi_auth(sc, vap)) != 0) {
1795			device_printf(sc->sc_dev,
1796			    "%s: could not move to AUTH state, error %d\n",
1797			    __func__, error);
1798		}
1799		break;
1800
1801	case IEEE80211_S_RUN:
1802		/*
1803		 * RUN -> RUN transition:
1804		 * STA mode: Just restart the timers.
1805		 * IBSS mode: Process IBSS merge.
1806		 */
1807		if (vap->iv_state == IEEE80211_S_RUN) {
1808			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1809				WPI_RXON_LOCK(sc);
1810				wpi_calib_timeout(sc);
1811				WPI_RXON_UNLOCK(sc);
1812				break;
1813			} else {
1814				/*
1815				 * Drop the BSS_FILTER bit
1816				 * (there is no another way to change bssid).
1817				 */
1818				WPI_RXON_LOCK(sc);
1819				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1820				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1821					device_printf(sc->sc_dev,
1822					    "%s: could not send RXON\n",
1823					    __func__);
1824				}
1825				WPI_RXON_UNLOCK(sc);
1826
1827				/* Restore all what was lost. */
1828				wpi_restore_node_table(sc, wvp);
1829
1830				/* XXX set conditionally? */
1831				wpi_updateedca(ic);
1832			}
1833		}
1834
1835		/*
1836		 * !RUN -> RUN requires setting the association id
1837		 * which is done with a firmware cmd.  We also defer
1838		 * starting the timers until that work is done.
1839		 */
1840		if ((error = wpi_run(sc, vap)) != 0) {
1841			device_printf(sc->sc_dev,
1842			    "%s: could not move to RUN state\n", __func__);
1843		}
1844		break;
1845
1846	default:
1847		break;
1848	}
1849	if (error != 0) {
1850		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1851		return error;
1852	}
1853
1854	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1855
1856	return wvp->wv_newstate(vap, nstate, arg);
1857}
1858
1859static void
1860wpi_calib_timeout(void *arg)
1861{
1862	struct wpi_softc *sc = arg;
1863
1864	if (wpi_check_bss_filter(sc) == 0)
1865		return;
1866
1867	wpi_power_calibration(sc);
1868
1869	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1870}
1871
1872static __inline uint8_t
1873rate2plcp(const uint8_t rate)
1874{
1875	switch (rate) {
1876	case 12:	return 0xd;
1877	case 18:	return 0xf;
1878	case 24:	return 0x5;
1879	case 36:	return 0x7;
1880	case 48:	return 0x9;
1881	case 72:	return 0xb;
1882	case 96:	return 0x1;
1883	case 108:	return 0x3;
1884	case 2:		return 10;
1885	case 4:		return 20;
1886	case 11:	return 55;
1887	case 22:	return 110;
1888	default:	return 0;
1889	}
1890}
1891
1892static __inline uint8_t
1893plcp2rate(const uint8_t plcp)
1894{
1895	switch (plcp) {
1896	case 0xd:	return 12;
1897	case 0xf:	return 18;
1898	case 0x5:	return 24;
1899	case 0x7:	return 36;
1900	case 0x9:	return 48;
1901	case 0xb:	return 72;
1902	case 0x1:	return 96;
1903	case 0x3:	return 108;
1904	case 10:	return 2;
1905	case 20:	return 4;
1906	case 55:	return 11;
1907	case 110:	return 22;
1908	default:	return 0;
1909	}
1910}
1911
1912/* Quickly determine if a given rate is CCK or OFDM. */
1913#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1914
1915static void
1916wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1917    struct wpi_rx_data *data)
1918{
1919	struct ieee80211com *ic = &sc->sc_ic;
1920	struct wpi_rx_ring *ring = &sc->rxq;
1921	struct wpi_rx_stat *stat;
1922	struct wpi_rx_head *head;
1923	struct wpi_rx_tail *tail;
1924	struct ieee80211_frame *wh;
1925	struct ieee80211_node *ni;
1926	struct mbuf *m, *m1;
1927	bus_addr_t paddr;
1928	uint32_t flags;
1929	uint16_t len;
1930	int error;
1931
1932	stat = (struct wpi_rx_stat *)(desc + 1);
1933
1934	if (stat->len > WPI_STAT_MAXLEN) {
1935		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1936		goto fail1;
1937	}
1938
1939	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1940	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1941	len = le16toh(head->len);
1942	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1943	flags = le32toh(tail->flags);
1944
1945	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1946	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1947	    le32toh(desc->len), len, (int8_t)stat->rssi,
1948	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1949
1950	/* Discard frames with a bad FCS early. */
1951	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1952		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1953		    __func__, flags);
1954		goto fail1;
1955	}
1956	/* Discard frames that are too short. */
1957	if (len < sizeof (struct ieee80211_frame_ack)) {
1958		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1959		    __func__, len);
1960		goto fail1;
1961	}
1962
1963	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1964	if (m1 == NULL) {
1965		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1966		    __func__);
1967		goto fail1;
1968	}
1969	bus_dmamap_unload(ring->data_dmat, data->map);
1970
1971	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1972	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1973	if (error != 0 && error != EFBIG) {
1974		device_printf(sc->sc_dev,
1975		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1976		m_freem(m1);
1977
1978		/* Try to reload the old mbuf. */
1979		error = bus_dmamap_load(ring->data_dmat, data->map,
1980		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1981		    &paddr, BUS_DMA_NOWAIT);
1982		if (error != 0 && error != EFBIG) {
1983			panic("%s: could not load old RX mbuf", __func__);
1984		}
1985		/* Physical address may have changed. */
1986		ring->desc[ring->cur] = htole32(paddr);
1987		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1988		    BUS_DMASYNC_PREWRITE);
1989		goto fail1;
1990	}
1991
1992	m = data->m;
1993	data->m = m1;
1994	/* Update RX descriptor. */
1995	ring->desc[ring->cur] = htole32(paddr);
1996	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1997	    BUS_DMASYNC_PREWRITE);
1998
1999	/* Finalize mbuf. */
2000	m->m_data = (caddr_t)(head + 1);
2001	m->m_pkthdr.len = m->m_len = len;
2002
2003	/* Grab a reference to the source node. */
2004	wh = mtod(m, struct ieee80211_frame *);
2005
2006	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2007	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2008		/* Check whether decryption was successful or not. */
2009		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2010			DPRINTF(sc, WPI_DEBUG_RECV,
2011			    "CCMP decryption failed 0x%x\n", flags);
2012			goto fail2;
2013		}
2014		m->m_flags |= M_WEP;
2015	}
2016
2017	if (len >= sizeof(struct ieee80211_frame_min))
2018		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2019	else
2020		ni = NULL;
2021
2022	sc->rx_tstamp = tail->tstamp;
2023
2024	if (ieee80211_radiotap_active(ic)) {
2025		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2026
2027		tap->wr_flags = 0;
2028		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2029			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2030		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2031		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2032		tap->wr_tsft = tail->tstamp;
2033		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2034		tap->wr_rate = plcp2rate(head->plcp);
2035	}
2036
2037	WPI_UNLOCK(sc);
2038
2039	/* Send the frame to the 802.11 layer. */
2040	if (ni != NULL) {
2041		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2042		/* Node is no longer needed. */
2043		ieee80211_free_node(ni);
2044	} else
2045		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2046
2047	WPI_LOCK(sc);
2048
2049	return;
2050
2051fail2:	m_freem(m);
2052
2053fail1:	counter_u64_add(ic->ic_ierrors, 1);
2054}
2055
2056static void
2057wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2058    struct wpi_rx_data *data)
2059{
2060	/* Ignore */
2061}
2062
2063static void
2064wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2065{
2066	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2067	struct wpi_tx_data *data = &ring->data[desc->idx];
2068	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2069	struct mbuf *m;
2070	struct ieee80211_node *ni;
2071	struct ieee80211vap *vap;
2072	struct ieee80211com *ic;
2073	uint32_t status = le32toh(stat->status);
2074	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2075
2076	KASSERT(data->ni != NULL, ("no node"));
2077	KASSERT(data->m != NULL, ("no mbuf"));
2078
2079	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2080
2081	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2082	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2083	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2084	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2085
2086	/* Unmap and free mbuf. */
2087	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2088	bus_dmamap_unload(ring->data_dmat, data->map);
2089	m = data->m, data->m = NULL;
2090	ni = data->ni, data->ni = NULL;
2091	vap = ni->ni_vap;
2092	ic = vap->iv_ic;
2093
2094	/*
2095	 * Update rate control statistics for the node.
2096	 */
2097	if (status & WPI_TX_STATUS_FAIL) {
2098		ieee80211_ratectl_tx_complete(vap, ni,
2099		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2100	} else
2101		ieee80211_ratectl_tx_complete(vap, ni,
2102		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2103
2104	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2105
2106	WPI_TXQ_STATE_LOCK(sc);
2107	ring->queued -= 1;
2108	if (ring->queued > 0) {
2109		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2110
2111		if ((sc->qfullmsk & (1 << ring->qid)) != 0 &&
2112		     ring->queued < WPI_TX_RING_LOMARK) {
2113			sc->qfullmsk &= ~(1 << ring->qid);
2114			ieee80211_runtask(ic, &sc->sc_start_task);
2115		}
2116	} else
2117		callout_stop(&sc->tx_timeout);
2118	WPI_TXQ_STATE_UNLOCK(sc);
2119
2120	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2121}
2122
2123/*
2124 * Process a "command done" firmware notification.  This is where we wakeup
2125 * processes waiting for a synchronous command completion.
2126 */
2127static void
2128wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2129{
2130	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2131	struct wpi_tx_data *data;
2132
2133	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2134				   "type %s len %d\n", desc->qid, desc->idx,
2135				   desc->flags, wpi_cmd_str(desc->type),
2136				   le32toh(desc->len));
2137
2138	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2139		return;	/* Not a command ack. */
2140
2141	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2142
2143	data = &ring->data[desc->idx];
2144
2145	/* If the command was mapped in an mbuf, free it. */
2146	if (data->m != NULL) {
2147		bus_dmamap_sync(ring->data_dmat, data->map,
2148		    BUS_DMASYNC_POSTWRITE);
2149		bus_dmamap_unload(ring->data_dmat, data->map);
2150		m_freem(data->m);
2151		data->m = NULL;
2152	}
2153
2154	wakeup(&ring->cmd[desc->idx]);
2155
2156	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2157		WPI_TXQ_LOCK(sc);
2158		if (sc->sc_flags & WPI_PS_PATH) {
2159			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2160			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2161		} else {
2162			sc->sc_update_rx_ring = wpi_update_rx_ring;
2163			sc->sc_update_tx_ring = wpi_update_tx_ring;
2164		}
2165		WPI_TXQ_UNLOCK(sc);
2166	}
2167}
2168
2169static void
2170wpi_notif_intr(struct wpi_softc *sc)
2171{
2172	struct ieee80211com *ic = &sc->sc_ic;
2173	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2174	uint32_t hw;
2175
2176	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2177	    BUS_DMASYNC_POSTREAD);
2178
2179	hw = le32toh(sc->shared->next) & 0xfff;
2180	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2181
2182	while (sc->rxq.cur != hw) {
2183		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2184
2185		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2186		struct wpi_rx_desc *desc;
2187
2188		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2189		    BUS_DMASYNC_POSTREAD);
2190		desc = mtod(data->m, struct wpi_rx_desc *);
2191
2192		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2193		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2194		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2195		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2196
2197		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2198			/* Reply to a command. */
2199			wpi_cmd_done(sc, desc);
2200		}
2201
2202		switch (desc->type) {
2203		case WPI_RX_DONE:
2204			/* An 802.11 frame has been received. */
2205			wpi_rx_done(sc, desc, data);
2206
2207			if (sc->sc_running == 0) {
2208				/* wpi_stop() was called. */
2209				return;
2210			}
2211
2212			break;
2213
2214		case WPI_TX_DONE:
2215			/* An 802.11 frame has been transmitted. */
2216			wpi_tx_done(sc, desc);
2217			break;
2218
2219		case WPI_RX_STATISTICS:
2220		case WPI_BEACON_STATISTICS:
2221			wpi_rx_statistics(sc, desc, data);
2222			break;
2223
2224		case WPI_BEACON_MISSED:
2225		{
2226			struct wpi_beacon_missed *miss =
2227			    (struct wpi_beacon_missed *)(desc + 1);
2228			uint32_t expected, misses, received, threshold;
2229
2230			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2231			    BUS_DMASYNC_POSTREAD);
2232
2233			misses = le32toh(miss->consecutive);
2234			expected = le32toh(miss->expected);
2235			received = le32toh(miss->received);
2236			threshold = MAX(2, vap->iv_bmissthreshold);
2237
2238			DPRINTF(sc, WPI_DEBUG_BMISS,
2239			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2240			    __func__, misses, le32toh(miss->total), received,
2241			    expected);
2242
2243			if (misses >= threshold ||
2244			    (received == 0 && expected >= threshold)) {
2245				WPI_RXON_LOCK(sc);
2246				if (callout_pending(&sc->scan_timeout)) {
2247					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2248					    0, 1);
2249				}
2250				WPI_RXON_UNLOCK(sc);
2251				if (vap->iv_state == IEEE80211_S_RUN &&
2252				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2253					ieee80211_beacon_miss(ic);
2254			}
2255
2256			break;
2257		}
2258#ifdef WPI_DEBUG
2259		case WPI_BEACON_SENT:
2260		{
2261			struct wpi_tx_stat *stat =
2262			    (struct wpi_tx_stat *)(desc + 1);
2263			uint64_t *tsf = (uint64_t *)(stat + 1);
2264			uint32_t *mode = (uint32_t *)(tsf + 1);
2265
2266			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2267			    BUS_DMASYNC_POSTREAD);
2268
2269			DPRINTF(sc, WPI_DEBUG_BEACON,
2270			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2271			    "duration %u, status %x, tsf %ju, mode %x\n",
2272			    stat->rtsfailcnt, stat->ackfailcnt,
2273			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2274			    le32toh(stat->status), *tsf, *mode);
2275
2276			break;
2277		}
2278#endif
2279		case WPI_UC_READY:
2280		{
2281			struct wpi_ucode_info *uc =
2282			    (struct wpi_ucode_info *)(desc + 1);
2283
2284			/* The microcontroller is ready. */
2285			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2286			    BUS_DMASYNC_POSTREAD);
2287			DPRINTF(sc, WPI_DEBUG_RESET,
2288			    "microcode alive notification version=%d.%d "
2289			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2290			    uc->subtype, le32toh(uc->valid));
2291
2292			if (le32toh(uc->valid) != 1) {
2293				device_printf(sc->sc_dev,
2294				    "microcontroller initialization failed\n");
2295				wpi_stop_locked(sc);
2296				return;
2297			}
2298			/* Save the address of the error log in SRAM. */
2299			sc->errptr = le32toh(uc->errptr);
2300			break;
2301		}
2302		case WPI_STATE_CHANGED:
2303		{
2304			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2305			    BUS_DMASYNC_POSTREAD);
2306
2307			uint32_t *status = (uint32_t *)(desc + 1);
2308
2309			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2310			    le32toh(*status));
2311
2312			if (le32toh(*status) & 1) {
2313				WPI_NT_LOCK(sc);
2314				wpi_clear_node_table(sc);
2315				WPI_NT_UNLOCK(sc);
2316				taskqueue_enqueue(sc->sc_tq,
2317				    &sc->sc_radiooff_task);
2318				return;
2319			}
2320			break;
2321		}
2322#ifdef WPI_DEBUG
2323		case WPI_START_SCAN:
2324		{
2325			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2326			    BUS_DMASYNC_POSTREAD);
2327
2328			struct wpi_start_scan *scan =
2329			    (struct wpi_start_scan *)(desc + 1);
2330			DPRINTF(sc, WPI_DEBUG_SCAN,
2331			    "%s: scanning channel %d status %x\n",
2332			    __func__, scan->chan, le32toh(scan->status));
2333
2334			break;
2335		}
2336#endif
2337		case WPI_STOP_SCAN:
2338		{
2339			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2340			    BUS_DMASYNC_POSTREAD);
2341
2342			struct wpi_stop_scan *scan =
2343			    (struct wpi_stop_scan *)(desc + 1);
2344
2345			DPRINTF(sc, WPI_DEBUG_SCAN,
2346			    "scan finished nchan=%d status=%d chan=%d\n",
2347			    scan->nchan, scan->status, scan->chan);
2348
2349			WPI_RXON_LOCK(sc);
2350			callout_stop(&sc->scan_timeout);
2351			WPI_RXON_UNLOCK(sc);
2352			if (scan->status == WPI_SCAN_ABORTED)
2353				ieee80211_cancel_scan(vap);
2354			else
2355				ieee80211_scan_next(vap);
2356			break;
2357		}
2358		}
2359
2360		if (sc->rxq.cur % 8 == 0) {
2361			/* Tell the firmware what we have processed. */
2362			sc->sc_update_rx_ring(sc);
2363		}
2364	}
2365}
2366
2367/*
2368 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2369 * from power-down sleep mode.
2370 */
2371static void
2372wpi_wakeup_intr(struct wpi_softc *sc)
2373{
2374	int qid;
2375
2376	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2377	    "%s: ucode wakeup from power-down sleep\n", __func__);
2378
2379	/* Wakeup RX and TX rings. */
2380	if (sc->rxq.update) {
2381		sc->rxq.update = 0;
2382		wpi_update_rx_ring(sc);
2383	}
2384	WPI_TXQ_LOCK(sc);
2385	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2386		struct wpi_tx_ring *ring = &sc->txq[qid];
2387
2388		if (ring->update) {
2389			ring->update = 0;
2390			wpi_update_tx_ring(sc, ring);
2391		}
2392	}
2393	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2394	WPI_TXQ_UNLOCK(sc);
2395}
2396
2397/*
2398 * This function prints firmware registers
2399 */
2400#ifdef WPI_DEBUG
2401static void
2402wpi_debug_registers(struct wpi_softc *sc)
2403{
2404	size_t i;
2405	static const uint32_t csr_tbl[] = {
2406		WPI_HW_IF_CONFIG,
2407		WPI_INT,
2408		WPI_INT_MASK,
2409		WPI_FH_INT,
2410		WPI_GPIO_IN,
2411		WPI_RESET,
2412		WPI_GP_CNTRL,
2413		WPI_EEPROM,
2414		WPI_EEPROM_GP,
2415		WPI_GIO,
2416		WPI_UCODE_GP1,
2417		WPI_UCODE_GP2,
2418		WPI_GIO_CHICKEN,
2419		WPI_ANA_PLL,
2420		WPI_DBG_HPET_MEM,
2421	};
2422	static const uint32_t prph_tbl[] = {
2423		WPI_APMG_CLK_CTRL,
2424		WPI_APMG_PS,
2425		WPI_APMG_PCI_STT,
2426		WPI_APMG_RFKILL,
2427	};
2428
2429	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2430
2431	for (i = 0; i < nitems(csr_tbl); i++) {
2432		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2433		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2434
2435		if ((i + 1) % 2 == 0)
2436			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2437	}
2438	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2439
2440	if (wpi_nic_lock(sc) == 0) {
2441		for (i = 0; i < nitems(prph_tbl); i++) {
2442			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2443			    wpi_get_prph_string(prph_tbl[i]),
2444			    wpi_prph_read(sc, prph_tbl[i]));
2445
2446			if ((i + 1) % 2 == 0)
2447				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2448		}
2449		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2450		wpi_nic_unlock(sc);
2451	} else {
2452		DPRINTF(sc, WPI_DEBUG_REGISTER,
2453		    "Cannot access internal registers.\n");
2454	}
2455}
2456#endif
2457
2458/*
2459 * Dump the error log of the firmware when a firmware panic occurs.  Although
2460 * we can't debug the firmware because it is neither open source nor free, it
2461 * can help us to identify certain classes of problems.
2462 */
2463static void
2464wpi_fatal_intr(struct wpi_softc *sc)
2465{
2466	struct wpi_fw_dump dump;
2467	uint32_t i, offset, count;
2468
2469	/* Check that the error log address is valid. */
2470	if (sc->errptr < WPI_FW_DATA_BASE ||
2471	    sc->errptr + sizeof (dump) >
2472	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2473		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2474		    sc->errptr);
2475		return;
2476	}
2477	if (wpi_nic_lock(sc) != 0) {
2478		printf("%s: could not read firmware error log\n", __func__);
2479		return;
2480	}
2481	/* Read number of entries in the log. */
2482	count = wpi_mem_read(sc, sc->errptr);
2483	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2484		printf("%s: invalid count field (count = %u)\n", __func__,
2485		    count);
2486		wpi_nic_unlock(sc);
2487		return;
2488	}
2489	/* Skip "count" field. */
2490	offset = sc->errptr + sizeof (uint32_t);
2491	printf("firmware error log (count = %u):\n", count);
2492	for (i = 0; i < count; i++) {
2493		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2494		    sizeof (dump) / sizeof (uint32_t));
2495
2496		printf("  error type = \"%s\" (0x%08X)\n",
2497		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2498		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2499		    dump.desc);
2500		printf("  error data      = 0x%08X\n",
2501		    dump.data);
2502		printf("  branch link     = 0x%08X%08X\n",
2503		    dump.blink[0], dump.blink[1]);
2504		printf("  interrupt link  = 0x%08X%08X\n",
2505		    dump.ilink[0], dump.ilink[1]);
2506		printf("  time            = %u\n", dump.time);
2507
2508		offset += sizeof (dump);
2509	}
2510	wpi_nic_unlock(sc);
2511	/* Dump driver status (TX and RX rings) while we're here. */
2512	printf("driver status:\n");
2513	WPI_TXQ_LOCK(sc);
2514	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2515		struct wpi_tx_ring *ring = &sc->txq[i];
2516		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2517		    i, ring->qid, ring->cur, ring->queued);
2518	}
2519	WPI_TXQ_UNLOCK(sc);
2520	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2521}
2522
2523static void
2524wpi_intr(void *arg)
2525{
2526	struct wpi_softc *sc = arg;
2527	uint32_t r1, r2;
2528
2529	WPI_LOCK(sc);
2530
2531	/* Disable interrupts. */
2532	WPI_WRITE(sc, WPI_INT_MASK, 0);
2533
2534	r1 = WPI_READ(sc, WPI_INT);
2535
2536	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2537		goto end;	/* Hardware gone! */
2538
2539	r2 = WPI_READ(sc, WPI_FH_INT);
2540
2541	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2542	    r1, r2);
2543
2544	if (r1 == 0 && r2 == 0)
2545		goto done;	/* Interrupt not for us. */
2546
2547	/* Acknowledge interrupts. */
2548	WPI_WRITE(sc, WPI_INT, r1);
2549	WPI_WRITE(sc, WPI_FH_INT, r2);
2550
2551	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2552		device_printf(sc->sc_dev, "fatal firmware error\n");
2553#ifdef WPI_DEBUG
2554		wpi_debug_registers(sc);
2555#endif
2556		wpi_fatal_intr(sc);
2557		DPRINTF(sc, WPI_DEBUG_HW,
2558		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2559		    "(Hardware Error)");
2560		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2561		goto end;
2562	}
2563
2564	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2565	    (r2 & WPI_FH_INT_RX))
2566		wpi_notif_intr(sc);
2567
2568	if (r1 & WPI_INT_ALIVE)
2569		wakeup(sc);	/* Firmware is alive. */
2570
2571	if (r1 & WPI_INT_WAKEUP)
2572		wpi_wakeup_intr(sc);
2573
2574done:
2575	/* Re-enable interrupts. */
2576	if (sc->sc_running)
2577		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2578
2579end:	WPI_UNLOCK(sc);
2580}
2581
2582static int
2583wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2584{
2585	struct ieee80211_frame *wh;
2586	struct wpi_tx_cmd *cmd;
2587	struct wpi_tx_data *data;
2588	struct wpi_tx_desc *desc;
2589	struct wpi_tx_ring *ring;
2590	struct mbuf *m1;
2591	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2592	int error, i, hdrlen, nsegs, totlen, pad;
2593
2594	WPI_TXQ_LOCK(sc);
2595
2596	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2597
2598	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2599
2600	if (sc->sc_running == 0) {
2601		/* wpi_stop() was called */
2602		error = ENETDOWN;
2603		goto fail;
2604	}
2605
2606	wh = mtod(buf->m, struct ieee80211_frame *);
2607	hdrlen = ieee80211_anyhdrsize(wh);
2608	totlen = buf->m->m_pkthdr.len;
2609
2610	if (hdrlen & 3) {
2611		/* First segment length must be a multiple of 4. */
2612		pad = 4 - (hdrlen & 3);
2613	} else
2614		pad = 0;
2615
2616	ring = &sc->txq[buf->ac];
2617	desc = &ring->desc[ring->cur];
2618	data = &ring->data[ring->cur];
2619
2620	/* Prepare TX firmware command. */
2621	cmd = &ring->cmd[ring->cur];
2622	cmd->code = buf->code;
2623	cmd->flags = 0;
2624	cmd->qid = ring->qid;
2625	cmd->idx = ring->cur;
2626
2627	memcpy(cmd->data, buf->data, buf->size);
2628
2629	/* Save and trim IEEE802.11 header. */
2630	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2631	m_adj(buf->m, hdrlen);
2632
2633	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2634	    segs, &nsegs, BUS_DMA_NOWAIT);
2635	if (error != 0 && error != EFBIG) {
2636		device_printf(sc->sc_dev,
2637		    "%s: can't map mbuf (error %d)\n", __func__, error);
2638		goto fail;
2639	}
2640	if (error != 0) {
2641		/* Too many DMA segments, linearize mbuf. */
2642		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2643		if (m1 == NULL) {
2644			device_printf(sc->sc_dev,
2645			    "%s: could not defrag mbuf\n", __func__);
2646			error = ENOBUFS;
2647			goto fail;
2648		}
2649		buf->m = m1;
2650
2651		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2652		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2653		if (error != 0) {
2654			device_printf(sc->sc_dev,
2655			    "%s: can't map mbuf (error %d)\n", __func__,
2656			    error);
2657			goto fail;
2658		}
2659	}
2660
2661	KASSERT(nsegs < WPI_MAX_SCATTER,
2662	    ("too many DMA segments, nsegs (%d) should be less than %d",
2663	     nsegs, WPI_MAX_SCATTER));
2664
2665	data->m = buf->m;
2666	data->ni = buf->ni;
2667
2668	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2669	    __func__, ring->qid, ring->cur, totlen, nsegs);
2670
2671	/* Fill TX descriptor. */
2672	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2673	/* First DMA segment is used by the TX command. */
2674	desc->segs[0].addr = htole32(data->cmd_paddr);
2675	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2676	/* Other DMA segments are for data payload. */
2677	seg = &segs[0];
2678	for (i = 1; i <= nsegs; i++) {
2679		desc->segs[i].addr = htole32(seg->ds_addr);
2680		desc->segs[i].len  = htole32(seg->ds_len);
2681		seg++;
2682	}
2683
2684	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2685	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2686	    BUS_DMASYNC_PREWRITE);
2687	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2688	    BUS_DMASYNC_PREWRITE);
2689
2690	/* Kick TX ring. */
2691	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2692	sc->sc_update_tx_ring(sc, ring);
2693
2694	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2695		/* Mark TX ring as full if we reach a certain threshold. */
2696		WPI_TXQ_STATE_LOCK(sc);
2697		if (++ring->queued > WPI_TX_RING_HIMARK)
2698			sc->qfullmsk |= 1 << ring->qid;
2699		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2700		WPI_TXQ_STATE_UNLOCK(sc);
2701	}
2702
2703	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2704
2705	WPI_TXQ_UNLOCK(sc);
2706
2707	return 0;
2708
2709fail:	m_freem(buf->m);
2710
2711	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2712
2713	WPI_TXQ_UNLOCK(sc);
2714
2715	return error;
2716}
2717
2718/*
2719 * Construct the data packet for a transmit buffer.
2720 */
2721static int
2722wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2723{
2724	const struct ieee80211_txparam *tp;
2725	struct ieee80211vap *vap = ni->ni_vap;
2726	struct ieee80211com *ic = ni->ni_ic;
2727	struct wpi_node *wn = WPI_NODE(ni);
2728	struct ieee80211_channel *chan;
2729	struct ieee80211_frame *wh;
2730	struct ieee80211_key *k = NULL;
2731	struct wpi_buf tx_data;
2732	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2733	uint32_t flags;
2734	uint16_t qos;
2735	uint8_t tid, type;
2736	int ac, error, swcrypt, rate, ismcast, totlen;
2737
2738	wh = mtod(m, struct ieee80211_frame *);
2739	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2740	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2741
2742	/* Select EDCA Access Category and TX ring for this frame. */
2743	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2744		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2745		tid = qos & IEEE80211_QOS_TID;
2746	} else {
2747		qos = 0;
2748		tid = 0;
2749	}
2750	ac = M_WME_GETAC(m);
2751
2752	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2753		ni->ni_chan : ic->ic_curchan;
2754	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2755
2756	/* Choose a TX rate index. */
2757	if (type == IEEE80211_FC0_TYPE_MGT)
2758		rate = tp->mgmtrate;
2759	else if (ismcast)
2760		rate = tp->mcastrate;
2761	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2762		rate = tp->ucastrate;
2763	else if (m->m_flags & M_EAPOL)
2764		rate = tp->mgmtrate;
2765	else {
2766		/* XXX pass pktlen */
2767		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2768		rate = ni->ni_txrate;
2769	}
2770
2771	/* Encrypt the frame if need be. */
2772	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2773		/* Retrieve key for TX. */
2774		k = ieee80211_crypto_encap(ni, m);
2775		if (k == NULL) {
2776			error = ENOBUFS;
2777			goto fail;
2778		}
2779		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2780
2781		/* 802.11 header may have moved. */
2782		wh = mtod(m, struct ieee80211_frame *);
2783	}
2784	totlen = m->m_pkthdr.len;
2785
2786	if (ieee80211_radiotap_active_vap(vap)) {
2787		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2788
2789		tap->wt_flags = 0;
2790		tap->wt_rate = rate;
2791		if (k != NULL)
2792			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2793
2794		ieee80211_radiotap_tx(vap, m);
2795	}
2796
2797	flags = 0;
2798	if (!ismcast) {
2799		/* Unicast frame, check if an ACK is expected. */
2800		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2801		    IEEE80211_QOS_ACKPOLICY_NOACK)
2802			flags |= WPI_TX_NEED_ACK;
2803	}
2804
2805	if (!IEEE80211_QOS_HAS_SEQ(wh))
2806		flags |= WPI_TX_AUTO_SEQ;
2807	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2808		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2809
2810	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2811	if (!ismcast) {
2812		/* NB: Group frames are sent using CCK in 802.11b/g. */
2813		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2814			flags |= WPI_TX_NEED_RTS;
2815		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2816		    WPI_RATE_IS_OFDM(rate)) {
2817			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2818				flags |= WPI_TX_NEED_CTS;
2819			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2820				flags |= WPI_TX_NEED_RTS;
2821		}
2822
2823		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2824			flags |= WPI_TX_FULL_TXOP;
2825	}
2826
2827	memset(tx, 0, sizeof (struct wpi_cmd_data));
2828	if (type == IEEE80211_FC0_TYPE_MGT) {
2829		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2830
2831		/* Tell HW to set timestamp in probe responses. */
2832		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2833			flags |= WPI_TX_INSERT_TSTAMP;
2834		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2835		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2836			tx->timeout = htole16(3);
2837		else
2838			tx->timeout = htole16(2);
2839	}
2840
2841	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2842		tx->id = WPI_ID_BROADCAST;
2843	else {
2844		if (wn->id == WPI_ID_UNDEFINED) {
2845			device_printf(sc->sc_dev,
2846			    "%s: undefined node id\n", __func__);
2847			error = EINVAL;
2848			goto fail;
2849		}
2850
2851		tx->id = wn->id;
2852	}
2853
2854	if (k != NULL && !swcrypt) {
2855		switch (k->wk_cipher->ic_cipher) {
2856		case IEEE80211_CIPHER_AES_CCM:
2857			tx->security = WPI_CIPHER_CCMP;
2858			break;
2859
2860		default:
2861			break;
2862		}
2863
2864		memcpy(tx->key, k->wk_key, k->wk_keylen);
2865	}
2866
2867	tx->len = htole16(totlen);
2868	tx->flags = htole32(flags);
2869	tx->plcp = rate2plcp(rate);
2870	tx->tid = tid;
2871	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2872	tx->ofdm_mask = 0xff;
2873	tx->cck_mask = 0x0f;
2874	tx->rts_ntries = 7;
2875	tx->data_ntries = tp->maxretry;
2876
2877	tx_data.ni = ni;
2878	tx_data.m = m;
2879	tx_data.size = sizeof(struct wpi_cmd_data);
2880	tx_data.code = WPI_CMD_TX_DATA;
2881	tx_data.ac = ac;
2882
2883	return wpi_cmd2(sc, &tx_data);
2884
2885fail:	m_freem(m);
2886	return error;
2887}
2888
2889static int
2890wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2891    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2892{
2893	struct ieee80211vap *vap = ni->ni_vap;
2894	struct ieee80211_key *k = NULL;
2895	struct ieee80211_frame *wh;
2896	struct wpi_buf tx_data;
2897	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2898	uint32_t flags;
2899	uint8_t type;
2900	int ac, rate, swcrypt, totlen;
2901
2902	wh = mtod(m, struct ieee80211_frame *);
2903	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2904
2905	ac = params->ibp_pri & 3;
2906
2907	/* Choose a TX rate index. */
2908	rate = params->ibp_rate0;
2909
2910	flags = 0;
2911	if (!IEEE80211_QOS_HAS_SEQ(wh))
2912		flags |= WPI_TX_AUTO_SEQ;
2913	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2914		flags |= WPI_TX_NEED_ACK;
2915	if (params->ibp_flags & IEEE80211_BPF_RTS)
2916		flags |= WPI_TX_NEED_RTS;
2917	if (params->ibp_flags & IEEE80211_BPF_CTS)
2918		flags |= WPI_TX_NEED_CTS;
2919	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2920		flags |= WPI_TX_FULL_TXOP;
2921
2922	/* Encrypt the frame if need be. */
2923	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2924		/* Retrieve key for TX. */
2925		k = ieee80211_crypto_encap(ni, m);
2926		if (k == NULL) {
2927			m_freem(m);
2928			return ENOBUFS;
2929		}
2930		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2931
2932		/* 802.11 header may have moved. */
2933		wh = mtod(m, struct ieee80211_frame *);
2934	}
2935	totlen = m->m_pkthdr.len;
2936
2937	if (ieee80211_radiotap_active_vap(vap)) {
2938		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2939
2940		tap->wt_flags = 0;
2941		tap->wt_rate = rate;
2942		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2943			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2944
2945		ieee80211_radiotap_tx(vap, m);
2946	}
2947
2948	memset(tx, 0, sizeof (struct wpi_cmd_data));
2949	if (type == IEEE80211_FC0_TYPE_MGT) {
2950		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2951
2952		/* Tell HW to set timestamp in probe responses. */
2953		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2954			flags |= WPI_TX_INSERT_TSTAMP;
2955		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2956		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2957			tx->timeout = htole16(3);
2958		else
2959			tx->timeout = htole16(2);
2960	}
2961
2962	if (k != NULL && !swcrypt) {
2963		switch (k->wk_cipher->ic_cipher) {
2964		case IEEE80211_CIPHER_AES_CCM:
2965			tx->security = WPI_CIPHER_CCMP;
2966			break;
2967
2968		default:
2969			break;
2970		}
2971
2972		memcpy(tx->key, k->wk_key, k->wk_keylen);
2973	}
2974
2975	tx->len = htole16(totlen);
2976	tx->flags = htole32(flags);
2977	tx->plcp = rate2plcp(rate);
2978	tx->id = WPI_ID_BROADCAST;
2979	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2980	tx->rts_ntries = params->ibp_try1;
2981	tx->data_ntries = params->ibp_try0;
2982
2983	tx_data.ni = ni;
2984	tx_data.m = m;
2985	tx_data.size = sizeof(struct wpi_cmd_data);
2986	tx_data.code = WPI_CMD_TX_DATA;
2987	tx_data.ac = ac;
2988
2989	return wpi_cmd2(sc, &tx_data);
2990}
2991
2992static __inline int
2993wpi_tx_ring_is_full(struct wpi_softc *sc, int ac)
2994{
2995	struct wpi_tx_ring *ring = &sc->txq[ac];
2996	int retval;
2997
2998	WPI_TXQ_STATE_LOCK(sc);
2999	retval = (ring->queued > WPI_TX_RING_HIMARK);
3000	WPI_TXQ_STATE_UNLOCK(sc);
3001
3002	return retval;
3003}
3004
3005static __inline void
3006wpi_handle_tx_failure(struct ieee80211_node *ni)
3007{
3008	/* NB: m is reclaimed on tx failure */
3009	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3010	ieee80211_free_node(ni);
3011}
3012
3013static int
3014wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3015    const struct ieee80211_bpf_params *params)
3016{
3017	struct ieee80211com *ic = ni->ni_ic;
3018	struct wpi_softc *sc = ic->ic_softc;
3019	int ac, error = 0;
3020
3021	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3022
3023	ac = M_WME_GETAC(m);
3024
3025	WPI_TX_LOCK(sc);
3026
3027	if (sc->sc_running == 0 || wpi_tx_ring_is_full(sc, ac)) {
3028		m_freem(m);
3029		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3030		goto unlock;
3031	}
3032
3033	if (params == NULL) {
3034		/*
3035		 * Legacy path; interpret frame contents to decide
3036		 * precisely how to send the frame.
3037		 */
3038		error = wpi_tx_data(sc, m, ni);
3039	} else {
3040		/*
3041		 * Caller supplied explicit parameters to use in
3042		 * sending the frame.
3043		 */
3044		error = wpi_tx_data_raw(sc, m, ni, params);
3045	}
3046
3047unlock:	WPI_TX_UNLOCK(sc);
3048
3049	if (error != 0) {
3050		wpi_handle_tx_failure(ni);
3051		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3052
3053		return error;
3054	}
3055
3056	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3057
3058	return 0;
3059}
3060
3061static int
3062wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3063{
3064	struct wpi_softc *sc = ic->ic_softc;
3065	struct ieee80211_node *ni;
3066	struct mbufq *sndq;
3067	int ac, error;
3068
3069	WPI_TX_LOCK(sc);
3070	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3071
3072	/* Check if interface is up & running. */
3073	if (sc->sc_running == 0) {
3074		error = ENXIO;
3075		goto unlock;
3076	}
3077
3078	/* Check for available space. */
3079	ac = M_WME_GETAC(m);
3080	sndq = &sc->txq[ac].snd;
3081	if (wpi_tx_ring_is_full(sc, ac) || mbufq_len(sndq) != 0) {
3082		/* wpi_tx_done() will dequeue it. */
3083		error = mbufq_enqueue(sndq, m);
3084		goto unlock;
3085	}
3086
3087	error = 0;
3088	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3089	if (wpi_tx_data(sc, m, ni) != 0) {
3090		wpi_handle_tx_failure(ni);
3091	}
3092
3093	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3094
3095unlock:	WPI_TX_UNLOCK(sc);
3096
3097	return (error);
3098}
3099
3100/**
3101 * Process data waiting to be sent on the output queue
3102 */
3103static void
3104wpi_start(void *arg0, int pending)
3105{
3106	struct wpi_softc *sc = arg0;
3107	struct ieee80211_node *ni;
3108	struct mbuf *m;
3109	uint8_t i;
3110
3111	WPI_TX_LOCK(sc);
3112	if (sc->sc_running == 0)
3113		goto unlock;
3114
3115	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3116
3117	for (i = 0; i < WPI_CMD_QUEUE_NUM; i++) {
3118		struct mbufq *sndq = &sc->txq[i].snd;
3119
3120		for (;;) {
3121			if (wpi_tx_ring_is_full(sc, i))
3122				break;
3123
3124			if ((m = mbufq_dequeue(sndq)) == NULL)
3125				break;
3126
3127			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3128			if (wpi_tx_data(sc, m, ni) != 0) {
3129				wpi_handle_tx_failure(ni);
3130			}
3131		}
3132	}
3133
3134	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3135unlock:	WPI_TX_UNLOCK(sc);
3136}
3137
3138static void
3139wpi_watchdog_rfkill(void *arg)
3140{
3141	struct wpi_softc *sc = arg;
3142	struct ieee80211com *ic = &sc->sc_ic;
3143
3144	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3145
3146	/* No need to lock firmware memory. */
3147	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3148		/* Radio kill switch is still off. */
3149		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3150		    sc);
3151	} else
3152		ieee80211_runtask(ic, &sc->sc_radioon_task);
3153}
3154
3155static void
3156wpi_scan_timeout(void *arg)
3157{
3158	struct wpi_softc *sc = arg;
3159	struct ieee80211com *ic = &sc->sc_ic;
3160
3161	ic_printf(ic, "scan timeout\n");
3162	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3163}
3164
3165static void
3166wpi_tx_timeout(void *arg)
3167{
3168	struct wpi_softc *sc = arg;
3169	struct ieee80211com *ic = &sc->sc_ic;
3170
3171	ic_printf(ic, "device timeout\n");
3172	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3173}
3174
3175static void
3176wpi_parent(struct ieee80211com *ic)
3177{
3178	struct wpi_softc *sc = ic->ic_softc;
3179	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3180
3181	if (ic->ic_nrunning > 0) {
3182		if (wpi_init(sc) == 0) {
3183			ieee80211_notify_radio(ic, 1);
3184			ieee80211_start_all(ic);
3185		} else {
3186			ieee80211_notify_radio(ic, 0);
3187			ieee80211_stop(vap);
3188		}
3189	} else
3190		wpi_stop(sc);
3191}
3192
3193/*
3194 * Send a command to the firmware.
3195 */
3196static int
3197wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3198    int async)
3199{
3200	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3201	struct wpi_tx_desc *desc;
3202	struct wpi_tx_data *data;
3203	struct wpi_tx_cmd *cmd;
3204	struct mbuf *m;
3205	bus_addr_t paddr;
3206	int totlen, error;
3207
3208	WPI_TXQ_LOCK(sc);
3209
3210	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3211
3212	if (sc->sc_running == 0) {
3213		/* wpi_stop() was called */
3214		if (code == WPI_CMD_SCAN)
3215			error = ENETDOWN;
3216		else
3217			error = 0;
3218
3219		goto fail;
3220	}
3221
3222	if (async == 0)
3223		WPI_LOCK_ASSERT(sc);
3224
3225	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3226	    __func__, wpi_cmd_str(code), size, async);
3227
3228	desc = &ring->desc[ring->cur];
3229	data = &ring->data[ring->cur];
3230	totlen = 4 + size;
3231
3232	if (size > sizeof cmd->data) {
3233		/* Command is too large to fit in a descriptor. */
3234		if (totlen > MCLBYTES) {
3235			error = EINVAL;
3236			goto fail;
3237		}
3238		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3239		if (m == NULL) {
3240			error = ENOMEM;
3241			goto fail;
3242		}
3243		cmd = mtod(m, struct wpi_tx_cmd *);
3244		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3245		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3246		if (error != 0) {
3247			m_freem(m);
3248			goto fail;
3249		}
3250		data->m = m;
3251	} else {
3252		cmd = &ring->cmd[ring->cur];
3253		paddr = data->cmd_paddr;
3254	}
3255
3256	cmd->code = code;
3257	cmd->flags = 0;
3258	cmd->qid = ring->qid;
3259	cmd->idx = ring->cur;
3260	memcpy(cmd->data, buf, size);
3261
3262	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3263	desc->segs[0].addr = htole32(paddr);
3264	desc->segs[0].len  = htole32(totlen);
3265
3266	if (size > sizeof cmd->data) {
3267		bus_dmamap_sync(ring->data_dmat, data->map,
3268		    BUS_DMASYNC_PREWRITE);
3269	} else {
3270		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3271		    BUS_DMASYNC_PREWRITE);
3272	}
3273	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3274	    BUS_DMASYNC_PREWRITE);
3275
3276	/* Kick command ring. */
3277	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3278	sc->sc_update_tx_ring(sc, ring);
3279
3280	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3281
3282	WPI_TXQ_UNLOCK(sc);
3283
3284	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3285
3286fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3287
3288	WPI_TXQ_UNLOCK(sc);
3289
3290	return error;
3291}
3292
3293/*
3294 * Configure HW multi-rate retries.
3295 */
3296static int
3297wpi_mrr_setup(struct wpi_softc *sc)
3298{
3299	struct ieee80211com *ic = &sc->sc_ic;
3300	struct wpi_mrr_setup mrr;
3301	int i, error;
3302
3303	/* CCK rates (not used with 802.11a). */
3304	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3305		mrr.rates[i].flags = 0;
3306		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3307		/* Fallback to the immediate lower CCK rate (if any.) */
3308		mrr.rates[i].next =
3309		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3310		/* Try twice at this rate before falling back to "next". */
3311		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3312	}
3313	/* OFDM rates (not used with 802.11b). */
3314	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3315		mrr.rates[i].flags = 0;
3316		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3317		/* Fallback to the immediate lower rate (if any.) */
3318		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3319		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3320		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3321			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3322		    i - 1;
3323		/* Try twice at this rate before falling back to "next". */
3324		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3325	}
3326	/* Setup MRR for control frames. */
3327	mrr.which = htole32(WPI_MRR_CTL);
3328	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3329	if (error != 0) {
3330		device_printf(sc->sc_dev,
3331		    "could not setup MRR for control frames\n");
3332		return error;
3333	}
3334	/* Setup MRR for data frames. */
3335	mrr.which = htole32(WPI_MRR_DATA);
3336	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3337	if (error != 0) {
3338		device_printf(sc->sc_dev,
3339		    "could not setup MRR for data frames\n");
3340		return error;
3341	}
3342	return 0;
3343}
3344
3345static int
3346wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3347{
3348	struct ieee80211com *ic = ni->ni_ic;
3349	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3350	struct wpi_node *wn = WPI_NODE(ni);
3351	struct wpi_node_info node;
3352	int error;
3353
3354	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3355
3356	if (wn->id == WPI_ID_UNDEFINED)
3357		return EINVAL;
3358
3359	memset(&node, 0, sizeof node);
3360	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3361	node.id = wn->id;
3362	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3363	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3364	node.action = htole32(WPI_ACTION_SET_RATE);
3365	node.antenna = WPI_ANTENNA_BOTH;
3366
3367	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3368	    wn->id, ether_sprintf(ni->ni_macaddr));
3369
3370	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3371	if (error != 0) {
3372		device_printf(sc->sc_dev,
3373		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3374		    error);
3375		return error;
3376	}
3377
3378	if (wvp->wv_gtk != 0) {
3379		error = wpi_set_global_keys(ni);
3380		if (error != 0) {
3381			device_printf(sc->sc_dev,
3382			    "%s: error while setting global keys\n", __func__);
3383			return ENXIO;
3384		}
3385	}
3386
3387	return 0;
3388}
3389
3390/*
3391 * Broadcast node is used to send group-addressed and management frames.
3392 */
3393static int
3394wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3395{
3396	struct ieee80211com *ic = &sc->sc_ic;
3397	struct wpi_node_info node;
3398
3399	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3400
3401	memset(&node, 0, sizeof node);
3402	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3403	node.id = WPI_ID_BROADCAST;
3404	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3405	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3406	node.action = htole32(WPI_ACTION_SET_RATE);
3407	node.antenna = WPI_ANTENNA_BOTH;
3408
3409	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3410
3411	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3412}
3413
3414static int
3415wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3416{
3417	struct wpi_node *wn = WPI_NODE(ni);
3418	int error;
3419
3420	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3421
3422	wn->id = wpi_add_node_entry_sta(sc);
3423
3424	if ((error = wpi_add_node(sc, ni)) != 0) {
3425		wpi_del_node_entry(sc, wn->id);
3426		wn->id = WPI_ID_UNDEFINED;
3427		return error;
3428	}
3429
3430	return 0;
3431}
3432
3433static int
3434wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3435{
3436	struct wpi_node *wn = WPI_NODE(ni);
3437	int error;
3438
3439	KASSERT(wn->id == WPI_ID_UNDEFINED,
3440	    ("the node %d was added before", wn->id));
3441
3442	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3443
3444	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3445		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3446		return ENOMEM;
3447	}
3448
3449	if ((error = wpi_add_node(sc, ni)) != 0) {
3450		wpi_del_node_entry(sc, wn->id);
3451		wn->id = WPI_ID_UNDEFINED;
3452		return error;
3453	}
3454
3455	return 0;
3456}
3457
3458static void
3459wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3460{
3461	struct wpi_node *wn = WPI_NODE(ni);
3462	struct wpi_cmd_del_node node;
3463	int error;
3464
3465	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3466
3467	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3468
3469	memset(&node, 0, sizeof node);
3470	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3471	node.count = 1;
3472
3473	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3474	    wn->id, ether_sprintf(ni->ni_macaddr));
3475
3476	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3477	if (error != 0) {
3478		device_printf(sc->sc_dev,
3479		    "%s: could not delete node %u, error %d\n", __func__,
3480		    wn->id, error);
3481	}
3482}
3483
3484static int
3485wpi_updateedca(struct ieee80211com *ic)
3486{
3487#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3488	struct wpi_softc *sc = ic->ic_softc;
3489	struct wpi_edca_params cmd;
3490	int aci, error;
3491
3492	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3493
3494	memset(&cmd, 0, sizeof cmd);
3495	cmd.flags = htole32(WPI_EDCA_UPDATE);
3496	for (aci = 0; aci < WME_NUM_AC; aci++) {
3497		const struct wmeParams *ac =
3498		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3499		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3500		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3501		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3502		cmd.ac[aci].txoplimit =
3503		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3504
3505		DPRINTF(sc, WPI_DEBUG_EDCA,
3506		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3507		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3508		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3509		    cmd.ac[aci].txoplimit);
3510	}
3511	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3512
3513	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3514
3515	return error;
3516#undef WPI_EXP2
3517}
3518
3519static void
3520wpi_set_promisc(struct wpi_softc *sc)
3521{
3522	struct ieee80211com *ic = &sc->sc_ic;
3523	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3524	uint32_t promisc_filter;
3525
3526	promisc_filter = WPI_FILTER_CTL;
3527	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3528		promisc_filter |= WPI_FILTER_PROMISC;
3529
3530	if (ic->ic_promisc > 0)
3531		sc->rxon.filter |= htole32(promisc_filter);
3532	else
3533		sc->rxon.filter &= ~htole32(promisc_filter);
3534}
3535
3536static void
3537wpi_update_promisc(struct ieee80211com *ic)
3538{
3539	struct wpi_softc *sc = ic->ic_softc;
3540
3541	WPI_RXON_LOCK(sc);
3542	wpi_set_promisc(sc);
3543
3544	if (wpi_send_rxon(sc, 1, 1) != 0) {
3545		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3546		    __func__);
3547	}
3548	WPI_RXON_UNLOCK(sc);
3549}
3550
3551static void
3552wpi_update_mcast(struct ieee80211com *ic)
3553{
3554	/* Ignore */
3555}
3556
3557static void
3558wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3559{
3560	struct wpi_cmd_led led;
3561
3562	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3563
3564	led.which = which;
3565	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3566	led.off = off;
3567	led.on = on;
3568	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3569}
3570
3571static int
3572wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3573{
3574	struct wpi_cmd_timing cmd;
3575	uint64_t val, mod;
3576
3577	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3578
3579	memset(&cmd, 0, sizeof cmd);
3580	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3581	cmd.bintval = htole16(ni->ni_intval);
3582	cmd.lintval = htole16(10);
3583
3584	/* Compute remaining time until next beacon. */
3585	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3586	mod = le64toh(cmd.tstamp) % val;
3587	cmd.binitval = htole32((uint32_t)(val - mod));
3588
3589	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3590	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3591
3592	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3593}
3594
3595/*
3596 * This function is called periodically (every 60 seconds) to adjust output
3597 * power to temperature changes.
3598 */
3599static void
3600wpi_power_calibration(struct wpi_softc *sc)
3601{
3602	int temp;
3603
3604	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3605
3606	/* Update sensor data. */
3607	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3608	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3609
3610	/* Sanity-check read value. */
3611	if (temp < -260 || temp > 25) {
3612		/* This can't be correct, ignore. */
3613		DPRINTF(sc, WPI_DEBUG_TEMP,
3614		    "out-of-range temperature reported: %d\n", temp);
3615		return;
3616	}
3617
3618	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3619
3620	/* Adjust Tx power if need be. */
3621	if (abs(temp - sc->temp) <= 6)
3622		return;
3623
3624	sc->temp = temp;
3625
3626	if (wpi_set_txpower(sc, 1) != 0) {
3627		/* just warn, too bad for the automatic calibration... */
3628		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3629	}
3630}
3631
3632/*
3633 * Set TX power for current channel.
3634 */
3635static int
3636wpi_set_txpower(struct wpi_softc *sc, int async)
3637{
3638	struct wpi_power_group *group;
3639	struct wpi_cmd_txpower cmd;
3640	uint8_t chan;
3641	int idx, is_chan_5ghz, i;
3642
3643	/* Retrieve current channel from last RXON. */
3644	chan = sc->rxon.chan;
3645	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3646
3647	/* Find the TX power group to which this channel belongs. */
3648	if (is_chan_5ghz) {
3649		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3650			if (chan <= group->chan)
3651				break;
3652	} else
3653		group = &sc->groups[0];
3654
3655	memset(&cmd, 0, sizeof cmd);
3656	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3657	cmd.chan = htole16(chan);
3658
3659	/* Set TX power for all OFDM and CCK rates. */
3660	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3661		/* Retrieve TX power for this channel/rate. */
3662		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3663
3664		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3665
3666		if (is_chan_5ghz) {
3667			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3668			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3669		} else {
3670			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3671			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3672		}
3673		DPRINTF(sc, WPI_DEBUG_TEMP,
3674		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3675	}
3676
3677	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3678}
3679
3680/*
3681 * Determine Tx power index for a given channel/rate combination.
3682 * This takes into account the regulatory information from EEPROM and the
3683 * current temperature.
3684 */
3685static int
3686wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3687    uint8_t chan, int is_chan_5ghz, int ridx)
3688{
3689/* Fixed-point arithmetic division using a n-bit fractional part. */
3690#define fdivround(a, b, n)	\
3691	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3692
3693/* Linear interpolation. */
3694#define interpolate(x, x1, y1, x2, y2, n)	\
3695	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3696
3697	struct wpi_power_sample *sample;
3698	int pwr, idx;
3699
3700	/* Default TX power is group maximum TX power minus 3dB. */
3701	pwr = group->maxpwr / 2;
3702
3703	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3704	switch (ridx) {
3705	case WPI_RIDX_OFDM36:
3706		pwr -= is_chan_5ghz ?  5 : 0;
3707		break;
3708	case WPI_RIDX_OFDM48:
3709		pwr -= is_chan_5ghz ? 10 : 7;
3710		break;
3711	case WPI_RIDX_OFDM54:
3712		pwr -= is_chan_5ghz ? 12 : 9;
3713		break;
3714	}
3715
3716	/* Never exceed the channel maximum allowed TX power. */
3717	pwr = min(pwr, sc->maxpwr[chan]);
3718
3719	/* Retrieve TX power index into gain tables from samples. */
3720	for (sample = group->samples; sample < &group->samples[3]; sample++)
3721		if (pwr > sample[1].power)
3722			break;
3723	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3724	idx = interpolate(pwr, sample[0].power, sample[0].index,
3725	    sample[1].power, sample[1].index, 19);
3726
3727	/*-
3728	 * Adjust power index based on current temperature:
3729	 * - if cooler than factory-calibrated: decrease output power
3730	 * - if warmer than factory-calibrated: increase output power
3731	 */
3732	idx -= (sc->temp - group->temp) * 11 / 100;
3733
3734	/* Decrease TX power for CCK rates (-5dB). */
3735	if (ridx >= WPI_RIDX_CCK1)
3736		idx += 10;
3737
3738	/* Make sure idx stays in a valid range. */
3739	if (idx < 0)
3740		return 0;
3741	if (idx > WPI_MAX_PWR_INDEX)
3742		return WPI_MAX_PWR_INDEX;
3743	return idx;
3744
3745#undef interpolate
3746#undef fdivround
3747}
3748
3749/*
3750 * Set STA mode power saving level (between 0 and 5).
3751 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3752 */
3753static int
3754wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3755{
3756	struct wpi_pmgt_cmd cmd;
3757	const struct wpi_pmgt *pmgt;
3758	uint32_t max, skip_dtim;
3759	uint32_t reg;
3760	int i;
3761
3762	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3763	    "%s: dtim=%d, level=%d, async=%d\n",
3764	    __func__, dtim, level, async);
3765
3766	/* Select which PS parameters to use. */
3767	if (dtim <= 10)
3768		pmgt = &wpi_pmgt[0][level];
3769	else
3770		pmgt = &wpi_pmgt[1][level];
3771
3772	memset(&cmd, 0, sizeof cmd);
3773	WPI_TXQ_LOCK(sc);
3774	if (level != 0)	{	/* not CAM */
3775		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3776		sc->sc_flags |= WPI_PS_PATH;
3777	} else
3778		sc->sc_flags &= ~WPI_PS_PATH;
3779	WPI_TXQ_UNLOCK(sc);
3780	/* Retrieve PCIe Active State Power Management (ASPM). */
3781	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3782	if (!(reg & 0x1))	/* L0s Entry disabled. */
3783		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3784
3785	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3786	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3787
3788	if (dtim == 0) {
3789		dtim = 1;
3790		skip_dtim = 0;
3791	} else
3792		skip_dtim = pmgt->skip_dtim;
3793
3794	if (skip_dtim != 0) {
3795		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3796		max = pmgt->intval[4];
3797		if (max == (uint32_t)-1)
3798			max = dtim * (skip_dtim + 1);
3799		else if (max > dtim)
3800			max = (max / dtim) * dtim;
3801	} else
3802		max = dtim;
3803
3804	for (i = 0; i < 5; i++)
3805		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3806
3807	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3808}
3809
3810static int
3811wpi_send_btcoex(struct wpi_softc *sc)
3812{
3813	struct wpi_bluetooth cmd;
3814
3815	memset(&cmd, 0, sizeof cmd);
3816	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3817	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3818	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3819	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3820	    __func__);
3821	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3822}
3823
3824static int
3825wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3826{
3827	int error;
3828
3829	if (async)
3830		WPI_RXON_LOCK_ASSERT(sc);
3831
3832	if (assoc && wpi_check_bss_filter(sc) != 0) {
3833		struct wpi_assoc rxon_assoc;
3834
3835		rxon_assoc.flags = sc->rxon.flags;
3836		rxon_assoc.filter = sc->rxon.filter;
3837		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3838		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3839		rxon_assoc.reserved = 0;
3840
3841		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3842		    sizeof (struct wpi_assoc), async);
3843		if (error != 0) {
3844			device_printf(sc->sc_dev,
3845			    "RXON_ASSOC command failed, error %d\n", error);
3846			return error;
3847		}
3848	} else {
3849		if (async) {
3850			WPI_NT_LOCK(sc);
3851			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3852			    sizeof (struct wpi_rxon), async);
3853			if (error == 0)
3854				wpi_clear_node_table(sc);
3855			WPI_NT_UNLOCK(sc);
3856		} else {
3857			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3858			    sizeof (struct wpi_rxon), async);
3859			if (error == 0)
3860				wpi_clear_node_table(sc);
3861		}
3862
3863		if (error != 0) {
3864			device_printf(sc->sc_dev,
3865			    "RXON command failed, error %d\n", error);
3866			return error;
3867		}
3868
3869		/* Add broadcast node. */
3870		error = wpi_add_broadcast_node(sc, async);
3871		if (error != 0) {
3872			device_printf(sc->sc_dev,
3873			    "could not add broadcast node, error %d\n", error);
3874			return error;
3875		}
3876	}
3877
3878	/* Configuration has changed, set Tx power accordingly. */
3879	if ((error = wpi_set_txpower(sc, async)) != 0) {
3880		device_printf(sc->sc_dev,
3881		    "%s: could not set TX power, error %d\n", __func__, error);
3882		return error;
3883	}
3884
3885	return 0;
3886}
3887
3888/**
3889 * Configure the card to listen to a particular channel, this transisions the
3890 * card in to being able to receive frames from remote devices.
3891 */
3892static int
3893wpi_config(struct wpi_softc *sc)
3894{
3895	struct ieee80211com *ic = &sc->sc_ic;
3896	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3897	struct ieee80211_channel *c = ic->ic_curchan;
3898	int error;
3899
3900	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3901
3902	/* Set power saving level to CAM during initialization. */
3903	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3904		device_printf(sc->sc_dev,
3905		    "%s: could not set power saving level\n", __func__);
3906		return error;
3907	}
3908
3909	/* Configure bluetooth coexistence. */
3910	if ((error = wpi_send_btcoex(sc)) != 0) {
3911		device_printf(sc->sc_dev,
3912		    "could not configure bluetooth coexistence\n");
3913		return error;
3914	}
3915
3916	/* Configure adapter. */
3917	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3918	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3919
3920	/* Set default channel. */
3921	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3922	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3923	if (IEEE80211_IS_CHAN_2GHZ(c))
3924		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3925
3926	sc->rxon.filter = WPI_FILTER_MULTICAST;
3927	switch (ic->ic_opmode) {
3928	case IEEE80211_M_STA:
3929		sc->rxon.mode = WPI_MODE_STA;
3930		break;
3931	case IEEE80211_M_IBSS:
3932		sc->rxon.mode = WPI_MODE_IBSS;
3933		sc->rxon.filter |= WPI_FILTER_BEACON;
3934		break;
3935	case IEEE80211_M_HOSTAP:
3936		/* XXX workaround for beaconing */
3937		sc->rxon.mode = WPI_MODE_IBSS;
3938		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3939		break;
3940	case IEEE80211_M_AHDEMO:
3941		sc->rxon.mode = WPI_MODE_HOSTAP;
3942		break;
3943	case IEEE80211_M_MONITOR:
3944		sc->rxon.mode = WPI_MODE_MONITOR;
3945		break;
3946	default:
3947		device_printf(sc->sc_dev, "unknown opmode %d\n",
3948		    ic->ic_opmode);
3949		return EINVAL;
3950	}
3951	sc->rxon.filter = htole32(sc->rxon.filter);
3952	wpi_set_promisc(sc);
3953	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3954	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3955
3956	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3957		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3958		    __func__);
3959		return error;
3960	}
3961
3962	/* Setup rate scalling. */
3963	if ((error = wpi_mrr_setup(sc)) != 0) {
3964		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3965		    error);
3966		return error;
3967	}
3968
3969	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3970
3971	return 0;
3972}
3973
3974static uint16_t
3975wpi_get_active_dwell_time(struct wpi_softc *sc,
3976    struct ieee80211_channel *c, uint8_t n_probes)
3977{
3978	/* No channel? Default to 2GHz settings. */
3979	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3980		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3981		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3982	}
3983
3984	/* 5GHz dwell time. */
3985	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3986	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3987}
3988
3989/*
3990 * Limit the total dwell time.
3991 *
3992 * Returns the dwell time in milliseconds.
3993 */
3994static uint16_t
3995wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3996{
3997	struct ieee80211com *ic = &sc->sc_ic;
3998	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3999	int bintval = 0;
4000
4001	/* bintval is in TU (1.024mS) */
4002	if (vap != NULL)
4003		bintval = vap->iv_bss->ni_intval;
4004
4005	/*
4006	 * If it's non-zero, we should calculate the minimum of
4007	 * it and the DWELL_BASE.
4008	 *
4009	 * XXX Yes, the math should take into account that bintval
4010	 * is 1.024mS, not 1mS..
4011	 */
4012	if (bintval > 0) {
4013		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4014		    bintval);
4015		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4016	}
4017
4018	/* No association context? Default. */
4019	return dwell_time;
4020}
4021
4022static uint16_t
4023wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4024{
4025	uint16_t passive;
4026
4027	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4028		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4029	else
4030		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4031
4032	/* Clamp to the beacon interval if we're associated. */
4033	return (wpi_limit_dwell(sc, passive));
4034}
4035
4036static uint32_t
4037wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4038{
4039	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4040	uint32_t nbeacons = time / bintval;
4041
4042	if (mod > WPI_PAUSE_MAX_TIME)
4043		mod = WPI_PAUSE_MAX_TIME;
4044
4045	return WPI_PAUSE_SCAN(nbeacons, mod);
4046}
4047
4048/*
4049 * Send a scan request to the firmware.
4050 */
4051static int
4052wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4053{
4054	struct ieee80211com *ic = &sc->sc_ic;
4055	struct ieee80211_scan_state *ss = ic->ic_scan;
4056	struct ieee80211vap *vap = ss->ss_vap;
4057	struct wpi_scan_hdr *hdr;
4058	struct wpi_cmd_data *tx;
4059	struct wpi_scan_essid *essids;
4060	struct wpi_scan_chan *chan;
4061	struct ieee80211_frame *wh;
4062	struct ieee80211_rateset *rs;
4063	uint16_t dwell_active, dwell_passive;
4064	uint8_t *buf, *frm;
4065	int bgscan, bintval, buflen, error, i, nssid;
4066
4067	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4068
4069	/*
4070	 * We are absolutely not allowed to send a scan command when another
4071	 * scan command is pending.
4072	 */
4073	if (callout_pending(&sc->scan_timeout)) {
4074		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4075		    __func__);
4076		error = EAGAIN;
4077		goto fail;
4078	}
4079
4080	bgscan = wpi_check_bss_filter(sc);
4081	bintval = vap->iv_bss->ni_intval;
4082	if (bgscan != 0 &&
4083	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4084		error = EOPNOTSUPP;
4085		goto fail;
4086	}
4087
4088	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4089	if (buf == NULL) {
4090		device_printf(sc->sc_dev,
4091		    "%s: could not allocate buffer for scan command\n",
4092		    __func__);
4093		error = ENOMEM;
4094		goto fail;
4095	}
4096	hdr = (struct wpi_scan_hdr *)buf;
4097
4098	/*
4099	 * Move to the next channel if no packets are received within 10 msecs
4100	 * after sending the probe request.
4101	 */
4102	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4103	hdr->quiet_threshold = htole16(1);
4104
4105	if (bgscan != 0) {
4106		/*
4107		 * Max needs to be greater than active and passive and quiet!
4108		 * It's also in microseconds!
4109		 */
4110		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4111		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4112		    bintval));
4113	}
4114
4115	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4116
4117	tx = (struct wpi_cmd_data *)(hdr + 1);
4118	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4119	tx->id = WPI_ID_BROADCAST;
4120	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4121
4122	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4123		/* Send probe requests at 6Mbps. */
4124		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4125		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4126	} else {
4127		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4128		/* Send probe requests at 1Mbps. */
4129		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4130		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4131	}
4132
4133	essids = (struct wpi_scan_essid *)(tx + 1);
4134	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4135	for (i = 0; i < nssid; i++) {
4136		essids[i].id = IEEE80211_ELEMID_SSID;
4137		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4138		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4139#ifdef WPI_DEBUG
4140		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4141			printf("Scanning Essid: ");
4142			ieee80211_print_essid(essids[i].data, essids[i].len);
4143			printf("\n");
4144		}
4145#endif
4146	}
4147
4148	/*
4149	 * Build a probe request frame.  Most of the following code is a
4150	 * copy & paste of what is done in net80211.
4151	 */
4152	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4153	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4154		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4155	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4156	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4157	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4158	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4159
4160	frm = (uint8_t *)(wh + 1);
4161	frm = ieee80211_add_ssid(frm, NULL, 0);
4162	frm = ieee80211_add_rates(frm, rs);
4163	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4164		frm = ieee80211_add_xrates(frm, rs);
4165
4166	/* Set length of probe request. */
4167	tx->len = htole16(frm - (uint8_t *)wh);
4168
4169	/*
4170	 * Construct information about the channel that we
4171	 * want to scan. The firmware expects this to be directly
4172	 * after the scan probe request
4173	 */
4174	chan = (struct wpi_scan_chan *)frm;
4175	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4176	chan->flags = 0;
4177	if (nssid) {
4178		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4179		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4180	} else
4181		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4182
4183	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4184		chan->flags |= WPI_CHAN_ACTIVE;
4185
4186	/*
4187	 * Calculate the active/passive dwell times.
4188	 */
4189	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4190	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4191
4192	/* Make sure they're valid. */
4193	if (dwell_active > dwell_passive)
4194		dwell_active = dwell_passive;
4195
4196	chan->active = htole16(dwell_active);
4197	chan->passive = htole16(dwell_passive);
4198
4199	chan->dsp_gain = 0x6e;  /* Default level */
4200
4201	if (IEEE80211_IS_CHAN_5GHZ(c))
4202		chan->rf_gain = 0x3b;
4203	else
4204		chan->rf_gain = 0x28;
4205
4206	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4207	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4208
4209	hdr->nchan++;
4210
4211	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4212		/* XXX Force probe request transmission. */
4213		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4214
4215		chan++;
4216
4217		/* Reduce unnecessary delay. */
4218		chan->flags = 0;
4219		chan->passive = chan->active = hdr->quiet_time;
4220
4221		hdr->nchan++;
4222	}
4223
4224	chan++;
4225
4226	buflen = (uint8_t *)chan - buf;
4227	hdr->len = htole16(buflen);
4228
4229	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4230	    hdr->nchan);
4231	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4232	free(buf, M_DEVBUF);
4233
4234	if (error != 0)
4235		goto fail;
4236
4237	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4238
4239	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4240
4241	return 0;
4242
4243fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4244
4245	return error;
4246}
4247
4248static int
4249wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4250{
4251	struct ieee80211com *ic = vap->iv_ic;
4252	struct ieee80211_node *ni = vap->iv_bss;
4253	struct ieee80211_channel *c = ni->ni_chan;
4254	int error;
4255
4256	WPI_RXON_LOCK(sc);
4257
4258	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4259
4260	/* Update adapter configuration. */
4261	sc->rxon.associd = 0;
4262	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4263	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4264	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4265	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4266	if (IEEE80211_IS_CHAN_2GHZ(c))
4267		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4268	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4269		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4270	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4271		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4272	if (IEEE80211_IS_CHAN_A(c)) {
4273		sc->rxon.cck_mask  = 0;
4274		sc->rxon.ofdm_mask = 0x15;
4275	} else if (IEEE80211_IS_CHAN_B(c)) {
4276		sc->rxon.cck_mask  = 0x03;
4277		sc->rxon.ofdm_mask = 0;
4278	} else {
4279		/* Assume 802.11b/g. */
4280		sc->rxon.cck_mask  = 0x0f;
4281		sc->rxon.ofdm_mask = 0x15;
4282	}
4283
4284	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4285	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4286	    sc->rxon.ofdm_mask);
4287
4288	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4289		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4290		    __func__);
4291	}
4292
4293	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4294
4295	WPI_RXON_UNLOCK(sc);
4296
4297	return error;
4298}
4299
4300static int
4301wpi_config_beacon(struct wpi_vap *wvp)
4302{
4303	struct ieee80211vap *vap = &wvp->wv_vap;
4304	struct ieee80211com *ic = vap->iv_ic;
4305	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4306	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4307	struct wpi_softc *sc = ic->ic_softc;
4308	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4309	struct ieee80211_tim_ie *tie;
4310	struct mbuf *m;
4311	uint8_t *ptr;
4312	int error;
4313
4314	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4315
4316	WPI_VAP_LOCK_ASSERT(wvp);
4317
4318	cmd->len = htole16(bcn->m->m_pkthdr.len);
4319	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4320	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4321
4322	/* XXX seems to be unused */
4323	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4324		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4325		ptr = mtod(bcn->m, uint8_t *);
4326
4327		cmd->tim = htole16(bo->bo_tim - ptr);
4328		cmd->timsz = tie->tim_len;
4329	}
4330
4331	/* Necessary for recursion in ieee80211_beacon_update(). */
4332	m = bcn->m;
4333	bcn->m = m_dup(m, M_NOWAIT);
4334	if (bcn->m == NULL) {
4335		device_printf(sc->sc_dev,
4336		    "%s: could not copy beacon frame\n", __func__);
4337		error = ENOMEM;
4338		goto end;
4339	}
4340
4341	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4342		device_printf(sc->sc_dev,
4343		    "%s: could not update beacon frame, error %d", __func__,
4344		    error);
4345	}
4346
4347	/* Restore mbuf. */
4348end:	bcn->m = m;
4349
4350	return error;
4351}
4352
4353static int
4354wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4355{
4356	struct ieee80211vap *vap = ni->ni_vap;
4357	struct wpi_vap *wvp = WPI_VAP(vap);
4358	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4359	struct mbuf *m;
4360	int error;
4361
4362	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4363
4364	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4365		return EINVAL;
4366
4367	m = ieee80211_beacon_alloc(ni);
4368	if (m == NULL) {
4369		device_printf(sc->sc_dev,
4370		    "%s: could not allocate beacon frame\n", __func__);
4371		return ENOMEM;
4372	}
4373
4374	WPI_VAP_LOCK(wvp);
4375	if (bcn->m != NULL)
4376		m_freem(bcn->m);
4377
4378	bcn->m = m;
4379
4380	error = wpi_config_beacon(wvp);
4381	WPI_VAP_UNLOCK(wvp);
4382
4383	return error;
4384}
4385
4386static void
4387wpi_update_beacon(struct ieee80211vap *vap, int item)
4388{
4389	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4390	struct wpi_vap *wvp = WPI_VAP(vap);
4391	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4392	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4393	struct ieee80211_node *ni = vap->iv_bss;
4394	int mcast = 0;
4395
4396	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4397
4398	WPI_VAP_LOCK(wvp);
4399	if (bcn->m == NULL) {
4400		bcn->m = ieee80211_beacon_alloc(ni);
4401		if (bcn->m == NULL) {
4402			device_printf(sc->sc_dev,
4403			    "%s: could not allocate beacon frame\n", __func__);
4404
4405			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4406			    __func__);
4407
4408			WPI_VAP_UNLOCK(wvp);
4409			return;
4410		}
4411	}
4412	WPI_VAP_UNLOCK(wvp);
4413
4414	if (item == IEEE80211_BEACON_TIM)
4415		mcast = 1;	/* TODO */
4416
4417	setbit(bo->bo_flags, item);
4418	ieee80211_beacon_update(ni, bcn->m, mcast);
4419
4420	WPI_VAP_LOCK(wvp);
4421	wpi_config_beacon(wvp);
4422	WPI_VAP_UNLOCK(wvp);
4423
4424	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4425}
4426
4427static void
4428wpi_newassoc(struct ieee80211_node *ni, int isnew)
4429{
4430	struct ieee80211vap *vap = ni->ni_vap;
4431	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4432	struct wpi_node *wn = WPI_NODE(ni);
4433	int error;
4434
4435	WPI_NT_LOCK(sc);
4436
4437	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4438
4439	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4440		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4441			device_printf(sc->sc_dev,
4442			    "%s: could not add IBSS node, error %d\n",
4443			    __func__, error);
4444		}
4445	}
4446	WPI_NT_UNLOCK(sc);
4447}
4448
4449static int
4450wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4451{
4452	struct ieee80211com *ic = vap->iv_ic;
4453	struct ieee80211_node *ni = vap->iv_bss;
4454	struct ieee80211_channel *c = ni->ni_chan;
4455	int error;
4456
4457	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4458
4459	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4460		/* Link LED blinks while monitoring. */
4461		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4462		return 0;
4463	}
4464
4465	/* XXX kernel panic workaround */
4466	if (c == IEEE80211_CHAN_ANYC) {
4467		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4468		    __func__);
4469		return EINVAL;
4470	}
4471
4472	if ((error = wpi_set_timing(sc, ni)) != 0) {
4473		device_printf(sc->sc_dev,
4474		    "%s: could not set timing, error %d\n", __func__, error);
4475		return error;
4476	}
4477
4478	/* Update adapter configuration. */
4479	WPI_RXON_LOCK(sc);
4480	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4481	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4482	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4483	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4484	if (IEEE80211_IS_CHAN_2GHZ(c))
4485		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4486	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4487		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4488	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4489		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4490	if (IEEE80211_IS_CHAN_A(c)) {
4491		sc->rxon.cck_mask  = 0;
4492		sc->rxon.ofdm_mask = 0x15;
4493	} else if (IEEE80211_IS_CHAN_B(c)) {
4494		sc->rxon.cck_mask  = 0x03;
4495		sc->rxon.ofdm_mask = 0;
4496	} else {
4497		/* Assume 802.11b/g. */
4498		sc->rxon.cck_mask  = 0x0f;
4499		sc->rxon.ofdm_mask = 0x15;
4500	}
4501	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4502
4503	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4504	    sc->rxon.chan, sc->rxon.flags);
4505
4506	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4507		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4508		    __func__);
4509		return error;
4510	}
4511
4512	/* Start periodic calibration timer. */
4513	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4514
4515	WPI_RXON_UNLOCK(sc);
4516
4517	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4518	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4519		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4520			device_printf(sc->sc_dev,
4521			    "%s: could not setup beacon, error %d\n", __func__,
4522			    error);
4523			return error;
4524		}
4525	}
4526
4527	if (vap->iv_opmode == IEEE80211_M_STA) {
4528		/* Add BSS node. */
4529		WPI_NT_LOCK(sc);
4530		error = wpi_add_sta_node(sc, ni);
4531		WPI_NT_UNLOCK(sc);
4532		if (error != 0) {
4533			device_printf(sc->sc_dev,
4534			    "%s: could not add BSS node, error %d\n", __func__,
4535			    error);
4536			return error;
4537		}
4538	}
4539
4540	/* Link LED always on while associated. */
4541	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4542
4543	/* Enable power-saving mode if requested by user. */
4544	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4545	    vap->iv_opmode != IEEE80211_M_IBSS)
4546		(void)wpi_set_pslevel(sc, 0, 3, 1);
4547
4548	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4549
4550	return 0;
4551}
4552
4553static int
4554wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4555{
4556	const struct ieee80211_cipher *cip = k->wk_cipher;
4557	struct ieee80211vap *vap = ni->ni_vap;
4558	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4559	struct wpi_node *wn = WPI_NODE(ni);
4560	struct wpi_node_info node;
4561	uint16_t kflags;
4562	int error;
4563
4564	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4565
4566	if (wpi_check_node_entry(sc, wn->id) == 0) {
4567		device_printf(sc->sc_dev, "%s: node does not exist\n",
4568		    __func__);
4569		return 0;
4570	}
4571
4572	switch (cip->ic_cipher) {
4573	case IEEE80211_CIPHER_AES_CCM:
4574		kflags = WPI_KFLAG_CCMP;
4575		break;
4576
4577	default:
4578		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4579		    cip->ic_cipher);
4580		return 0;
4581	}
4582
4583	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4584	if (k->wk_flags & IEEE80211_KEY_GROUP)
4585		kflags |= WPI_KFLAG_MULTICAST;
4586
4587	memset(&node, 0, sizeof node);
4588	node.id = wn->id;
4589	node.control = WPI_NODE_UPDATE;
4590	node.flags = WPI_FLAG_KEY_SET;
4591	node.kflags = htole16(kflags);
4592	memcpy(node.key, k->wk_key, k->wk_keylen);
4593again:
4594	DPRINTF(sc, WPI_DEBUG_KEY,
4595	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4596	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4597	    node.id, ether_sprintf(ni->ni_macaddr));
4598
4599	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4600	if (error != 0) {
4601		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4602		    error);
4603		return !error;
4604	}
4605
4606	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4607	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4608		kflags |= WPI_KFLAG_MULTICAST;
4609		node.kflags = htole16(kflags);
4610
4611		goto again;
4612	}
4613
4614	return 1;
4615}
4616
4617static void
4618wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4619{
4620	const struct ieee80211_key *k = arg;
4621	struct ieee80211vap *vap = ni->ni_vap;
4622	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4623	struct wpi_node *wn = WPI_NODE(ni);
4624	int error;
4625
4626	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4627		return;
4628
4629	WPI_NT_LOCK(sc);
4630	error = wpi_load_key(ni, k);
4631	WPI_NT_UNLOCK(sc);
4632
4633	if (error == 0) {
4634		device_printf(sc->sc_dev, "%s: error while setting key\n",
4635		    __func__);
4636	}
4637}
4638
4639static int
4640wpi_set_global_keys(struct ieee80211_node *ni)
4641{
4642	struct ieee80211vap *vap = ni->ni_vap;
4643	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4644	int error = 1;
4645
4646	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4647		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4648			error = wpi_load_key(ni, wk);
4649
4650	return !error;
4651}
4652
4653static int
4654wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4655{
4656	struct ieee80211vap *vap = ni->ni_vap;
4657	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4658	struct wpi_node *wn = WPI_NODE(ni);
4659	struct wpi_node_info node;
4660	uint16_t kflags;
4661	int error;
4662
4663	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4664
4665	if (wpi_check_node_entry(sc, wn->id) == 0) {
4666		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4667		return 1;	/* Nothing to do. */
4668	}
4669
4670	kflags = WPI_KFLAG_KID(k->wk_keyix);
4671	if (k->wk_flags & IEEE80211_KEY_GROUP)
4672		kflags |= WPI_KFLAG_MULTICAST;
4673
4674	memset(&node, 0, sizeof node);
4675	node.id = wn->id;
4676	node.control = WPI_NODE_UPDATE;
4677	node.flags = WPI_FLAG_KEY_SET;
4678	node.kflags = htole16(kflags);
4679again:
4680	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4681	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4682	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4683
4684	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4685	if (error != 0) {
4686		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4687		    error);
4688		return !error;
4689	}
4690
4691	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4692	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4693		kflags |= WPI_KFLAG_MULTICAST;
4694		node.kflags = htole16(kflags);
4695
4696		goto again;
4697	}
4698
4699	return 1;
4700}
4701
4702static void
4703wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4704{
4705	const struct ieee80211_key *k = arg;
4706	struct ieee80211vap *vap = ni->ni_vap;
4707	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4708	struct wpi_node *wn = WPI_NODE(ni);
4709	int error;
4710
4711	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4712		return;
4713
4714	WPI_NT_LOCK(sc);
4715	error = wpi_del_key(ni, k);
4716	WPI_NT_UNLOCK(sc);
4717
4718	if (error == 0) {
4719		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4720		    __func__);
4721	}
4722}
4723
4724static int
4725wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4726    int set)
4727{
4728	struct ieee80211com *ic = vap->iv_ic;
4729	struct wpi_softc *sc = ic->ic_softc;
4730	struct wpi_vap *wvp = WPI_VAP(vap);
4731	struct ieee80211_node *ni;
4732	int error, ni_ref = 0;
4733
4734	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4735
4736	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4737		/* Not for us. */
4738		return 1;
4739	}
4740
4741	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4742		/* XMIT keys are handled in wpi_tx_data(). */
4743		return 1;
4744	}
4745
4746	/* Handle group keys. */
4747	if (&vap->iv_nw_keys[0] <= k &&
4748	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4749		WPI_NT_LOCK(sc);
4750		if (set)
4751			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4752		else
4753			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4754		WPI_NT_UNLOCK(sc);
4755
4756		if (vap->iv_state == IEEE80211_S_RUN) {
4757			ieee80211_iterate_nodes(&ic->ic_sta,
4758			    set ? wpi_load_key_cb : wpi_del_key_cb,
4759			    __DECONST(void *, k));
4760		}
4761
4762		return 1;
4763	}
4764
4765	switch (vap->iv_opmode) {
4766	case IEEE80211_M_STA:
4767		ni = vap->iv_bss;
4768		break;
4769
4770	case IEEE80211_M_IBSS:
4771	case IEEE80211_M_AHDEMO:
4772	case IEEE80211_M_HOSTAP:
4773		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4774		if (ni == NULL)
4775			return 0;	/* should not happen */
4776
4777		ni_ref = 1;
4778		break;
4779
4780	default:
4781		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4782		    vap->iv_opmode);
4783		return 0;
4784	}
4785
4786	WPI_NT_LOCK(sc);
4787	if (set)
4788		error = wpi_load_key(ni, k);
4789	else
4790		error = wpi_del_key(ni, k);
4791	WPI_NT_UNLOCK(sc);
4792
4793	if (ni_ref)
4794		ieee80211_node_decref(ni);
4795
4796	return error;
4797}
4798
4799static int
4800wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4801{
4802	return wpi_process_key(vap, k, 1);
4803}
4804
4805static int
4806wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4807{
4808	return wpi_process_key(vap, k, 0);
4809}
4810
4811/*
4812 * This function is called after the runtime firmware notifies us of its
4813 * readiness (called in a process context).
4814 */
4815static int
4816wpi_post_alive(struct wpi_softc *sc)
4817{
4818	int ntries, error;
4819
4820	/* Check (again) that the radio is not disabled. */
4821	if ((error = wpi_nic_lock(sc)) != 0)
4822		return error;
4823
4824	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4825
4826	/* NB: Runtime firmware must be up and running. */
4827	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4828		device_printf(sc->sc_dev,
4829		    "RF switch: radio disabled (%s)\n", __func__);
4830		wpi_nic_unlock(sc);
4831		return EPERM;   /* :-) */
4832	}
4833	wpi_nic_unlock(sc);
4834
4835	/* Wait for thermal sensor to calibrate. */
4836	for (ntries = 0; ntries < 1000; ntries++) {
4837		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4838			break;
4839		DELAY(10);
4840	}
4841
4842	if (ntries == 1000) {
4843		device_printf(sc->sc_dev,
4844		    "timeout waiting for thermal sensor calibration\n");
4845		return ETIMEDOUT;
4846	}
4847
4848	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4849	return 0;
4850}
4851
4852/*
4853 * The firmware boot code is small and is intended to be copied directly into
4854 * the NIC internal memory (no DMA transfer).
4855 */
4856static int
4857wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4858{
4859	int error, ntries;
4860
4861	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4862
4863	size /= sizeof (uint32_t);
4864
4865	if ((error = wpi_nic_lock(sc)) != 0)
4866		return error;
4867
4868	/* Copy microcode image into NIC memory. */
4869	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4870	    (const uint32_t *)ucode, size);
4871
4872	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4873	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4874	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4875
4876	/* Start boot load now. */
4877	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4878
4879	/* Wait for transfer to complete. */
4880	for (ntries = 0; ntries < 1000; ntries++) {
4881		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4882		DPRINTF(sc, WPI_DEBUG_HW,
4883		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4884		    WPI_FH_TX_STATUS_IDLE(6),
4885		    status & WPI_FH_TX_STATUS_IDLE(6));
4886		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4887			DPRINTF(sc, WPI_DEBUG_HW,
4888			    "Status Match! - ntries = %d\n", ntries);
4889			break;
4890		}
4891		DELAY(10);
4892	}
4893	if (ntries == 1000) {
4894		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4895		    __func__);
4896		wpi_nic_unlock(sc);
4897		return ETIMEDOUT;
4898	}
4899
4900	/* Enable boot after power up. */
4901	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4902
4903	wpi_nic_unlock(sc);
4904	return 0;
4905}
4906
4907static int
4908wpi_load_firmware(struct wpi_softc *sc)
4909{
4910	struct wpi_fw_info *fw = &sc->fw;
4911	struct wpi_dma_info *dma = &sc->fw_dma;
4912	int error;
4913
4914	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4915
4916	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4917	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4918	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4919	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4920	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4921
4922	/* Tell adapter where to find initialization sections. */
4923	if ((error = wpi_nic_lock(sc)) != 0)
4924		return error;
4925	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4926	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4927	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4928	    dma->paddr + WPI_FW_DATA_MAXSZ);
4929	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4930	wpi_nic_unlock(sc);
4931
4932	/* Load firmware boot code. */
4933	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4934	if (error != 0) {
4935		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4936		    __func__);
4937		return error;
4938	}
4939
4940	/* Now press "execute". */
4941	WPI_WRITE(sc, WPI_RESET, 0);
4942
4943	/* Wait at most one second for first alive notification. */
4944	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4945		device_printf(sc->sc_dev,
4946		    "%s: timeout waiting for adapter to initialize, error %d\n",
4947		    __func__, error);
4948		return error;
4949	}
4950
4951	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4952	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4953	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4954	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4955	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4956
4957	/* Tell adapter where to find runtime sections. */
4958	if ((error = wpi_nic_lock(sc)) != 0)
4959		return error;
4960	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4961	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4962	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4963	    dma->paddr + WPI_FW_DATA_MAXSZ);
4964	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4965	    WPI_FW_UPDATED | fw->main.textsz);
4966	wpi_nic_unlock(sc);
4967
4968	return 0;
4969}
4970
4971static int
4972wpi_read_firmware(struct wpi_softc *sc)
4973{
4974	const struct firmware *fp;
4975	struct wpi_fw_info *fw = &sc->fw;
4976	const struct wpi_firmware_hdr *hdr;
4977	int error;
4978
4979	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4980
4981	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4982	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4983
4984	WPI_UNLOCK(sc);
4985	fp = firmware_get(WPI_FW_NAME);
4986	WPI_LOCK(sc);
4987
4988	if (fp == NULL) {
4989		device_printf(sc->sc_dev,
4990		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4991		return EINVAL;
4992	}
4993
4994	sc->fw_fp = fp;
4995
4996	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4997		device_printf(sc->sc_dev,
4998		    "firmware file too short: %zu bytes\n", fp->datasize);
4999		error = EINVAL;
5000		goto fail;
5001	}
5002
5003	fw->size = fp->datasize;
5004	fw->data = (const uint8_t *)fp->data;
5005
5006	/* Extract firmware header information. */
5007	hdr = (const struct wpi_firmware_hdr *)fw->data;
5008
5009	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5010	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5011
5012	fw->main.textsz = le32toh(hdr->rtextsz);
5013	fw->main.datasz = le32toh(hdr->rdatasz);
5014	fw->init.textsz = le32toh(hdr->itextsz);
5015	fw->init.datasz = le32toh(hdr->idatasz);
5016	fw->boot.textsz = le32toh(hdr->btextsz);
5017	fw->boot.datasz = 0;
5018
5019	/* Sanity-check firmware header. */
5020	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5021	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5022	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5023	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5024	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5025	    (fw->boot.textsz & 3) != 0) {
5026		device_printf(sc->sc_dev, "invalid firmware header\n");
5027		error = EINVAL;
5028		goto fail;
5029	}
5030
5031	/* Check that all firmware sections fit. */
5032	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5033	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5034		device_printf(sc->sc_dev,
5035		    "firmware file too short: %zu bytes\n", fw->size);
5036		error = EINVAL;
5037		goto fail;
5038	}
5039
5040	/* Get pointers to firmware sections. */
5041	fw->main.text = (const uint8_t *)(hdr + 1);
5042	fw->main.data = fw->main.text + fw->main.textsz;
5043	fw->init.text = fw->main.data + fw->main.datasz;
5044	fw->init.data = fw->init.text + fw->init.textsz;
5045	fw->boot.text = fw->init.data + fw->init.datasz;
5046
5047	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5048	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5049	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5050	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5051	    fw->main.textsz, fw->main.datasz,
5052	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5053
5054	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5055	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5056	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5057	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5058	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5059
5060	return 0;
5061
5062fail:	wpi_unload_firmware(sc);
5063	return error;
5064}
5065
5066/**
5067 * Free the referenced firmware image
5068 */
5069static void
5070wpi_unload_firmware(struct wpi_softc *sc)
5071{
5072	if (sc->fw_fp != NULL) {
5073		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5074		sc->fw_fp = NULL;
5075	}
5076}
5077
5078static int
5079wpi_clock_wait(struct wpi_softc *sc)
5080{
5081	int ntries;
5082
5083	/* Set "initialization complete" bit. */
5084	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5085
5086	/* Wait for clock stabilization. */
5087	for (ntries = 0; ntries < 2500; ntries++) {
5088		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5089			return 0;
5090		DELAY(100);
5091	}
5092	device_printf(sc->sc_dev,
5093	    "%s: timeout waiting for clock stabilization\n", __func__);
5094
5095	return ETIMEDOUT;
5096}
5097
5098static int
5099wpi_apm_init(struct wpi_softc *sc)
5100{
5101	uint32_t reg;
5102	int error;
5103
5104	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5105
5106	/* Disable L0s exit timer (NMI bug workaround). */
5107	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5108	/* Don't wait for ICH L0s (ICH bug workaround). */
5109	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5110
5111	/* Set FH wait threshold to max (HW bug under stress workaround). */
5112	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5113
5114	/* Retrieve PCIe Active State Power Management (ASPM). */
5115	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5116	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5117	if (reg & 0x02)	/* L1 Entry enabled. */
5118		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5119	else
5120		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5121
5122	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5123
5124	/* Wait for clock stabilization before accessing prph. */
5125	if ((error = wpi_clock_wait(sc)) != 0)
5126		return error;
5127
5128	if ((error = wpi_nic_lock(sc)) != 0)
5129		return error;
5130	/* Cleanup. */
5131	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5132	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5133
5134	/* Enable DMA and BSM (Bootstrap State Machine). */
5135	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5136	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5137	DELAY(20);
5138	/* Disable L1-Active. */
5139	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5140	wpi_nic_unlock(sc);
5141
5142	return 0;
5143}
5144
5145static void
5146wpi_apm_stop_master(struct wpi_softc *sc)
5147{
5148	int ntries;
5149
5150	/* Stop busmaster DMA activity. */
5151	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5152
5153	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5154	    WPI_GP_CNTRL_MAC_PS)
5155		return; /* Already asleep. */
5156
5157	for (ntries = 0; ntries < 100; ntries++) {
5158		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5159			return;
5160		DELAY(10);
5161	}
5162	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5163	    __func__);
5164}
5165
5166static void
5167wpi_apm_stop(struct wpi_softc *sc)
5168{
5169	wpi_apm_stop_master(sc);
5170
5171	/* Reset the entire device. */
5172	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5173	DELAY(10);
5174	/* Clear "initialization complete" bit. */
5175	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5176}
5177
5178static void
5179wpi_nic_config(struct wpi_softc *sc)
5180{
5181	uint32_t rev;
5182
5183	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5184
5185	/* voodoo from the Linux "driver".. */
5186	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5187	if ((rev & 0xc0) == 0x40)
5188		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5189	else if (!(rev & 0x80))
5190		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5191
5192	if (sc->cap == 0x80)
5193		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5194
5195	if ((sc->rev & 0xf0) == 0xd0)
5196		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5197	else
5198		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5199
5200	if (sc->type > 1)
5201		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5202}
5203
5204static int
5205wpi_hw_init(struct wpi_softc *sc)
5206{
5207	int chnl, ntries, error;
5208
5209	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5210
5211	/* Clear pending interrupts. */
5212	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5213
5214	if ((error = wpi_apm_init(sc)) != 0) {
5215		device_printf(sc->sc_dev,
5216		    "%s: could not power ON adapter, error %d\n", __func__,
5217		    error);
5218		return error;
5219	}
5220
5221	/* Select VMAIN power source. */
5222	if ((error = wpi_nic_lock(sc)) != 0)
5223		return error;
5224	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5225	wpi_nic_unlock(sc);
5226	/* Spin until VMAIN gets selected. */
5227	for (ntries = 0; ntries < 5000; ntries++) {
5228		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5229			break;
5230		DELAY(10);
5231	}
5232	if (ntries == 5000) {
5233		device_printf(sc->sc_dev, "timeout selecting power source\n");
5234		return ETIMEDOUT;
5235	}
5236
5237	/* Perform adapter initialization. */
5238	wpi_nic_config(sc);
5239
5240	/* Initialize RX ring. */
5241	if ((error = wpi_nic_lock(sc)) != 0)
5242		return error;
5243	/* Set physical address of RX ring. */
5244	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5245	/* Set physical address of RX read pointer. */
5246	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5247	    offsetof(struct wpi_shared, next));
5248	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5249	/* Enable RX. */
5250	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5251	    WPI_FH_RX_CONFIG_DMA_ENA |
5252	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5253	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5254	    WPI_FH_RX_CONFIG_MAXFRAG |
5255	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5256	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5257	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5258	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5259	wpi_nic_unlock(sc);
5260	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5261
5262	/* Initialize TX rings. */
5263	if ((error = wpi_nic_lock(sc)) != 0)
5264		return error;
5265	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5266	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5267	/* Enable all 6 TX rings. */
5268	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5269	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5270	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5271	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5272	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5273	/* Set physical address of TX rings. */
5274	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5275	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5276
5277	/* Enable all DMA channels. */
5278	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5279		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5280		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5281		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5282	}
5283	wpi_nic_unlock(sc);
5284	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5285
5286	/* Clear "radio off" and "commands blocked" bits. */
5287	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5288	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5289
5290	/* Clear pending interrupts. */
5291	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5292	/* Enable interrupts. */
5293	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5294
5295	/* _Really_ make sure "radio off" bit is cleared! */
5296	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5297	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5298
5299	if ((error = wpi_load_firmware(sc)) != 0) {
5300		device_printf(sc->sc_dev,
5301		    "%s: could not load firmware, error %d\n", __func__,
5302		    error);
5303		return error;
5304	}
5305	/* Wait at most one second for firmware alive notification. */
5306	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5307		device_printf(sc->sc_dev,
5308		    "%s: timeout waiting for adapter to initialize, error %d\n",
5309		    __func__, error);
5310		return error;
5311	}
5312
5313	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5314
5315	/* Do post-firmware initialization. */
5316	return wpi_post_alive(sc);
5317}
5318
5319static void
5320wpi_hw_stop(struct wpi_softc *sc)
5321{
5322	int chnl, qid, ntries;
5323
5324	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5325
5326	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5327		wpi_nic_lock(sc);
5328
5329	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5330
5331	/* Disable interrupts. */
5332	WPI_WRITE(sc, WPI_INT_MASK, 0);
5333	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5334	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5335
5336	/* Make sure we no longer hold the NIC lock. */
5337	wpi_nic_unlock(sc);
5338
5339	if (wpi_nic_lock(sc) == 0) {
5340		/* Stop TX scheduler. */
5341		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5342		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5343
5344		/* Stop all DMA channels. */
5345		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5346			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5347			for (ntries = 0; ntries < 200; ntries++) {
5348				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5349				    WPI_FH_TX_STATUS_IDLE(chnl))
5350					break;
5351				DELAY(10);
5352			}
5353		}
5354		wpi_nic_unlock(sc);
5355	}
5356
5357	/* Stop RX ring. */
5358	wpi_reset_rx_ring(sc);
5359
5360	/* Reset all TX rings. */
5361	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5362		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5363
5364	if (wpi_nic_lock(sc) == 0) {
5365		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5366		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5367		wpi_nic_unlock(sc);
5368	}
5369	DELAY(5);
5370	/* Power OFF adapter. */
5371	wpi_apm_stop(sc);
5372}
5373
5374static void
5375wpi_radio_on(void *arg0, int pending)
5376{
5377	struct wpi_softc *sc = arg0;
5378	struct ieee80211com *ic = &sc->sc_ic;
5379	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5380
5381	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5382
5383	WPI_LOCK(sc);
5384	callout_stop(&sc->watchdog_rfkill);
5385	WPI_UNLOCK(sc);
5386
5387	if (vap != NULL)
5388		ieee80211_init(vap);
5389}
5390
5391static void
5392wpi_radio_off(void *arg0, int pending)
5393{
5394	struct wpi_softc *sc = arg0;
5395	struct ieee80211com *ic = &sc->sc_ic;
5396	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5397
5398	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5399
5400	ieee80211_notify_radio(ic, 0);
5401	wpi_stop(sc);
5402	if (vap != NULL)
5403		ieee80211_stop(vap);
5404
5405	WPI_LOCK(sc);
5406	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5407	WPI_UNLOCK(sc);
5408}
5409
5410static int
5411wpi_init(struct wpi_softc *sc)
5412{
5413	int error = 0;
5414
5415	WPI_LOCK(sc);
5416
5417	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5418
5419	if (sc->sc_running != 0)
5420		goto end;
5421
5422	/* Check that the radio is not disabled by hardware switch. */
5423	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5424		device_printf(sc->sc_dev,
5425		    "RF switch: radio disabled (%s)\n", __func__);
5426		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5427		    sc);
5428		error = EINPROGRESS;
5429		goto end;
5430	}
5431
5432	/* Read firmware images from the filesystem. */
5433	if ((error = wpi_read_firmware(sc)) != 0) {
5434		device_printf(sc->sc_dev,
5435		    "%s: could not read firmware, error %d\n", __func__,
5436		    error);
5437		goto end;
5438	}
5439
5440	sc->sc_running = 1;
5441
5442	/* Initialize hardware and upload firmware. */
5443	error = wpi_hw_init(sc);
5444	wpi_unload_firmware(sc);
5445	if (error != 0) {
5446		device_printf(sc->sc_dev,
5447		    "%s: could not initialize hardware, error %d\n", __func__,
5448		    error);
5449		goto fail;
5450	}
5451
5452	/* Configure adapter now that it is ready. */
5453	if ((error = wpi_config(sc)) != 0) {
5454		device_printf(sc->sc_dev,
5455		    "%s: could not configure device, error %d\n", __func__,
5456		    error);
5457		goto fail;
5458	}
5459
5460	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5461
5462	WPI_UNLOCK(sc);
5463
5464	return 0;
5465
5466fail:	wpi_stop_locked(sc);
5467
5468end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5469	WPI_UNLOCK(sc);
5470
5471	return error;
5472}
5473
5474static void
5475wpi_stop_locked(struct wpi_softc *sc)
5476{
5477
5478	WPI_LOCK_ASSERT(sc);
5479
5480	if (sc->sc_running == 0)
5481		return;
5482
5483	WPI_TX_LOCK(sc);
5484	WPI_TXQ_LOCK(sc);
5485	sc->sc_running = 0;
5486	WPI_TXQ_UNLOCK(sc);
5487	WPI_TX_UNLOCK(sc);
5488
5489	WPI_TXQ_STATE_LOCK(sc);
5490	callout_stop(&sc->tx_timeout);
5491	WPI_TXQ_STATE_UNLOCK(sc);
5492
5493	WPI_RXON_LOCK(sc);
5494	callout_stop(&sc->scan_timeout);
5495	callout_stop(&sc->calib_to);
5496	WPI_RXON_UNLOCK(sc);
5497
5498	/* Power OFF hardware. */
5499	wpi_hw_stop(sc);
5500}
5501
5502static void
5503wpi_stop(struct wpi_softc *sc)
5504{
5505	WPI_LOCK(sc);
5506	wpi_stop_locked(sc);
5507	WPI_UNLOCK(sc);
5508}
5509
5510/*
5511 * Callback from net80211 to start a scan.
5512 */
5513static void
5514wpi_scan_start(struct ieee80211com *ic)
5515{
5516	struct wpi_softc *sc = ic->ic_softc;
5517
5518	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5519}
5520
5521/*
5522 * Callback from net80211 to terminate a scan.
5523 */
5524static void
5525wpi_scan_end(struct ieee80211com *ic)
5526{
5527	struct wpi_softc *sc = ic->ic_softc;
5528	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5529
5530	if (vap->iv_state == IEEE80211_S_RUN)
5531		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5532}
5533
5534/**
5535 * Called by the net80211 framework to indicate to the driver
5536 * that the channel should be changed
5537 */
5538static void
5539wpi_set_channel(struct ieee80211com *ic)
5540{
5541	const struct ieee80211_channel *c = ic->ic_curchan;
5542	struct wpi_softc *sc = ic->ic_softc;
5543	int error;
5544
5545	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5546
5547	WPI_LOCK(sc);
5548	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5549	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5550	WPI_UNLOCK(sc);
5551	WPI_TX_LOCK(sc);
5552	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5553	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5554	WPI_TX_UNLOCK(sc);
5555
5556	/*
5557	 * Only need to set the channel in Monitor mode. AP scanning and auth
5558	 * are already taken care of by their respective firmware commands.
5559	 */
5560	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5561		WPI_RXON_LOCK(sc);
5562		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5563		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5564			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5565			    WPI_RXON_24GHZ);
5566		} else {
5567			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5568			    WPI_RXON_24GHZ);
5569		}
5570		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5571			device_printf(sc->sc_dev,
5572			    "%s: error %d setting channel\n", __func__,
5573			    error);
5574		WPI_RXON_UNLOCK(sc);
5575	}
5576}
5577
5578/**
5579 * Called by net80211 to indicate that we need to scan the current
5580 * channel. The channel is previously be set via the wpi_set_channel
5581 * callback.
5582 */
5583static void
5584wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5585{
5586	struct ieee80211vap *vap = ss->ss_vap;
5587	struct ieee80211com *ic = vap->iv_ic;
5588	struct wpi_softc *sc = ic->ic_softc;
5589	int error;
5590
5591	WPI_RXON_LOCK(sc);
5592	error = wpi_scan(sc, ic->ic_curchan);
5593	WPI_RXON_UNLOCK(sc);
5594	if (error != 0)
5595		ieee80211_cancel_scan(vap);
5596}
5597
5598/**
5599 * Called by the net80211 framework to indicate
5600 * the minimum dwell time has been met, terminate the scan.
5601 * We don't actually terminate the scan as the firmware will notify
5602 * us when it's finished and we have no way to interrupt it.
5603 */
5604static void
5605wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5606{
5607	/* NB: don't try to abort scan; wait for firmware to finish */
5608}
5609
5610static void
5611wpi_hw_reset(void *arg, int pending)
5612{
5613	struct wpi_softc *sc = arg;
5614	struct ieee80211com *ic = &sc->sc_ic;
5615	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5616
5617	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5618
5619	ieee80211_notify_radio(ic, 0);
5620	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5621		ieee80211_cancel_scan(vap);
5622
5623	wpi_stop(sc);
5624	if (vap != NULL) {
5625		ieee80211_stop(vap);
5626		ieee80211_init(vap);
5627	}
5628}
5629