if_wpi.c revision 283527
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 283527 2015-05-25 13:51:13Z glebius $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156static void	wpi_reset_rx_ring(struct wpi_softc *);
157static void	wpi_free_rx_ring(struct wpi_softc *);
158static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159		    int);
160static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162		    struct wpi_tx_ring *);
163static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165static int	wpi_read_eeprom(struct wpi_softc *,
166		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171		    struct ieee80211_channel *);
172static int	wpi_setregdomain(struct ieee80211com *,
173		    struct ieee80211_regdomain *, int,
174		    struct ieee80211_channel[]);
175static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179static void	wpi_node_free(struct ieee80211_node *);
180static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, int,
181		    int);
182static void	wpi_restore_node(void *, struct ieee80211_node *);
183static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
184static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
185static void	wpi_calib_timeout(void *);
186static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
187		    struct wpi_rx_data *);
188static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
189		    struct wpi_rx_data *);
190static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
191static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
192static void	wpi_notif_intr(struct wpi_softc *);
193static void	wpi_wakeup_intr(struct wpi_softc *);
194#ifdef WPI_DEBUG
195static void	wpi_debug_registers(struct wpi_softc *);
196#endif
197static void	wpi_fatal_intr(struct wpi_softc *);
198static void	wpi_intr(void *);
199static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
200static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201		    struct ieee80211_node *);
202static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
203		    struct ieee80211_node *,
204		    const struct ieee80211_bpf_params *);
205static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206		    const struct ieee80211_bpf_params *);
207static void	wpi_start(struct ifnet *);
208static void	wpi_start_task(void *, int);
209static void	wpi_watchdog_rfkill(void *);
210static void	wpi_scan_timeout(void *);
211static void	wpi_tx_timeout(void *);
212static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
213static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
214static int	wpi_mrr_setup(struct wpi_softc *);
215static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
216static int	wpi_add_broadcast_node(struct wpi_softc *, int);
217static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
218static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
219static int	wpi_updateedca(struct ieee80211com *);
220static void	wpi_set_promisc(struct wpi_softc *);
221static void	wpi_update_promisc(struct ifnet *);
222static void	wpi_update_mcast(struct ifnet *);
223static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
224static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
225static void	wpi_power_calibration(struct wpi_softc *);
226static int	wpi_set_txpower(struct wpi_softc *, int);
227static int	wpi_get_power_index(struct wpi_softc *,
228		    struct wpi_power_group *, uint8_t, int, int);
229static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
230static int	wpi_send_btcoex(struct wpi_softc *);
231static int	wpi_send_rxon(struct wpi_softc *, int, int);
232static int	wpi_config(struct wpi_softc *);
233static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
234		    struct ieee80211_channel *, uint8_t);
235static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
236static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
237		    struct ieee80211_channel *);
238static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
239static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
240static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
241static int	wpi_config_beacon(struct wpi_vap *);
242static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
243static void	wpi_update_beacon(struct ieee80211vap *, int);
244static void	wpi_newassoc(struct ieee80211_node *, int);
245static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
246static int	wpi_load_key(struct ieee80211_node *,
247		    const struct ieee80211_key *);
248static void	wpi_load_key_cb(void *, struct ieee80211_node *);
249static int	wpi_set_global_keys(struct ieee80211_node *);
250static int	wpi_del_key(struct ieee80211_node *,
251		    const struct ieee80211_key *);
252static void	wpi_del_key_cb(void *, struct ieee80211_node *);
253static int	wpi_process_key(struct ieee80211vap *,
254		    const struct ieee80211_key *, int);
255static int	wpi_key_set(struct ieee80211vap *,
256		    const struct ieee80211_key *,
257		    const uint8_t mac[IEEE80211_ADDR_LEN]);
258static int	wpi_key_delete(struct ieee80211vap *,
259		    const struct ieee80211_key *);
260static int	wpi_post_alive(struct wpi_softc *);
261static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
262static int	wpi_load_firmware(struct wpi_softc *);
263static int	wpi_read_firmware(struct wpi_softc *);
264static void	wpi_unload_firmware(struct wpi_softc *);
265static int	wpi_clock_wait(struct wpi_softc *);
266static int	wpi_apm_init(struct wpi_softc *);
267static void	wpi_apm_stop_master(struct wpi_softc *);
268static void	wpi_apm_stop(struct wpi_softc *);
269static void	wpi_nic_config(struct wpi_softc *);
270static int	wpi_hw_init(struct wpi_softc *);
271static void	wpi_hw_stop(struct wpi_softc *);
272static void	wpi_radio_on(void *, int);
273static void	wpi_radio_off(void *, int);
274static void	wpi_init(void *);
275static void	wpi_stop_locked(struct wpi_softc *);
276static void	wpi_stop(struct wpi_softc *);
277static void	wpi_scan_start(struct ieee80211com *);
278static void	wpi_scan_end(struct ieee80211com *);
279static void	wpi_set_channel(struct ieee80211com *);
280static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
281static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
282static void	wpi_hw_reset(void *, int);
283
284static device_method_t wpi_methods[] = {
285	/* Device interface */
286	DEVMETHOD(device_probe,		wpi_probe),
287	DEVMETHOD(device_attach,	wpi_attach),
288	DEVMETHOD(device_detach,	wpi_detach),
289	DEVMETHOD(device_shutdown,	wpi_shutdown),
290	DEVMETHOD(device_suspend,	wpi_suspend),
291	DEVMETHOD(device_resume,	wpi_resume),
292
293	DEVMETHOD_END
294};
295
296static driver_t wpi_driver = {
297	"wpi",
298	wpi_methods,
299	sizeof (struct wpi_softc)
300};
301static devclass_t wpi_devclass;
302
303DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
304
305MODULE_VERSION(wpi, 1);
306
307MODULE_DEPEND(wpi, pci,  1, 1, 1);
308MODULE_DEPEND(wpi, wlan, 1, 1, 1);
309MODULE_DEPEND(wpi, firmware, 1, 1, 1);
310
311static int
312wpi_probe(device_t dev)
313{
314	const struct wpi_ident *ident;
315
316	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
317		if (pci_get_vendor(dev) == ident->vendor &&
318		    pci_get_device(dev) == ident->device) {
319			device_set_desc(dev, ident->name);
320			return (BUS_PROBE_DEFAULT);
321		}
322	}
323	return ENXIO;
324}
325
326static int
327wpi_attach(device_t dev)
328{
329	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
330	struct ieee80211com *ic;
331	struct ifnet *ifp;
332	int i, error, rid;
333#ifdef WPI_DEBUG
334	int supportsa = 1;
335	const struct wpi_ident *ident;
336#endif
337	uint8_t macaddr[IEEE80211_ADDR_LEN];
338
339	sc->sc_dev = dev;
340
341#ifdef WPI_DEBUG
342	error = resource_int_value(device_get_name(sc->sc_dev),
343	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
344	if (error != 0)
345		sc->sc_debug = 0;
346#else
347	sc->sc_debug = 0;
348#endif
349
350	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
351
352	/*
353	 * Get the offset of the PCI Express Capability Structure in PCI
354	 * Configuration Space.
355	 */
356	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
357	if (error != 0) {
358		device_printf(dev, "PCIe capability structure not found!\n");
359		return error;
360	}
361
362	/*
363	 * Some card's only support 802.11b/g not a, check to see if
364	 * this is one such card. A 0x0 in the subdevice table indicates
365	 * the entire subdevice range is to be ignored.
366	 */
367#ifdef WPI_DEBUG
368	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
369		if (ident->subdevice &&
370		    pci_get_subdevice(dev) == ident->subdevice) {
371		    supportsa = 0;
372		    break;
373		}
374	}
375#endif
376
377	/* Clear device-specific "PCI retry timeout" register (41h). */
378	pci_write_config(dev, 0x41, 0, 1);
379
380	/* Enable bus-mastering. */
381	pci_enable_busmaster(dev);
382
383	rid = PCIR_BAR(0);
384	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
385	    RF_ACTIVE);
386	if (sc->mem == NULL) {
387		device_printf(dev, "can't map mem space\n");
388		return ENOMEM;
389	}
390	sc->sc_st = rman_get_bustag(sc->mem);
391	sc->sc_sh = rman_get_bushandle(sc->mem);
392
393	i = 1;
394	rid = 0;
395	if (pci_alloc_msi(dev, &i) == 0)
396		rid = 1;
397	/* Install interrupt handler. */
398	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
399	    (rid != 0 ? 0 : RF_SHAREABLE));
400	if (sc->irq == NULL) {
401		device_printf(dev, "can't map interrupt\n");
402		error = ENOMEM;
403		goto fail;
404	}
405
406	WPI_LOCK_INIT(sc);
407	WPI_TX_LOCK_INIT(sc);
408	WPI_RXON_LOCK_INIT(sc);
409	WPI_NT_LOCK_INIT(sc);
410	WPI_TXQ_LOCK_INIT(sc);
411	WPI_TXQ_STATE_LOCK_INIT(sc);
412
413	/* Allocate DMA memory for firmware transfers. */
414	if ((error = wpi_alloc_fwmem(sc)) != 0) {
415		device_printf(dev,
416		    "could not allocate memory for firmware, error %d\n",
417		    error);
418		goto fail;
419	}
420
421	/* Allocate shared page. */
422	if ((error = wpi_alloc_shared(sc)) != 0) {
423		device_printf(dev, "could not allocate shared page\n");
424		goto fail;
425	}
426
427	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
428	for (i = 0; i < WPI_NTXQUEUES; i++) {
429		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
430			device_printf(dev,
431			    "could not allocate TX ring %d, error %d\n", i,
432			    error);
433			goto fail;
434		}
435	}
436
437	/* Allocate RX ring. */
438	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
439		device_printf(dev, "could not allocate RX ring, error %d\n",
440		    error);
441		goto fail;
442	}
443
444	/* Clear pending interrupts. */
445	WPI_WRITE(sc, WPI_INT, 0xffffffff);
446
447	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
448	if (ifp == NULL) {
449		device_printf(dev, "can not allocate ifnet structure\n");
450		goto fail;
451	}
452
453	ic = ifp->if_l2com;
454	ic->ic_ifp = ifp;
455	ic->ic_name = device_get_nameunit(dev);
456	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
457	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
458
459	/* Set device capabilities. */
460	ic->ic_caps =
461		  IEEE80211_C_STA		/* station mode supported */
462		| IEEE80211_C_IBSS		/* IBSS mode supported */
463		| IEEE80211_C_HOSTAP		/* Host access point mode */
464		| IEEE80211_C_MONITOR		/* monitor mode supported */
465		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
466		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
467		| IEEE80211_C_TXPMGT		/* tx power management */
468		| IEEE80211_C_SHSLOT		/* short slot time supported */
469		| IEEE80211_C_WPA		/* 802.11i */
470		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
471		| IEEE80211_C_WME		/* 802.11e */
472		| IEEE80211_C_PMGT		/* Station-side power mgmt */
473		;
474
475	ic->ic_cryptocaps =
476		  IEEE80211_CRYPTO_AES_CCM;
477
478	/*
479	 * Read in the eeprom and also setup the channels for
480	 * net80211. We don't set the rates as net80211 does this for us
481	 */
482	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
483		device_printf(dev, "could not read EEPROM, error %d\n",
484		    error);
485		goto fail;
486	}
487
488#ifdef WPI_DEBUG
489	if (bootverbose) {
490		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
491		    sc->domain);
492		device_printf(sc->sc_dev, "Hardware Type: %c\n",
493		    sc->type > 1 ? 'B': '?');
494		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
495		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
496		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
497		    supportsa ? "does" : "does not");
498
499		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
500		   check what sc->rev really represents - benjsc 20070615 */
501	}
502#endif
503
504	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
505	ifp->if_softc = sc;
506	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
507	ifp->if_init = wpi_init;
508	ifp->if_ioctl = wpi_ioctl;
509	ifp->if_start = wpi_start;
510	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
511	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
512	IFQ_SET_READY(&ifp->if_snd);
513
514	ieee80211_ifattach(ic, macaddr);
515	ic->ic_vap_create = wpi_vap_create;
516	ic->ic_vap_delete = wpi_vap_delete;
517	ic->ic_raw_xmit = wpi_raw_xmit;
518	ic->ic_node_alloc = wpi_node_alloc;
519	sc->sc_node_free = ic->ic_node_free;
520	ic->ic_node_free = wpi_node_free;
521	ic->ic_wme.wme_update = wpi_updateedca;
522	ic->ic_update_promisc = wpi_update_promisc;
523	ic->ic_update_mcast = wpi_update_mcast;
524	ic->ic_newassoc = wpi_newassoc;
525	ic->ic_scan_start = wpi_scan_start;
526	ic->ic_scan_end = wpi_scan_end;
527	ic->ic_set_channel = wpi_set_channel;
528	ic->ic_scan_curchan = wpi_scan_curchan;
529	ic->ic_scan_mindwell = wpi_scan_mindwell;
530	ic->ic_setregdomain = wpi_setregdomain;
531
532	sc->sc_update_rx_ring = wpi_update_rx_ring;
533	sc->sc_update_tx_ring = wpi_update_tx_ring;
534
535	wpi_radiotap_attach(sc);
536
537	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
538	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
539	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
540	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
541	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
542	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
543	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
544	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
545
546	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
547	    taskqueue_thread_enqueue, &sc->sc_tq);
548	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
549	if (error != 0) {
550		device_printf(dev, "can't start threads, error %d\n", error);
551		goto fail;
552	}
553
554	wpi_sysctlattach(sc);
555
556	/*
557	 * Hook our interrupt after all initialization is complete.
558	 */
559	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
560	    NULL, wpi_intr, sc, &sc->sc_ih);
561	if (error != 0) {
562		device_printf(dev, "can't establish interrupt, error %d\n",
563		    error);
564		goto fail;
565	}
566
567	if (bootverbose)
568		ieee80211_announce(ic);
569
570#ifdef WPI_DEBUG
571	if (sc->sc_debug & WPI_DEBUG_HW)
572		ieee80211_announce_channels(ic);
573#endif
574
575	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
576	return 0;
577
578fail:	wpi_detach(dev);
579	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
580	return error;
581}
582
583/*
584 * Attach the interface to 802.11 radiotap.
585 */
586static void
587wpi_radiotap_attach(struct wpi_softc *sc)
588{
589	struct ifnet *ifp = sc->sc_ifp;
590	struct ieee80211com *ic = ifp->if_l2com;
591	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
592	ieee80211_radiotap_attach(ic,
593	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
594		WPI_TX_RADIOTAP_PRESENT,
595	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
596		WPI_RX_RADIOTAP_PRESENT);
597	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
598}
599
600static void
601wpi_sysctlattach(struct wpi_softc *sc)
602{
603#ifdef WPI_DEBUG
604	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
605	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
606
607	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
608	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
609		"control debugging printfs");
610#endif
611}
612
613static void
614wpi_init_beacon(struct wpi_vap *wvp)
615{
616	struct wpi_buf *bcn = &wvp->wv_bcbuf;
617	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
618
619	cmd->id = WPI_ID_BROADCAST;
620	cmd->ofdm_mask = 0xff;
621	cmd->cck_mask = 0x0f;
622	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
623
624	/*
625	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
626	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
627	 */
628	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
629
630	bcn->code = WPI_CMD_SET_BEACON;
631	bcn->ac = WPI_CMD_QUEUE_NUM;
632	bcn->size = sizeof(struct wpi_cmd_beacon);
633}
634
635static struct ieee80211vap *
636wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
637    enum ieee80211_opmode opmode, int flags,
638    const uint8_t bssid[IEEE80211_ADDR_LEN],
639    const uint8_t mac[IEEE80211_ADDR_LEN])
640{
641	struct wpi_vap *wvp;
642	struct ieee80211vap *vap;
643
644	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
645		return NULL;
646
647	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
648	    M_80211_VAP, M_NOWAIT | M_ZERO);
649	if (wvp == NULL)
650		return NULL;
651	vap = &wvp->wv_vap;
652	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
653
654	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
655		WPI_VAP_LOCK_INIT(wvp);
656		wpi_init_beacon(wvp);
657	}
658
659	/* Override with driver methods. */
660	vap->iv_key_set = wpi_key_set;
661	vap->iv_key_delete = wpi_key_delete;
662	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
663	vap->iv_recv_mgmt = wpi_recv_mgmt;
664	wvp->wv_newstate = vap->iv_newstate;
665	vap->iv_newstate = wpi_newstate;
666	vap->iv_update_beacon = wpi_update_beacon;
667	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
668
669	ieee80211_ratectl_init(vap);
670	/* Complete setup. */
671	ieee80211_vap_attach(vap, ieee80211_media_change,
672	    ieee80211_media_status);
673	ic->ic_opmode = opmode;
674	return vap;
675}
676
677static void
678wpi_vap_delete(struct ieee80211vap *vap)
679{
680	struct wpi_vap *wvp = WPI_VAP(vap);
681	struct wpi_buf *bcn = &wvp->wv_bcbuf;
682	enum ieee80211_opmode opmode = vap->iv_opmode;
683
684	ieee80211_ratectl_deinit(vap);
685	ieee80211_vap_detach(vap);
686
687	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
688		if (bcn->m != NULL)
689			m_freem(bcn->m);
690
691		WPI_VAP_LOCK_DESTROY(wvp);
692	}
693
694	free(wvp, M_80211_VAP);
695}
696
697static int
698wpi_detach(device_t dev)
699{
700	struct wpi_softc *sc = device_get_softc(dev);
701	struct ifnet *ifp = sc->sc_ifp;
702	struct ieee80211com *ic;
703	int qid;
704
705	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
706
707	if (ifp != NULL) {
708		ic = ifp->if_l2com;
709
710		ieee80211_draintask(ic, &sc->sc_radioon_task);
711		ieee80211_draintask(ic, &sc->sc_start_task);
712
713		wpi_stop(sc);
714
715		taskqueue_drain_all(sc->sc_tq);
716		taskqueue_free(sc->sc_tq);
717
718		callout_drain(&sc->watchdog_rfkill);
719		callout_drain(&sc->tx_timeout);
720		callout_drain(&sc->scan_timeout);
721		callout_drain(&sc->calib_to);
722		ieee80211_ifdetach(ic);
723	}
724
725	/* Uninstall interrupt handler. */
726	if (sc->irq != NULL) {
727		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
728		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
729		    sc->irq);
730		pci_release_msi(dev);
731	}
732
733	if (sc->txq[0].data_dmat) {
734		/* Free DMA resources. */
735		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
736			wpi_free_tx_ring(sc, &sc->txq[qid]);
737
738		wpi_free_rx_ring(sc);
739		wpi_free_shared(sc);
740	}
741
742	if (sc->fw_dma.tag)
743		wpi_free_fwmem(sc);
744
745	if (sc->mem != NULL)
746		bus_release_resource(dev, SYS_RES_MEMORY,
747		    rman_get_rid(sc->mem), sc->mem);
748
749	if (ifp != NULL)
750		if_free(ifp);
751
752	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
753	WPI_TXQ_STATE_LOCK_DESTROY(sc);
754	WPI_TXQ_LOCK_DESTROY(sc);
755	WPI_NT_LOCK_DESTROY(sc);
756	WPI_RXON_LOCK_DESTROY(sc);
757	WPI_TX_LOCK_DESTROY(sc);
758	WPI_LOCK_DESTROY(sc);
759	return 0;
760}
761
762static int
763wpi_shutdown(device_t dev)
764{
765	struct wpi_softc *sc = device_get_softc(dev);
766
767	wpi_stop(sc);
768	return 0;
769}
770
771static int
772wpi_suspend(device_t dev)
773{
774	struct wpi_softc *sc = device_get_softc(dev);
775	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
776
777	ieee80211_suspend_all(ic);
778	return 0;
779}
780
781static int
782wpi_resume(device_t dev)
783{
784	struct wpi_softc *sc = device_get_softc(dev);
785	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
786
787	/* Clear device-specific "PCI retry timeout" register (41h). */
788	pci_write_config(dev, 0x41, 0, 1);
789
790	ieee80211_resume_all(ic);
791	return 0;
792}
793
794/*
795 * Grab exclusive access to NIC memory.
796 */
797static int
798wpi_nic_lock(struct wpi_softc *sc)
799{
800	int ntries;
801
802	/* Request exclusive access to NIC. */
803	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
804
805	/* Spin until we actually get the lock. */
806	for (ntries = 0; ntries < 1000; ntries++) {
807		if ((WPI_READ(sc, WPI_GP_CNTRL) &
808		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
809		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
810			return 0;
811		DELAY(10);
812	}
813
814	device_printf(sc->sc_dev, "could not lock memory\n");
815
816	return ETIMEDOUT;
817}
818
819/*
820 * Release lock on NIC memory.
821 */
822static __inline void
823wpi_nic_unlock(struct wpi_softc *sc)
824{
825	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
826}
827
828static __inline uint32_t
829wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
830{
831	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
832	WPI_BARRIER_READ_WRITE(sc);
833	return WPI_READ(sc, WPI_PRPH_RDATA);
834}
835
836static __inline void
837wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
838{
839	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
840	WPI_BARRIER_WRITE(sc);
841	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
842}
843
844static __inline void
845wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
846{
847	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
848}
849
850static __inline void
851wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
852{
853	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
854}
855
856static __inline void
857wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
858    const uint32_t *data, int count)
859{
860	for (; count > 0; count--, data++, addr += 4)
861		wpi_prph_write(sc, addr, *data);
862}
863
864static __inline uint32_t
865wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
866{
867	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
868	WPI_BARRIER_READ_WRITE(sc);
869	return WPI_READ(sc, WPI_MEM_RDATA);
870}
871
872static __inline void
873wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
874    int count)
875{
876	for (; count > 0; count--, addr += 4)
877		*data++ = wpi_mem_read(sc, addr);
878}
879
880static int
881wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
882{
883	uint8_t *out = data;
884	uint32_t val;
885	int error, ntries;
886
887	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
888
889	if ((error = wpi_nic_lock(sc)) != 0)
890		return error;
891
892	for (; count > 0; count -= 2, addr++) {
893		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
894		for (ntries = 0; ntries < 10; ntries++) {
895			val = WPI_READ(sc, WPI_EEPROM);
896			if (val & WPI_EEPROM_READ_VALID)
897				break;
898			DELAY(5);
899		}
900		if (ntries == 10) {
901			device_printf(sc->sc_dev,
902			    "timeout reading ROM at 0x%x\n", addr);
903			return ETIMEDOUT;
904		}
905		*out++= val >> 16;
906		if (count > 1)
907			*out ++= val >> 24;
908	}
909
910	wpi_nic_unlock(sc);
911
912	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
913
914	return 0;
915}
916
917static void
918wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
919{
920	if (error != 0)
921		return;
922	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
923	*(bus_addr_t *)arg = segs[0].ds_addr;
924}
925
926/*
927 * Allocates a contiguous block of dma memory of the requested size and
928 * alignment.
929 */
930static int
931wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
932    void **kvap, bus_size_t size, bus_size_t alignment)
933{
934	int error;
935
936	dma->tag = NULL;
937	dma->size = size;
938
939	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
940	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
941	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
942	if (error != 0)
943		goto fail;
944
945	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
946	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
947	if (error != 0)
948		goto fail;
949
950	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
951	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
952	if (error != 0)
953		goto fail;
954
955	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
956
957	if (kvap != NULL)
958		*kvap = dma->vaddr;
959
960	return 0;
961
962fail:	wpi_dma_contig_free(dma);
963	return error;
964}
965
966static void
967wpi_dma_contig_free(struct wpi_dma_info *dma)
968{
969	if (dma->vaddr != NULL) {
970		bus_dmamap_sync(dma->tag, dma->map,
971		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
972		bus_dmamap_unload(dma->tag, dma->map);
973		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
974		dma->vaddr = NULL;
975	}
976	if (dma->tag != NULL) {
977		bus_dma_tag_destroy(dma->tag);
978		dma->tag = NULL;
979	}
980}
981
982/*
983 * Allocate a shared page between host and NIC.
984 */
985static int
986wpi_alloc_shared(struct wpi_softc *sc)
987{
988	/* Shared buffer must be aligned on a 4KB boundary. */
989	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
990	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
991}
992
993static void
994wpi_free_shared(struct wpi_softc *sc)
995{
996	wpi_dma_contig_free(&sc->shared_dma);
997}
998
999/*
1000 * Allocate DMA-safe memory for firmware transfer.
1001 */
1002static int
1003wpi_alloc_fwmem(struct wpi_softc *sc)
1004{
1005	/* Must be aligned on a 16-byte boundary. */
1006	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1007	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
1008}
1009
1010static void
1011wpi_free_fwmem(struct wpi_softc *sc)
1012{
1013	wpi_dma_contig_free(&sc->fw_dma);
1014}
1015
1016static int
1017wpi_alloc_rx_ring(struct wpi_softc *sc)
1018{
1019	struct wpi_rx_ring *ring = &sc->rxq;
1020	bus_size_t size;
1021	int i, error;
1022
1023	ring->cur = 0;
1024	ring->update = 0;
1025
1026	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1027
1028	/* Allocate RX descriptors (16KB aligned.) */
1029	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1030	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1031	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1032	if (error != 0) {
1033		device_printf(sc->sc_dev,
1034		    "%s: could not allocate RX ring DMA memory, error %d\n",
1035		    __func__, error);
1036		goto fail;
1037	}
1038
1039	/* Create RX buffer DMA tag. */
1040	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1041	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1042	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1043	    &ring->data_dmat);
1044	if (error != 0) {
1045		device_printf(sc->sc_dev,
1046		    "%s: could not create RX buf DMA tag, error %d\n",
1047		    __func__, error);
1048		goto fail;
1049	}
1050
1051	/*
1052	 * Allocate and map RX buffers.
1053	 */
1054	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1055		struct wpi_rx_data *data = &ring->data[i];
1056		bus_addr_t paddr;
1057
1058		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1059		if (error != 0) {
1060			device_printf(sc->sc_dev,
1061			    "%s: could not create RX buf DMA map, error %d\n",
1062			    __func__, error);
1063			goto fail;
1064		}
1065
1066		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1067		if (data->m == NULL) {
1068			device_printf(sc->sc_dev,
1069			    "%s: could not allocate RX mbuf\n", __func__);
1070			error = ENOBUFS;
1071			goto fail;
1072		}
1073
1074		error = bus_dmamap_load(ring->data_dmat, data->map,
1075		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1076		    &paddr, BUS_DMA_NOWAIT);
1077		if (error != 0 && error != EFBIG) {
1078			device_printf(sc->sc_dev,
1079			    "%s: can't map mbuf (error %d)\n", __func__,
1080			    error);
1081			goto fail;
1082		}
1083
1084		/* Set physical address of RX buffer. */
1085		ring->desc[i] = htole32(paddr);
1086	}
1087
1088	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1089	    BUS_DMASYNC_PREWRITE);
1090
1091	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1092
1093	return 0;
1094
1095fail:	wpi_free_rx_ring(sc);
1096
1097	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1098
1099	return error;
1100}
1101
1102static void
1103wpi_update_rx_ring(struct wpi_softc *sc)
1104{
1105	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1106}
1107
1108static void
1109wpi_update_rx_ring_ps(struct wpi_softc *sc)
1110{
1111	struct wpi_rx_ring *ring = &sc->rxq;
1112
1113	if (ring->update != 0) {
1114		/* Wait for INT_WAKEUP event. */
1115		return;
1116	}
1117
1118	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1119	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1120		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1121		    __func__);
1122		ring->update = 1;
1123	} else {
1124		wpi_update_rx_ring(sc);
1125		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1126	}
1127}
1128
1129static void
1130wpi_reset_rx_ring(struct wpi_softc *sc)
1131{
1132	struct wpi_rx_ring *ring = &sc->rxq;
1133	int ntries;
1134
1135	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1136
1137	if (wpi_nic_lock(sc) == 0) {
1138		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1139		for (ntries = 0; ntries < 1000; ntries++) {
1140			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1141			    WPI_FH_RX_STATUS_IDLE)
1142				break;
1143			DELAY(10);
1144		}
1145		wpi_nic_unlock(sc);
1146	}
1147
1148	ring->cur = 0;
1149	ring->update = 0;
1150}
1151
1152static void
1153wpi_free_rx_ring(struct wpi_softc *sc)
1154{
1155	struct wpi_rx_ring *ring = &sc->rxq;
1156	int i;
1157
1158	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1159
1160	wpi_dma_contig_free(&ring->desc_dma);
1161
1162	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1163		struct wpi_rx_data *data = &ring->data[i];
1164
1165		if (data->m != NULL) {
1166			bus_dmamap_sync(ring->data_dmat, data->map,
1167			    BUS_DMASYNC_POSTREAD);
1168			bus_dmamap_unload(ring->data_dmat, data->map);
1169			m_freem(data->m);
1170			data->m = NULL;
1171		}
1172		if (data->map != NULL)
1173			bus_dmamap_destroy(ring->data_dmat, data->map);
1174	}
1175	if (ring->data_dmat != NULL) {
1176		bus_dma_tag_destroy(ring->data_dmat);
1177		ring->data_dmat = NULL;
1178	}
1179}
1180
1181static int
1182wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1183{
1184	bus_addr_t paddr;
1185	bus_size_t size;
1186	int i, error;
1187
1188	ring->qid = qid;
1189	ring->queued = 0;
1190	ring->cur = 0;
1191	ring->update = 0;
1192
1193	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1194
1195	/* Allocate TX descriptors (16KB aligned.) */
1196	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1197	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1198	    size, WPI_RING_DMA_ALIGN);
1199	if (error != 0) {
1200		device_printf(sc->sc_dev,
1201		    "%s: could not allocate TX ring DMA memory, error %d\n",
1202		    __func__, error);
1203		goto fail;
1204	}
1205
1206	/* Update shared area with ring physical address. */
1207	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1208	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1209	    BUS_DMASYNC_PREWRITE);
1210
1211	/*
1212	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1213	 * to allocate commands space for other rings.
1214	 * XXX Do we really need to allocate descriptors for other rings?
1215	 */
1216	if (qid > WPI_CMD_QUEUE_NUM) {
1217		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1218		return 0;
1219	}
1220
1221	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1222	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1223	    size, 4);
1224	if (error != 0) {
1225		device_printf(sc->sc_dev,
1226		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1227		    __func__, error);
1228		goto fail;
1229	}
1230
1231	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1232	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1233	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1234	    &ring->data_dmat);
1235	if (error != 0) {
1236		device_printf(sc->sc_dev,
1237		    "%s: could not create TX buf DMA tag, error %d\n",
1238		    __func__, error);
1239		goto fail;
1240	}
1241
1242	paddr = ring->cmd_dma.paddr;
1243	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1244		struct wpi_tx_data *data = &ring->data[i];
1245
1246		data->cmd_paddr = paddr;
1247		paddr += sizeof (struct wpi_tx_cmd);
1248
1249		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1250		if (error != 0) {
1251			device_printf(sc->sc_dev,
1252			    "%s: could not create TX buf DMA map, error %d\n",
1253			    __func__, error);
1254			goto fail;
1255		}
1256	}
1257
1258	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1259
1260	return 0;
1261
1262fail:	wpi_free_tx_ring(sc, ring);
1263	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1264	return error;
1265}
1266
1267static void
1268wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1269{
1270	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1271}
1272
1273static void
1274wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1275{
1276
1277	if (ring->update != 0) {
1278		/* Wait for INT_WAKEUP event. */
1279		return;
1280	}
1281
1282	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1283	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1284		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1285		    __func__, ring->qid);
1286		ring->update = 1;
1287	} else {
1288		wpi_update_tx_ring(sc, ring);
1289		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1290	}
1291}
1292
1293static void
1294wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1295{
1296	int i;
1297
1298	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1299
1300	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1301		struct wpi_tx_data *data = &ring->data[i];
1302
1303		if (data->m != NULL) {
1304			bus_dmamap_sync(ring->data_dmat, data->map,
1305			    BUS_DMASYNC_POSTWRITE);
1306			bus_dmamap_unload(ring->data_dmat, data->map);
1307			m_freem(data->m);
1308			data->m = NULL;
1309		}
1310		if (data->ni != NULL) {
1311			ieee80211_free_node(data->ni);
1312			data->ni = NULL;
1313		}
1314	}
1315	/* Clear TX descriptors. */
1316	memset(ring->desc, 0, ring->desc_dma.size);
1317	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1318	    BUS_DMASYNC_PREWRITE);
1319	sc->qfullmsk &= ~(1 << ring->qid);
1320	ring->queued = 0;
1321	ring->cur = 0;
1322	ring->update = 0;
1323}
1324
1325static void
1326wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1327{
1328	int i;
1329
1330	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1331
1332	wpi_dma_contig_free(&ring->desc_dma);
1333	wpi_dma_contig_free(&ring->cmd_dma);
1334
1335	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1336		struct wpi_tx_data *data = &ring->data[i];
1337
1338		if (data->m != NULL) {
1339			bus_dmamap_sync(ring->data_dmat, data->map,
1340			    BUS_DMASYNC_POSTWRITE);
1341			bus_dmamap_unload(ring->data_dmat, data->map);
1342			m_freem(data->m);
1343		}
1344		if (data->map != NULL)
1345			bus_dmamap_destroy(ring->data_dmat, data->map);
1346	}
1347	if (ring->data_dmat != NULL) {
1348		bus_dma_tag_destroy(ring->data_dmat);
1349		ring->data_dmat = NULL;
1350	}
1351}
1352
1353/*
1354 * Extract various information from EEPROM.
1355 */
1356static int
1357wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1358{
1359#define WPI_CHK(res) do {		\
1360	if ((error = res) != 0)		\
1361		goto fail;		\
1362} while (0)
1363	int error, i;
1364
1365	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1366
1367	/* Adapter has to be powered on for EEPROM access to work. */
1368	if ((error = wpi_apm_init(sc)) != 0) {
1369		device_printf(sc->sc_dev,
1370		    "%s: could not power ON adapter, error %d\n", __func__,
1371		    error);
1372		return error;
1373	}
1374
1375	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1376		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1377		error = EIO;
1378		goto fail;
1379	}
1380	/* Clear HW ownership of EEPROM. */
1381	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1382
1383	/* Read the hardware capabilities, revision and SKU type. */
1384	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1385	    sizeof(sc->cap)));
1386	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1387	    sizeof(sc->rev)));
1388	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1389	    sizeof(sc->type)));
1390
1391	sc->rev = le16toh(sc->rev);
1392	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1393	    sc->rev, sc->type);
1394
1395	/* Read the regulatory domain (4 ASCII characters.) */
1396	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1397	    sizeof(sc->domain)));
1398
1399	/* Read MAC address. */
1400	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1401	    IEEE80211_ADDR_LEN));
1402
1403	/* Read the list of authorized channels. */
1404	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1405		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1406
1407	/* Read the list of TX power groups. */
1408	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1409		WPI_CHK(wpi_read_eeprom_group(sc, i));
1410
1411fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1412
1413	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1414	    __func__);
1415
1416	return error;
1417#undef WPI_CHK
1418}
1419
1420/*
1421 * Translate EEPROM flags to net80211.
1422 */
1423static uint32_t
1424wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1425{
1426	uint32_t nflags;
1427
1428	nflags = 0;
1429	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1430		nflags |= IEEE80211_CHAN_PASSIVE;
1431	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1432		nflags |= IEEE80211_CHAN_NOADHOC;
1433	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1434		nflags |= IEEE80211_CHAN_DFS;
1435		/* XXX apparently IBSS may still be marked */
1436		nflags |= IEEE80211_CHAN_NOADHOC;
1437	}
1438
1439	/* XXX HOSTAP uses WPI_MODE_IBSS */
1440	if (nflags & IEEE80211_CHAN_NOADHOC)
1441		nflags |= IEEE80211_CHAN_NOHOSTAP;
1442
1443	return nflags;
1444}
1445
1446static void
1447wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1448{
1449	struct ifnet *ifp = sc->sc_ifp;
1450	struct ieee80211com *ic = ifp->if_l2com;
1451	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1452	const struct wpi_chan_band *band = &wpi_bands[n];
1453	struct ieee80211_channel *c;
1454	uint8_t chan;
1455	int i, nflags;
1456
1457	for (i = 0; i < band->nchan; i++) {
1458		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1459			DPRINTF(sc, WPI_DEBUG_EEPROM,
1460			    "Channel Not Valid: %d, band %d\n",
1461			     band->chan[i],n);
1462			continue;
1463		}
1464
1465		chan = band->chan[i];
1466		nflags = wpi_eeprom_channel_flags(&channels[i]);
1467
1468		c = &ic->ic_channels[ic->ic_nchans++];
1469		c->ic_ieee = chan;
1470		c->ic_maxregpower = channels[i].maxpwr;
1471		c->ic_maxpower = 2*c->ic_maxregpower;
1472
1473		if (n == 0) {	/* 2GHz band */
1474			c->ic_freq = ieee80211_ieee2mhz(chan,
1475			    IEEE80211_CHAN_G);
1476
1477			/* G =>'s B is supported */
1478			c->ic_flags = IEEE80211_CHAN_B | nflags;
1479			c = &ic->ic_channels[ic->ic_nchans++];
1480			c[0] = c[-1];
1481			c->ic_flags = IEEE80211_CHAN_G | nflags;
1482		} else {	/* 5GHz band */
1483			c->ic_freq = ieee80211_ieee2mhz(chan,
1484			    IEEE80211_CHAN_A);
1485
1486			c->ic_flags = IEEE80211_CHAN_A | nflags;
1487		}
1488
1489		/* Save maximum allowed TX power for this channel. */
1490		sc->maxpwr[chan] = channels[i].maxpwr;
1491
1492		DPRINTF(sc, WPI_DEBUG_EEPROM,
1493		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1494		    " offset %d\n", chan, c->ic_freq,
1495		    channels[i].flags, sc->maxpwr[chan],
1496		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1497	}
1498}
1499
1500/**
1501 * Read the eeprom to find out what channels are valid for the given
1502 * band and update net80211 with what we find.
1503 */
1504static int
1505wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1506{
1507	struct ifnet *ifp = sc->sc_ifp;
1508	struct ieee80211com *ic = ifp->if_l2com;
1509	const struct wpi_chan_band *band = &wpi_bands[n];
1510	int error;
1511
1512	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1513
1514	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1515	    band->nchan * sizeof (struct wpi_eeprom_chan));
1516	if (error != 0) {
1517		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1518		return error;
1519	}
1520
1521	wpi_read_eeprom_band(sc, n);
1522
1523	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1524
1525	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1526
1527	return 0;
1528}
1529
1530static struct wpi_eeprom_chan *
1531wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1532{
1533	int i, j;
1534
1535	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1536		for (i = 0; i < wpi_bands[j].nchan; i++)
1537			if (wpi_bands[j].chan[i] == c->ic_ieee)
1538				return &sc->eeprom_channels[j][i];
1539
1540	return NULL;
1541}
1542
1543/*
1544 * Enforce flags read from EEPROM.
1545 */
1546static int
1547wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1548    int nchan, struct ieee80211_channel chans[])
1549{
1550	struct ifnet *ifp = ic->ic_ifp;
1551	struct wpi_softc *sc = ifp->if_softc;
1552	int i;
1553
1554	for (i = 0; i < nchan; i++) {
1555		struct ieee80211_channel *c = &chans[i];
1556		struct wpi_eeprom_chan *channel;
1557
1558		channel = wpi_find_eeprom_channel(sc, c);
1559		if (channel == NULL) {
1560			if_printf(ic->ic_ifp,
1561			    "%s: invalid channel %u freq %u/0x%x\n",
1562			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1563			return EINVAL;
1564		}
1565		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1566	}
1567
1568	return 0;
1569}
1570
1571static int
1572wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1573{
1574	struct wpi_power_group *group = &sc->groups[n];
1575	struct wpi_eeprom_group rgroup;
1576	int i, error;
1577
1578	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1579
1580	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1581	    &rgroup, sizeof rgroup)) != 0) {
1582		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1583		return error;
1584	}
1585
1586	/* Save TX power group information. */
1587	group->chan   = rgroup.chan;
1588	group->maxpwr = rgroup.maxpwr;
1589	/* Retrieve temperature at which the samples were taken. */
1590	group->temp   = (int16_t)le16toh(rgroup.temp);
1591
1592	DPRINTF(sc, WPI_DEBUG_EEPROM,
1593	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1594	    group->maxpwr, group->temp);
1595
1596	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1597		group->samples[i].index = rgroup.samples[i].index;
1598		group->samples[i].power = rgroup.samples[i].power;
1599
1600		DPRINTF(sc, WPI_DEBUG_EEPROM,
1601		    "\tsample %d: index=%d power=%d\n", i,
1602		    group->samples[i].index, group->samples[i].power);
1603	}
1604
1605	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1606
1607	return 0;
1608}
1609
1610static int
1611wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1612{
1613	int newid = WPI_ID_IBSS_MIN;
1614
1615	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1616		if ((sc->nodesmsk & (1 << newid)) == 0) {
1617			sc->nodesmsk |= 1 << newid;
1618			return newid;
1619		}
1620	}
1621
1622	return WPI_ID_UNDEFINED;
1623}
1624
1625static __inline int
1626wpi_add_node_entry_sta(struct wpi_softc *sc)
1627{
1628	sc->nodesmsk |= 1 << WPI_ID_BSS;
1629
1630	return WPI_ID_BSS;
1631}
1632
1633static __inline int
1634wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1635{
1636	if (id == WPI_ID_UNDEFINED)
1637		return 0;
1638
1639	return (sc->nodesmsk >> id) & 1;
1640}
1641
1642static __inline void
1643wpi_clear_node_table(struct wpi_softc *sc)
1644{
1645	sc->nodesmsk = 0;
1646}
1647
1648static __inline void
1649wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1650{
1651	sc->nodesmsk &= ~(1 << id);
1652}
1653
1654static struct ieee80211_node *
1655wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1656{
1657	struct wpi_node *wn;
1658
1659	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1660	    M_NOWAIT | M_ZERO);
1661
1662	if (wn == NULL)
1663		return NULL;
1664
1665	wn->id = WPI_ID_UNDEFINED;
1666
1667	return &wn->ni;
1668}
1669
1670static void
1671wpi_node_free(struct ieee80211_node *ni)
1672{
1673	struct ieee80211com *ic = ni->ni_ic;
1674	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1675	struct wpi_node *wn = WPI_NODE(ni);
1676
1677	if (wn->id != WPI_ID_UNDEFINED) {
1678		WPI_NT_LOCK(sc);
1679		if (wpi_check_node_entry(sc, wn->id)) {
1680			wpi_del_node_entry(sc, wn->id);
1681			wpi_del_node(sc, ni);
1682		}
1683		WPI_NT_UNLOCK(sc);
1684	}
1685
1686	sc->sc_node_free(ni);
1687}
1688
1689static __inline int
1690wpi_check_bss_filter(struct wpi_softc *sc)
1691{
1692	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1693}
1694
1695static void
1696wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, int rssi,
1697    int nf)
1698{
1699	struct ieee80211vap *vap = ni->ni_vap;
1700	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1701	struct wpi_vap *wvp = WPI_VAP(vap);
1702	uint64_t ni_tstamp, rx_tstamp;
1703
1704	wvp->wv_recv_mgmt(ni, m, subtype, rssi, nf);
1705
1706	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1707	    vap->iv_state == IEEE80211_S_RUN &&
1708	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1709	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1710		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1711		rx_tstamp = le64toh(sc->rx_tstamp);
1712
1713		if (ni_tstamp >= rx_tstamp) {
1714			DPRINTF(sc, WPI_DEBUG_STATE,
1715			    "ibss merge, tsf %ju tstamp %ju\n",
1716			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1717			(void) ieee80211_ibss_merge(ni);
1718		}
1719	}
1720}
1721
1722static void
1723wpi_restore_node(void *arg, struct ieee80211_node *ni)
1724{
1725	struct wpi_softc *sc = arg;
1726	struct wpi_node *wn = WPI_NODE(ni);
1727	int error;
1728
1729	WPI_NT_LOCK(sc);
1730	if (wn->id != WPI_ID_UNDEFINED) {
1731		wn->id = WPI_ID_UNDEFINED;
1732		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1733			device_printf(sc->sc_dev,
1734			    "%s: could not add IBSS node, error %d\n",
1735			    __func__, error);
1736		}
1737	}
1738	WPI_NT_UNLOCK(sc);
1739}
1740
1741static void
1742wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1743{
1744	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1745
1746	/* Set group keys once. */
1747	WPI_NT_LOCK(sc);
1748	wvp->wv_gtk = 0;
1749	WPI_NT_UNLOCK(sc);
1750
1751	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1752	ieee80211_crypto_reload_keys(ic);
1753}
1754
1755/**
1756 * Called by net80211 when ever there is a change to 80211 state machine
1757 */
1758static int
1759wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1760{
1761	struct wpi_vap *wvp = WPI_VAP(vap);
1762	struct ieee80211com *ic = vap->iv_ic;
1763	struct ifnet *ifp = ic->ic_ifp;
1764	struct wpi_softc *sc = ifp->if_softc;
1765	int error = 0;
1766
1767	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1768
1769	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1770		ieee80211_state_name[vap->iv_state],
1771		ieee80211_state_name[nstate]);
1772
1773	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1774		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1775			device_printf(sc->sc_dev,
1776			    "%s: could not set power saving level\n",
1777			    __func__);
1778			return error;
1779		}
1780
1781		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1782	}
1783
1784	switch (nstate) {
1785	case IEEE80211_S_SCAN:
1786		WPI_RXON_LOCK(sc);
1787		if (wpi_check_bss_filter(sc) != 0) {
1788			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1789			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1790				device_printf(sc->sc_dev,
1791				    "%s: could not send RXON\n", __func__);
1792			}
1793		}
1794		WPI_RXON_UNLOCK(sc);
1795		break;
1796
1797	case IEEE80211_S_ASSOC:
1798		if (vap->iv_state != IEEE80211_S_RUN)
1799			break;
1800		/* FALLTHROUGH */
1801	case IEEE80211_S_AUTH:
1802		/*
1803		 * NB: do not optimize AUTH -> AUTH state transmission -
1804		 * this will break powersave with non-QoS AP!
1805		 */
1806
1807		/*
1808		 * The node must be registered in the firmware before auth.
1809		 * Also the associd must be cleared on RUN -> ASSOC
1810		 * transitions.
1811		 */
1812		if ((error = wpi_auth(sc, vap)) != 0) {
1813			device_printf(sc->sc_dev,
1814			    "%s: could not move to AUTH state, error %d\n",
1815			    __func__, error);
1816		}
1817		break;
1818
1819	case IEEE80211_S_RUN:
1820		/*
1821		 * RUN -> RUN transition:
1822		 * STA mode: Just restart the timers.
1823		 * IBSS mode: Process IBSS merge.
1824		 */
1825		if (vap->iv_state == IEEE80211_S_RUN) {
1826			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1827				WPI_RXON_LOCK(sc);
1828				wpi_calib_timeout(sc);
1829				WPI_RXON_UNLOCK(sc);
1830				break;
1831			} else {
1832				/*
1833				 * Drop the BSS_FILTER bit
1834				 * (there is no another way to change bssid).
1835				 */
1836				WPI_RXON_LOCK(sc);
1837				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1838				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1839					device_printf(sc->sc_dev,
1840					    "%s: could not send RXON\n",
1841					    __func__);
1842				}
1843				WPI_RXON_UNLOCK(sc);
1844
1845				/* Restore all what was lost. */
1846				wpi_restore_node_table(sc, wvp);
1847
1848				/* XXX set conditionally? */
1849				wpi_updateedca(ic);
1850			}
1851		}
1852
1853		/*
1854		 * !RUN -> RUN requires setting the association id
1855		 * which is done with a firmware cmd.  We also defer
1856		 * starting the timers until that work is done.
1857		 */
1858		if ((error = wpi_run(sc, vap)) != 0) {
1859			device_printf(sc->sc_dev,
1860			    "%s: could not move to RUN state\n", __func__);
1861		}
1862		break;
1863
1864	default:
1865		break;
1866	}
1867	if (error != 0) {
1868		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1869		return error;
1870	}
1871
1872	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1873
1874	return wvp->wv_newstate(vap, nstate, arg);
1875}
1876
1877static void
1878wpi_calib_timeout(void *arg)
1879{
1880	struct wpi_softc *sc = arg;
1881
1882	if (wpi_check_bss_filter(sc) == 0)
1883		return;
1884
1885	wpi_power_calibration(sc);
1886
1887	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1888}
1889
1890static __inline uint8_t
1891rate2plcp(const uint8_t rate)
1892{
1893	switch (rate) {
1894	case 12:	return 0xd;
1895	case 18:	return 0xf;
1896	case 24:	return 0x5;
1897	case 36:	return 0x7;
1898	case 48:	return 0x9;
1899	case 72:	return 0xb;
1900	case 96:	return 0x1;
1901	case 108:	return 0x3;
1902	case 2:		return 10;
1903	case 4:		return 20;
1904	case 11:	return 55;
1905	case 22:	return 110;
1906	default:	return 0;
1907	}
1908}
1909
1910static __inline uint8_t
1911plcp2rate(const uint8_t plcp)
1912{
1913	switch (plcp) {
1914	case 0xd:	return 12;
1915	case 0xf:	return 18;
1916	case 0x5:	return 24;
1917	case 0x7:	return 36;
1918	case 0x9:	return 48;
1919	case 0xb:	return 72;
1920	case 0x1:	return 96;
1921	case 0x3:	return 108;
1922	case 10:	return 2;
1923	case 20:	return 4;
1924	case 55:	return 11;
1925	case 110:	return 22;
1926	default:	return 0;
1927	}
1928}
1929
1930/* Quickly determine if a given rate is CCK or OFDM. */
1931#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1932
1933static void
1934wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1935    struct wpi_rx_data *data)
1936{
1937	struct ifnet *ifp = sc->sc_ifp;
1938	struct ieee80211com *ic = ifp->if_l2com;
1939	struct wpi_rx_ring *ring = &sc->rxq;
1940	struct wpi_rx_stat *stat;
1941	struct wpi_rx_head *head;
1942	struct wpi_rx_tail *tail;
1943	struct ieee80211_frame *wh;
1944	struct ieee80211_node *ni;
1945	struct mbuf *m, *m1;
1946	bus_addr_t paddr;
1947	uint32_t flags;
1948	uint16_t len;
1949	int error;
1950
1951	stat = (struct wpi_rx_stat *)(desc + 1);
1952
1953	if (stat->len > WPI_STAT_MAXLEN) {
1954		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1955		goto fail1;
1956	}
1957
1958	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1959	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1960	len = le16toh(head->len);
1961	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1962	flags = le32toh(tail->flags);
1963
1964	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1965	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1966	    le32toh(desc->len), len, (int8_t)stat->rssi,
1967	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1968
1969	/* Discard frames with a bad FCS early. */
1970	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1971		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1972		    __func__, flags);
1973		goto fail1;
1974	}
1975	/* Discard frames that are too short. */
1976	if (len < sizeof (struct ieee80211_frame_ack)) {
1977		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1978		    __func__, len);
1979		goto fail1;
1980	}
1981
1982	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1983	if (m1 == NULL) {
1984		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1985		    __func__);
1986		goto fail1;
1987	}
1988	bus_dmamap_unload(ring->data_dmat, data->map);
1989
1990	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1991	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1992	if (error != 0 && error != EFBIG) {
1993		device_printf(sc->sc_dev,
1994		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1995		m_freem(m1);
1996
1997		/* Try to reload the old mbuf. */
1998		error = bus_dmamap_load(ring->data_dmat, data->map,
1999		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
2000		    &paddr, BUS_DMA_NOWAIT);
2001		if (error != 0 && error != EFBIG) {
2002			panic("%s: could not load old RX mbuf", __func__);
2003		}
2004		/* Physical address may have changed. */
2005		ring->desc[ring->cur] = htole32(paddr);
2006		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2007		    BUS_DMASYNC_PREWRITE);
2008		goto fail1;
2009	}
2010
2011	m = data->m;
2012	data->m = m1;
2013	/* Update RX descriptor. */
2014	ring->desc[ring->cur] = htole32(paddr);
2015	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2016	    BUS_DMASYNC_PREWRITE);
2017
2018	/* Finalize mbuf. */
2019	m->m_pkthdr.rcvif = ifp;
2020	m->m_data = (caddr_t)(head + 1);
2021	m->m_pkthdr.len = m->m_len = len;
2022
2023	/* Grab a reference to the source node. */
2024	wh = mtod(m, struct ieee80211_frame *);
2025
2026	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2027	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2028		/* Check whether decryption was successful or not. */
2029		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2030			DPRINTF(sc, WPI_DEBUG_RECV,
2031			    "CCMP decryption failed 0x%x\n", flags);
2032			goto fail2;
2033		}
2034		m->m_flags |= M_WEP;
2035	}
2036
2037	if (len >= sizeof(struct ieee80211_frame_min))
2038		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2039	else
2040		ni = NULL;
2041
2042	sc->rx_tstamp = tail->tstamp;
2043
2044	if (ieee80211_radiotap_active(ic)) {
2045		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2046
2047		tap->wr_flags = 0;
2048		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2049			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2050		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2051		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2052		tap->wr_tsft = tail->tstamp;
2053		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2054		tap->wr_rate = plcp2rate(head->plcp);
2055	}
2056
2057	WPI_UNLOCK(sc);
2058
2059	/* Send the frame to the 802.11 layer. */
2060	if (ni != NULL) {
2061		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2062		/* Node is no longer needed. */
2063		ieee80211_free_node(ni);
2064	} else
2065		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2066
2067	WPI_LOCK(sc);
2068
2069	return;
2070
2071fail2:	m_freem(m);
2072
2073fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2074}
2075
2076static void
2077wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2078    struct wpi_rx_data *data)
2079{
2080	/* Ignore */
2081}
2082
2083static void
2084wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2085{
2086	struct ifnet *ifp = sc->sc_ifp;
2087	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2088	struct wpi_tx_data *data = &ring->data[desc->idx];
2089	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2090	struct mbuf *m;
2091	struct ieee80211_node *ni;
2092	struct ieee80211vap *vap;
2093	struct ieee80211com *ic;
2094	uint32_t status = le32toh(stat->status);
2095	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2096
2097	KASSERT(data->ni != NULL, ("no node"));
2098	KASSERT(data->m != NULL, ("no mbuf"));
2099
2100	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2101
2102	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2103	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2104	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2105	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2106
2107	/* Unmap and free mbuf. */
2108	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2109	bus_dmamap_unload(ring->data_dmat, data->map);
2110	m = data->m, data->m = NULL;
2111	ni = data->ni, data->ni = NULL;
2112	vap = ni->ni_vap;
2113	ic = vap->iv_ic;
2114
2115	/*
2116	 * Update rate control statistics for the node.
2117	 */
2118	if (status & WPI_TX_STATUS_FAIL) {
2119		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2120		ieee80211_ratectl_tx_complete(vap, ni,
2121		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2122	} else {
2123		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2124		ieee80211_ratectl_tx_complete(vap, ni,
2125		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2126	}
2127
2128	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2129
2130	WPI_TXQ_STATE_LOCK(sc);
2131	ring->queued -= 1;
2132	if (ring->queued > 0) {
2133		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2134
2135		if (sc->qfullmsk != 0 &&
2136		    ring->queued < WPI_TX_RING_LOMARK) {
2137			sc->qfullmsk &= ~(1 << ring->qid);
2138			IF_LOCK(&ifp->if_snd);
2139			if (sc->qfullmsk == 0 &&
2140			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2141				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2142				IF_UNLOCK(&ifp->if_snd);
2143				ieee80211_runtask(ic, &sc->sc_start_task);
2144			} else
2145				IF_UNLOCK(&ifp->if_snd);
2146		}
2147	} else
2148		callout_stop(&sc->tx_timeout);
2149	WPI_TXQ_STATE_UNLOCK(sc);
2150
2151	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2152}
2153
2154/*
2155 * Process a "command done" firmware notification.  This is where we wakeup
2156 * processes waiting for a synchronous command completion.
2157 */
2158static void
2159wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2160{
2161	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2162	struct wpi_tx_data *data;
2163
2164	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2165				   "type %s len %d\n", desc->qid, desc->idx,
2166				   desc->flags, wpi_cmd_str(desc->type),
2167				   le32toh(desc->len));
2168
2169	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2170		return;	/* Not a command ack. */
2171
2172	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2173
2174	data = &ring->data[desc->idx];
2175
2176	/* If the command was mapped in an mbuf, free it. */
2177	if (data->m != NULL) {
2178		bus_dmamap_sync(ring->data_dmat, data->map,
2179		    BUS_DMASYNC_POSTWRITE);
2180		bus_dmamap_unload(ring->data_dmat, data->map);
2181		m_freem(data->m);
2182		data->m = NULL;
2183	}
2184
2185	wakeup(&ring->cmd[desc->idx]);
2186
2187	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2188		WPI_TXQ_LOCK(sc);
2189		if (sc->sc_flags & WPI_PS_PATH) {
2190			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2191			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2192		} else {
2193			sc->sc_update_rx_ring = wpi_update_rx_ring;
2194			sc->sc_update_tx_ring = wpi_update_tx_ring;
2195		}
2196		WPI_TXQ_UNLOCK(sc);
2197	}
2198}
2199
2200static void
2201wpi_notif_intr(struct wpi_softc *sc)
2202{
2203	struct ifnet *ifp = sc->sc_ifp;
2204	struct ieee80211com *ic = ifp->if_l2com;
2205	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2206	uint32_t hw;
2207
2208	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2209	    BUS_DMASYNC_POSTREAD);
2210
2211	hw = le32toh(sc->shared->next) & 0xfff;
2212	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2213
2214	while (sc->rxq.cur != hw) {
2215		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2216
2217		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2218		struct wpi_rx_desc *desc;
2219
2220		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2221		    BUS_DMASYNC_POSTREAD);
2222		desc = mtod(data->m, struct wpi_rx_desc *);
2223
2224		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2225		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2226		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2227		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2228
2229		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2230			/* Reply to a command. */
2231			wpi_cmd_done(sc, desc);
2232		}
2233
2234		switch (desc->type) {
2235		case WPI_RX_DONE:
2236			/* An 802.11 frame has been received. */
2237			wpi_rx_done(sc, desc, data);
2238
2239			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2240				/* wpi_stop() was called. */
2241				return;
2242			}
2243
2244			break;
2245
2246		case WPI_TX_DONE:
2247			/* An 802.11 frame has been transmitted. */
2248			wpi_tx_done(sc, desc);
2249			break;
2250
2251		case WPI_RX_STATISTICS:
2252		case WPI_BEACON_STATISTICS:
2253			wpi_rx_statistics(sc, desc, data);
2254			break;
2255
2256		case WPI_BEACON_MISSED:
2257		{
2258			struct wpi_beacon_missed *miss =
2259			    (struct wpi_beacon_missed *)(desc + 1);
2260			uint32_t expected, misses, received, threshold;
2261
2262			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2263			    BUS_DMASYNC_POSTREAD);
2264
2265			misses = le32toh(miss->consecutive);
2266			expected = le32toh(miss->expected);
2267			received = le32toh(miss->received);
2268			threshold = MAX(2, vap->iv_bmissthreshold);
2269
2270			DPRINTF(sc, WPI_DEBUG_BMISS,
2271			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2272			    __func__, misses, le32toh(miss->total), received,
2273			    expected);
2274
2275			if (misses >= threshold ||
2276			    (received == 0 && expected >= threshold)) {
2277				WPI_RXON_LOCK(sc);
2278				if (callout_pending(&sc->scan_timeout)) {
2279					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2280					    0, 1);
2281				}
2282				WPI_RXON_UNLOCK(sc);
2283				if (vap->iv_state == IEEE80211_S_RUN &&
2284				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2285					ieee80211_beacon_miss(ic);
2286			}
2287
2288			break;
2289		}
2290#ifdef WPI_DEBUG
2291		case WPI_BEACON_SENT:
2292		{
2293			struct wpi_tx_stat *stat =
2294			    (struct wpi_tx_stat *)(desc + 1);
2295			uint64_t *tsf = (uint64_t *)(stat + 1);
2296			uint32_t *mode = (uint32_t *)(tsf + 1);
2297
2298			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2299			    BUS_DMASYNC_POSTREAD);
2300
2301			DPRINTF(sc, WPI_DEBUG_BEACON,
2302			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2303			    "duration %u, status %x, tsf %ju, mode %x\n",
2304			    stat->rtsfailcnt, stat->ackfailcnt,
2305			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2306			    le32toh(stat->status), *tsf, *mode);
2307
2308			break;
2309		}
2310#endif
2311		case WPI_UC_READY:
2312		{
2313			struct wpi_ucode_info *uc =
2314			    (struct wpi_ucode_info *)(desc + 1);
2315
2316			/* The microcontroller is ready. */
2317			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2318			    BUS_DMASYNC_POSTREAD);
2319			DPRINTF(sc, WPI_DEBUG_RESET,
2320			    "microcode alive notification version=%d.%d "
2321			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2322			    uc->subtype, le32toh(uc->valid));
2323
2324			if (le32toh(uc->valid) != 1) {
2325				device_printf(sc->sc_dev,
2326				    "microcontroller initialization failed\n");
2327				wpi_stop_locked(sc);
2328			}
2329			/* Save the address of the error log in SRAM. */
2330			sc->errptr = le32toh(uc->errptr);
2331			break;
2332		}
2333		case WPI_STATE_CHANGED:
2334		{
2335			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2336			    BUS_DMASYNC_POSTREAD);
2337
2338			uint32_t *status = (uint32_t *)(desc + 1);
2339
2340			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2341			    le32toh(*status));
2342
2343			if (le32toh(*status) & 1) {
2344				WPI_NT_LOCK(sc);
2345				wpi_clear_node_table(sc);
2346				WPI_NT_UNLOCK(sc);
2347				taskqueue_enqueue(sc->sc_tq,
2348				    &sc->sc_radiooff_task);
2349				return;
2350			}
2351			break;
2352		}
2353#ifdef WPI_DEBUG
2354		case WPI_START_SCAN:
2355		{
2356			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2357			    BUS_DMASYNC_POSTREAD);
2358
2359			struct wpi_start_scan *scan =
2360			    (struct wpi_start_scan *)(desc + 1);
2361			DPRINTF(sc, WPI_DEBUG_SCAN,
2362			    "%s: scanning channel %d status %x\n",
2363			    __func__, scan->chan, le32toh(scan->status));
2364
2365			break;
2366		}
2367#endif
2368		case WPI_STOP_SCAN:
2369		{
2370			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2371			    BUS_DMASYNC_POSTREAD);
2372
2373			struct wpi_stop_scan *scan =
2374			    (struct wpi_stop_scan *)(desc + 1);
2375
2376			DPRINTF(sc, WPI_DEBUG_SCAN,
2377			    "scan finished nchan=%d status=%d chan=%d\n",
2378			    scan->nchan, scan->status, scan->chan);
2379
2380			WPI_RXON_LOCK(sc);
2381			callout_stop(&sc->scan_timeout);
2382			WPI_RXON_UNLOCK(sc);
2383			if (scan->status == WPI_SCAN_ABORTED)
2384				ieee80211_cancel_scan(vap);
2385			else
2386				ieee80211_scan_next(vap);
2387			break;
2388		}
2389		}
2390
2391		if (sc->rxq.cur % 8 == 0) {
2392			/* Tell the firmware what we have processed. */
2393			sc->sc_update_rx_ring(sc);
2394		}
2395	}
2396}
2397
2398/*
2399 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2400 * from power-down sleep mode.
2401 */
2402static void
2403wpi_wakeup_intr(struct wpi_softc *sc)
2404{
2405	int qid;
2406
2407	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2408	    "%s: ucode wakeup from power-down sleep\n", __func__);
2409
2410	/* Wakeup RX and TX rings. */
2411	if (sc->rxq.update) {
2412		sc->rxq.update = 0;
2413		wpi_update_rx_ring(sc);
2414	}
2415	WPI_TXQ_LOCK(sc);
2416	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2417		struct wpi_tx_ring *ring = &sc->txq[qid];
2418
2419		if (ring->update) {
2420			ring->update = 0;
2421			wpi_update_tx_ring(sc, ring);
2422		}
2423	}
2424	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2425	WPI_TXQ_UNLOCK(sc);
2426}
2427
2428/*
2429 * This function prints firmware registers
2430 */
2431#ifdef WPI_DEBUG
2432static void
2433wpi_debug_registers(struct wpi_softc *sc)
2434{
2435	size_t i;
2436	static const uint32_t csr_tbl[] = {
2437		WPI_HW_IF_CONFIG,
2438		WPI_INT,
2439		WPI_INT_MASK,
2440		WPI_FH_INT,
2441		WPI_GPIO_IN,
2442		WPI_RESET,
2443		WPI_GP_CNTRL,
2444		WPI_EEPROM,
2445		WPI_EEPROM_GP,
2446		WPI_GIO,
2447		WPI_UCODE_GP1,
2448		WPI_UCODE_GP2,
2449		WPI_GIO_CHICKEN,
2450		WPI_ANA_PLL,
2451		WPI_DBG_HPET_MEM,
2452	};
2453	static const uint32_t prph_tbl[] = {
2454		WPI_APMG_CLK_CTRL,
2455		WPI_APMG_PS,
2456		WPI_APMG_PCI_STT,
2457		WPI_APMG_RFKILL,
2458	};
2459
2460	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2461
2462	for (i = 0; i < nitems(csr_tbl); i++) {
2463		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2464		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2465
2466		if ((i + 1) % 2 == 0)
2467			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2468	}
2469	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2470
2471	if (wpi_nic_lock(sc) == 0) {
2472		for (i = 0; i < nitems(prph_tbl); i++) {
2473			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2474			    wpi_get_prph_string(prph_tbl[i]),
2475			    wpi_prph_read(sc, prph_tbl[i]));
2476
2477			if ((i + 1) % 2 == 0)
2478				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2479		}
2480		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2481		wpi_nic_unlock(sc);
2482	} else {
2483		DPRINTF(sc, WPI_DEBUG_REGISTER,
2484		    "Cannot access internal registers.\n");
2485	}
2486}
2487#endif
2488
2489/*
2490 * Dump the error log of the firmware when a firmware panic occurs.  Although
2491 * we can't debug the firmware because it is neither open source nor free, it
2492 * can help us to identify certain classes of problems.
2493 */
2494static void
2495wpi_fatal_intr(struct wpi_softc *sc)
2496{
2497	struct wpi_fw_dump dump;
2498	uint32_t i, offset, count;
2499
2500	/* Check that the error log address is valid. */
2501	if (sc->errptr < WPI_FW_DATA_BASE ||
2502	    sc->errptr + sizeof (dump) >
2503	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2504		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2505		    sc->errptr);
2506		return;
2507	}
2508	if (wpi_nic_lock(sc) != 0) {
2509		printf("%s: could not read firmware error log\n", __func__);
2510		return;
2511	}
2512	/* Read number of entries in the log. */
2513	count = wpi_mem_read(sc, sc->errptr);
2514	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2515		printf("%s: invalid count field (count = %u)\n", __func__,
2516		    count);
2517		wpi_nic_unlock(sc);
2518		return;
2519	}
2520	/* Skip "count" field. */
2521	offset = sc->errptr + sizeof (uint32_t);
2522	printf("firmware error log (count = %u):\n", count);
2523	for (i = 0; i < count; i++) {
2524		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2525		    sizeof (dump) / sizeof (uint32_t));
2526
2527		printf("  error type = \"%s\" (0x%08X)\n",
2528		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2529		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2530		    dump.desc);
2531		printf("  error data      = 0x%08X\n",
2532		    dump.data);
2533		printf("  branch link     = 0x%08X%08X\n",
2534		    dump.blink[0], dump.blink[1]);
2535		printf("  interrupt link  = 0x%08X%08X\n",
2536		    dump.ilink[0], dump.ilink[1]);
2537		printf("  time            = %u\n", dump.time);
2538
2539		offset += sizeof (dump);
2540	}
2541	wpi_nic_unlock(sc);
2542	/* Dump driver status (TX and RX rings) while we're here. */
2543	printf("driver status:\n");
2544	WPI_TXQ_LOCK(sc);
2545	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2546		struct wpi_tx_ring *ring = &sc->txq[i];
2547		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2548		    i, ring->qid, ring->cur, ring->queued);
2549	}
2550	WPI_TXQ_UNLOCK(sc);
2551	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2552}
2553
2554static void
2555wpi_intr(void *arg)
2556{
2557	struct wpi_softc *sc = arg;
2558	struct ifnet *ifp = sc->sc_ifp;
2559	uint32_t r1, r2;
2560
2561	WPI_LOCK(sc);
2562
2563	/* Disable interrupts. */
2564	WPI_WRITE(sc, WPI_INT_MASK, 0);
2565
2566	r1 = WPI_READ(sc, WPI_INT);
2567
2568	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2569		goto end;	/* Hardware gone! */
2570
2571	r2 = WPI_READ(sc, WPI_FH_INT);
2572
2573	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2574	    r1, r2);
2575
2576	if (r1 == 0 && r2 == 0)
2577		goto done;	/* Interrupt not for us. */
2578
2579	/* Acknowledge interrupts. */
2580	WPI_WRITE(sc, WPI_INT, r1);
2581	WPI_WRITE(sc, WPI_FH_INT, r2);
2582
2583	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2584		device_printf(sc->sc_dev, "fatal firmware error\n");
2585#ifdef WPI_DEBUG
2586		wpi_debug_registers(sc);
2587#endif
2588		wpi_fatal_intr(sc);
2589		DPRINTF(sc, WPI_DEBUG_HW,
2590		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2591		    "(Hardware Error)");
2592		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2593		goto end;
2594	}
2595
2596	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2597	    (r2 & WPI_FH_INT_RX))
2598		wpi_notif_intr(sc);
2599
2600	if (r1 & WPI_INT_ALIVE)
2601		wakeup(sc);	/* Firmware is alive. */
2602
2603	if (r1 & WPI_INT_WAKEUP)
2604		wpi_wakeup_intr(sc);
2605
2606done:
2607	/* Re-enable interrupts. */
2608	if (ifp->if_flags & IFF_UP)
2609		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2610
2611end:	WPI_UNLOCK(sc);
2612}
2613
2614static int
2615wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2616{
2617	struct ifnet *ifp = sc->sc_ifp;
2618	struct ieee80211_frame *wh;
2619	struct wpi_tx_cmd *cmd;
2620	struct wpi_tx_data *data;
2621	struct wpi_tx_desc *desc;
2622	struct wpi_tx_ring *ring;
2623	struct mbuf *m1;
2624	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2625	int error, i, hdrlen, nsegs, totlen, pad;
2626
2627	WPI_TXQ_LOCK(sc);
2628
2629	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2630
2631	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2632
2633	if (sc->txq_active == 0) {
2634		/* wpi_stop() was called */
2635		error = ENETDOWN;
2636		goto fail;
2637	}
2638
2639	wh = mtod(buf->m, struct ieee80211_frame *);
2640	hdrlen = ieee80211_anyhdrsize(wh);
2641	totlen = buf->m->m_pkthdr.len;
2642
2643	if (hdrlen & 3) {
2644		/* First segment length must be a multiple of 4. */
2645		pad = 4 - (hdrlen & 3);
2646	} else
2647		pad = 0;
2648
2649	ring = &sc->txq[buf->ac];
2650	desc = &ring->desc[ring->cur];
2651	data = &ring->data[ring->cur];
2652
2653	/* Prepare TX firmware command. */
2654	cmd = &ring->cmd[ring->cur];
2655	cmd->code = buf->code;
2656	cmd->flags = 0;
2657	cmd->qid = ring->qid;
2658	cmd->idx = ring->cur;
2659
2660	memcpy(cmd->data, buf->data, buf->size);
2661
2662	/* Save and trim IEEE802.11 header. */
2663	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2664	m_adj(buf->m, hdrlen);
2665
2666	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2667	    segs, &nsegs, BUS_DMA_NOWAIT);
2668	if (error != 0 && error != EFBIG) {
2669		device_printf(sc->sc_dev,
2670		    "%s: can't map mbuf (error %d)\n", __func__, error);
2671		goto fail;
2672	}
2673	if (error != 0) {
2674		/* Too many DMA segments, linearize mbuf. */
2675		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2676		if (m1 == NULL) {
2677			device_printf(sc->sc_dev,
2678			    "%s: could not defrag mbuf\n", __func__);
2679			error = ENOBUFS;
2680			goto fail;
2681		}
2682		buf->m = m1;
2683
2684		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2685		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2686		if (error != 0) {
2687			device_printf(sc->sc_dev,
2688			    "%s: can't map mbuf (error %d)\n", __func__,
2689			    error);
2690			goto fail;
2691		}
2692	}
2693
2694	KASSERT(nsegs < WPI_MAX_SCATTER,
2695	    ("too many DMA segments, nsegs (%d) should be less than %d",
2696	     nsegs, WPI_MAX_SCATTER));
2697
2698	data->m = buf->m;
2699	data->ni = buf->ni;
2700
2701	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2702	    __func__, ring->qid, ring->cur, totlen, nsegs);
2703
2704	/* Fill TX descriptor. */
2705	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2706	/* First DMA segment is used by the TX command. */
2707	desc->segs[0].addr = htole32(data->cmd_paddr);
2708	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2709	/* Other DMA segments are for data payload. */
2710	seg = &segs[0];
2711	for (i = 1; i <= nsegs; i++) {
2712		desc->segs[i].addr = htole32(seg->ds_addr);
2713		desc->segs[i].len  = htole32(seg->ds_len);
2714		seg++;
2715	}
2716
2717	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2718	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2719	    BUS_DMASYNC_PREWRITE);
2720	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2721	    BUS_DMASYNC_PREWRITE);
2722
2723	/* Kick TX ring. */
2724	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2725	sc->sc_update_tx_ring(sc, ring);
2726
2727	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2728		/* Mark TX ring as full if we reach a certain threshold. */
2729		WPI_TXQ_STATE_LOCK(sc);
2730		if (++ring->queued > WPI_TX_RING_HIMARK) {
2731			sc->qfullmsk |= 1 << ring->qid;
2732
2733			IF_LOCK(&ifp->if_snd);
2734			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2735			IF_UNLOCK(&ifp->if_snd);
2736		}
2737
2738		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2739		WPI_TXQ_STATE_UNLOCK(sc);
2740	}
2741
2742	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2743
2744	WPI_TXQ_UNLOCK(sc);
2745
2746	return 0;
2747
2748fail:	m_freem(buf->m);
2749
2750	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2751
2752	WPI_TXQ_UNLOCK(sc);
2753
2754	return error;
2755}
2756
2757/*
2758 * Construct the data packet for a transmit buffer.
2759 */
2760static int
2761wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2762{
2763	const struct ieee80211_txparam *tp;
2764	struct ieee80211vap *vap = ni->ni_vap;
2765	struct ieee80211com *ic = ni->ni_ic;
2766	struct wpi_node *wn = WPI_NODE(ni);
2767	struct ieee80211_channel *chan;
2768	struct ieee80211_frame *wh;
2769	struct ieee80211_key *k = NULL;
2770	struct wpi_buf tx_data;
2771	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2772	uint32_t flags;
2773	uint16_t qos;
2774	uint8_t tid, type;
2775	int ac, error, swcrypt, rate, ismcast, totlen;
2776
2777	wh = mtod(m, struct ieee80211_frame *);
2778	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2779	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2780
2781	/* Select EDCA Access Category and TX ring for this frame. */
2782	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2783		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2784		tid = qos & IEEE80211_QOS_TID;
2785	} else {
2786		qos = 0;
2787		tid = 0;
2788	}
2789	ac = M_WME_GETAC(m);
2790
2791	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2792		ni->ni_chan : ic->ic_curchan;
2793	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2794
2795	/* Choose a TX rate index. */
2796	if (type == IEEE80211_FC0_TYPE_MGT)
2797		rate = tp->mgmtrate;
2798	else if (ismcast)
2799		rate = tp->mcastrate;
2800	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2801		rate = tp->ucastrate;
2802	else if (m->m_flags & M_EAPOL)
2803		rate = tp->mgmtrate;
2804	else {
2805		/* XXX pass pktlen */
2806		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2807		rate = ni->ni_txrate;
2808	}
2809
2810	/* Encrypt the frame if need be. */
2811	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2812		/* Retrieve key for TX. */
2813		k = ieee80211_crypto_encap(ni, m);
2814		if (k == NULL) {
2815			error = ENOBUFS;
2816			goto fail;
2817		}
2818		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2819
2820		/* 802.11 header may have moved. */
2821		wh = mtod(m, struct ieee80211_frame *);
2822	}
2823	totlen = m->m_pkthdr.len;
2824
2825	if (ieee80211_radiotap_active_vap(vap)) {
2826		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2827
2828		tap->wt_flags = 0;
2829		tap->wt_rate = rate;
2830		if (k != NULL)
2831			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2832
2833		ieee80211_radiotap_tx(vap, m);
2834	}
2835
2836	flags = 0;
2837	if (!ismcast) {
2838		/* Unicast frame, check if an ACK is expected. */
2839		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2840		    IEEE80211_QOS_ACKPOLICY_NOACK)
2841			flags |= WPI_TX_NEED_ACK;
2842	}
2843
2844	if (!IEEE80211_QOS_HAS_SEQ(wh))
2845		flags |= WPI_TX_AUTO_SEQ;
2846	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2847		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2848
2849	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2850	if (!ismcast) {
2851		/* NB: Group frames are sent using CCK in 802.11b/g. */
2852		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2853			flags |= WPI_TX_NEED_RTS;
2854		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2855		    WPI_RATE_IS_OFDM(rate)) {
2856			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2857				flags |= WPI_TX_NEED_CTS;
2858			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2859				flags |= WPI_TX_NEED_RTS;
2860		}
2861
2862		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2863			flags |= WPI_TX_FULL_TXOP;
2864	}
2865
2866	memset(tx, 0, sizeof (struct wpi_cmd_data));
2867	if (type == IEEE80211_FC0_TYPE_MGT) {
2868		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2869
2870		/* Tell HW to set timestamp in probe responses. */
2871		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2872			flags |= WPI_TX_INSERT_TSTAMP;
2873		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2874		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2875			tx->timeout = htole16(3);
2876		else
2877			tx->timeout = htole16(2);
2878	}
2879
2880	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2881		tx->id = WPI_ID_BROADCAST;
2882	else {
2883		if (wn->id == WPI_ID_UNDEFINED) {
2884			device_printf(sc->sc_dev,
2885			    "%s: undefined node id\n", __func__);
2886			error = EINVAL;
2887			goto fail;
2888		}
2889
2890		tx->id = wn->id;
2891	}
2892
2893	if (k != NULL && !swcrypt) {
2894		switch (k->wk_cipher->ic_cipher) {
2895		case IEEE80211_CIPHER_AES_CCM:
2896			tx->security = WPI_CIPHER_CCMP;
2897			break;
2898
2899		default:
2900			break;
2901		}
2902
2903		memcpy(tx->key, k->wk_key, k->wk_keylen);
2904	}
2905
2906	tx->len = htole16(totlen);
2907	tx->flags = htole32(flags);
2908	tx->plcp = rate2plcp(rate);
2909	tx->tid = tid;
2910	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2911	tx->ofdm_mask = 0xff;
2912	tx->cck_mask = 0x0f;
2913	tx->rts_ntries = 7;
2914	tx->data_ntries = tp->maxretry;
2915
2916	tx_data.ni = ni;
2917	tx_data.m = m;
2918	tx_data.size = sizeof(struct wpi_cmd_data);
2919	tx_data.code = WPI_CMD_TX_DATA;
2920	tx_data.ac = ac;
2921
2922	return wpi_cmd2(sc, &tx_data);
2923
2924fail:	m_freem(m);
2925	return error;
2926}
2927
2928static int
2929wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2930    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2931{
2932	struct ieee80211vap *vap = ni->ni_vap;
2933	struct ieee80211_key *k = NULL;
2934	struct ieee80211_frame *wh;
2935	struct wpi_buf tx_data;
2936	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2937	uint32_t flags;
2938	uint8_t type;
2939	int ac, rate, swcrypt, totlen;
2940
2941	wh = mtod(m, struct ieee80211_frame *);
2942	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2943
2944	ac = params->ibp_pri & 3;
2945
2946	/* Choose a TX rate index. */
2947	rate = params->ibp_rate0;
2948
2949	flags = 0;
2950	if (!IEEE80211_QOS_HAS_SEQ(wh))
2951		flags |= WPI_TX_AUTO_SEQ;
2952	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2953		flags |= WPI_TX_NEED_ACK;
2954	if (params->ibp_flags & IEEE80211_BPF_RTS)
2955		flags |= WPI_TX_NEED_RTS;
2956	if (params->ibp_flags & IEEE80211_BPF_CTS)
2957		flags |= WPI_TX_NEED_CTS;
2958	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2959		flags |= WPI_TX_FULL_TXOP;
2960
2961	/* Encrypt the frame if need be. */
2962	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2963		/* Retrieve key for TX. */
2964		k = ieee80211_crypto_encap(ni, m);
2965		if (k == NULL) {
2966			m_freem(m);
2967			return ENOBUFS;
2968		}
2969		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2970
2971		/* 802.11 header may have moved. */
2972		wh = mtod(m, struct ieee80211_frame *);
2973	}
2974	totlen = m->m_pkthdr.len;
2975
2976	if (ieee80211_radiotap_active_vap(vap)) {
2977		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2978
2979		tap->wt_flags = 0;
2980		tap->wt_rate = rate;
2981		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2982			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2983
2984		ieee80211_radiotap_tx(vap, m);
2985	}
2986
2987	memset(tx, 0, sizeof (struct wpi_cmd_data));
2988	if (type == IEEE80211_FC0_TYPE_MGT) {
2989		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2990
2991		/* Tell HW to set timestamp in probe responses. */
2992		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2993			flags |= WPI_TX_INSERT_TSTAMP;
2994		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2995		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2996			tx->timeout = htole16(3);
2997		else
2998			tx->timeout = htole16(2);
2999	}
3000
3001	if (k != NULL && !swcrypt) {
3002		switch (k->wk_cipher->ic_cipher) {
3003		case IEEE80211_CIPHER_AES_CCM:
3004			tx->security = WPI_CIPHER_CCMP;
3005			break;
3006
3007		default:
3008			break;
3009		}
3010
3011		memcpy(tx->key, k->wk_key, k->wk_keylen);
3012	}
3013
3014	tx->len = htole16(totlen);
3015	tx->flags = htole32(flags);
3016	tx->plcp = rate2plcp(rate);
3017	tx->id = WPI_ID_BROADCAST;
3018	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3019	tx->rts_ntries = params->ibp_try1;
3020	tx->data_ntries = params->ibp_try0;
3021
3022	tx_data.ni = ni;
3023	tx_data.m = m;
3024	tx_data.size = sizeof(struct wpi_cmd_data);
3025	tx_data.code = WPI_CMD_TX_DATA;
3026	tx_data.ac = ac;
3027
3028	return wpi_cmd2(sc, &tx_data);
3029}
3030
3031static int
3032wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3033    const struct ieee80211_bpf_params *params)
3034{
3035	struct ieee80211com *ic = ni->ni_ic;
3036	struct ifnet *ifp = ic->ic_ifp;
3037	struct wpi_softc *sc = ifp->if_softc;
3038	int error = 0;
3039
3040	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3041
3042	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3043		ieee80211_free_node(ni);
3044		m_freem(m);
3045		return ENETDOWN;
3046	}
3047
3048	WPI_TX_LOCK(sc);
3049	if (params == NULL) {
3050		/*
3051		 * Legacy path; interpret frame contents to decide
3052		 * precisely how to send the frame.
3053		 */
3054		error = wpi_tx_data(sc, m, ni);
3055	} else {
3056		/*
3057		 * Caller supplied explicit parameters to use in
3058		 * sending the frame.
3059		 */
3060		error = wpi_tx_data_raw(sc, m, ni, params);
3061	}
3062	WPI_TX_UNLOCK(sc);
3063
3064	if (error != 0) {
3065		/* NB: m is reclaimed on tx failure */
3066		ieee80211_free_node(ni);
3067		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3068
3069		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3070
3071		return error;
3072	}
3073
3074	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3075
3076	return 0;
3077}
3078
3079/**
3080 * Process data waiting to be sent on the IFNET output queue
3081 */
3082static void
3083wpi_start(struct ifnet *ifp)
3084{
3085	struct wpi_softc *sc = ifp->if_softc;
3086	struct ieee80211_node *ni;
3087	struct mbuf *m;
3088
3089	WPI_TX_LOCK(sc);
3090	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3091
3092	for (;;) {
3093		IF_LOCK(&ifp->if_snd);
3094		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3095		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3096			IF_UNLOCK(&ifp->if_snd);
3097			break;
3098		}
3099		IF_UNLOCK(&ifp->if_snd);
3100
3101		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3102		if (m == NULL)
3103			break;
3104		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3105		if (wpi_tx_data(sc, m, ni) != 0) {
3106			ieee80211_free_node(ni);
3107			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3108		}
3109	}
3110
3111	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3112	WPI_TX_UNLOCK(sc);
3113}
3114
3115static void
3116wpi_start_task(void *arg0, int pending)
3117{
3118	struct wpi_softc *sc = arg0;
3119	struct ifnet *ifp = sc->sc_ifp;
3120
3121	wpi_start(ifp);
3122}
3123
3124static void
3125wpi_watchdog_rfkill(void *arg)
3126{
3127	struct wpi_softc *sc = arg;
3128	struct ifnet *ifp = sc->sc_ifp;
3129	struct ieee80211com *ic = ifp->if_l2com;
3130
3131	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3132
3133	/* No need to lock firmware memory. */
3134	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3135		/* Radio kill switch is still off. */
3136		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3137		    sc);
3138	} else
3139		ieee80211_runtask(ic, &sc->sc_radioon_task);
3140}
3141
3142static void
3143wpi_scan_timeout(void *arg)
3144{
3145	struct wpi_softc *sc = arg;
3146	struct ifnet *ifp = sc->sc_ifp;
3147
3148	if_printf(ifp, "scan timeout\n");
3149	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3150}
3151
3152static void
3153wpi_tx_timeout(void *arg)
3154{
3155	struct wpi_softc *sc = arg;
3156	struct ifnet *ifp = sc->sc_ifp;
3157
3158	if_printf(ifp, "device timeout\n");
3159	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3160	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3161}
3162
3163static int
3164wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3165{
3166	struct wpi_softc *sc = ifp->if_softc;
3167	struct ieee80211com *ic = ifp->if_l2com;
3168	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3169	struct ifreq *ifr = (struct ifreq *) data;
3170	int error = 0;
3171
3172	switch (cmd) {
3173	case SIOCGIFADDR:
3174		error = ether_ioctl(ifp, cmd, data);
3175		break;
3176	case SIOCSIFFLAGS:
3177		if (ifp->if_flags & IFF_UP) {
3178			wpi_init(sc);
3179
3180			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
3181			    vap != NULL)
3182				ieee80211_stop(vap);
3183		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3184			wpi_stop(sc);
3185		break;
3186	case SIOCGIFMEDIA:
3187		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3188		break;
3189	default:
3190		error = EINVAL;
3191		break;
3192	}
3193	return error;
3194}
3195
3196/*
3197 * Send a command to the firmware.
3198 */
3199static int
3200wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3201    int async)
3202{
3203	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3204	struct wpi_tx_desc *desc;
3205	struct wpi_tx_data *data;
3206	struct wpi_tx_cmd *cmd;
3207	struct mbuf *m;
3208	bus_addr_t paddr;
3209	int totlen, error;
3210
3211	WPI_TXQ_LOCK(sc);
3212
3213	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3214
3215	if (sc->txq_active == 0) {
3216		/* wpi_stop() was called */
3217		error = 0;
3218		goto fail;
3219	}
3220
3221	if (async == 0)
3222		WPI_LOCK_ASSERT(sc);
3223
3224	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3225	    __func__, wpi_cmd_str(code), size, async);
3226
3227	desc = &ring->desc[ring->cur];
3228	data = &ring->data[ring->cur];
3229	totlen = 4 + size;
3230
3231	if (size > sizeof cmd->data) {
3232		/* Command is too large to fit in a descriptor. */
3233		if (totlen > MCLBYTES) {
3234			error = EINVAL;
3235			goto fail;
3236		}
3237		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3238		if (m == NULL) {
3239			error = ENOMEM;
3240			goto fail;
3241		}
3242		cmd = mtod(m, struct wpi_tx_cmd *);
3243		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3244		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3245		if (error != 0) {
3246			m_freem(m);
3247			goto fail;
3248		}
3249		data->m = m;
3250	} else {
3251		cmd = &ring->cmd[ring->cur];
3252		paddr = data->cmd_paddr;
3253	}
3254
3255	cmd->code = code;
3256	cmd->flags = 0;
3257	cmd->qid = ring->qid;
3258	cmd->idx = ring->cur;
3259	memcpy(cmd->data, buf, size);
3260
3261	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3262	desc->segs[0].addr = htole32(paddr);
3263	desc->segs[0].len  = htole32(totlen);
3264
3265	if (size > sizeof cmd->data) {
3266		bus_dmamap_sync(ring->data_dmat, data->map,
3267		    BUS_DMASYNC_PREWRITE);
3268	} else {
3269		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3270		    BUS_DMASYNC_PREWRITE);
3271	}
3272	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3273	    BUS_DMASYNC_PREWRITE);
3274
3275	/* Kick command ring. */
3276	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3277	sc->sc_update_tx_ring(sc, ring);
3278
3279	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3280
3281	WPI_TXQ_UNLOCK(sc);
3282
3283	if (async)
3284		return 0;
3285
3286	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3287
3288fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3289
3290	WPI_TXQ_UNLOCK(sc);
3291
3292	return error;
3293}
3294
3295/*
3296 * Configure HW multi-rate retries.
3297 */
3298static int
3299wpi_mrr_setup(struct wpi_softc *sc)
3300{
3301	struct ifnet *ifp = sc->sc_ifp;
3302	struct ieee80211com *ic = ifp->if_l2com;
3303	struct wpi_mrr_setup mrr;
3304	int i, error;
3305
3306	/* CCK rates (not used with 802.11a). */
3307	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3308		mrr.rates[i].flags = 0;
3309		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3310		/* Fallback to the immediate lower CCK rate (if any.) */
3311		mrr.rates[i].next =
3312		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3313		/* Try twice at this rate before falling back to "next". */
3314		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3315	}
3316	/* OFDM rates (not used with 802.11b). */
3317	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3318		mrr.rates[i].flags = 0;
3319		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3320		/* Fallback to the immediate lower rate (if any.) */
3321		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3322		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3323		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3324			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3325		    i - 1;
3326		/* Try twice at this rate before falling back to "next". */
3327		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3328	}
3329	/* Setup MRR for control frames. */
3330	mrr.which = htole32(WPI_MRR_CTL);
3331	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3332	if (error != 0) {
3333		device_printf(sc->sc_dev,
3334		    "could not setup MRR for control frames\n");
3335		return error;
3336	}
3337	/* Setup MRR for data frames. */
3338	mrr.which = htole32(WPI_MRR_DATA);
3339	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3340	if (error != 0) {
3341		device_printf(sc->sc_dev,
3342		    "could not setup MRR for data frames\n");
3343		return error;
3344	}
3345	return 0;
3346}
3347
3348static int
3349wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3350{
3351	struct ieee80211com *ic = ni->ni_ic;
3352	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3353	struct wpi_node *wn = WPI_NODE(ni);
3354	struct wpi_node_info node;
3355	int error;
3356
3357	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3358
3359	if (wn->id == WPI_ID_UNDEFINED)
3360		return EINVAL;
3361
3362	memset(&node, 0, sizeof node);
3363	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3364	node.id = wn->id;
3365	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3366	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3367	node.action = htole32(WPI_ACTION_SET_RATE);
3368	node.antenna = WPI_ANTENNA_BOTH;
3369
3370	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3371	    wn->id, ether_sprintf(ni->ni_macaddr));
3372
3373	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3374	if (error != 0) {
3375		device_printf(sc->sc_dev,
3376		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3377		    error);
3378		return error;
3379	}
3380
3381	if (wvp->wv_gtk != 0) {
3382		error = wpi_set_global_keys(ni);
3383		if (error != 0) {
3384			device_printf(sc->sc_dev,
3385			    "%s: error while setting global keys\n", __func__);
3386			return ENXIO;
3387		}
3388	}
3389
3390	return 0;
3391}
3392
3393/*
3394 * Broadcast node is used to send group-addressed and management frames.
3395 */
3396static int
3397wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3398{
3399	struct ifnet *ifp = sc->sc_ifp;
3400	struct ieee80211com *ic = ifp->if_l2com;
3401	struct wpi_node_info node;
3402
3403	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3404
3405	memset(&node, 0, sizeof node);
3406	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3407	node.id = WPI_ID_BROADCAST;
3408	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3409	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3410	node.action = htole32(WPI_ACTION_SET_RATE);
3411	node.antenna = WPI_ANTENNA_BOTH;
3412
3413	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3414
3415	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3416}
3417
3418static int
3419wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3420{
3421	struct wpi_node *wn = WPI_NODE(ni);
3422	int error;
3423
3424	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3425
3426	wn->id = wpi_add_node_entry_sta(sc);
3427
3428	if ((error = wpi_add_node(sc, ni)) != 0) {
3429		wpi_del_node_entry(sc, wn->id);
3430		wn->id = WPI_ID_UNDEFINED;
3431		return error;
3432	}
3433
3434	return 0;
3435}
3436
3437static int
3438wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3439{
3440	struct wpi_node *wn = WPI_NODE(ni);
3441	int error;
3442
3443	KASSERT(wn->id == WPI_ID_UNDEFINED,
3444	    ("the node %d was added before", wn->id));
3445
3446	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3447
3448	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3449		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3450		return ENOMEM;
3451	}
3452
3453	if ((error = wpi_add_node(sc, ni)) != 0) {
3454		wpi_del_node_entry(sc, wn->id);
3455		wn->id = WPI_ID_UNDEFINED;
3456		return error;
3457	}
3458
3459	return 0;
3460}
3461
3462static void
3463wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3464{
3465	struct wpi_node *wn = WPI_NODE(ni);
3466	struct wpi_cmd_del_node node;
3467	int error;
3468
3469	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3470
3471	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3472
3473	memset(&node, 0, sizeof node);
3474	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3475	node.count = 1;
3476
3477	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3478	    wn->id, ether_sprintf(ni->ni_macaddr));
3479
3480	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3481	if (error != 0) {
3482		device_printf(sc->sc_dev,
3483		    "%s: could not delete node %u, error %d\n", __func__,
3484		    wn->id, error);
3485	}
3486}
3487
3488static int
3489wpi_updateedca(struct ieee80211com *ic)
3490{
3491#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3492	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3493	struct wpi_edca_params cmd;
3494	int aci, error;
3495
3496	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3497
3498	memset(&cmd, 0, sizeof cmd);
3499	cmd.flags = htole32(WPI_EDCA_UPDATE);
3500	for (aci = 0; aci < WME_NUM_AC; aci++) {
3501		const struct wmeParams *ac =
3502		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3503		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3504		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3505		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3506		cmd.ac[aci].txoplimit =
3507		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3508
3509		DPRINTF(sc, WPI_DEBUG_EDCA,
3510		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3511		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3512		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3513		    cmd.ac[aci].txoplimit);
3514	}
3515	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3516
3517	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3518
3519	return error;
3520#undef WPI_EXP2
3521}
3522
3523static void
3524wpi_set_promisc(struct wpi_softc *sc)
3525{
3526	struct ifnet *ifp = sc->sc_ifp;
3527	struct ieee80211com *ic = ifp->if_l2com;
3528	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3529	uint32_t promisc_filter;
3530
3531	promisc_filter = WPI_FILTER_CTL;
3532	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3533		promisc_filter |= WPI_FILTER_PROMISC;
3534
3535	if (ifp->if_flags & IFF_PROMISC)
3536		sc->rxon.filter |= htole32(promisc_filter);
3537	else
3538		sc->rxon.filter &= ~htole32(promisc_filter);
3539}
3540
3541static void
3542wpi_update_promisc(struct ifnet *ifp)
3543{
3544	struct wpi_softc *sc = ifp->if_softc;
3545
3546	WPI_RXON_LOCK(sc);
3547	wpi_set_promisc(sc);
3548
3549	if (wpi_send_rxon(sc, 1, 1) != 0) {
3550		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3551		    __func__);
3552	}
3553	WPI_RXON_UNLOCK(sc);
3554}
3555
3556static void
3557wpi_update_mcast(struct ifnet *ifp)
3558{
3559	/* Ignore */
3560}
3561
3562static void
3563wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3564{
3565	struct wpi_cmd_led led;
3566
3567	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3568
3569	led.which = which;
3570	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3571	led.off = off;
3572	led.on = on;
3573	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3574}
3575
3576static int
3577wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3578{
3579	struct wpi_cmd_timing cmd;
3580	uint64_t val, mod;
3581
3582	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3583
3584	memset(&cmd, 0, sizeof cmd);
3585	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3586	cmd.bintval = htole16(ni->ni_intval);
3587	cmd.lintval = htole16(10);
3588
3589	/* Compute remaining time until next beacon. */
3590	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3591	mod = le64toh(cmd.tstamp) % val;
3592	cmd.binitval = htole32((uint32_t)(val - mod));
3593
3594	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3595	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3596
3597	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3598}
3599
3600/*
3601 * This function is called periodically (every 60 seconds) to adjust output
3602 * power to temperature changes.
3603 */
3604static void
3605wpi_power_calibration(struct wpi_softc *sc)
3606{
3607	int temp;
3608
3609	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3610
3611	/* Update sensor data. */
3612	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3613	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3614
3615	/* Sanity-check read value. */
3616	if (temp < -260 || temp > 25) {
3617		/* This can't be correct, ignore. */
3618		DPRINTF(sc, WPI_DEBUG_TEMP,
3619		    "out-of-range temperature reported: %d\n", temp);
3620		return;
3621	}
3622
3623	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3624
3625	/* Adjust Tx power if need be. */
3626	if (abs(temp - sc->temp) <= 6)
3627		return;
3628
3629	sc->temp = temp;
3630
3631	if (wpi_set_txpower(sc, 1) != 0) {
3632		/* just warn, too bad for the automatic calibration... */
3633		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3634	}
3635}
3636
3637/*
3638 * Set TX power for current channel.
3639 */
3640static int
3641wpi_set_txpower(struct wpi_softc *sc, int async)
3642{
3643	struct wpi_power_group *group;
3644	struct wpi_cmd_txpower cmd;
3645	uint8_t chan;
3646	int idx, is_chan_5ghz, i;
3647
3648	/* Retrieve current channel from last RXON. */
3649	chan = sc->rxon.chan;
3650	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3651
3652	/* Find the TX power group to which this channel belongs. */
3653	if (is_chan_5ghz) {
3654		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3655			if (chan <= group->chan)
3656				break;
3657	} else
3658		group = &sc->groups[0];
3659
3660	memset(&cmd, 0, sizeof cmd);
3661	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3662	cmd.chan = htole16(chan);
3663
3664	/* Set TX power for all OFDM and CCK rates. */
3665	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3666		/* Retrieve TX power for this channel/rate. */
3667		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3668
3669		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3670
3671		if (is_chan_5ghz) {
3672			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3673			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3674		} else {
3675			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3676			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3677		}
3678		DPRINTF(sc, WPI_DEBUG_TEMP,
3679		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3680	}
3681
3682	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3683}
3684
3685/*
3686 * Determine Tx power index for a given channel/rate combination.
3687 * This takes into account the regulatory information from EEPROM and the
3688 * current temperature.
3689 */
3690static int
3691wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3692    uint8_t chan, int is_chan_5ghz, int ridx)
3693{
3694/* Fixed-point arithmetic division using a n-bit fractional part. */
3695#define fdivround(a, b, n)	\
3696	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3697
3698/* Linear interpolation. */
3699#define interpolate(x, x1, y1, x2, y2, n)	\
3700	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3701
3702	struct wpi_power_sample *sample;
3703	int pwr, idx;
3704
3705	/* Default TX power is group maximum TX power minus 3dB. */
3706	pwr = group->maxpwr / 2;
3707
3708	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3709	switch (ridx) {
3710	case WPI_RIDX_OFDM36:
3711		pwr -= is_chan_5ghz ?  5 : 0;
3712		break;
3713	case WPI_RIDX_OFDM48:
3714		pwr -= is_chan_5ghz ? 10 : 7;
3715		break;
3716	case WPI_RIDX_OFDM54:
3717		pwr -= is_chan_5ghz ? 12 : 9;
3718		break;
3719	}
3720
3721	/* Never exceed the channel maximum allowed TX power. */
3722	pwr = min(pwr, sc->maxpwr[chan]);
3723
3724	/* Retrieve TX power index into gain tables from samples. */
3725	for (sample = group->samples; sample < &group->samples[3]; sample++)
3726		if (pwr > sample[1].power)
3727			break;
3728	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3729	idx = interpolate(pwr, sample[0].power, sample[0].index,
3730	    sample[1].power, sample[1].index, 19);
3731
3732	/*-
3733	 * Adjust power index based on current temperature:
3734	 * - if cooler than factory-calibrated: decrease output power
3735	 * - if warmer than factory-calibrated: increase output power
3736	 */
3737	idx -= (sc->temp - group->temp) * 11 / 100;
3738
3739	/* Decrease TX power for CCK rates (-5dB). */
3740	if (ridx >= WPI_RIDX_CCK1)
3741		idx += 10;
3742
3743	/* Make sure idx stays in a valid range. */
3744	if (idx < 0)
3745		return 0;
3746	if (idx > WPI_MAX_PWR_INDEX)
3747		return WPI_MAX_PWR_INDEX;
3748	return idx;
3749
3750#undef interpolate
3751#undef fdivround
3752}
3753
3754/*
3755 * Set STA mode power saving level (between 0 and 5).
3756 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3757 */
3758static int
3759wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3760{
3761	struct wpi_pmgt_cmd cmd;
3762	const struct wpi_pmgt *pmgt;
3763	uint32_t max, skip_dtim;
3764	uint32_t reg;
3765	int i;
3766
3767	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3768	    "%s: dtim=%d, level=%d, async=%d\n",
3769	    __func__, dtim, level, async);
3770
3771	/* Select which PS parameters to use. */
3772	if (dtim <= 10)
3773		pmgt = &wpi_pmgt[0][level];
3774	else
3775		pmgt = &wpi_pmgt[1][level];
3776
3777	memset(&cmd, 0, sizeof cmd);
3778	WPI_TXQ_LOCK(sc);
3779	if (level != 0)	{	/* not CAM */
3780		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3781		sc->sc_flags |= WPI_PS_PATH;
3782	} else
3783		sc->sc_flags &= ~WPI_PS_PATH;
3784	WPI_TXQ_UNLOCK(sc);
3785	/* Retrieve PCIe Active State Power Management (ASPM). */
3786	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3787	if (!(reg & 0x1))	/* L0s Entry disabled. */
3788		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3789
3790	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3791	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3792
3793	if (dtim == 0) {
3794		dtim = 1;
3795		skip_dtim = 0;
3796	} else
3797		skip_dtim = pmgt->skip_dtim;
3798
3799	if (skip_dtim != 0) {
3800		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3801		max = pmgt->intval[4];
3802		if (max == (uint32_t)-1)
3803			max = dtim * (skip_dtim + 1);
3804		else if (max > dtim)
3805			max = (max / dtim) * dtim;
3806	} else
3807		max = dtim;
3808
3809	for (i = 0; i < 5; i++)
3810		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3811
3812	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3813}
3814
3815static int
3816wpi_send_btcoex(struct wpi_softc *sc)
3817{
3818	struct wpi_bluetooth cmd;
3819
3820	memset(&cmd, 0, sizeof cmd);
3821	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3822	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3823	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3824	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3825	    __func__);
3826	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3827}
3828
3829static int
3830wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3831{
3832	int error;
3833
3834	if (async)
3835		WPI_RXON_LOCK_ASSERT(sc);
3836
3837	if (assoc && wpi_check_bss_filter(sc) != 0) {
3838		struct wpi_assoc rxon_assoc;
3839
3840		rxon_assoc.flags = sc->rxon.flags;
3841		rxon_assoc.filter = sc->rxon.filter;
3842		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3843		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3844		rxon_assoc.reserved = 0;
3845
3846		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3847		    sizeof (struct wpi_assoc), async);
3848		if (error != 0) {
3849			device_printf(sc->sc_dev,
3850			    "RXON_ASSOC command failed, error %d\n", error);
3851			return error;
3852		}
3853	} else {
3854		if (async) {
3855			WPI_NT_LOCK(sc);
3856			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3857			    sizeof (struct wpi_rxon), async);
3858			if (error == 0)
3859				wpi_clear_node_table(sc);
3860			WPI_NT_UNLOCK(sc);
3861		} else {
3862			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3863			    sizeof (struct wpi_rxon), async);
3864			if (error == 0)
3865				wpi_clear_node_table(sc);
3866		}
3867
3868		if (error != 0) {
3869			device_printf(sc->sc_dev,
3870			    "RXON command failed, error %d\n", error);
3871			return error;
3872		}
3873
3874		/* Add broadcast node. */
3875		error = wpi_add_broadcast_node(sc, async);
3876		if (error != 0) {
3877			device_printf(sc->sc_dev,
3878			    "could not add broadcast node, error %d\n", error);
3879			return error;
3880		}
3881	}
3882
3883	/* Configuration has changed, set Tx power accordingly. */
3884	if ((error = wpi_set_txpower(sc, async)) != 0) {
3885		device_printf(sc->sc_dev,
3886		    "%s: could not set TX power, error %d\n", __func__, error);
3887		return error;
3888	}
3889
3890	return 0;
3891}
3892
3893/**
3894 * Configure the card to listen to a particular channel, this transisions the
3895 * card in to being able to receive frames from remote devices.
3896 */
3897static int
3898wpi_config(struct wpi_softc *sc)
3899{
3900	struct ifnet *ifp = sc->sc_ifp;
3901	struct ieee80211com *ic = ifp->if_l2com;
3902	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3903	struct ieee80211_channel *c = ic->ic_curchan;
3904	int error;
3905
3906	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3907
3908	/* Set power saving level to CAM during initialization. */
3909	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3910		device_printf(sc->sc_dev,
3911		    "%s: could not set power saving level\n", __func__);
3912		return error;
3913	}
3914
3915	/* Configure bluetooth coexistence. */
3916	if ((error = wpi_send_btcoex(sc)) != 0) {
3917		device_printf(sc->sc_dev,
3918		    "could not configure bluetooth coexistence\n");
3919		return error;
3920	}
3921
3922	/* Configure adapter. */
3923	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3924	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3925
3926	/* Set default channel. */
3927	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3928	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3929	if (IEEE80211_IS_CHAN_2GHZ(c))
3930		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3931
3932	sc->rxon.filter = WPI_FILTER_MULTICAST;
3933	switch (ic->ic_opmode) {
3934	case IEEE80211_M_STA:
3935		sc->rxon.mode = WPI_MODE_STA;
3936		break;
3937	case IEEE80211_M_IBSS:
3938		sc->rxon.mode = WPI_MODE_IBSS;
3939		sc->rxon.filter |= WPI_FILTER_BEACON;
3940		break;
3941	case IEEE80211_M_HOSTAP:
3942		/* XXX workaround for beaconing */
3943		sc->rxon.mode = WPI_MODE_IBSS;
3944		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3945		break;
3946	case IEEE80211_M_AHDEMO:
3947		sc->rxon.mode = WPI_MODE_HOSTAP;
3948		break;
3949	case IEEE80211_M_MONITOR:
3950		sc->rxon.mode = WPI_MODE_MONITOR;
3951		break;
3952	default:
3953		device_printf(sc->sc_dev, "unknown opmode %d\n",
3954		    ic->ic_opmode);
3955		return EINVAL;
3956	}
3957	sc->rxon.filter = htole32(sc->rxon.filter);
3958	wpi_set_promisc(sc);
3959	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3960	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3961
3962	/* XXX Current configuration may be unusable. */
3963	if (IEEE80211_IS_CHAN_NOADHOC(c) && sc->rxon.mode == WPI_MODE_IBSS) {
3964		device_printf(sc->sc_dev,
3965		    "%s: invalid channel (%d) selected for IBSS mode\n",
3966		    __func__, ieee80211_chan2ieee(ic, c));
3967		return EINVAL;
3968	}
3969
3970	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3971		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3972		    __func__);
3973		return error;
3974	}
3975
3976	/* Setup rate scalling. */
3977	if ((error = wpi_mrr_setup(sc)) != 0) {
3978		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3979		    error);
3980		return error;
3981	}
3982
3983	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3984
3985	return 0;
3986}
3987
3988static uint16_t
3989wpi_get_active_dwell_time(struct wpi_softc *sc,
3990    struct ieee80211_channel *c, uint8_t n_probes)
3991{
3992	/* No channel? Default to 2GHz settings. */
3993	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3994		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3995		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3996	}
3997
3998	/* 5GHz dwell time. */
3999	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4000	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4001}
4002
4003/*
4004 * Limit the total dwell time.
4005 *
4006 * Returns the dwell time in milliseconds.
4007 */
4008static uint16_t
4009wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4010{
4011	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4012	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4013	int bintval = 0;
4014
4015	/* bintval is in TU (1.024mS) */
4016	if (vap != NULL)
4017		bintval = vap->iv_bss->ni_intval;
4018
4019	/*
4020	 * If it's non-zero, we should calculate the minimum of
4021	 * it and the DWELL_BASE.
4022	 *
4023	 * XXX Yes, the math should take into account that bintval
4024	 * is 1.024mS, not 1mS..
4025	 */
4026	if (bintval > 0) {
4027		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4028		    bintval);
4029		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4030	}
4031
4032	/* No association context? Default. */
4033	return dwell_time;
4034}
4035
4036static uint16_t
4037wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4038{
4039	uint16_t passive;
4040
4041	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4042		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4043	else
4044		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4045
4046	/* Clamp to the beacon interval if we're associated. */
4047	return (wpi_limit_dwell(sc, passive));
4048}
4049
4050static uint32_t
4051wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4052{
4053	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4054	uint32_t nbeacons = time / bintval;
4055
4056	if (mod > WPI_PAUSE_MAX_TIME)
4057		mod = WPI_PAUSE_MAX_TIME;
4058
4059	return WPI_PAUSE_SCAN(nbeacons, mod);
4060}
4061
4062/*
4063 * Send a scan request to the firmware.
4064 */
4065static int
4066wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4067{
4068	struct ifnet *ifp = sc->sc_ifp;
4069	struct ieee80211com *ic = ifp->if_l2com;
4070	struct ieee80211_scan_state *ss = ic->ic_scan;
4071	struct ieee80211vap *vap = ss->ss_vap;
4072	struct wpi_scan_hdr *hdr;
4073	struct wpi_cmd_data *tx;
4074	struct wpi_scan_essid *essids;
4075	struct wpi_scan_chan *chan;
4076	struct ieee80211_frame *wh;
4077	struct ieee80211_rateset *rs;
4078	uint16_t dwell_active, dwell_passive;
4079	uint8_t *buf, *frm;
4080	int bgscan, bintval, buflen, error, i, nssid;
4081
4082	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4083
4084	/*
4085	 * We are absolutely not allowed to send a scan command when another
4086	 * scan command is pending.
4087	 */
4088	if (callout_pending(&sc->scan_timeout)) {
4089		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4090		    __func__);
4091		error = EAGAIN;
4092		goto fail;
4093	}
4094
4095	bgscan = wpi_check_bss_filter(sc);
4096	bintval = vap->iv_bss->ni_intval;
4097	if (bgscan != 0 &&
4098	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4099		error = EOPNOTSUPP;
4100		goto fail;
4101	}
4102
4103	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4104	if (buf == NULL) {
4105		device_printf(sc->sc_dev,
4106		    "%s: could not allocate buffer for scan command\n",
4107		    __func__);
4108		error = ENOMEM;
4109		goto fail;
4110	}
4111	hdr = (struct wpi_scan_hdr *)buf;
4112
4113	/*
4114	 * Move to the next channel if no packets are received within 10 msecs
4115	 * after sending the probe request.
4116	 */
4117	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4118	hdr->quiet_threshold = htole16(1);
4119
4120	if (bgscan != 0) {
4121		/*
4122		 * Max needs to be greater than active and passive and quiet!
4123		 * It's also in microseconds!
4124		 */
4125		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4126		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4127		    bintval));
4128	}
4129
4130	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4131
4132	tx = (struct wpi_cmd_data *)(hdr + 1);
4133	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4134	tx->id = WPI_ID_BROADCAST;
4135	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4136
4137	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4138		/* Send probe requests at 6Mbps. */
4139		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4140		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4141	} else {
4142		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4143		/* Send probe requests at 1Mbps. */
4144		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4145		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4146	}
4147
4148	essids = (struct wpi_scan_essid *)(tx + 1);
4149	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4150	for (i = 0; i < nssid; i++) {
4151		essids[i].id = IEEE80211_ELEMID_SSID;
4152		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4153		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4154#ifdef WPI_DEBUG
4155		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4156			printf("Scanning Essid: ");
4157			ieee80211_print_essid(essids[i].data, essids[i].len);
4158			printf("\n");
4159		}
4160#endif
4161	}
4162
4163	/*
4164	 * Build a probe request frame.  Most of the following code is a
4165	 * copy & paste of what is done in net80211.
4166	 */
4167	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4168	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4169		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4170	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4171	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4172	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4173	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4174	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
4175	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
4176
4177	frm = (uint8_t *)(wh + 1);
4178	frm = ieee80211_add_ssid(frm, NULL, 0);
4179	frm = ieee80211_add_rates(frm, rs);
4180	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4181		frm = ieee80211_add_xrates(frm, rs);
4182
4183	/* Set length of probe request. */
4184	tx->len = htole16(frm - (uint8_t *)wh);
4185
4186	/*
4187	 * Construct information about the channel that we
4188	 * want to scan. The firmware expects this to be directly
4189	 * after the scan probe request
4190	 */
4191	chan = (struct wpi_scan_chan *)frm;
4192	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4193	chan->flags = 0;
4194	if (nssid) {
4195		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4196		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4197	} else
4198		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4199
4200	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4201		chan->flags |= WPI_CHAN_ACTIVE;
4202
4203	/*
4204	 * Calculate the active/passive dwell times.
4205	 */
4206
4207	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4208	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4209
4210	/* Make sure they're valid. */
4211	if (dwell_active > dwell_passive)
4212		dwell_active = dwell_passive;
4213
4214	chan->active = htole16(dwell_active);
4215	chan->passive = htole16(dwell_passive);
4216
4217	chan->dsp_gain = 0x6e;  /* Default level */
4218
4219	if (IEEE80211_IS_CHAN_5GHZ(c))
4220		chan->rf_gain = 0x3b;
4221	else
4222		chan->rf_gain = 0x28;
4223
4224	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4225	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4226
4227	hdr->nchan++;
4228
4229	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4230		/* XXX Force probe request transmission. */
4231		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4232
4233		chan++;
4234
4235		/* Reduce unnecessary delay. */
4236		chan->flags = 0;
4237		chan->passive = chan->active = hdr->quiet_time;
4238
4239		hdr->nchan++;
4240	}
4241
4242	chan++;
4243
4244	buflen = (uint8_t *)chan - buf;
4245	hdr->len = htole16(buflen);
4246
4247	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4248	    hdr->nchan);
4249	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4250	free(buf, M_DEVBUF);
4251
4252	if (error != 0)
4253		goto fail;
4254
4255	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4256
4257	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4258
4259	return 0;
4260
4261fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4262
4263	return error;
4264}
4265
4266static int
4267wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4268{
4269	struct ieee80211com *ic = vap->iv_ic;
4270	struct ieee80211_node *ni = vap->iv_bss;
4271	struct ieee80211_channel *c = ni->ni_chan;
4272	int error;
4273
4274	WPI_RXON_LOCK(sc);
4275
4276	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4277
4278	/* Update adapter configuration. */
4279	sc->rxon.associd = 0;
4280	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4281	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4282	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4283	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4284	if (IEEE80211_IS_CHAN_2GHZ(c))
4285		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4286	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4287		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4288	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4289		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4290	if (IEEE80211_IS_CHAN_A(c)) {
4291		sc->rxon.cck_mask  = 0;
4292		sc->rxon.ofdm_mask = 0x15;
4293	} else if (IEEE80211_IS_CHAN_B(c)) {
4294		sc->rxon.cck_mask  = 0x03;
4295		sc->rxon.ofdm_mask = 0;
4296	} else {
4297		/* Assume 802.11b/g. */
4298		sc->rxon.cck_mask  = 0x0f;
4299		sc->rxon.ofdm_mask = 0x15;
4300	}
4301
4302	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4303	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4304	    sc->rxon.ofdm_mask);
4305
4306	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4307		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4308		    __func__);
4309	}
4310
4311	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4312
4313	WPI_RXON_UNLOCK(sc);
4314
4315	return error;
4316}
4317
4318static int
4319wpi_config_beacon(struct wpi_vap *wvp)
4320{
4321	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4322	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4323	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4324	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4325	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4326	struct ieee80211_tim_ie *tie;
4327	struct mbuf *m;
4328	uint8_t *ptr;
4329	int error;
4330
4331	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4332
4333	WPI_VAP_LOCK_ASSERT(wvp);
4334
4335	cmd->len = htole16(bcn->m->m_pkthdr.len);
4336	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4337	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4338
4339	/* XXX seems to be unused */
4340	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4341		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4342		ptr = mtod(bcn->m, uint8_t *);
4343
4344		cmd->tim = htole16(bo->bo_tim - ptr);
4345		cmd->timsz = tie->tim_len;
4346	}
4347
4348	/* Necessary for recursion in ieee80211_beacon_update(). */
4349	m = bcn->m;
4350	bcn->m = m_dup(m, M_NOWAIT);
4351	if (bcn->m == NULL) {
4352		device_printf(sc->sc_dev,
4353		    "%s: could not copy beacon frame\n", __func__);
4354		error = ENOMEM;
4355		goto end;
4356	}
4357
4358	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4359		device_printf(sc->sc_dev,
4360		    "%s: could not update beacon frame, error %d", __func__,
4361		    error);
4362	}
4363
4364	/* Restore mbuf. */
4365end:	bcn->m = m;
4366
4367	return error;
4368}
4369
4370static int
4371wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4372{
4373	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4374	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4375	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4376	struct mbuf *m;
4377	int error;
4378
4379	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4380
4381	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4382		return EINVAL;
4383
4384	m = ieee80211_beacon_alloc(ni, bo);
4385	if (m == NULL) {
4386		device_printf(sc->sc_dev,
4387		    "%s: could not allocate beacon frame\n", __func__);
4388		return ENOMEM;
4389	}
4390
4391	WPI_VAP_LOCK(wvp);
4392	if (bcn->m != NULL)
4393		m_freem(bcn->m);
4394
4395	bcn->m = m;
4396
4397	error = wpi_config_beacon(wvp);
4398	WPI_VAP_UNLOCK(wvp);
4399
4400	return error;
4401}
4402
4403static void
4404wpi_update_beacon(struct ieee80211vap *vap, int item)
4405{
4406	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4407	struct wpi_vap *wvp = WPI_VAP(vap);
4408	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4409	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4410	struct ieee80211_node *ni = vap->iv_bss;
4411	int mcast = 0;
4412
4413	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4414
4415	WPI_VAP_LOCK(wvp);
4416	if (bcn->m == NULL) {
4417		bcn->m = ieee80211_beacon_alloc(ni, bo);
4418		if (bcn->m == NULL) {
4419			device_printf(sc->sc_dev,
4420			    "%s: could not allocate beacon frame\n", __func__);
4421
4422			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4423			    __func__);
4424
4425			WPI_VAP_UNLOCK(wvp);
4426			return;
4427		}
4428	}
4429	WPI_VAP_UNLOCK(wvp);
4430
4431	if (item == IEEE80211_BEACON_TIM)
4432		mcast = 1;	/* TODO */
4433
4434	setbit(bo->bo_flags, item);
4435	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4436
4437	WPI_VAP_LOCK(wvp);
4438	wpi_config_beacon(wvp);
4439	WPI_VAP_UNLOCK(wvp);
4440
4441	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4442}
4443
4444static void
4445wpi_newassoc(struct ieee80211_node *ni, int isnew)
4446{
4447	struct ieee80211vap *vap = ni->ni_vap;
4448	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4449	struct wpi_node *wn = WPI_NODE(ni);
4450	int error;
4451
4452	WPI_NT_LOCK(sc);
4453
4454	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4455
4456	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4457		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4458			device_printf(sc->sc_dev,
4459			    "%s: could not add IBSS node, error %d\n",
4460			    __func__, error);
4461		}
4462	}
4463	WPI_NT_UNLOCK(sc);
4464}
4465
4466static int
4467wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4468{
4469	struct ieee80211com *ic = vap->iv_ic;
4470	struct ieee80211_node *ni = vap->iv_bss;
4471	struct ieee80211_channel *c = ni->ni_chan;
4472	int error;
4473
4474	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4475
4476	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4477		/* Link LED blinks while monitoring. */
4478		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4479		return 0;
4480	}
4481
4482	/* XXX kernel panic workaround */
4483	if (c == IEEE80211_CHAN_ANYC) {
4484		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4485		    __func__);
4486		return EINVAL;
4487	}
4488
4489	if ((error = wpi_set_timing(sc, ni)) != 0) {
4490		device_printf(sc->sc_dev,
4491		    "%s: could not set timing, error %d\n", __func__, error);
4492		return error;
4493	}
4494
4495	/* Update adapter configuration. */
4496	WPI_RXON_LOCK(sc);
4497	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4498	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4499	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4500	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4501	if (IEEE80211_IS_CHAN_2GHZ(c))
4502		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4503	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4504		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4505	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4506		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4507	if (IEEE80211_IS_CHAN_A(c)) {
4508		sc->rxon.cck_mask  = 0;
4509		sc->rxon.ofdm_mask = 0x15;
4510	} else if (IEEE80211_IS_CHAN_B(c)) {
4511		sc->rxon.cck_mask  = 0x03;
4512		sc->rxon.ofdm_mask = 0;
4513	} else {
4514		/* Assume 802.11b/g. */
4515		sc->rxon.cck_mask  = 0x0f;
4516		sc->rxon.ofdm_mask = 0x15;
4517	}
4518	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4519
4520	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4521	    sc->rxon.chan, sc->rxon.flags);
4522
4523	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4524		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4525		    __func__);
4526		return error;
4527	}
4528
4529	/* Start periodic calibration timer. */
4530	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4531
4532	WPI_RXON_UNLOCK(sc);
4533
4534	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4535	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4536		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4537			device_printf(sc->sc_dev,
4538			    "%s: could not setup beacon, error %d\n", __func__,
4539			    error);
4540			return error;
4541		}
4542	}
4543
4544	if (vap->iv_opmode == IEEE80211_M_STA) {
4545		/* Add BSS node. */
4546		WPI_NT_LOCK(sc);
4547		error = wpi_add_sta_node(sc, ni);
4548		WPI_NT_UNLOCK(sc);
4549		if (error != 0) {
4550			device_printf(sc->sc_dev,
4551			    "%s: could not add BSS node, error %d\n", __func__,
4552			    error);
4553			return error;
4554		}
4555	}
4556
4557	/* Link LED always on while associated. */
4558	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4559
4560	/* Enable power-saving mode if requested by user. */
4561	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4562	    vap->iv_opmode != IEEE80211_M_IBSS)
4563		(void)wpi_set_pslevel(sc, 0, 3, 1);
4564
4565	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4566
4567	return 0;
4568}
4569
4570static int
4571wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4572{
4573	const struct ieee80211_cipher *cip = k->wk_cipher;
4574	struct ieee80211vap *vap = ni->ni_vap;
4575	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4576	struct wpi_node *wn = WPI_NODE(ni);
4577	struct wpi_node_info node;
4578	uint16_t kflags;
4579	int error;
4580
4581	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4582
4583	if (wpi_check_node_entry(sc, wn->id) == 0) {
4584		device_printf(sc->sc_dev, "%s: node does not exist\n",
4585		    __func__);
4586		return 0;
4587	}
4588
4589	switch (cip->ic_cipher) {
4590	case IEEE80211_CIPHER_AES_CCM:
4591		kflags = WPI_KFLAG_CCMP;
4592		break;
4593
4594	default:
4595		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4596		    cip->ic_cipher);
4597		return 0;
4598	}
4599
4600	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4601	if (k->wk_flags & IEEE80211_KEY_GROUP)
4602		kflags |= WPI_KFLAG_MULTICAST;
4603
4604	memset(&node, 0, sizeof node);
4605	node.id = wn->id;
4606	node.control = WPI_NODE_UPDATE;
4607	node.flags = WPI_FLAG_KEY_SET;
4608	node.kflags = htole16(kflags);
4609	memcpy(node.key, k->wk_key, k->wk_keylen);
4610again:
4611	DPRINTF(sc, WPI_DEBUG_KEY,
4612	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4613	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4614	    node.id, ether_sprintf(ni->ni_macaddr));
4615
4616	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4617	if (error != 0) {
4618		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4619		    error);
4620		return !error;
4621	}
4622
4623	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4624	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4625		kflags |= WPI_KFLAG_MULTICAST;
4626		node.kflags = htole16(kflags);
4627
4628		goto again;
4629	}
4630
4631	return 1;
4632}
4633
4634static void
4635wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4636{
4637	const struct ieee80211_key *k = arg;
4638	struct ieee80211vap *vap = ni->ni_vap;
4639	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4640	struct wpi_node *wn = WPI_NODE(ni);
4641	int error;
4642
4643	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4644		return;
4645
4646	WPI_NT_LOCK(sc);
4647	error = wpi_load_key(ni, k);
4648	WPI_NT_UNLOCK(sc);
4649
4650	if (error == 0) {
4651		device_printf(sc->sc_dev, "%s: error while setting key\n",
4652		    __func__);
4653	}
4654}
4655
4656static int
4657wpi_set_global_keys(struct ieee80211_node *ni)
4658{
4659	struct ieee80211vap *vap = ni->ni_vap;
4660	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4661	int error = 1;
4662
4663	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4664		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4665			error = wpi_load_key(ni, wk);
4666
4667	return !error;
4668}
4669
4670static int
4671wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4672{
4673	struct ieee80211vap *vap = ni->ni_vap;
4674	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4675	struct wpi_node *wn = WPI_NODE(ni);
4676	struct wpi_node_info node;
4677	uint16_t kflags;
4678	int error;
4679
4680	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4681
4682	if (wpi_check_node_entry(sc, wn->id) == 0) {
4683		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4684		return 1;	/* Nothing to do. */
4685	}
4686
4687	kflags = WPI_KFLAG_KID(k->wk_keyix);
4688	if (k->wk_flags & IEEE80211_KEY_GROUP)
4689		kflags |= WPI_KFLAG_MULTICAST;
4690
4691	memset(&node, 0, sizeof node);
4692	node.id = wn->id;
4693	node.control = WPI_NODE_UPDATE;
4694	node.flags = WPI_FLAG_KEY_SET;
4695	node.kflags = htole16(kflags);
4696again:
4697	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4698	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4699	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4700
4701	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4702	if (error != 0) {
4703		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4704		    error);
4705		return !error;
4706	}
4707
4708	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4709	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4710		kflags |= WPI_KFLAG_MULTICAST;
4711		node.kflags = htole16(kflags);
4712
4713		goto again;
4714	}
4715
4716	return 1;
4717}
4718
4719static void
4720wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4721{
4722	const struct ieee80211_key *k = arg;
4723	struct ieee80211vap *vap = ni->ni_vap;
4724	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4725	struct wpi_node *wn = WPI_NODE(ni);
4726	int error;
4727
4728	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4729		return;
4730
4731	WPI_NT_LOCK(sc);
4732	error = wpi_del_key(ni, k);
4733	WPI_NT_UNLOCK(sc);
4734
4735	if (error == 0) {
4736		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4737		    __func__);
4738	}
4739}
4740
4741static int
4742wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4743    int set)
4744{
4745	struct ieee80211com *ic = vap->iv_ic;
4746	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4747	struct wpi_vap *wvp = WPI_VAP(vap);
4748	struct ieee80211_node *ni;
4749	int error, ni_ref = 0;
4750
4751	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4752
4753	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4754		/* Not for us. */
4755		return 1;
4756	}
4757
4758	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4759		/* XMIT keys are handled in wpi_tx_data(). */
4760		return 1;
4761	}
4762
4763	/* Handle group keys. */
4764	if (&vap->iv_nw_keys[0] <= k &&
4765	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4766		WPI_NT_LOCK(sc);
4767		if (set)
4768			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4769		else
4770			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4771		WPI_NT_UNLOCK(sc);
4772
4773		if (vap->iv_state == IEEE80211_S_RUN) {
4774			ieee80211_iterate_nodes(&ic->ic_sta,
4775			    set ? wpi_load_key_cb : wpi_del_key_cb,
4776			    __DECONST(void *, k));
4777		}
4778
4779		return 1;
4780	}
4781
4782	switch (vap->iv_opmode) {
4783	case IEEE80211_M_STA:
4784		ni = vap->iv_bss;
4785		break;
4786
4787	case IEEE80211_M_IBSS:
4788	case IEEE80211_M_AHDEMO:
4789	case IEEE80211_M_HOSTAP:
4790		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4791		if (ni == NULL)
4792			return 0;	/* should not happen */
4793
4794		ni_ref = 1;
4795		break;
4796
4797	default:
4798		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4799		    vap->iv_opmode);
4800		return 0;
4801	}
4802
4803	WPI_NT_LOCK(sc);
4804	if (set)
4805		error = wpi_load_key(ni, k);
4806	else
4807		error = wpi_del_key(ni, k);
4808	WPI_NT_UNLOCK(sc);
4809
4810	if (ni_ref)
4811		ieee80211_node_decref(ni);
4812
4813	return error;
4814}
4815
4816static int
4817wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4818    const uint8_t mac[IEEE80211_ADDR_LEN])
4819{
4820	return wpi_process_key(vap, k, 1);
4821}
4822
4823static int
4824wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4825{
4826	return wpi_process_key(vap, k, 0);
4827}
4828
4829/*
4830 * This function is called after the runtime firmware notifies us of its
4831 * readiness (called in a process context).
4832 */
4833static int
4834wpi_post_alive(struct wpi_softc *sc)
4835{
4836	int ntries, error;
4837
4838	/* Check (again) that the radio is not disabled. */
4839	if ((error = wpi_nic_lock(sc)) != 0)
4840		return error;
4841
4842	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4843
4844	/* NB: Runtime firmware must be up and running. */
4845	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4846		device_printf(sc->sc_dev,
4847		    "RF switch: radio disabled (%s)\n", __func__);
4848		wpi_nic_unlock(sc);
4849		return EPERM;   /* :-) */
4850	}
4851	wpi_nic_unlock(sc);
4852
4853	/* Wait for thermal sensor to calibrate. */
4854	for (ntries = 0; ntries < 1000; ntries++) {
4855		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4856			break;
4857		DELAY(10);
4858	}
4859
4860	if (ntries == 1000) {
4861		device_printf(sc->sc_dev,
4862		    "timeout waiting for thermal sensor calibration\n");
4863		return ETIMEDOUT;
4864	}
4865
4866	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4867	return 0;
4868}
4869
4870/*
4871 * The firmware boot code is small and is intended to be copied directly into
4872 * the NIC internal memory (no DMA transfer).
4873 */
4874static int
4875wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4876{
4877	int error, ntries;
4878
4879	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4880
4881	size /= sizeof (uint32_t);
4882
4883	if ((error = wpi_nic_lock(sc)) != 0)
4884		return error;
4885
4886	/* Copy microcode image into NIC memory. */
4887	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4888	    (const uint32_t *)ucode, size);
4889
4890	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4891	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4892	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4893
4894	/* Start boot load now. */
4895	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4896
4897	/* Wait for transfer to complete. */
4898	for (ntries = 0; ntries < 1000; ntries++) {
4899		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4900		DPRINTF(sc, WPI_DEBUG_HW,
4901		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4902		    WPI_FH_TX_STATUS_IDLE(6),
4903		    status & WPI_FH_TX_STATUS_IDLE(6));
4904		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4905			DPRINTF(sc, WPI_DEBUG_HW,
4906			    "Status Match! - ntries = %d\n", ntries);
4907			break;
4908		}
4909		DELAY(10);
4910	}
4911	if (ntries == 1000) {
4912		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4913		    __func__);
4914		wpi_nic_unlock(sc);
4915		return ETIMEDOUT;
4916	}
4917
4918	/* Enable boot after power up. */
4919	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4920
4921	wpi_nic_unlock(sc);
4922	return 0;
4923}
4924
4925static int
4926wpi_load_firmware(struct wpi_softc *sc)
4927{
4928	struct wpi_fw_info *fw = &sc->fw;
4929	struct wpi_dma_info *dma = &sc->fw_dma;
4930	int error;
4931
4932	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4933
4934	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4935	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4936	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4937	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4938	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4939
4940	/* Tell adapter where to find initialization sections. */
4941	if ((error = wpi_nic_lock(sc)) != 0)
4942		return error;
4943	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4944	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4945	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4946	    dma->paddr + WPI_FW_DATA_MAXSZ);
4947	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4948	wpi_nic_unlock(sc);
4949
4950	/* Load firmware boot code. */
4951	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4952	if (error != 0) {
4953		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4954		    __func__);
4955		return error;
4956	}
4957
4958	/* Now press "execute". */
4959	WPI_WRITE(sc, WPI_RESET, 0);
4960
4961	/* Wait at most one second for first alive notification. */
4962	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4963		device_printf(sc->sc_dev,
4964		    "%s: timeout waiting for adapter to initialize, error %d\n",
4965		    __func__, error);
4966		return error;
4967	}
4968
4969	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4970	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4971	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4972	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4973	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4974
4975	/* Tell adapter where to find runtime sections. */
4976	if ((error = wpi_nic_lock(sc)) != 0)
4977		return error;
4978	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4979	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4980	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4981	    dma->paddr + WPI_FW_DATA_MAXSZ);
4982	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4983	    WPI_FW_UPDATED | fw->main.textsz);
4984	wpi_nic_unlock(sc);
4985
4986	return 0;
4987}
4988
4989static int
4990wpi_read_firmware(struct wpi_softc *sc)
4991{
4992	const struct firmware *fp;
4993	struct wpi_fw_info *fw = &sc->fw;
4994	const struct wpi_firmware_hdr *hdr;
4995	int error;
4996
4997	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4998
4999	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5000	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5001
5002	WPI_UNLOCK(sc);
5003	fp = firmware_get(WPI_FW_NAME);
5004	WPI_LOCK(sc);
5005
5006	if (fp == NULL) {
5007		device_printf(sc->sc_dev,
5008		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5009		return EINVAL;
5010	}
5011
5012	sc->fw_fp = fp;
5013
5014	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5015		device_printf(sc->sc_dev,
5016		    "firmware file too short: %zu bytes\n", fp->datasize);
5017		error = EINVAL;
5018		goto fail;
5019	}
5020
5021	fw->size = fp->datasize;
5022	fw->data = (const uint8_t *)fp->data;
5023
5024	/* Extract firmware header information. */
5025	hdr = (const struct wpi_firmware_hdr *)fw->data;
5026
5027	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5028	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5029
5030	fw->main.textsz = le32toh(hdr->rtextsz);
5031	fw->main.datasz = le32toh(hdr->rdatasz);
5032	fw->init.textsz = le32toh(hdr->itextsz);
5033	fw->init.datasz = le32toh(hdr->idatasz);
5034	fw->boot.textsz = le32toh(hdr->btextsz);
5035	fw->boot.datasz = 0;
5036
5037	/* Sanity-check firmware header. */
5038	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5039	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5040	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5041	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5042	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5043	    (fw->boot.textsz & 3) != 0) {
5044		device_printf(sc->sc_dev, "invalid firmware header\n");
5045		error = EINVAL;
5046		goto fail;
5047	}
5048
5049	/* Check that all firmware sections fit. */
5050	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5051	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5052		device_printf(sc->sc_dev,
5053		    "firmware file too short: %zu bytes\n", fw->size);
5054		error = EINVAL;
5055		goto fail;
5056	}
5057
5058	/* Get pointers to firmware sections. */
5059	fw->main.text = (const uint8_t *)(hdr + 1);
5060	fw->main.data = fw->main.text + fw->main.textsz;
5061	fw->init.text = fw->main.data + fw->main.datasz;
5062	fw->init.data = fw->init.text + fw->init.textsz;
5063	fw->boot.text = fw->init.data + fw->init.datasz;
5064
5065	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5066	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5067	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5068	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5069	    fw->main.textsz, fw->main.datasz,
5070	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5071
5072	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5073	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5074	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5075	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5076	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5077
5078	return 0;
5079
5080fail:	wpi_unload_firmware(sc);
5081	return error;
5082}
5083
5084/**
5085 * Free the referenced firmware image
5086 */
5087static void
5088wpi_unload_firmware(struct wpi_softc *sc)
5089{
5090	if (sc->fw_fp != NULL) {
5091		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5092		sc->fw_fp = NULL;
5093	}
5094}
5095
5096static int
5097wpi_clock_wait(struct wpi_softc *sc)
5098{
5099	int ntries;
5100
5101	/* Set "initialization complete" bit. */
5102	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5103
5104	/* Wait for clock stabilization. */
5105	for (ntries = 0; ntries < 2500; ntries++) {
5106		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5107			return 0;
5108		DELAY(100);
5109	}
5110	device_printf(sc->sc_dev,
5111	    "%s: timeout waiting for clock stabilization\n", __func__);
5112
5113	return ETIMEDOUT;
5114}
5115
5116static int
5117wpi_apm_init(struct wpi_softc *sc)
5118{
5119	uint32_t reg;
5120	int error;
5121
5122	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5123
5124	/* Disable L0s exit timer (NMI bug workaround). */
5125	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5126	/* Don't wait for ICH L0s (ICH bug workaround). */
5127	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5128
5129	/* Set FH wait threshold to max (HW bug under stress workaround). */
5130	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5131
5132	/* Retrieve PCIe Active State Power Management (ASPM). */
5133	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5134	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5135	if (reg & 0x02)	/* L1 Entry enabled. */
5136		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5137	else
5138		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5139
5140	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5141
5142	/* Wait for clock stabilization before accessing prph. */
5143	if ((error = wpi_clock_wait(sc)) != 0)
5144		return error;
5145
5146	if ((error = wpi_nic_lock(sc)) != 0)
5147		return error;
5148	/* Cleanup. */
5149	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5150	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5151
5152	/* Enable DMA and BSM (Bootstrap State Machine). */
5153	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5154	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5155	DELAY(20);
5156	/* Disable L1-Active. */
5157	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5158	wpi_nic_unlock(sc);
5159
5160	return 0;
5161}
5162
5163static void
5164wpi_apm_stop_master(struct wpi_softc *sc)
5165{
5166	int ntries;
5167
5168	/* Stop busmaster DMA activity. */
5169	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5170
5171	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5172	    WPI_GP_CNTRL_MAC_PS)
5173		return; /* Already asleep. */
5174
5175	for (ntries = 0; ntries < 100; ntries++) {
5176		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5177			return;
5178		DELAY(10);
5179	}
5180	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5181	    __func__);
5182}
5183
5184static void
5185wpi_apm_stop(struct wpi_softc *sc)
5186{
5187	wpi_apm_stop_master(sc);
5188
5189	/* Reset the entire device. */
5190	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5191	DELAY(10);
5192	/* Clear "initialization complete" bit. */
5193	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5194}
5195
5196static void
5197wpi_nic_config(struct wpi_softc *sc)
5198{
5199	uint32_t rev;
5200
5201	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5202
5203	/* voodoo from the Linux "driver".. */
5204	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5205	if ((rev & 0xc0) == 0x40)
5206		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5207	else if (!(rev & 0x80))
5208		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5209
5210	if (sc->cap == 0x80)
5211		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5212
5213	if ((sc->rev & 0xf0) == 0xd0)
5214		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5215	else
5216		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5217
5218	if (sc->type > 1)
5219		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5220}
5221
5222static int
5223wpi_hw_init(struct wpi_softc *sc)
5224{
5225	int chnl, ntries, error;
5226
5227	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5228
5229	/* Clear pending interrupts. */
5230	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5231
5232	if ((error = wpi_apm_init(sc)) != 0) {
5233		device_printf(sc->sc_dev,
5234		    "%s: could not power ON adapter, error %d\n", __func__,
5235		    error);
5236		return error;
5237	}
5238
5239	/* Select VMAIN power source. */
5240	if ((error = wpi_nic_lock(sc)) != 0)
5241		return error;
5242	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5243	wpi_nic_unlock(sc);
5244	/* Spin until VMAIN gets selected. */
5245	for (ntries = 0; ntries < 5000; ntries++) {
5246		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5247			break;
5248		DELAY(10);
5249	}
5250	if (ntries == 5000) {
5251		device_printf(sc->sc_dev, "timeout selecting power source\n");
5252		return ETIMEDOUT;
5253	}
5254
5255	/* Perform adapter initialization. */
5256	wpi_nic_config(sc);
5257
5258	/* Initialize RX ring. */
5259	if ((error = wpi_nic_lock(sc)) != 0)
5260		return error;
5261	/* Set physical address of RX ring. */
5262	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5263	/* Set physical address of RX read pointer. */
5264	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5265	    offsetof(struct wpi_shared, next));
5266	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5267	/* Enable RX. */
5268	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5269	    WPI_FH_RX_CONFIG_DMA_ENA |
5270	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5271	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5272	    WPI_FH_RX_CONFIG_MAXFRAG |
5273	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5274	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5275	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5276	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5277	wpi_nic_unlock(sc);
5278	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5279
5280	/* Initialize TX rings. */
5281	if ((error = wpi_nic_lock(sc)) != 0)
5282		return error;
5283	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5284	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5285	/* Enable all 6 TX rings. */
5286	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5287	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5288	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5289	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5290	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5291	/* Set physical address of TX rings. */
5292	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5293	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5294
5295	/* Enable all DMA channels. */
5296	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5297		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5298		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5299		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5300	}
5301	wpi_nic_unlock(sc);
5302	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5303
5304	/* Clear "radio off" and "commands blocked" bits. */
5305	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5306	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5307
5308	/* Clear pending interrupts. */
5309	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5310	/* Enable interrupts. */
5311	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5312
5313	/* _Really_ make sure "radio off" bit is cleared! */
5314	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5315	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5316
5317	if ((error = wpi_load_firmware(sc)) != 0) {
5318		device_printf(sc->sc_dev,
5319		    "%s: could not load firmware, error %d\n", __func__,
5320		    error);
5321		return error;
5322	}
5323	/* Wait at most one second for firmware alive notification. */
5324	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5325		device_printf(sc->sc_dev,
5326		    "%s: timeout waiting for adapter to initialize, error %d\n",
5327		    __func__, error);
5328		return error;
5329	}
5330
5331	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5332
5333	/* Do post-firmware initialization. */
5334	return wpi_post_alive(sc);
5335}
5336
5337static void
5338wpi_hw_stop(struct wpi_softc *sc)
5339{
5340	int chnl, qid, ntries;
5341
5342	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5343
5344	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5345		wpi_nic_lock(sc);
5346
5347	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5348
5349	/* Disable interrupts. */
5350	WPI_WRITE(sc, WPI_INT_MASK, 0);
5351	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5352	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5353
5354	/* Make sure we no longer hold the NIC lock. */
5355	wpi_nic_unlock(sc);
5356
5357	if (wpi_nic_lock(sc) == 0) {
5358		/* Stop TX scheduler. */
5359		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5360		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5361
5362		/* Stop all DMA channels. */
5363		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5364			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5365			for (ntries = 0; ntries < 200; ntries++) {
5366				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5367				    WPI_FH_TX_STATUS_IDLE(chnl))
5368					break;
5369				DELAY(10);
5370			}
5371		}
5372		wpi_nic_unlock(sc);
5373	}
5374
5375	/* Stop RX ring. */
5376	wpi_reset_rx_ring(sc);
5377
5378	/* Reset all TX rings. */
5379	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5380		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5381
5382	if (wpi_nic_lock(sc) == 0) {
5383		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5384		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5385		wpi_nic_unlock(sc);
5386	}
5387	DELAY(5);
5388	/* Power OFF adapter. */
5389	wpi_apm_stop(sc);
5390}
5391
5392static void
5393wpi_radio_on(void *arg0, int pending)
5394{
5395	struct wpi_softc *sc = arg0;
5396	struct ifnet *ifp = sc->sc_ifp;
5397	struct ieee80211com *ic = ifp->if_l2com;
5398	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5399
5400	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5401
5402	if (vap != NULL) {
5403		wpi_init(sc);
5404		ieee80211_init(vap);
5405	}
5406
5407	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5408		WPI_LOCK(sc);
5409		callout_stop(&sc->watchdog_rfkill);
5410		WPI_UNLOCK(sc);
5411	}
5412}
5413
5414static void
5415wpi_radio_off(void *arg0, int pending)
5416{
5417	struct wpi_softc *sc = arg0;
5418	struct ifnet *ifp = sc->sc_ifp;
5419	struct ieee80211com *ic = ifp->if_l2com;
5420	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5421
5422	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5423
5424	wpi_stop(sc);
5425	if (vap != NULL)
5426		ieee80211_stop(vap);
5427
5428	WPI_LOCK(sc);
5429	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5430	WPI_UNLOCK(sc);
5431}
5432
5433static void
5434wpi_init(void *arg)
5435{
5436	struct wpi_softc *sc = arg;
5437	struct ifnet *ifp = sc->sc_ifp;
5438	struct ieee80211com *ic = ifp->if_l2com;
5439	int error;
5440
5441	WPI_LOCK(sc);
5442
5443	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5444
5445	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5446		goto end;
5447
5448	/* Check that the radio is not disabled by hardware switch. */
5449	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5450		device_printf(sc->sc_dev,
5451		    "RF switch: radio disabled (%s)\n", __func__);
5452		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5453		    sc);
5454		goto end;
5455	}
5456
5457	/* Read firmware images from the filesystem. */
5458	if ((error = wpi_read_firmware(sc)) != 0) {
5459		device_printf(sc->sc_dev,
5460		    "%s: could not read firmware, error %d\n", __func__,
5461		    error);
5462		goto fail;
5463	}
5464
5465	/* Initialize hardware and upload firmware. */
5466	error = wpi_hw_init(sc);
5467	wpi_unload_firmware(sc);
5468	if (error != 0) {
5469		device_printf(sc->sc_dev,
5470		    "%s: could not initialize hardware, error %d\n", __func__,
5471		    error);
5472		goto fail;
5473	}
5474
5475	/* Configure adapter now that it is ready. */
5476	sc->txq_active = 1;
5477	if ((error = wpi_config(sc)) != 0) {
5478		device_printf(sc->sc_dev,
5479		    "%s: could not configure device, error %d\n", __func__,
5480		    error);
5481		goto fail;
5482	}
5483
5484	IF_LOCK(&ifp->if_snd);
5485	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5486	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5487	IF_UNLOCK(&ifp->if_snd);
5488
5489	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5490
5491	WPI_UNLOCK(sc);
5492
5493	ieee80211_start_all(ic);
5494
5495	return;
5496
5497fail:	wpi_stop_locked(sc);
5498end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5499	WPI_UNLOCK(sc);
5500}
5501
5502static void
5503wpi_stop_locked(struct wpi_softc *sc)
5504{
5505	struct ifnet *ifp = sc->sc_ifp;
5506
5507	WPI_LOCK_ASSERT(sc);
5508
5509	WPI_TXQ_LOCK(sc);
5510	sc->txq_active = 0;
5511	WPI_TXQ_UNLOCK(sc);
5512
5513	WPI_TXQ_STATE_LOCK(sc);
5514	callout_stop(&sc->tx_timeout);
5515	WPI_TXQ_STATE_UNLOCK(sc);
5516
5517	WPI_RXON_LOCK(sc);
5518	callout_stop(&sc->scan_timeout);
5519	callout_stop(&sc->calib_to);
5520	WPI_RXON_UNLOCK(sc);
5521
5522	IF_LOCK(&ifp->if_snd);
5523	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5524	IF_UNLOCK(&ifp->if_snd);
5525
5526	/* Power OFF hardware. */
5527	wpi_hw_stop(sc);
5528}
5529
5530static void
5531wpi_stop(struct wpi_softc *sc)
5532{
5533	WPI_LOCK(sc);
5534	wpi_stop_locked(sc);
5535	WPI_UNLOCK(sc);
5536}
5537
5538/*
5539 * Callback from net80211 to start a scan.
5540 */
5541static void
5542wpi_scan_start(struct ieee80211com *ic)
5543{
5544	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5545
5546	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5547}
5548
5549/*
5550 * Callback from net80211 to terminate a scan.
5551 */
5552static void
5553wpi_scan_end(struct ieee80211com *ic)
5554{
5555	struct ifnet *ifp = ic->ic_ifp;
5556	struct wpi_softc *sc = ifp->if_softc;
5557	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5558
5559	if (vap->iv_state == IEEE80211_S_RUN)
5560		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5561}
5562
5563/**
5564 * Called by the net80211 framework to indicate to the driver
5565 * that the channel should be changed
5566 */
5567static void
5568wpi_set_channel(struct ieee80211com *ic)
5569{
5570	const struct ieee80211_channel *c = ic->ic_curchan;
5571	struct ifnet *ifp = ic->ic_ifp;
5572	struct wpi_softc *sc = ifp->if_softc;
5573	int error;
5574
5575	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5576
5577	WPI_LOCK(sc);
5578	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5579	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5580	WPI_UNLOCK(sc);
5581	WPI_TX_LOCK(sc);
5582	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5583	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5584	WPI_TX_UNLOCK(sc);
5585
5586	/*
5587	 * Only need to set the channel in Monitor mode. AP scanning and auth
5588	 * are already taken care of by their respective firmware commands.
5589	 */
5590	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5591		WPI_RXON_LOCK(sc);
5592		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5593		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5594			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5595			    WPI_RXON_24GHZ);
5596		} else {
5597			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5598			    WPI_RXON_24GHZ);
5599		}
5600		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5601			device_printf(sc->sc_dev,
5602			    "%s: error %d setting channel\n", __func__,
5603			    error);
5604		WPI_RXON_UNLOCK(sc);
5605	}
5606}
5607
5608/**
5609 * Called by net80211 to indicate that we need to scan the current
5610 * channel. The channel is previously be set via the wpi_set_channel
5611 * callback.
5612 */
5613static void
5614wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5615{
5616	struct ieee80211vap *vap = ss->ss_vap;
5617	struct ieee80211com *ic = vap->iv_ic;
5618	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5619	int error;
5620
5621	WPI_RXON_LOCK(sc);
5622	error = wpi_scan(sc, ic->ic_curchan);
5623	WPI_RXON_UNLOCK(sc);
5624	if (error != 0)
5625		ieee80211_cancel_scan(vap);
5626}
5627
5628/**
5629 * Called by the net80211 framework to indicate
5630 * the minimum dwell time has been met, terminate the scan.
5631 * We don't actually terminate the scan as the firmware will notify
5632 * us when it's finished and we have no way to interrupt it.
5633 */
5634static void
5635wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5636{
5637	/* NB: don't try to abort scan; wait for firmware to finish */
5638}
5639
5640static void
5641wpi_hw_reset(void *arg, int pending)
5642{
5643	struct wpi_softc *sc = arg;
5644	struct ifnet *ifp = sc->sc_ifp;
5645	struct ieee80211com *ic = ifp->if_l2com;
5646	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5647
5648	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5649
5650	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5651		ieee80211_cancel_scan(vap);
5652
5653	wpi_stop(sc);
5654	if (vap != NULL)
5655		ieee80211_stop(vap);
5656	wpi_init(sc);
5657	if (vap != NULL)
5658		ieee80211_init(vap);
5659}
5660