if_wpi.c revision 282400
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 282400 2015-05-03 23:39:02Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156static void	wpi_reset_rx_ring(struct wpi_softc *);
157static void	wpi_free_rx_ring(struct wpi_softc *);
158static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159		    int);
160static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162		    struct wpi_tx_ring *);
163static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165static int	wpi_read_eeprom(struct wpi_softc *,
166		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171		    struct ieee80211_channel *);
172static int	wpi_setregdomain(struct ieee80211com *,
173		    struct ieee80211_regdomain *, int,
174		    struct ieee80211_channel[]);
175static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177static void	wpi_node_free(struct ieee80211_node *);
178static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
179		    const uint8_t mac[IEEE80211_ADDR_LEN]);
180static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181static void	wpi_calib_timeout(void *);
182static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
183		    struct wpi_rx_data *);
184static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
185		    struct wpi_rx_data *);
186static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
187static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
188static void	wpi_notif_intr(struct wpi_softc *);
189static void	wpi_wakeup_intr(struct wpi_softc *);
190#ifdef WPI_DEBUG
191static void	wpi_debug_registers(struct wpi_softc *);
192#endif
193static void	wpi_fatal_intr(struct wpi_softc *);
194static void	wpi_intr(void *);
195static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
196static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
197		    struct ieee80211_node *);
198static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
199		    struct ieee80211_node *,
200		    const struct ieee80211_bpf_params *);
201static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
202		    const struct ieee80211_bpf_params *);
203static void	wpi_start(struct ifnet *);
204static void	wpi_start_task(void *, int);
205static void	wpi_watchdog_rfkill(void *);
206static void	wpi_scan_timeout(void *);
207static void	wpi_tx_timeout(void *);
208static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
209static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
210static int	wpi_mrr_setup(struct wpi_softc *);
211static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
212static int	wpi_add_broadcast_node(struct wpi_softc *, int);
213static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
214static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
215static int	wpi_updateedca(struct ieee80211com *);
216static void	wpi_set_promisc(struct wpi_softc *);
217static void	wpi_update_promisc(struct ifnet *);
218static void	wpi_update_mcast(struct ifnet *);
219static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
220static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
221static void	wpi_power_calibration(struct wpi_softc *);
222static int	wpi_set_txpower(struct wpi_softc *, int);
223static int	wpi_get_power_index(struct wpi_softc *,
224		    struct wpi_power_group *, uint8_t, int, int);
225static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
226static int	wpi_send_btcoex(struct wpi_softc *);
227static int	wpi_send_rxon(struct wpi_softc *, int, int);
228static int	wpi_config(struct wpi_softc *);
229static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
230		    struct ieee80211_channel *, uint8_t);
231static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
232static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
233		    struct ieee80211_channel *);
234static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
235static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
236static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
237static int	wpi_config_beacon(struct wpi_vap *);
238static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
239static void	wpi_update_beacon(struct ieee80211vap *, int);
240static void	wpi_newassoc(struct ieee80211_node *, int);
241static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
242static int	wpi_load_key(struct ieee80211_node *,
243		    const struct ieee80211_key *);
244static void	wpi_load_key_cb(void *, struct ieee80211_node *);
245static int	wpi_set_global_keys(struct ieee80211_node *);
246static int	wpi_del_key(struct ieee80211_node *,
247		    const struct ieee80211_key *);
248static void	wpi_del_key_cb(void *, struct ieee80211_node *);
249static int	wpi_process_key(struct ieee80211vap *,
250		    const struct ieee80211_key *, int);
251static int	wpi_key_set(struct ieee80211vap *,
252		    const struct ieee80211_key *,
253		    const uint8_t mac[IEEE80211_ADDR_LEN]);
254static int	wpi_key_delete(struct ieee80211vap *,
255		    const struct ieee80211_key *);
256static int	wpi_post_alive(struct wpi_softc *);
257static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
258static int	wpi_load_firmware(struct wpi_softc *);
259static int	wpi_read_firmware(struct wpi_softc *);
260static void	wpi_unload_firmware(struct wpi_softc *);
261static int	wpi_clock_wait(struct wpi_softc *);
262static int	wpi_apm_init(struct wpi_softc *);
263static void	wpi_apm_stop_master(struct wpi_softc *);
264static void	wpi_apm_stop(struct wpi_softc *);
265static void	wpi_nic_config(struct wpi_softc *);
266static int	wpi_hw_init(struct wpi_softc *);
267static void	wpi_hw_stop(struct wpi_softc *);
268static void	wpi_radio_on(void *, int);
269static void	wpi_radio_off(void *, int);
270static void	wpi_init(void *);
271static void	wpi_stop_locked(struct wpi_softc *);
272static void	wpi_stop(struct wpi_softc *);
273static void	wpi_scan_start(struct ieee80211com *);
274static void	wpi_scan_end(struct ieee80211com *);
275static void	wpi_set_channel(struct ieee80211com *);
276static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
277static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
278static void	wpi_hw_reset(void *, int);
279
280static device_method_t wpi_methods[] = {
281	/* Device interface */
282	DEVMETHOD(device_probe,		wpi_probe),
283	DEVMETHOD(device_attach,	wpi_attach),
284	DEVMETHOD(device_detach,	wpi_detach),
285	DEVMETHOD(device_shutdown,	wpi_shutdown),
286	DEVMETHOD(device_suspend,	wpi_suspend),
287	DEVMETHOD(device_resume,	wpi_resume),
288
289	DEVMETHOD_END
290};
291
292static driver_t wpi_driver = {
293	"wpi",
294	wpi_methods,
295	sizeof (struct wpi_softc)
296};
297static devclass_t wpi_devclass;
298
299DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
300
301MODULE_VERSION(wpi, 1);
302
303MODULE_DEPEND(wpi, pci,  1, 1, 1);
304MODULE_DEPEND(wpi, wlan, 1, 1, 1);
305MODULE_DEPEND(wpi, firmware, 1, 1, 1);
306
307static int
308wpi_probe(device_t dev)
309{
310	const struct wpi_ident *ident;
311
312	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
313		if (pci_get_vendor(dev) == ident->vendor &&
314		    pci_get_device(dev) == ident->device) {
315			device_set_desc(dev, ident->name);
316			return (BUS_PROBE_DEFAULT);
317		}
318	}
319	return ENXIO;
320}
321
322static int
323wpi_attach(device_t dev)
324{
325	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
326	struct ieee80211com *ic;
327	struct ifnet *ifp;
328	int i, error, rid;
329#ifdef WPI_DEBUG
330	int supportsa = 1;
331	const struct wpi_ident *ident;
332#endif
333	uint8_t macaddr[IEEE80211_ADDR_LEN];
334
335	sc->sc_dev = dev;
336
337#ifdef WPI_DEBUG
338	error = resource_int_value(device_get_name(sc->sc_dev),
339	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
340	if (error != 0)
341		sc->sc_debug = 0;
342#else
343	sc->sc_debug = 0;
344#endif
345
346	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
347
348	/*
349	 * Get the offset of the PCI Express Capability Structure in PCI
350	 * Configuration Space.
351	 */
352	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
353	if (error != 0) {
354		device_printf(dev, "PCIe capability structure not found!\n");
355		return error;
356	}
357
358	/*
359	 * Some card's only support 802.11b/g not a, check to see if
360	 * this is one such card. A 0x0 in the subdevice table indicates
361	 * the entire subdevice range is to be ignored.
362	 */
363#ifdef WPI_DEBUG
364	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
365		if (ident->subdevice &&
366		    pci_get_subdevice(dev) == ident->subdevice) {
367		    supportsa = 0;
368		    break;
369		}
370	}
371#endif
372
373	/* Clear device-specific "PCI retry timeout" register (41h). */
374	pci_write_config(dev, 0x41, 0, 1);
375
376	/* Enable bus-mastering. */
377	pci_enable_busmaster(dev);
378
379	rid = PCIR_BAR(0);
380	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
381	    RF_ACTIVE);
382	if (sc->mem == NULL) {
383		device_printf(dev, "can't map mem space\n");
384		return ENOMEM;
385	}
386	sc->sc_st = rman_get_bustag(sc->mem);
387	sc->sc_sh = rman_get_bushandle(sc->mem);
388
389	i = 1;
390	rid = 0;
391	if (pci_alloc_msi(dev, &i) == 0)
392		rid = 1;
393	/* Install interrupt handler. */
394	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
395	    (rid != 0 ? 0 : RF_SHAREABLE));
396	if (sc->irq == NULL) {
397		device_printf(dev, "can't map interrupt\n");
398		error = ENOMEM;
399		goto fail;
400	}
401
402	WPI_LOCK_INIT(sc);
403	WPI_TX_LOCK_INIT(sc);
404	WPI_RXON_LOCK_INIT(sc);
405	WPI_NT_LOCK_INIT(sc);
406	WPI_TXQ_LOCK_INIT(sc);
407	WPI_TXQ_STATE_LOCK_INIT(sc);
408
409	/* Allocate DMA memory for firmware transfers. */
410	if ((error = wpi_alloc_fwmem(sc)) != 0) {
411		device_printf(dev,
412		    "could not allocate memory for firmware, error %d\n",
413		    error);
414		goto fail;
415	}
416
417	/* Allocate shared page. */
418	if ((error = wpi_alloc_shared(sc)) != 0) {
419		device_printf(dev, "could not allocate shared page\n");
420		goto fail;
421	}
422
423	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
424	for (i = 0; i < WPI_NTXQUEUES; i++) {
425		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
426			device_printf(dev,
427			    "could not allocate TX ring %d, error %d\n", i,
428			    error);
429			goto fail;
430		}
431	}
432
433	/* Allocate RX ring. */
434	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
435		device_printf(dev, "could not allocate RX ring, error %d\n",
436		    error);
437		goto fail;
438	}
439
440	/* Clear pending interrupts. */
441	WPI_WRITE(sc, WPI_INT, 0xffffffff);
442
443	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
444	if (ifp == NULL) {
445		device_printf(dev, "can not allocate ifnet structure\n");
446		goto fail;
447	}
448
449	ic = ifp->if_l2com;
450	ic->ic_ifp = ifp;
451	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
452	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
453
454	/* Set device capabilities. */
455	ic->ic_caps =
456		  IEEE80211_C_STA		/* station mode supported */
457		| IEEE80211_C_IBSS		/* IBSS mode supported */
458		| IEEE80211_C_HOSTAP		/* Host access point mode */
459		| IEEE80211_C_MONITOR		/* monitor mode supported */
460		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
461		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
462		| IEEE80211_C_TXPMGT		/* tx power management */
463		| IEEE80211_C_SHSLOT		/* short slot time supported */
464		| IEEE80211_C_WPA		/* 802.11i */
465		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
466		| IEEE80211_C_WME		/* 802.11e */
467		| IEEE80211_C_PMGT		/* Station-side power mgmt */
468		;
469
470	ic->ic_cryptocaps =
471		  IEEE80211_CRYPTO_AES_CCM;
472
473	/*
474	 * Read in the eeprom and also setup the channels for
475	 * net80211. We don't set the rates as net80211 does this for us
476	 */
477	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
478		device_printf(dev, "could not read EEPROM, error %d\n",
479		    error);
480		goto fail;
481	}
482
483#ifdef WPI_DEBUG
484	if (bootverbose) {
485		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
486		    sc->domain);
487		device_printf(sc->sc_dev, "Hardware Type: %c\n",
488		    sc->type > 1 ? 'B': '?');
489		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
490		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
491		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
492		    supportsa ? "does" : "does not");
493
494		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
495		   check what sc->rev really represents - benjsc 20070615 */
496	}
497#endif
498
499	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
500	ifp->if_softc = sc;
501	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
502	ifp->if_init = wpi_init;
503	ifp->if_ioctl = wpi_ioctl;
504	ifp->if_start = wpi_start;
505	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
506	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
507	IFQ_SET_READY(&ifp->if_snd);
508
509	ieee80211_ifattach(ic, macaddr);
510	ic->ic_vap_create = wpi_vap_create;
511	ic->ic_vap_delete = wpi_vap_delete;
512	ic->ic_raw_xmit = wpi_raw_xmit;
513	ic->ic_node_alloc = wpi_node_alloc;
514	sc->sc_node_free = ic->ic_node_free;
515	ic->ic_node_free = wpi_node_free;
516	ic->ic_wme.wme_update = wpi_updateedca;
517	ic->ic_update_promisc = wpi_update_promisc;
518	ic->ic_update_mcast = wpi_update_mcast;
519	ic->ic_newassoc = wpi_newassoc;
520	ic->ic_scan_start = wpi_scan_start;
521	ic->ic_scan_end = wpi_scan_end;
522	ic->ic_set_channel = wpi_set_channel;
523	ic->ic_scan_curchan = wpi_scan_curchan;
524	ic->ic_scan_mindwell = wpi_scan_mindwell;
525	ic->ic_setregdomain = wpi_setregdomain;
526
527	sc->sc_update_rx_ring = wpi_update_rx_ring;
528	sc->sc_update_tx_ring = wpi_update_tx_ring;
529
530	wpi_radiotap_attach(sc);
531
532	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
533	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
534	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
535	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
536	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
537	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
538	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
539	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
540
541	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
542	    taskqueue_thread_enqueue, &sc->sc_tq);
543	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
544	if (error != 0) {
545		device_printf(dev, "can't start threads, error %d\n", error);
546		goto fail;
547	}
548
549	wpi_sysctlattach(sc);
550
551	/*
552	 * Hook our interrupt after all initialization is complete.
553	 */
554	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
555	    NULL, wpi_intr, sc, &sc->sc_ih);
556	if (error != 0) {
557		device_printf(dev, "can't establish interrupt, error %d\n",
558		    error);
559		goto fail;
560	}
561
562	if (bootverbose)
563		ieee80211_announce(ic);
564
565#ifdef WPI_DEBUG
566	if (sc->sc_debug & WPI_DEBUG_HW)
567		ieee80211_announce_channels(ic);
568#endif
569
570	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
571	return 0;
572
573fail:	wpi_detach(dev);
574	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
575	return error;
576}
577
578/*
579 * Attach the interface to 802.11 radiotap.
580 */
581static void
582wpi_radiotap_attach(struct wpi_softc *sc)
583{
584	struct ifnet *ifp = sc->sc_ifp;
585	struct ieee80211com *ic = ifp->if_l2com;
586	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
587	ieee80211_radiotap_attach(ic,
588	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
589		WPI_TX_RADIOTAP_PRESENT,
590	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
591		WPI_RX_RADIOTAP_PRESENT);
592	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
593}
594
595static void
596wpi_sysctlattach(struct wpi_softc *sc)
597{
598#ifdef WPI_DEBUG
599	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
600	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
601
602	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
603	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
604		"control debugging printfs");
605#endif
606}
607
608static void
609wpi_init_beacon(struct wpi_vap *wvp)
610{
611	struct wpi_buf *bcn = &wvp->wv_bcbuf;
612	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
613
614	cmd->id = WPI_ID_BROADCAST;
615	cmd->ofdm_mask = 0xff;
616	cmd->cck_mask = 0x0f;
617	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
618
619	/*
620	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
621	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
622	 */
623	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
624
625	bcn->code = WPI_CMD_SET_BEACON;
626	bcn->ac = WPI_CMD_QUEUE_NUM;
627	bcn->size = sizeof(struct wpi_cmd_beacon);
628}
629
630static struct ieee80211vap *
631wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
632    enum ieee80211_opmode opmode, int flags,
633    const uint8_t bssid[IEEE80211_ADDR_LEN],
634    const uint8_t mac[IEEE80211_ADDR_LEN])
635{
636	struct wpi_vap *wvp;
637	struct ieee80211vap *vap;
638
639	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
640		return NULL;
641
642	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
643	    M_80211_VAP, M_NOWAIT | M_ZERO);
644	if (wvp == NULL)
645		return NULL;
646	vap = &wvp->wv_vap;
647	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
648
649	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
650		WPI_VAP_LOCK_INIT(wvp);
651		wpi_init_beacon(wvp);
652	}
653
654	/* Override with driver methods. */
655	vap->iv_key_set = wpi_key_set;
656	vap->iv_key_delete = wpi_key_delete;
657	wvp->wv_newstate = vap->iv_newstate;
658	vap->iv_newstate = wpi_newstate;
659	vap->iv_update_beacon = wpi_update_beacon;
660	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
661
662	ieee80211_ratectl_init(vap);
663	/* Complete setup. */
664	ieee80211_vap_attach(vap, ieee80211_media_change,
665	    ieee80211_media_status);
666	ic->ic_opmode = opmode;
667	return vap;
668}
669
670static void
671wpi_vap_delete(struct ieee80211vap *vap)
672{
673	struct wpi_vap *wvp = WPI_VAP(vap);
674	struct wpi_buf *bcn = &wvp->wv_bcbuf;
675	enum ieee80211_opmode opmode = vap->iv_opmode;
676
677	ieee80211_ratectl_deinit(vap);
678	ieee80211_vap_detach(vap);
679
680	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
681		if (bcn->m != NULL)
682			m_freem(bcn->m);
683
684		WPI_VAP_LOCK_DESTROY(wvp);
685	}
686
687	free(wvp, M_80211_VAP);
688}
689
690static int
691wpi_detach(device_t dev)
692{
693	struct wpi_softc *sc = device_get_softc(dev);
694	struct ifnet *ifp = sc->sc_ifp;
695	struct ieee80211com *ic;
696	int qid;
697
698	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
699
700	if (ifp != NULL) {
701		ic = ifp->if_l2com;
702
703		ieee80211_draintask(ic, &sc->sc_radioon_task);
704		ieee80211_draintask(ic, &sc->sc_start_task);
705
706		wpi_stop(sc);
707
708		taskqueue_drain_all(sc->sc_tq);
709		taskqueue_free(sc->sc_tq);
710
711		callout_drain(&sc->watchdog_rfkill);
712		callout_drain(&sc->tx_timeout);
713		callout_drain(&sc->scan_timeout);
714		callout_drain(&sc->calib_to);
715		ieee80211_ifdetach(ic);
716	}
717
718	/* Uninstall interrupt handler. */
719	if (sc->irq != NULL) {
720		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
721		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
722		    sc->irq);
723		pci_release_msi(dev);
724	}
725
726	if (sc->txq[0].data_dmat) {
727		/* Free DMA resources. */
728		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
729			wpi_free_tx_ring(sc, &sc->txq[qid]);
730
731		wpi_free_rx_ring(sc);
732		wpi_free_shared(sc);
733	}
734
735	if (sc->fw_dma.tag)
736		wpi_free_fwmem(sc);
737
738	if (sc->mem != NULL)
739		bus_release_resource(dev, SYS_RES_MEMORY,
740		    rman_get_rid(sc->mem), sc->mem);
741
742	if (ifp != NULL)
743		if_free(ifp);
744
745	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
746	WPI_TXQ_STATE_LOCK_DESTROY(sc);
747	WPI_TXQ_LOCK_DESTROY(sc);
748	WPI_NT_LOCK_DESTROY(sc);
749	WPI_RXON_LOCK_DESTROY(sc);
750	WPI_TX_LOCK_DESTROY(sc);
751	WPI_LOCK_DESTROY(sc);
752	return 0;
753}
754
755static int
756wpi_shutdown(device_t dev)
757{
758	struct wpi_softc *sc = device_get_softc(dev);
759
760	wpi_stop(sc);
761	return 0;
762}
763
764static int
765wpi_suspend(device_t dev)
766{
767	struct wpi_softc *sc = device_get_softc(dev);
768	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
769
770	ieee80211_suspend_all(ic);
771	return 0;
772}
773
774static int
775wpi_resume(device_t dev)
776{
777	struct wpi_softc *sc = device_get_softc(dev);
778	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
779
780	/* Clear device-specific "PCI retry timeout" register (41h). */
781	pci_write_config(dev, 0x41, 0, 1);
782
783	ieee80211_resume_all(ic);
784	return 0;
785}
786
787/*
788 * Grab exclusive access to NIC memory.
789 */
790static int
791wpi_nic_lock(struct wpi_softc *sc)
792{
793	int ntries;
794
795	/* Request exclusive access to NIC. */
796	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
797
798	/* Spin until we actually get the lock. */
799	for (ntries = 0; ntries < 1000; ntries++) {
800		if ((WPI_READ(sc, WPI_GP_CNTRL) &
801		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
802		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
803			return 0;
804		DELAY(10);
805	}
806
807	device_printf(sc->sc_dev, "could not lock memory\n");
808
809	return ETIMEDOUT;
810}
811
812/*
813 * Release lock on NIC memory.
814 */
815static __inline void
816wpi_nic_unlock(struct wpi_softc *sc)
817{
818	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
819}
820
821static __inline uint32_t
822wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
823{
824	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
825	WPI_BARRIER_READ_WRITE(sc);
826	return WPI_READ(sc, WPI_PRPH_RDATA);
827}
828
829static __inline void
830wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
831{
832	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
833	WPI_BARRIER_WRITE(sc);
834	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
835}
836
837static __inline void
838wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
839{
840	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
841}
842
843static __inline void
844wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
845{
846	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
847}
848
849static __inline void
850wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
851    const uint32_t *data, int count)
852{
853	for (; count > 0; count--, data++, addr += 4)
854		wpi_prph_write(sc, addr, *data);
855}
856
857static __inline uint32_t
858wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
859{
860	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
861	WPI_BARRIER_READ_WRITE(sc);
862	return WPI_READ(sc, WPI_MEM_RDATA);
863}
864
865static __inline void
866wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
867    int count)
868{
869	for (; count > 0; count--, addr += 4)
870		*data++ = wpi_mem_read(sc, addr);
871}
872
873static int
874wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
875{
876	uint8_t *out = data;
877	uint32_t val;
878	int error, ntries;
879
880	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
881
882	if ((error = wpi_nic_lock(sc)) != 0)
883		return error;
884
885	for (; count > 0; count -= 2, addr++) {
886		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
887		for (ntries = 0; ntries < 10; ntries++) {
888			val = WPI_READ(sc, WPI_EEPROM);
889			if (val & WPI_EEPROM_READ_VALID)
890				break;
891			DELAY(5);
892		}
893		if (ntries == 10) {
894			device_printf(sc->sc_dev,
895			    "timeout reading ROM at 0x%x\n", addr);
896			return ETIMEDOUT;
897		}
898		*out++= val >> 16;
899		if (count > 1)
900			*out ++= val >> 24;
901	}
902
903	wpi_nic_unlock(sc);
904
905	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
906
907	return 0;
908}
909
910static void
911wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
912{
913	if (error != 0)
914		return;
915	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
916	*(bus_addr_t *)arg = segs[0].ds_addr;
917}
918
919/*
920 * Allocates a contiguous block of dma memory of the requested size and
921 * alignment.
922 */
923static int
924wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
925    void **kvap, bus_size_t size, bus_size_t alignment)
926{
927	int error;
928
929	dma->tag = NULL;
930	dma->size = size;
931
932	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
933	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
934	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
935	if (error != 0)
936		goto fail;
937
938	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
939	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
940	if (error != 0)
941		goto fail;
942
943	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
944	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
945	if (error != 0)
946		goto fail;
947
948	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
949
950	if (kvap != NULL)
951		*kvap = dma->vaddr;
952
953	return 0;
954
955fail:	wpi_dma_contig_free(dma);
956	return error;
957}
958
959static void
960wpi_dma_contig_free(struct wpi_dma_info *dma)
961{
962	if (dma->vaddr != NULL) {
963		bus_dmamap_sync(dma->tag, dma->map,
964		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
965		bus_dmamap_unload(dma->tag, dma->map);
966		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
967		dma->vaddr = NULL;
968	}
969	if (dma->tag != NULL) {
970		bus_dma_tag_destroy(dma->tag);
971		dma->tag = NULL;
972	}
973}
974
975/*
976 * Allocate a shared page between host and NIC.
977 */
978static int
979wpi_alloc_shared(struct wpi_softc *sc)
980{
981	/* Shared buffer must be aligned on a 4KB boundary. */
982	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
983	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
984}
985
986static void
987wpi_free_shared(struct wpi_softc *sc)
988{
989	wpi_dma_contig_free(&sc->shared_dma);
990}
991
992/*
993 * Allocate DMA-safe memory for firmware transfer.
994 */
995static int
996wpi_alloc_fwmem(struct wpi_softc *sc)
997{
998	/* Must be aligned on a 16-byte boundary. */
999	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1000	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
1001}
1002
1003static void
1004wpi_free_fwmem(struct wpi_softc *sc)
1005{
1006	wpi_dma_contig_free(&sc->fw_dma);
1007}
1008
1009static int
1010wpi_alloc_rx_ring(struct wpi_softc *sc)
1011{
1012	struct wpi_rx_ring *ring = &sc->rxq;
1013	bus_size_t size;
1014	int i, error;
1015
1016	ring->cur = 0;
1017	ring->update = 0;
1018
1019	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1020
1021	/* Allocate RX descriptors (16KB aligned.) */
1022	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1023	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1024	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1025	if (error != 0) {
1026		device_printf(sc->sc_dev,
1027		    "%s: could not allocate RX ring DMA memory, error %d\n",
1028		    __func__, error);
1029		goto fail;
1030	}
1031
1032	/* Create RX buffer DMA tag. */
1033	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1034	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1035	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1036	    &ring->data_dmat);
1037	if (error != 0) {
1038		device_printf(sc->sc_dev,
1039		    "%s: could not create RX buf DMA tag, error %d\n",
1040		    __func__, error);
1041		goto fail;
1042	}
1043
1044	/*
1045	 * Allocate and map RX buffers.
1046	 */
1047	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1048		struct wpi_rx_data *data = &ring->data[i];
1049		bus_addr_t paddr;
1050
1051		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1052		if (error != 0) {
1053			device_printf(sc->sc_dev,
1054			    "%s: could not create RX buf DMA map, error %d\n",
1055			    __func__, error);
1056			goto fail;
1057		}
1058
1059		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1060		if (data->m == NULL) {
1061			device_printf(sc->sc_dev,
1062			    "%s: could not allocate RX mbuf\n", __func__);
1063			error = ENOBUFS;
1064			goto fail;
1065		}
1066
1067		error = bus_dmamap_load(ring->data_dmat, data->map,
1068		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1069		    &paddr, BUS_DMA_NOWAIT);
1070		if (error != 0 && error != EFBIG) {
1071			device_printf(sc->sc_dev,
1072			    "%s: can't map mbuf (error %d)\n", __func__,
1073			    error);
1074			goto fail;
1075		}
1076
1077		/* Set physical address of RX buffer. */
1078		ring->desc[i] = htole32(paddr);
1079	}
1080
1081	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1082	    BUS_DMASYNC_PREWRITE);
1083
1084	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1085
1086	return 0;
1087
1088fail:	wpi_free_rx_ring(sc);
1089
1090	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1091
1092	return error;
1093}
1094
1095static void
1096wpi_update_rx_ring(struct wpi_softc *sc)
1097{
1098	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1099}
1100
1101static void
1102wpi_update_rx_ring_ps(struct wpi_softc *sc)
1103{
1104	struct wpi_rx_ring *ring = &sc->rxq;
1105
1106	if (ring->update != 0) {
1107		/* Wait for INT_WAKEUP event. */
1108		return;
1109	}
1110
1111	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1112	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1113		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1114		    __func__);
1115		ring->update = 1;
1116	} else {
1117		wpi_update_rx_ring(sc);
1118		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1119	}
1120}
1121
1122static void
1123wpi_reset_rx_ring(struct wpi_softc *sc)
1124{
1125	struct wpi_rx_ring *ring = &sc->rxq;
1126	int ntries;
1127
1128	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1129
1130	if (wpi_nic_lock(sc) == 0) {
1131		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1132		for (ntries = 0; ntries < 1000; ntries++) {
1133			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1134			    WPI_FH_RX_STATUS_IDLE)
1135				break;
1136			DELAY(10);
1137		}
1138		wpi_nic_unlock(sc);
1139	}
1140
1141	ring->cur = 0;
1142	ring->update = 0;
1143}
1144
1145static void
1146wpi_free_rx_ring(struct wpi_softc *sc)
1147{
1148	struct wpi_rx_ring *ring = &sc->rxq;
1149	int i;
1150
1151	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1152
1153	wpi_dma_contig_free(&ring->desc_dma);
1154
1155	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1156		struct wpi_rx_data *data = &ring->data[i];
1157
1158		if (data->m != NULL) {
1159			bus_dmamap_sync(ring->data_dmat, data->map,
1160			    BUS_DMASYNC_POSTREAD);
1161			bus_dmamap_unload(ring->data_dmat, data->map);
1162			m_freem(data->m);
1163			data->m = NULL;
1164		}
1165		if (data->map != NULL)
1166			bus_dmamap_destroy(ring->data_dmat, data->map);
1167	}
1168	if (ring->data_dmat != NULL) {
1169		bus_dma_tag_destroy(ring->data_dmat);
1170		ring->data_dmat = NULL;
1171	}
1172}
1173
1174static int
1175wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1176{
1177	bus_addr_t paddr;
1178	bus_size_t size;
1179	int i, error;
1180
1181	ring->qid = qid;
1182	ring->queued = 0;
1183	ring->cur = 0;
1184	ring->update = 0;
1185
1186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1187
1188	/* Allocate TX descriptors (16KB aligned.) */
1189	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1190	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1191	    size, WPI_RING_DMA_ALIGN);
1192	if (error != 0) {
1193		device_printf(sc->sc_dev,
1194		    "%s: could not allocate TX ring DMA memory, error %d\n",
1195		    __func__, error);
1196		goto fail;
1197	}
1198
1199	/* Update shared area with ring physical address. */
1200	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1201	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1202	    BUS_DMASYNC_PREWRITE);
1203
1204	/*
1205	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1206	 * to allocate commands space for other rings.
1207	 * XXX Do we really need to allocate descriptors for other rings?
1208	 */
1209	if (qid > WPI_CMD_QUEUE_NUM) {
1210		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1211		return 0;
1212	}
1213
1214	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1215	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1216	    size, 4);
1217	if (error != 0) {
1218		device_printf(sc->sc_dev,
1219		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1220		    __func__, error);
1221		goto fail;
1222	}
1223
1224	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1225	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1226	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1227	    &ring->data_dmat);
1228	if (error != 0) {
1229		device_printf(sc->sc_dev,
1230		    "%s: could not create TX buf DMA tag, error %d\n",
1231		    __func__, error);
1232		goto fail;
1233	}
1234
1235	paddr = ring->cmd_dma.paddr;
1236	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1237		struct wpi_tx_data *data = &ring->data[i];
1238
1239		data->cmd_paddr = paddr;
1240		paddr += sizeof (struct wpi_tx_cmd);
1241
1242		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1243		if (error != 0) {
1244			device_printf(sc->sc_dev,
1245			    "%s: could not create TX buf DMA map, error %d\n",
1246			    __func__, error);
1247			goto fail;
1248		}
1249	}
1250
1251	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1252
1253	return 0;
1254
1255fail:	wpi_free_tx_ring(sc, ring);
1256	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1257	return error;
1258}
1259
1260static void
1261wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1262{
1263	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1264}
1265
1266static void
1267wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1268{
1269
1270	if (ring->update != 0) {
1271		/* Wait for INT_WAKEUP event. */
1272		return;
1273	}
1274
1275	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1276	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1277		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1278		    __func__, ring->qid);
1279		ring->update = 1;
1280	} else {
1281		wpi_update_tx_ring(sc, ring);
1282		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1283	}
1284}
1285
1286static void
1287wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1288{
1289	int i;
1290
1291	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1292
1293	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1294		struct wpi_tx_data *data = &ring->data[i];
1295
1296		if (data->m != NULL) {
1297			bus_dmamap_sync(ring->data_dmat, data->map,
1298			    BUS_DMASYNC_POSTWRITE);
1299			bus_dmamap_unload(ring->data_dmat, data->map);
1300			m_freem(data->m);
1301			data->m = NULL;
1302		}
1303		if (data->ni != NULL) {
1304			ieee80211_free_node(data->ni);
1305			data->ni = NULL;
1306		}
1307	}
1308	/* Clear TX descriptors. */
1309	memset(ring->desc, 0, ring->desc_dma.size);
1310	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1311	    BUS_DMASYNC_PREWRITE);
1312	sc->qfullmsk &= ~(1 << ring->qid);
1313	ring->queued = 0;
1314	ring->cur = 0;
1315	ring->update = 0;
1316}
1317
1318static void
1319wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1320{
1321	int i;
1322
1323	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1324
1325	wpi_dma_contig_free(&ring->desc_dma);
1326	wpi_dma_contig_free(&ring->cmd_dma);
1327
1328	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1329		struct wpi_tx_data *data = &ring->data[i];
1330
1331		if (data->m != NULL) {
1332			bus_dmamap_sync(ring->data_dmat, data->map,
1333			    BUS_DMASYNC_POSTWRITE);
1334			bus_dmamap_unload(ring->data_dmat, data->map);
1335			m_freem(data->m);
1336		}
1337		if (data->map != NULL)
1338			bus_dmamap_destroy(ring->data_dmat, data->map);
1339	}
1340	if (ring->data_dmat != NULL) {
1341		bus_dma_tag_destroy(ring->data_dmat);
1342		ring->data_dmat = NULL;
1343	}
1344}
1345
1346/*
1347 * Extract various information from EEPROM.
1348 */
1349static int
1350wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1351{
1352#define WPI_CHK(res) do {		\
1353	if ((error = res) != 0)		\
1354		goto fail;		\
1355} while (0)
1356	int error, i;
1357
1358	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1359
1360	/* Adapter has to be powered on for EEPROM access to work. */
1361	if ((error = wpi_apm_init(sc)) != 0) {
1362		device_printf(sc->sc_dev,
1363		    "%s: could not power ON adapter, error %d\n", __func__,
1364		    error);
1365		return error;
1366	}
1367
1368	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1369		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1370		error = EIO;
1371		goto fail;
1372	}
1373	/* Clear HW ownership of EEPROM. */
1374	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1375
1376	/* Read the hardware capabilities, revision and SKU type. */
1377	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1378	    sizeof(sc->cap)));
1379	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1380	    sizeof(sc->rev)));
1381	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1382	    sizeof(sc->type)));
1383
1384	sc->rev = le16toh(sc->rev);
1385	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1386	    sc->rev, sc->type);
1387
1388	/* Read the regulatory domain (4 ASCII characters.) */
1389	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1390	    sizeof(sc->domain)));
1391
1392	/* Read MAC address. */
1393	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1394	    IEEE80211_ADDR_LEN));
1395
1396	/* Read the list of authorized channels. */
1397	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1398		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1399
1400	/* Read the list of TX power groups. */
1401	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1402		WPI_CHK(wpi_read_eeprom_group(sc, i));
1403
1404fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1405
1406	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1407	    __func__);
1408
1409	return error;
1410#undef WPI_CHK
1411}
1412
1413/*
1414 * Translate EEPROM flags to net80211.
1415 */
1416static uint32_t
1417wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1418{
1419	uint32_t nflags;
1420
1421	nflags = 0;
1422	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1423		nflags |= IEEE80211_CHAN_PASSIVE;
1424	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1425		nflags |= IEEE80211_CHAN_NOADHOC;
1426	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1427		nflags |= IEEE80211_CHAN_DFS;
1428		/* XXX apparently IBSS may still be marked */
1429		nflags |= IEEE80211_CHAN_NOADHOC;
1430	}
1431
1432	/* XXX HOSTAP uses WPI_MODE_IBSS */
1433	if (nflags & IEEE80211_CHAN_NOADHOC)
1434		nflags |= IEEE80211_CHAN_NOHOSTAP;
1435
1436	return nflags;
1437}
1438
1439static void
1440wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1441{
1442	struct ifnet *ifp = sc->sc_ifp;
1443	struct ieee80211com *ic = ifp->if_l2com;
1444	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1445	const struct wpi_chan_band *band = &wpi_bands[n];
1446	struct ieee80211_channel *c;
1447	uint8_t chan;
1448	int i, nflags;
1449
1450	for (i = 0; i < band->nchan; i++) {
1451		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1452			DPRINTF(sc, WPI_DEBUG_EEPROM,
1453			    "Channel Not Valid: %d, band %d\n",
1454			     band->chan[i],n);
1455			continue;
1456		}
1457
1458		chan = band->chan[i];
1459		nflags = wpi_eeprom_channel_flags(&channels[i]);
1460
1461		c = &ic->ic_channels[ic->ic_nchans++];
1462		c->ic_ieee = chan;
1463		c->ic_maxregpower = channels[i].maxpwr;
1464		c->ic_maxpower = 2*c->ic_maxregpower;
1465
1466		if (n == 0) {	/* 2GHz band */
1467			c->ic_freq = ieee80211_ieee2mhz(chan,
1468			    IEEE80211_CHAN_G);
1469
1470			/* G =>'s B is supported */
1471			c->ic_flags = IEEE80211_CHAN_B | nflags;
1472			c = &ic->ic_channels[ic->ic_nchans++];
1473			c[0] = c[-1];
1474			c->ic_flags = IEEE80211_CHAN_G | nflags;
1475		} else {	/* 5GHz band */
1476			c->ic_freq = ieee80211_ieee2mhz(chan,
1477			    IEEE80211_CHAN_A);
1478
1479			c->ic_flags = IEEE80211_CHAN_A | nflags;
1480		}
1481
1482		/* Save maximum allowed TX power for this channel. */
1483		sc->maxpwr[chan] = channels[i].maxpwr;
1484
1485		DPRINTF(sc, WPI_DEBUG_EEPROM,
1486		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1487		    " offset %d\n", chan, c->ic_freq,
1488		    channels[i].flags, sc->maxpwr[chan],
1489		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1490	}
1491}
1492
1493/**
1494 * Read the eeprom to find out what channels are valid for the given
1495 * band and update net80211 with what we find.
1496 */
1497static int
1498wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1499{
1500	struct ifnet *ifp = sc->sc_ifp;
1501	struct ieee80211com *ic = ifp->if_l2com;
1502	const struct wpi_chan_band *band = &wpi_bands[n];
1503	int error;
1504
1505	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1506
1507	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1508	    band->nchan * sizeof (struct wpi_eeprom_chan));
1509	if (error != 0) {
1510		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1511		return error;
1512	}
1513
1514	wpi_read_eeprom_band(sc, n);
1515
1516	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1517
1518	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1519
1520	return 0;
1521}
1522
1523static struct wpi_eeprom_chan *
1524wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1525{
1526	int i, j;
1527
1528	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1529		for (i = 0; i < wpi_bands[j].nchan; i++)
1530			if (wpi_bands[j].chan[i] == c->ic_ieee)
1531				return &sc->eeprom_channels[j][i];
1532
1533	return NULL;
1534}
1535
1536/*
1537 * Enforce flags read from EEPROM.
1538 */
1539static int
1540wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1541    int nchan, struct ieee80211_channel chans[])
1542{
1543	struct ifnet *ifp = ic->ic_ifp;
1544	struct wpi_softc *sc = ifp->if_softc;
1545	int i;
1546
1547	for (i = 0; i < nchan; i++) {
1548		struct ieee80211_channel *c = &chans[i];
1549		struct wpi_eeprom_chan *channel;
1550
1551		channel = wpi_find_eeprom_channel(sc, c);
1552		if (channel == NULL) {
1553			if_printf(ic->ic_ifp,
1554			    "%s: invalid channel %u freq %u/0x%x\n",
1555			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1556			return EINVAL;
1557		}
1558		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1559	}
1560
1561	return 0;
1562}
1563
1564static int
1565wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1566{
1567	struct wpi_power_group *group = &sc->groups[n];
1568	struct wpi_eeprom_group rgroup;
1569	int i, error;
1570
1571	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1572
1573	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1574	    &rgroup, sizeof rgroup)) != 0) {
1575		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1576		return error;
1577	}
1578
1579	/* Save TX power group information. */
1580	group->chan   = rgroup.chan;
1581	group->maxpwr = rgroup.maxpwr;
1582	/* Retrieve temperature at which the samples were taken. */
1583	group->temp   = (int16_t)le16toh(rgroup.temp);
1584
1585	DPRINTF(sc, WPI_DEBUG_EEPROM,
1586	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1587	    group->maxpwr, group->temp);
1588
1589	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1590		group->samples[i].index = rgroup.samples[i].index;
1591		group->samples[i].power = rgroup.samples[i].power;
1592
1593		DPRINTF(sc, WPI_DEBUG_EEPROM,
1594		    "\tsample %d: index=%d power=%d\n", i,
1595		    group->samples[i].index, group->samples[i].power);
1596	}
1597
1598	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1599
1600	return 0;
1601}
1602
1603static int
1604wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1605{
1606	int newid = WPI_ID_IBSS_MIN;
1607
1608	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1609		if ((sc->nodesmsk & (1 << newid)) == 0) {
1610			sc->nodesmsk |= 1 << newid;
1611			return newid;
1612		}
1613	}
1614
1615	return WPI_ID_UNDEFINED;
1616}
1617
1618static __inline int
1619wpi_add_node_entry_sta(struct wpi_softc *sc)
1620{
1621	sc->nodesmsk |= 1 << WPI_ID_BSS;
1622
1623	return WPI_ID_BSS;
1624}
1625
1626static __inline int
1627wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1628{
1629	if (id == WPI_ID_UNDEFINED)
1630		return 0;
1631
1632	return (sc->nodesmsk >> id) & 1;
1633}
1634
1635static __inline void
1636wpi_clear_node_table(struct wpi_softc *sc)
1637{
1638	sc->nodesmsk = 0;
1639}
1640
1641static __inline void
1642wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1643{
1644	sc->nodesmsk &= ~(1 << id);
1645}
1646
1647static struct ieee80211_node *
1648wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1649{
1650	struct wpi_node *wn;
1651
1652	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1653	    M_NOWAIT | M_ZERO);
1654
1655	if (wn == NULL)
1656		return NULL;
1657
1658	wn->id = WPI_ID_UNDEFINED;
1659
1660	return &wn->ni;
1661}
1662
1663static void
1664wpi_node_free(struct ieee80211_node *ni)
1665{
1666	struct ieee80211com *ic = ni->ni_ic;
1667	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1668	struct wpi_node *wn = WPI_NODE(ni);
1669
1670	if (wn->id != WPI_ID_UNDEFINED) {
1671		WPI_NT_LOCK(sc);
1672		if (wpi_check_node_entry(sc, wn->id)) {
1673			wpi_del_node_entry(sc, wn->id);
1674			wpi_del_node(sc, ni);
1675		}
1676		WPI_NT_UNLOCK(sc);
1677	}
1678
1679	sc->sc_node_free(ni);
1680}
1681
1682static __inline int
1683wpi_check_bss_filter(struct wpi_softc *sc)
1684{
1685	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1686}
1687
1688/**
1689 * Called by net80211 when ever there is a change to 80211 state machine
1690 */
1691static int
1692wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1693{
1694	struct wpi_vap *wvp = WPI_VAP(vap);
1695	struct ieee80211com *ic = vap->iv_ic;
1696	struct ifnet *ifp = ic->ic_ifp;
1697	struct wpi_softc *sc = ifp->if_softc;
1698	int error = 0;
1699
1700	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1701
1702	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1703		ieee80211_state_name[vap->iv_state],
1704		ieee80211_state_name[nstate]);
1705
1706	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1707		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1708			device_printf(sc->sc_dev,
1709			    "%s: could not set power saving level\n",
1710			    __func__);
1711			return error;
1712		}
1713
1714		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1715	}
1716
1717	switch (nstate) {
1718	case IEEE80211_S_SCAN:
1719		WPI_RXON_LOCK(sc);
1720		if (wpi_check_bss_filter(sc) != 0) {
1721			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1722			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1723				device_printf(sc->sc_dev,
1724				    "%s: could not send RXON\n", __func__);
1725			}
1726		}
1727		WPI_RXON_UNLOCK(sc);
1728		break;
1729
1730	case IEEE80211_S_ASSOC:
1731		if (vap->iv_state != IEEE80211_S_RUN)
1732			break;
1733		/* FALLTHROUGH */
1734	case IEEE80211_S_AUTH:
1735		/*
1736		 * NB: do not optimize AUTH -> AUTH state transmission -
1737		 * this will break powersave with non-QoS AP!
1738		 */
1739
1740		/*
1741		 * The node must be registered in the firmware before auth.
1742		 * Also the associd must be cleared on RUN -> ASSOC
1743		 * transitions.
1744		 */
1745		if ((error = wpi_auth(sc, vap)) != 0) {
1746			device_printf(sc->sc_dev,
1747			    "%s: could not move to AUTH state, error %d\n",
1748			    __func__, error);
1749		}
1750		break;
1751
1752	case IEEE80211_S_RUN:
1753		/*
1754		 * RUN -> RUN transition; Just restart the timers.
1755		 */
1756		if (vap->iv_state == IEEE80211_S_RUN) {
1757			WPI_RXON_LOCK(sc);
1758			wpi_calib_timeout(sc);
1759			WPI_RXON_UNLOCK(sc);
1760			break;
1761		}
1762
1763		/*
1764		 * !RUN -> RUN requires setting the association id
1765		 * which is done with a firmware cmd.  We also defer
1766		 * starting the timers until that work is done.
1767		 */
1768		if ((error = wpi_run(sc, vap)) != 0) {
1769			device_printf(sc->sc_dev,
1770			    "%s: could not move to RUN state\n", __func__);
1771		}
1772		break;
1773
1774	default:
1775		break;
1776	}
1777	if (error != 0) {
1778		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1779		return error;
1780	}
1781
1782	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1783
1784	return wvp->wv_newstate(vap, nstate, arg);
1785}
1786
1787static void
1788wpi_calib_timeout(void *arg)
1789{
1790	struct wpi_softc *sc = arg;
1791
1792	if (wpi_check_bss_filter(sc) == 0)
1793		return;
1794
1795	wpi_power_calibration(sc);
1796
1797	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1798}
1799
1800static __inline uint8_t
1801rate2plcp(const uint8_t rate)
1802{
1803	switch (rate) {
1804	case 12:	return 0xd;
1805	case 18:	return 0xf;
1806	case 24:	return 0x5;
1807	case 36:	return 0x7;
1808	case 48:	return 0x9;
1809	case 72:	return 0xb;
1810	case 96:	return 0x1;
1811	case 108:	return 0x3;
1812	case 2:		return 10;
1813	case 4:		return 20;
1814	case 11:	return 55;
1815	case 22:	return 110;
1816	default:	return 0;
1817	}
1818}
1819
1820static __inline uint8_t
1821plcp2rate(const uint8_t plcp)
1822{
1823	switch (plcp) {
1824	case 0xd:	return 12;
1825	case 0xf:	return 18;
1826	case 0x5:	return 24;
1827	case 0x7:	return 36;
1828	case 0x9:	return 48;
1829	case 0xb:	return 72;
1830	case 0x1:	return 96;
1831	case 0x3:	return 108;
1832	case 10:	return 2;
1833	case 20:	return 4;
1834	case 55:	return 11;
1835	case 110:	return 22;
1836	default:	return 0;
1837	}
1838}
1839
1840/* Quickly determine if a given rate is CCK or OFDM. */
1841#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1842
1843static void
1844wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1845    struct wpi_rx_data *data)
1846{
1847	struct ifnet *ifp = sc->sc_ifp;
1848	struct ieee80211com *ic = ifp->if_l2com;
1849	struct wpi_rx_ring *ring = &sc->rxq;
1850	struct wpi_rx_stat *stat;
1851	struct wpi_rx_head *head;
1852	struct wpi_rx_tail *tail;
1853	struct ieee80211_frame *wh;
1854	struct ieee80211_node *ni;
1855	struct mbuf *m, *m1;
1856	bus_addr_t paddr;
1857	uint32_t flags;
1858	uint16_t len;
1859	int error;
1860
1861	stat = (struct wpi_rx_stat *)(desc + 1);
1862
1863	if (stat->len > WPI_STAT_MAXLEN) {
1864		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1865		goto fail1;
1866	}
1867
1868	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1869	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1870	len = le16toh(head->len);
1871	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1872	flags = le32toh(tail->flags);
1873
1874	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1875	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1876	    le32toh(desc->len), len, (int8_t)stat->rssi,
1877	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1878
1879	/* Discard frames with a bad FCS early. */
1880	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1881		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1882		    __func__, flags);
1883		goto fail1;
1884	}
1885	/* Discard frames that are too short. */
1886	if (len < sizeof (*wh)) {
1887		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1888		    __func__, len);
1889		goto fail1;
1890	}
1891
1892	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1893	if (m1 == NULL) {
1894		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1895		    __func__);
1896		goto fail1;
1897	}
1898	bus_dmamap_unload(ring->data_dmat, data->map);
1899
1900	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1901	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1902	if (error != 0 && error != EFBIG) {
1903		device_printf(sc->sc_dev,
1904		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1905		m_freem(m1);
1906
1907		/* Try to reload the old mbuf. */
1908		error = bus_dmamap_load(ring->data_dmat, data->map,
1909		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1910		    &paddr, BUS_DMA_NOWAIT);
1911		if (error != 0 && error != EFBIG) {
1912			panic("%s: could not load old RX mbuf", __func__);
1913		}
1914		/* Physical address may have changed. */
1915		ring->desc[ring->cur] = htole32(paddr);
1916		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1917		    BUS_DMASYNC_PREWRITE);
1918		goto fail1;
1919	}
1920
1921	m = data->m;
1922	data->m = m1;
1923	/* Update RX descriptor. */
1924	ring->desc[ring->cur] = htole32(paddr);
1925	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1926	    BUS_DMASYNC_PREWRITE);
1927
1928	/* Finalize mbuf. */
1929	m->m_pkthdr.rcvif = ifp;
1930	m->m_data = (caddr_t)(head + 1);
1931	m->m_pkthdr.len = m->m_len = len;
1932
1933	/* Grab a reference to the source node. */
1934	wh = mtod(m, struct ieee80211_frame *);
1935
1936	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1937	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1938		/* Check whether decryption was successful or not. */
1939		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1940			DPRINTF(sc, WPI_DEBUG_RECV,
1941			    "CCMP decryption failed 0x%x\n", flags);
1942			goto fail2;
1943		}
1944		m->m_flags |= M_WEP;
1945	}
1946
1947	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1948
1949	if (ieee80211_radiotap_active(ic)) {
1950		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1951
1952		tap->wr_flags = 0;
1953		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1954			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1955		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1956		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
1957		tap->wr_tsft = tail->tstamp;
1958		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1959		tap->wr_rate = plcp2rate(head->plcp);
1960	}
1961
1962	WPI_UNLOCK(sc);
1963
1964	/* Send the frame to the 802.11 layer. */
1965	if (ni != NULL) {
1966		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1967		/* Node is no longer needed. */
1968		ieee80211_free_node(ni);
1969	} else
1970		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1971
1972	WPI_LOCK(sc);
1973
1974	return;
1975
1976fail2:	m_freem(m);
1977
1978fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1979}
1980
1981static void
1982wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1983    struct wpi_rx_data *data)
1984{
1985	/* Ignore */
1986}
1987
1988static void
1989wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1990{
1991	struct ifnet *ifp = sc->sc_ifp;
1992	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1993	struct wpi_tx_data *data = &ring->data[desc->idx];
1994	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1995	struct mbuf *m;
1996	struct ieee80211_node *ni;
1997	struct ieee80211vap *vap;
1998	struct ieee80211com *ic;
1999	uint32_t status = le32toh(stat->status);
2000	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2001
2002	KASSERT(data->ni != NULL, ("no node"));
2003	KASSERT(data->m != NULL, ("no mbuf"));
2004
2005	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2006
2007	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2008	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2009	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2010	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2011
2012	/* Unmap and free mbuf. */
2013	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2014	bus_dmamap_unload(ring->data_dmat, data->map);
2015	m = data->m, data->m = NULL;
2016	ni = data->ni, data->ni = NULL;
2017	vap = ni->ni_vap;
2018	ic = vap->iv_ic;
2019
2020	/*
2021	 * Update rate control statistics for the node.
2022	 */
2023	if (status & WPI_TX_STATUS_FAIL) {
2024		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2025		ieee80211_ratectl_tx_complete(vap, ni,
2026		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2027	} else {
2028		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2029		ieee80211_ratectl_tx_complete(vap, ni,
2030		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2031	}
2032
2033	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2034
2035	WPI_TXQ_STATE_LOCK(sc);
2036	ring->queued -= 1;
2037	if (ring->queued > 0) {
2038		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2039
2040		if (sc->qfullmsk != 0 &&
2041		    ring->queued < WPI_TX_RING_LOMARK) {
2042			sc->qfullmsk &= ~(1 << ring->qid);
2043			IF_LOCK(&ifp->if_snd);
2044			if (sc->qfullmsk == 0 &&
2045			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2046				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2047				IF_UNLOCK(&ifp->if_snd);
2048				ieee80211_runtask(ic, &sc->sc_start_task);
2049			} else
2050				IF_UNLOCK(&ifp->if_snd);
2051		}
2052	} else
2053		callout_stop(&sc->tx_timeout);
2054	WPI_TXQ_STATE_UNLOCK(sc);
2055
2056	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2057}
2058
2059/*
2060 * Process a "command done" firmware notification.  This is where we wakeup
2061 * processes waiting for a synchronous command completion.
2062 */
2063static void
2064wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2065{
2066	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2067	struct wpi_tx_data *data;
2068
2069	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2070				   "type %s len %d\n", desc->qid, desc->idx,
2071				   desc->flags, wpi_cmd_str(desc->type),
2072				   le32toh(desc->len));
2073
2074	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2075		return;	/* Not a command ack. */
2076
2077	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2078
2079	data = &ring->data[desc->idx];
2080
2081	/* If the command was mapped in an mbuf, free it. */
2082	if (data->m != NULL) {
2083		bus_dmamap_sync(ring->data_dmat, data->map,
2084		    BUS_DMASYNC_POSTWRITE);
2085		bus_dmamap_unload(ring->data_dmat, data->map);
2086		m_freem(data->m);
2087		data->m = NULL;
2088	}
2089
2090	wakeup(&ring->cmd[desc->idx]);
2091
2092	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2093		WPI_TXQ_LOCK(sc);
2094		if (sc->sc_flags & WPI_PS_PATH) {
2095			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2096			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2097		} else {
2098			sc->sc_update_rx_ring = wpi_update_rx_ring;
2099			sc->sc_update_tx_ring = wpi_update_tx_ring;
2100		}
2101		WPI_TXQ_UNLOCK(sc);
2102	}
2103}
2104
2105static void
2106wpi_notif_intr(struct wpi_softc *sc)
2107{
2108	struct ifnet *ifp = sc->sc_ifp;
2109	struct ieee80211com *ic = ifp->if_l2com;
2110	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2111	uint32_t hw;
2112
2113	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2114	    BUS_DMASYNC_POSTREAD);
2115
2116	hw = le32toh(sc->shared->next) & 0xfff;
2117	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2118
2119	while (sc->rxq.cur != hw) {
2120		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2121
2122		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2123		struct wpi_rx_desc *desc;
2124
2125		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2126		    BUS_DMASYNC_POSTREAD);
2127		desc = mtod(data->m, struct wpi_rx_desc *);
2128
2129		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2130		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2131		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2132		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2133
2134		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2135			/* Reply to a command. */
2136			wpi_cmd_done(sc, desc);
2137		}
2138
2139		switch (desc->type) {
2140		case WPI_RX_DONE:
2141			/* An 802.11 frame has been received. */
2142			wpi_rx_done(sc, desc, data);
2143
2144			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2145				/* wpi_stop() was called. */
2146				return;
2147			}
2148
2149			break;
2150
2151		case WPI_TX_DONE:
2152			/* An 802.11 frame has been transmitted. */
2153			wpi_tx_done(sc, desc);
2154			break;
2155
2156		case WPI_RX_STATISTICS:
2157		case WPI_BEACON_STATISTICS:
2158			wpi_rx_statistics(sc, desc, data);
2159			break;
2160
2161		case WPI_BEACON_MISSED:
2162		{
2163			struct wpi_beacon_missed *miss =
2164			    (struct wpi_beacon_missed *)(desc + 1);
2165			uint32_t expected, misses, received, threshold;
2166
2167			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2168			    BUS_DMASYNC_POSTREAD);
2169
2170			misses = le32toh(miss->consecutive);
2171			expected = le32toh(miss->expected);
2172			received = le32toh(miss->received);
2173			threshold = MAX(2, vap->iv_bmissthreshold);
2174
2175			DPRINTF(sc, WPI_DEBUG_BMISS,
2176			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2177			    __func__, misses, le32toh(miss->total), received,
2178			    expected);
2179
2180			if (misses >= threshold ||
2181			    (received == 0 && expected >= threshold)) {
2182				WPI_RXON_LOCK(sc);
2183				if (callout_pending(&sc->scan_timeout)) {
2184					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2185					    0, 1);
2186				}
2187				WPI_RXON_UNLOCK(sc);
2188				if (vap->iv_state == IEEE80211_S_RUN &&
2189				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2190					ieee80211_beacon_miss(ic);
2191			}
2192
2193			break;
2194		}
2195#ifdef WPI_DEBUG
2196		case WPI_BEACON_SENT:
2197		{
2198			struct wpi_tx_stat *stat =
2199			    (struct wpi_tx_stat *)(desc + 1);
2200			uint64_t *tsf = (uint64_t *)(stat + 1);
2201			uint32_t *mode = (uint32_t *)(tsf + 1);
2202
2203			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2204			    BUS_DMASYNC_POSTREAD);
2205
2206			DPRINTF(sc, WPI_DEBUG_BEACON,
2207			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2208			    "duration %u, status %x, tsf %ju, mode %x\n",
2209			    stat->rtsfailcnt, stat->ackfailcnt,
2210			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2211			    le32toh(stat->status), *tsf, *mode);
2212
2213			break;
2214		}
2215#endif
2216		case WPI_UC_READY:
2217		{
2218			struct wpi_ucode_info *uc =
2219			    (struct wpi_ucode_info *)(desc + 1);
2220
2221			/* The microcontroller is ready. */
2222			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2223			    BUS_DMASYNC_POSTREAD);
2224			DPRINTF(sc, WPI_DEBUG_RESET,
2225			    "microcode alive notification version=%d.%d "
2226			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2227			    uc->subtype, le32toh(uc->valid));
2228
2229			if (le32toh(uc->valid) != 1) {
2230				device_printf(sc->sc_dev,
2231				    "microcontroller initialization failed\n");
2232				wpi_stop_locked(sc);
2233			}
2234			/* Save the address of the error log in SRAM. */
2235			sc->errptr = le32toh(uc->errptr);
2236			break;
2237		}
2238		case WPI_STATE_CHANGED:
2239		{
2240			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2241			    BUS_DMASYNC_POSTREAD);
2242
2243			uint32_t *status = (uint32_t *)(desc + 1);
2244
2245			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2246			    le32toh(*status));
2247
2248			if (le32toh(*status) & 1) {
2249				WPI_NT_LOCK(sc);
2250				wpi_clear_node_table(sc);
2251				WPI_NT_UNLOCK(sc);
2252				taskqueue_enqueue(sc->sc_tq,
2253				    &sc->sc_radiooff_task);
2254				return;
2255			}
2256			break;
2257		}
2258#ifdef WPI_DEBUG
2259		case WPI_START_SCAN:
2260		{
2261			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2262			    BUS_DMASYNC_POSTREAD);
2263
2264			struct wpi_start_scan *scan =
2265			    (struct wpi_start_scan *)(desc + 1);
2266			DPRINTF(sc, WPI_DEBUG_SCAN,
2267			    "%s: scanning channel %d status %x\n",
2268			    __func__, scan->chan, le32toh(scan->status));
2269
2270			break;
2271		}
2272#endif
2273		case WPI_STOP_SCAN:
2274		{
2275			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2276			    BUS_DMASYNC_POSTREAD);
2277
2278			struct wpi_stop_scan *scan =
2279			    (struct wpi_stop_scan *)(desc + 1);
2280
2281			DPRINTF(sc, WPI_DEBUG_SCAN,
2282			    "scan finished nchan=%d status=%d chan=%d\n",
2283			    scan->nchan, scan->status, scan->chan);
2284
2285			WPI_RXON_LOCK(sc);
2286			callout_stop(&sc->scan_timeout);
2287			WPI_RXON_UNLOCK(sc);
2288			if (scan->status == WPI_SCAN_ABORTED)
2289				ieee80211_cancel_scan(vap);
2290			else
2291				ieee80211_scan_next(vap);
2292			break;
2293		}
2294		}
2295
2296		if (sc->rxq.cur % 8 == 0) {
2297			/* Tell the firmware what we have processed. */
2298			sc->sc_update_rx_ring(sc);
2299		}
2300	}
2301}
2302
2303/*
2304 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2305 * from power-down sleep mode.
2306 */
2307static void
2308wpi_wakeup_intr(struct wpi_softc *sc)
2309{
2310	int qid;
2311
2312	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2313	    "%s: ucode wakeup from power-down sleep\n", __func__);
2314
2315	/* Wakeup RX and TX rings. */
2316	if (sc->rxq.update) {
2317		sc->rxq.update = 0;
2318		wpi_update_rx_ring(sc);
2319	}
2320	WPI_TXQ_LOCK(sc);
2321	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2322		struct wpi_tx_ring *ring = &sc->txq[qid];
2323
2324		if (ring->update) {
2325			ring->update = 0;
2326			wpi_update_tx_ring(sc, ring);
2327		}
2328	}
2329	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2330	WPI_TXQ_UNLOCK(sc);
2331}
2332
2333/*
2334 * This function prints firmware registers
2335 */
2336#ifdef WPI_DEBUG
2337static void
2338wpi_debug_registers(struct wpi_softc *sc)
2339{
2340	size_t i;
2341	static const uint32_t csr_tbl[] = {
2342		WPI_HW_IF_CONFIG,
2343		WPI_INT,
2344		WPI_INT_MASK,
2345		WPI_FH_INT,
2346		WPI_GPIO_IN,
2347		WPI_RESET,
2348		WPI_GP_CNTRL,
2349		WPI_EEPROM,
2350		WPI_EEPROM_GP,
2351		WPI_GIO,
2352		WPI_UCODE_GP1,
2353		WPI_UCODE_GP2,
2354		WPI_GIO_CHICKEN,
2355		WPI_ANA_PLL,
2356		WPI_DBG_HPET_MEM,
2357	};
2358	static const uint32_t prph_tbl[] = {
2359		WPI_APMG_CLK_CTRL,
2360		WPI_APMG_PS,
2361		WPI_APMG_PCI_STT,
2362		WPI_APMG_RFKILL,
2363	};
2364
2365	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2366
2367	for (i = 0; i < nitems(csr_tbl); i++) {
2368		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2369		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2370
2371		if ((i + 1) % 2 == 0)
2372			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2373	}
2374	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2375
2376	if (wpi_nic_lock(sc) == 0) {
2377		for (i = 0; i < nitems(prph_tbl); i++) {
2378			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2379			    wpi_get_prph_string(prph_tbl[i]),
2380			    wpi_prph_read(sc, prph_tbl[i]));
2381
2382			if ((i + 1) % 2 == 0)
2383				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2384		}
2385		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2386		wpi_nic_unlock(sc);
2387	} else {
2388		DPRINTF(sc, WPI_DEBUG_REGISTER,
2389		    "Cannot access internal registers.\n");
2390	}
2391}
2392#endif
2393
2394/*
2395 * Dump the error log of the firmware when a firmware panic occurs.  Although
2396 * we can't debug the firmware because it is neither open source nor free, it
2397 * can help us to identify certain classes of problems.
2398 */
2399static void
2400wpi_fatal_intr(struct wpi_softc *sc)
2401{
2402	struct wpi_fw_dump dump;
2403	uint32_t i, offset, count;
2404
2405	/* Check that the error log address is valid. */
2406	if (sc->errptr < WPI_FW_DATA_BASE ||
2407	    sc->errptr + sizeof (dump) >
2408	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2409		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2410		    sc->errptr);
2411		return;
2412	}
2413	if (wpi_nic_lock(sc) != 0) {
2414		printf("%s: could not read firmware error log\n", __func__);
2415		return;
2416	}
2417	/* Read number of entries in the log. */
2418	count = wpi_mem_read(sc, sc->errptr);
2419	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2420		printf("%s: invalid count field (count = %u)\n", __func__,
2421		    count);
2422		wpi_nic_unlock(sc);
2423		return;
2424	}
2425	/* Skip "count" field. */
2426	offset = sc->errptr + sizeof (uint32_t);
2427	printf("firmware error log (count = %u):\n", count);
2428	for (i = 0; i < count; i++) {
2429		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2430		    sizeof (dump) / sizeof (uint32_t));
2431
2432		printf("  error type = \"%s\" (0x%08X)\n",
2433		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2434		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2435		    dump.desc);
2436		printf("  error data      = 0x%08X\n",
2437		    dump.data);
2438		printf("  branch link     = 0x%08X%08X\n",
2439		    dump.blink[0], dump.blink[1]);
2440		printf("  interrupt link  = 0x%08X%08X\n",
2441		    dump.ilink[0], dump.ilink[1]);
2442		printf("  time            = %u\n", dump.time);
2443
2444		offset += sizeof (dump);
2445	}
2446	wpi_nic_unlock(sc);
2447	/* Dump driver status (TX and RX rings) while we're here. */
2448	printf("driver status:\n");
2449	WPI_TXQ_LOCK(sc);
2450	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2451		struct wpi_tx_ring *ring = &sc->txq[i];
2452		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2453		    i, ring->qid, ring->cur, ring->queued);
2454	}
2455	WPI_TXQ_UNLOCK(sc);
2456	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2457}
2458
2459static void
2460wpi_intr(void *arg)
2461{
2462	struct wpi_softc *sc = arg;
2463	struct ifnet *ifp = sc->sc_ifp;
2464	uint32_t r1, r2;
2465
2466	WPI_LOCK(sc);
2467
2468	/* Disable interrupts. */
2469	WPI_WRITE(sc, WPI_INT_MASK, 0);
2470
2471	r1 = WPI_READ(sc, WPI_INT);
2472
2473	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2474		goto end;	/* Hardware gone! */
2475
2476	r2 = WPI_READ(sc, WPI_FH_INT);
2477
2478	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2479	    r1, r2);
2480
2481	if (r1 == 0 && r2 == 0)
2482		goto done;	/* Interrupt not for us. */
2483
2484	/* Acknowledge interrupts. */
2485	WPI_WRITE(sc, WPI_INT, r1);
2486	WPI_WRITE(sc, WPI_FH_INT, r2);
2487
2488	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2489		device_printf(sc->sc_dev, "fatal firmware error\n");
2490#ifdef WPI_DEBUG
2491		wpi_debug_registers(sc);
2492#endif
2493		wpi_fatal_intr(sc);
2494		DPRINTF(sc, WPI_DEBUG_HW,
2495		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2496		    "(Hardware Error)");
2497		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2498		goto end;
2499	}
2500
2501	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2502	    (r2 & WPI_FH_INT_RX))
2503		wpi_notif_intr(sc);
2504
2505	if (r1 & WPI_INT_ALIVE)
2506		wakeup(sc);	/* Firmware is alive. */
2507
2508	if (r1 & WPI_INT_WAKEUP)
2509		wpi_wakeup_intr(sc);
2510
2511done:
2512	/* Re-enable interrupts. */
2513	if (ifp->if_flags & IFF_UP)
2514		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2515
2516end:	WPI_UNLOCK(sc);
2517}
2518
2519static int
2520wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2521{
2522	struct ifnet *ifp = sc->sc_ifp;
2523	struct ieee80211_frame *wh;
2524	struct wpi_tx_cmd *cmd;
2525	struct wpi_tx_data *data;
2526	struct wpi_tx_desc *desc;
2527	struct wpi_tx_ring *ring;
2528	struct mbuf *m1;
2529	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2530	int error, i, hdrlen, nsegs, totlen, pad;
2531
2532	WPI_TXQ_LOCK(sc);
2533
2534	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2535
2536	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2537
2538	if (sc->txq_active == 0) {
2539		/* wpi_stop() was called */
2540		error = ENETDOWN;
2541		goto fail;
2542	}
2543
2544	wh = mtod(buf->m, struct ieee80211_frame *);
2545	hdrlen = ieee80211_anyhdrsize(wh);
2546	totlen = buf->m->m_pkthdr.len;
2547
2548	if (hdrlen & 3) {
2549		/* First segment length must be a multiple of 4. */
2550		pad = 4 - (hdrlen & 3);
2551	} else
2552		pad = 0;
2553
2554	ring = &sc->txq[buf->ac];
2555	desc = &ring->desc[ring->cur];
2556	data = &ring->data[ring->cur];
2557
2558	/* Prepare TX firmware command. */
2559	cmd = &ring->cmd[ring->cur];
2560	cmd->code = buf->code;
2561	cmd->flags = 0;
2562	cmd->qid = ring->qid;
2563	cmd->idx = ring->cur;
2564
2565	memcpy(cmd->data, buf->data, buf->size);
2566
2567	/* Save and trim IEEE802.11 header. */
2568	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2569	m_adj(buf->m, hdrlen);
2570
2571	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2572	    segs, &nsegs, BUS_DMA_NOWAIT);
2573	if (error != 0 && error != EFBIG) {
2574		device_printf(sc->sc_dev,
2575		    "%s: can't map mbuf (error %d)\n", __func__, error);
2576		goto fail;
2577	}
2578	if (error != 0) {
2579		/* Too many DMA segments, linearize mbuf. */
2580		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2581		if (m1 == NULL) {
2582			device_printf(sc->sc_dev,
2583			    "%s: could not defrag mbuf\n", __func__);
2584			error = ENOBUFS;
2585			goto fail;
2586		}
2587		buf->m = m1;
2588
2589		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2590		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2591		if (error != 0) {
2592			device_printf(sc->sc_dev,
2593			    "%s: can't map mbuf (error %d)\n", __func__,
2594			    error);
2595			goto fail;
2596		}
2597	}
2598
2599	KASSERT(nsegs < WPI_MAX_SCATTER,
2600	    ("too many DMA segments, nsegs (%d) should be less than %d",
2601	     nsegs, WPI_MAX_SCATTER));
2602
2603	data->m = buf->m;
2604	data->ni = buf->ni;
2605
2606	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2607	    __func__, ring->qid, ring->cur, totlen, nsegs);
2608
2609	/* Fill TX descriptor. */
2610	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2611	/* First DMA segment is used by the TX command. */
2612	desc->segs[0].addr = htole32(data->cmd_paddr);
2613	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2614	/* Other DMA segments are for data payload. */
2615	seg = &segs[0];
2616	for (i = 1; i <= nsegs; i++) {
2617		desc->segs[i].addr = htole32(seg->ds_addr);
2618		desc->segs[i].len  = htole32(seg->ds_len);
2619		seg++;
2620	}
2621
2622	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2623	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2624	    BUS_DMASYNC_PREWRITE);
2625	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2626	    BUS_DMASYNC_PREWRITE);
2627
2628	/* Kick TX ring. */
2629	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2630	sc->sc_update_tx_ring(sc, ring);
2631
2632	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2633		/* Mark TX ring as full if we reach a certain threshold. */
2634		WPI_TXQ_STATE_LOCK(sc);
2635		if (++ring->queued > WPI_TX_RING_HIMARK) {
2636			sc->qfullmsk |= 1 << ring->qid;
2637
2638			IF_LOCK(&ifp->if_snd);
2639			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2640			IF_UNLOCK(&ifp->if_snd);
2641		}
2642
2643		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2644		WPI_TXQ_STATE_UNLOCK(sc);
2645	}
2646
2647	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2648
2649	WPI_TXQ_UNLOCK(sc);
2650
2651	return 0;
2652
2653fail:	m_freem(buf->m);
2654
2655	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2656
2657	WPI_TXQ_UNLOCK(sc);
2658
2659	return error;
2660}
2661
2662/*
2663 * Construct the data packet for a transmit buffer.
2664 */
2665static int
2666wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2667{
2668	const struct ieee80211_txparam *tp;
2669	struct ieee80211vap *vap = ni->ni_vap;
2670	struct ieee80211com *ic = ni->ni_ic;
2671	struct wpi_node *wn = WPI_NODE(ni);
2672	struct ieee80211_channel *chan;
2673	struct ieee80211_frame *wh;
2674	struct ieee80211_key *k = NULL;
2675	struct wpi_buf tx_data;
2676	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2677	uint32_t flags;
2678	uint16_t qos;
2679	uint8_t tid, type;
2680	int ac, error, swcrypt, rate, ismcast, totlen;
2681
2682	wh = mtod(m, struct ieee80211_frame *);
2683	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2684	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2685
2686	/* Select EDCA Access Category and TX ring for this frame. */
2687	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2688		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2689		tid = qos & IEEE80211_QOS_TID;
2690	} else {
2691		qos = 0;
2692		tid = 0;
2693	}
2694	ac = M_WME_GETAC(m);
2695
2696	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2697		ni->ni_chan : ic->ic_curchan;
2698	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2699
2700	/* Choose a TX rate index. */
2701	if (type == IEEE80211_FC0_TYPE_MGT)
2702		rate = tp->mgmtrate;
2703	else if (ismcast)
2704		rate = tp->mcastrate;
2705	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2706		rate = tp->ucastrate;
2707	else if (m->m_flags & M_EAPOL)
2708		rate = tp->mgmtrate;
2709	else {
2710		/* XXX pass pktlen */
2711		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2712		rate = ni->ni_txrate;
2713	}
2714
2715	/* Encrypt the frame if need be. */
2716	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2717		/* Retrieve key for TX. */
2718		k = ieee80211_crypto_encap(ni, m);
2719		if (k == NULL) {
2720			error = ENOBUFS;
2721			goto fail;
2722		}
2723		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2724
2725		/* 802.11 header may have moved. */
2726		wh = mtod(m, struct ieee80211_frame *);
2727	}
2728	totlen = m->m_pkthdr.len;
2729
2730	if (ieee80211_radiotap_active_vap(vap)) {
2731		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2732
2733		tap->wt_flags = 0;
2734		tap->wt_rate = rate;
2735		if (k != NULL)
2736			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2737
2738		ieee80211_radiotap_tx(vap, m);
2739	}
2740
2741	flags = 0;
2742	if (!ismcast) {
2743		/* Unicast frame, check if an ACK is expected. */
2744		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2745		    IEEE80211_QOS_ACKPOLICY_NOACK)
2746			flags |= WPI_TX_NEED_ACK;
2747	}
2748
2749	if (!IEEE80211_QOS_HAS_SEQ(wh))
2750		flags |= WPI_TX_AUTO_SEQ;
2751	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2752		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2753
2754	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2755	if (!ismcast) {
2756		/* NB: Group frames are sent using CCK in 802.11b/g. */
2757		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2758			flags |= WPI_TX_NEED_RTS;
2759		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2760		    WPI_RATE_IS_OFDM(rate)) {
2761			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2762				flags |= WPI_TX_NEED_CTS;
2763			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2764				flags |= WPI_TX_NEED_RTS;
2765		}
2766
2767		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2768			flags |= WPI_TX_FULL_TXOP;
2769	}
2770
2771	memset(tx, 0, sizeof (struct wpi_cmd_data));
2772	if (type == IEEE80211_FC0_TYPE_MGT) {
2773		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2774
2775		/* Tell HW to set timestamp in probe responses. */
2776		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2777			flags |= WPI_TX_INSERT_TSTAMP;
2778		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2779		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2780			tx->timeout = htole16(3);
2781		else
2782			tx->timeout = htole16(2);
2783	}
2784
2785	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2786		tx->id = WPI_ID_BROADCAST;
2787	else {
2788		if (wn->id == WPI_ID_UNDEFINED) {
2789			device_printf(sc->sc_dev,
2790			    "%s: undefined node id\n", __func__);
2791			error = EINVAL;
2792			goto fail;
2793		}
2794
2795		tx->id = wn->id;
2796	}
2797
2798	if (k != NULL && !swcrypt) {
2799		switch (k->wk_cipher->ic_cipher) {
2800		case IEEE80211_CIPHER_AES_CCM:
2801			tx->security = WPI_CIPHER_CCMP;
2802			break;
2803
2804		default:
2805			break;
2806		}
2807
2808		memcpy(tx->key, k->wk_key, k->wk_keylen);
2809	}
2810
2811	tx->len = htole16(totlen);
2812	tx->flags = htole32(flags);
2813	tx->plcp = rate2plcp(rate);
2814	tx->tid = tid;
2815	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2816	tx->ofdm_mask = 0xff;
2817	tx->cck_mask = 0x0f;
2818	tx->rts_ntries = 7;
2819	tx->data_ntries = tp->maxretry;
2820
2821	tx_data.ni = ni;
2822	tx_data.m = m;
2823	tx_data.size = sizeof(struct wpi_cmd_data);
2824	tx_data.code = WPI_CMD_TX_DATA;
2825	tx_data.ac = ac;
2826
2827	return wpi_cmd2(sc, &tx_data);
2828
2829fail:	m_freem(m);
2830	return error;
2831}
2832
2833static int
2834wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2835    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2836{
2837	struct ieee80211vap *vap = ni->ni_vap;
2838	struct ieee80211_key *k = NULL;
2839	struct ieee80211_frame *wh;
2840	struct wpi_buf tx_data;
2841	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2842	uint32_t flags;
2843	uint8_t type;
2844	int ac, rate, swcrypt, totlen;
2845
2846	wh = mtod(m, struct ieee80211_frame *);
2847	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2848
2849	ac = params->ibp_pri & 3;
2850
2851	/* Choose a TX rate index. */
2852	rate = params->ibp_rate0;
2853
2854	flags = 0;
2855	if (!IEEE80211_QOS_HAS_SEQ(wh))
2856		flags |= WPI_TX_AUTO_SEQ;
2857	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2858		flags |= WPI_TX_NEED_ACK;
2859	if (params->ibp_flags & IEEE80211_BPF_RTS)
2860		flags |= WPI_TX_NEED_RTS;
2861	if (params->ibp_flags & IEEE80211_BPF_CTS)
2862		flags |= WPI_TX_NEED_CTS;
2863	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2864		flags |= WPI_TX_FULL_TXOP;
2865
2866	/* Encrypt the frame if need be. */
2867	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2868		/* Retrieve key for TX. */
2869		k = ieee80211_crypto_encap(ni, m);
2870		if (k == NULL) {
2871			m_freem(m);
2872			return ENOBUFS;
2873		}
2874		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2875
2876		/* 802.11 header may have moved. */
2877		wh = mtod(m, struct ieee80211_frame *);
2878	}
2879	totlen = m->m_pkthdr.len;
2880
2881	if (ieee80211_radiotap_active_vap(vap)) {
2882		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2883
2884		tap->wt_flags = 0;
2885		tap->wt_rate = rate;
2886		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2887			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2888
2889		ieee80211_radiotap_tx(vap, m);
2890	}
2891
2892	memset(tx, 0, sizeof (struct wpi_cmd_data));
2893	if (type == IEEE80211_FC0_TYPE_MGT) {
2894		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2895
2896		/* Tell HW to set timestamp in probe responses. */
2897		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2898			flags |= WPI_TX_INSERT_TSTAMP;
2899		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2900		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2901			tx->timeout = htole16(3);
2902		else
2903			tx->timeout = htole16(2);
2904	}
2905
2906	if (k != NULL && !swcrypt) {
2907		switch (k->wk_cipher->ic_cipher) {
2908		case IEEE80211_CIPHER_AES_CCM:
2909			tx->security = WPI_CIPHER_CCMP;
2910			break;
2911
2912		default:
2913			break;
2914		}
2915
2916		memcpy(tx->key, k->wk_key, k->wk_keylen);
2917	}
2918
2919	tx->len = htole16(totlen);
2920	tx->flags = htole32(flags);
2921	tx->plcp = rate2plcp(rate);
2922	tx->id = WPI_ID_BROADCAST;
2923	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2924	tx->rts_ntries = params->ibp_try1;
2925	tx->data_ntries = params->ibp_try0;
2926
2927	tx_data.ni = ni;
2928	tx_data.m = m;
2929	tx_data.size = sizeof(struct wpi_cmd_data);
2930	tx_data.code = WPI_CMD_TX_DATA;
2931	tx_data.ac = ac;
2932
2933	return wpi_cmd2(sc, &tx_data);
2934}
2935
2936static int
2937wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2938    const struct ieee80211_bpf_params *params)
2939{
2940	struct ieee80211com *ic = ni->ni_ic;
2941	struct ifnet *ifp = ic->ic_ifp;
2942	struct wpi_softc *sc = ifp->if_softc;
2943	int error = 0;
2944
2945	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2946
2947	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2948		ieee80211_free_node(ni);
2949		m_freem(m);
2950		return ENETDOWN;
2951	}
2952
2953	WPI_TX_LOCK(sc);
2954	if (params == NULL) {
2955		/*
2956		 * Legacy path; interpret frame contents to decide
2957		 * precisely how to send the frame.
2958		 */
2959		error = wpi_tx_data(sc, m, ni);
2960	} else {
2961		/*
2962		 * Caller supplied explicit parameters to use in
2963		 * sending the frame.
2964		 */
2965		error = wpi_tx_data_raw(sc, m, ni, params);
2966	}
2967	WPI_TX_UNLOCK(sc);
2968
2969	if (error != 0) {
2970		/* NB: m is reclaimed on tx failure */
2971		ieee80211_free_node(ni);
2972		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2973
2974		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2975
2976		return error;
2977	}
2978
2979	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2980
2981	return 0;
2982}
2983
2984/**
2985 * Process data waiting to be sent on the IFNET output queue
2986 */
2987static void
2988wpi_start(struct ifnet *ifp)
2989{
2990	struct wpi_softc *sc = ifp->if_softc;
2991	struct ieee80211_node *ni;
2992	struct mbuf *m;
2993
2994	WPI_TX_LOCK(sc);
2995	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2996
2997	for (;;) {
2998		IF_LOCK(&ifp->if_snd);
2999		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3000		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3001			IF_UNLOCK(&ifp->if_snd);
3002			break;
3003		}
3004		IF_UNLOCK(&ifp->if_snd);
3005
3006		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3007		if (m == NULL)
3008			break;
3009		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3010		if (wpi_tx_data(sc, m, ni) != 0) {
3011			ieee80211_free_node(ni);
3012			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3013		}
3014	}
3015
3016	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3017	WPI_TX_UNLOCK(sc);
3018}
3019
3020static void
3021wpi_start_task(void *arg0, int pending)
3022{
3023	struct wpi_softc *sc = arg0;
3024	struct ifnet *ifp = sc->sc_ifp;
3025
3026	wpi_start(ifp);
3027}
3028
3029static void
3030wpi_watchdog_rfkill(void *arg)
3031{
3032	struct wpi_softc *sc = arg;
3033	struct ifnet *ifp = sc->sc_ifp;
3034	struct ieee80211com *ic = ifp->if_l2com;
3035
3036	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3037
3038	/* No need to lock firmware memory. */
3039	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3040		/* Radio kill switch is still off. */
3041		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3042		    sc);
3043	} else
3044		ieee80211_runtask(ic, &sc->sc_radioon_task);
3045}
3046
3047static void
3048wpi_scan_timeout(void *arg)
3049{
3050	struct wpi_softc *sc = arg;
3051	struct ifnet *ifp = sc->sc_ifp;
3052
3053	if_printf(ifp, "scan timeout\n");
3054	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3055}
3056
3057static void
3058wpi_tx_timeout(void *arg)
3059{
3060	struct wpi_softc *sc = arg;
3061	struct ifnet *ifp = sc->sc_ifp;
3062
3063	if_printf(ifp, "device timeout\n");
3064	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3065	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3066}
3067
3068static int
3069wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3070{
3071	struct wpi_softc *sc = ifp->if_softc;
3072	struct ieee80211com *ic = ifp->if_l2com;
3073	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3074	struct ifreq *ifr = (struct ifreq *) data;
3075	int error = 0;
3076
3077	switch (cmd) {
3078	case SIOCGIFADDR:
3079		error = ether_ioctl(ifp, cmd, data);
3080		break;
3081	case SIOCSIFFLAGS:
3082		if (ifp->if_flags & IFF_UP) {
3083			wpi_init(sc);
3084
3085			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
3086			    vap != NULL)
3087				ieee80211_stop(vap);
3088		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3089			wpi_stop(sc);
3090		break;
3091	case SIOCGIFMEDIA:
3092		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3093		break;
3094	default:
3095		error = EINVAL;
3096		break;
3097	}
3098	return error;
3099}
3100
3101/*
3102 * Send a command to the firmware.
3103 */
3104static int
3105wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3106    int async)
3107{
3108	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3109	struct wpi_tx_desc *desc;
3110	struct wpi_tx_data *data;
3111	struct wpi_tx_cmd *cmd;
3112	struct mbuf *m;
3113	bus_addr_t paddr;
3114	int totlen, error;
3115
3116	WPI_TXQ_LOCK(sc);
3117
3118	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3119
3120	if (sc->txq_active == 0) {
3121		/* wpi_stop() was called */
3122		error = 0;
3123		goto fail;
3124	}
3125
3126	if (async == 0)
3127		WPI_LOCK_ASSERT(sc);
3128
3129	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3130	    __func__, wpi_cmd_str(code), size, async);
3131
3132	desc = &ring->desc[ring->cur];
3133	data = &ring->data[ring->cur];
3134	totlen = 4 + size;
3135
3136	if (size > sizeof cmd->data) {
3137		/* Command is too large to fit in a descriptor. */
3138		if (totlen > MCLBYTES) {
3139			error = EINVAL;
3140			goto fail;
3141		}
3142		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3143		if (m == NULL) {
3144			error = ENOMEM;
3145			goto fail;
3146		}
3147		cmd = mtod(m, struct wpi_tx_cmd *);
3148		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3149		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3150		if (error != 0) {
3151			m_freem(m);
3152			goto fail;
3153		}
3154		data->m = m;
3155	} else {
3156		cmd = &ring->cmd[ring->cur];
3157		paddr = data->cmd_paddr;
3158	}
3159
3160	cmd->code = code;
3161	cmd->flags = 0;
3162	cmd->qid = ring->qid;
3163	cmd->idx = ring->cur;
3164	memcpy(cmd->data, buf, size);
3165
3166	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3167	desc->segs[0].addr = htole32(paddr);
3168	desc->segs[0].len  = htole32(totlen);
3169
3170	if (size > sizeof cmd->data) {
3171		bus_dmamap_sync(ring->data_dmat, data->map,
3172		    BUS_DMASYNC_PREWRITE);
3173	} else {
3174		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3175		    BUS_DMASYNC_PREWRITE);
3176	}
3177	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3178	    BUS_DMASYNC_PREWRITE);
3179
3180	/* Kick command ring. */
3181	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3182	sc->sc_update_tx_ring(sc, ring);
3183
3184	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3185
3186	WPI_TXQ_UNLOCK(sc);
3187
3188	if (async)
3189		return 0;
3190
3191	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3192
3193fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3194
3195	WPI_TXQ_UNLOCK(sc);
3196
3197	return error;
3198}
3199
3200/*
3201 * Configure HW multi-rate retries.
3202 */
3203static int
3204wpi_mrr_setup(struct wpi_softc *sc)
3205{
3206	struct ifnet *ifp = sc->sc_ifp;
3207	struct ieee80211com *ic = ifp->if_l2com;
3208	struct wpi_mrr_setup mrr;
3209	int i, error;
3210
3211	/* CCK rates (not used with 802.11a). */
3212	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3213		mrr.rates[i].flags = 0;
3214		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3215		/* Fallback to the immediate lower CCK rate (if any.) */
3216		mrr.rates[i].next =
3217		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3218		/* Try twice at this rate before falling back to "next". */
3219		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3220	}
3221	/* OFDM rates (not used with 802.11b). */
3222	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3223		mrr.rates[i].flags = 0;
3224		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3225		/* Fallback to the immediate lower rate (if any.) */
3226		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3227		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3228		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3229			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3230		    i - 1;
3231		/* Try twice at this rate before falling back to "next". */
3232		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3233	}
3234	/* Setup MRR for control frames. */
3235	mrr.which = htole32(WPI_MRR_CTL);
3236	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3237	if (error != 0) {
3238		device_printf(sc->sc_dev,
3239		    "could not setup MRR for control frames\n");
3240		return error;
3241	}
3242	/* Setup MRR for data frames. */
3243	mrr.which = htole32(WPI_MRR_DATA);
3244	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3245	if (error != 0) {
3246		device_printf(sc->sc_dev,
3247		    "could not setup MRR for data frames\n");
3248		return error;
3249	}
3250	return 0;
3251}
3252
3253static int
3254wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3255{
3256	struct ieee80211com *ic = ni->ni_ic;
3257	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3258	struct wpi_node *wn = WPI_NODE(ni);
3259	struct wpi_node_info node;
3260	int error;
3261
3262	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3263
3264	if (wn->id == WPI_ID_UNDEFINED)
3265		return EINVAL;
3266
3267	memset(&node, 0, sizeof node);
3268	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3269	node.id = wn->id;
3270	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3271	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3272	node.action = htole32(WPI_ACTION_SET_RATE);
3273	node.antenna = WPI_ANTENNA_BOTH;
3274
3275	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3276	    wn->id, ether_sprintf(ni->ni_macaddr));
3277
3278	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3279	if (error != 0) {
3280		device_printf(sc->sc_dev,
3281		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3282		    error);
3283		return error;
3284	}
3285
3286	if (wvp->wv_gtk != 0) {
3287		error = wpi_set_global_keys(ni);
3288		if (error != 0) {
3289			device_printf(sc->sc_dev,
3290			    "%s: error while setting global keys\n", __func__);
3291			return ENXIO;
3292		}
3293	}
3294
3295	return 0;
3296}
3297
3298/*
3299 * Broadcast node is used to send group-addressed and management frames.
3300 */
3301static int
3302wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3303{
3304	struct ifnet *ifp = sc->sc_ifp;
3305	struct ieee80211com *ic = ifp->if_l2com;
3306	struct wpi_node_info node;
3307
3308	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3309
3310	memset(&node, 0, sizeof node);
3311	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3312	node.id = WPI_ID_BROADCAST;
3313	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3314	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3315	node.action = htole32(WPI_ACTION_SET_RATE);
3316	node.antenna = WPI_ANTENNA_BOTH;
3317
3318	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3319
3320	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3321}
3322
3323static int
3324wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3325{
3326	struct wpi_node *wn = WPI_NODE(ni);
3327	int error;
3328
3329	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3330
3331	wn->id = wpi_add_node_entry_sta(sc);
3332
3333	if ((error = wpi_add_node(sc, ni)) != 0) {
3334		wpi_del_node_entry(sc, wn->id);
3335		wn->id = WPI_ID_UNDEFINED;
3336		return error;
3337	}
3338
3339	return 0;
3340}
3341
3342static int
3343wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3344{
3345	struct wpi_node *wn = WPI_NODE(ni);
3346	int error;
3347
3348	KASSERT(wn->id == WPI_ID_UNDEFINED,
3349	    ("the node %d was added before", wn->id));
3350
3351	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3352
3353	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3354		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3355		return ENOMEM;
3356	}
3357
3358	if ((error = wpi_add_node(sc, ni)) != 0) {
3359		wpi_del_node_entry(sc, wn->id);
3360		wn->id = WPI_ID_UNDEFINED;
3361		return error;
3362	}
3363
3364	return 0;
3365}
3366
3367static void
3368wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3369{
3370	struct wpi_node *wn = WPI_NODE(ni);
3371	struct wpi_cmd_del_node node;
3372	int error;
3373
3374	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3375
3376	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3377
3378	memset(&node, 0, sizeof node);
3379	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3380	node.count = 1;
3381
3382	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3383	    wn->id, ether_sprintf(ni->ni_macaddr));
3384
3385	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3386	if (error != 0) {
3387		device_printf(sc->sc_dev,
3388		    "%s: could not delete node %u, error %d\n", __func__,
3389		    wn->id, error);
3390	}
3391}
3392
3393static int
3394wpi_updateedca(struct ieee80211com *ic)
3395{
3396#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3397	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3398	struct wpi_edca_params cmd;
3399	int aci, error;
3400
3401	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3402
3403	memset(&cmd, 0, sizeof cmd);
3404	cmd.flags = htole32(WPI_EDCA_UPDATE);
3405	for (aci = 0; aci < WME_NUM_AC; aci++) {
3406		const struct wmeParams *ac =
3407		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3408		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3409		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3410		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3411		cmd.ac[aci].txoplimit =
3412		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3413
3414		DPRINTF(sc, WPI_DEBUG_EDCA,
3415		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3416		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3417		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3418		    cmd.ac[aci].txoplimit);
3419	}
3420	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3421
3422	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3423
3424	return error;
3425#undef WPI_EXP2
3426}
3427
3428static void
3429wpi_set_promisc(struct wpi_softc *sc)
3430{
3431	struct ifnet *ifp = sc->sc_ifp;
3432	struct ieee80211com *ic = ifp->if_l2com;
3433	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3434	uint32_t promisc_filter;
3435
3436	promisc_filter = WPI_FILTER_CTL;
3437	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3438		promisc_filter |= WPI_FILTER_PROMISC;
3439
3440	if (ifp->if_flags & IFF_PROMISC)
3441		sc->rxon.filter |= htole32(promisc_filter);
3442	else
3443		sc->rxon.filter &= ~htole32(promisc_filter);
3444}
3445
3446static void
3447wpi_update_promisc(struct ifnet *ifp)
3448{
3449	struct wpi_softc *sc = ifp->if_softc;
3450
3451	WPI_RXON_LOCK(sc);
3452	wpi_set_promisc(sc);
3453
3454	if (wpi_send_rxon(sc, 1, 1) != 0) {
3455		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3456		    __func__);
3457	}
3458	WPI_RXON_UNLOCK(sc);
3459}
3460
3461static void
3462wpi_update_mcast(struct ifnet *ifp)
3463{
3464	/* Ignore */
3465}
3466
3467static void
3468wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3469{
3470	struct wpi_cmd_led led;
3471
3472	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3473
3474	led.which = which;
3475	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3476	led.off = off;
3477	led.on = on;
3478	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3479}
3480
3481static int
3482wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3483{
3484	struct wpi_cmd_timing cmd;
3485	uint64_t val, mod;
3486
3487	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3488
3489	memset(&cmd, 0, sizeof cmd);
3490	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3491	cmd.bintval = htole16(ni->ni_intval);
3492	cmd.lintval = htole16(10);
3493
3494	/* Compute remaining time until next beacon. */
3495	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3496	mod = le64toh(cmd.tstamp) % val;
3497	cmd.binitval = htole32((uint32_t)(val - mod));
3498
3499	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3500	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3501
3502	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3503}
3504
3505/*
3506 * This function is called periodically (every 60 seconds) to adjust output
3507 * power to temperature changes.
3508 */
3509static void
3510wpi_power_calibration(struct wpi_softc *sc)
3511{
3512	int temp;
3513
3514	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3515
3516	/* Update sensor data. */
3517	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3518	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3519
3520	/* Sanity-check read value. */
3521	if (temp < -260 || temp > 25) {
3522		/* This can't be correct, ignore. */
3523		DPRINTF(sc, WPI_DEBUG_TEMP,
3524		    "out-of-range temperature reported: %d\n", temp);
3525		return;
3526	}
3527
3528	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3529
3530	/* Adjust Tx power if need be. */
3531	if (abs(temp - sc->temp) <= 6)
3532		return;
3533
3534	sc->temp = temp;
3535
3536	if (wpi_set_txpower(sc, 1) != 0) {
3537		/* just warn, too bad for the automatic calibration... */
3538		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3539	}
3540}
3541
3542/*
3543 * Set TX power for current channel.
3544 */
3545static int
3546wpi_set_txpower(struct wpi_softc *sc, int async)
3547{
3548	struct wpi_power_group *group;
3549	struct wpi_cmd_txpower cmd;
3550	uint8_t chan;
3551	int idx, is_chan_5ghz, i;
3552
3553	/* Retrieve current channel from last RXON. */
3554	chan = sc->rxon.chan;
3555	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3556
3557	/* Find the TX power group to which this channel belongs. */
3558	if (is_chan_5ghz) {
3559		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3560			if (chan <= group->chan)
3561				break;
3562	} else
3563		group = &sc->groups[0];
3564
3565	memset(&cmd, 0, sizeof cmd);
3566	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3567	cmd.chan = htole16(chan);
3568
3569	/* Set TX power for all OFDM and CCK rates. */
3570	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3571		/* Retrieve TX power for this channel/rate. */
3572		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3573
3574		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3575
3576		if (is_chan_5ghz) {
3577			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3578			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3579		} else {
3580			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3581			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3582		}
3583		DPRINTF(sc, WPI_DEBUG_TEMP,
3584		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3585	}
3586
3587	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3588}
3589
3590/*
3591 * Determine Tx power index for a given channel/rate combination.
3592 * This takes into account the regulatory information from EEPROM and the
3593 * current temperature.
3594 */
3595static int
3596wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3597    uint8_t chan, int is_chan_5ghz, int ridx)
3598{
3599/* Fixed-point arithmetic division using a n-bit fractional part. */
3600#define fdivround(a, b, n)	\
3601	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3602
3603/* Linear interpolation. */
3604#define interpolate(x, x1, y1, x2, y2, n)	\
3605	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3606
3607	struct wpi_power_sample *sample;
3608	int pwr, idx;
3609
3610	/* Default TX power is group maximum TX power minus 3dB. */
3611	pwr = group->maxpwr / 2;
3612
3613	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3614	switch (ridx) {
3615	case WPI_RIDX_OFDM36:
3616		pwr -= is_chan_5ghz ?  5 : 0;
3617		break;
3618	case WPI_RIDX_OFDM48:
3619		pwr -= is_chan_5ghz ? 10 : 7;
3620		break;
3621	case WPI_RIDX_OFDM54:
3622		pwr -= is_chan_5ghz ? 12 : 9;
3623		break;
3624	}
3625
3626	/* Never exceed the channel maximum allowed TX power. */
3627	pwr = min(pwr, sc->maxpwr[chan]);
3628
3629	/* Retrieve TX power index into gain tables from samples. */
3630	for (sample = group->samples; sample < &group->samples[3]; sample++)
3631		if (pwr > sample[1].power)
3632			break;
3633	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3634	idx = interpolate(pwr, sample[0].power, sample[0].index,
3635	    sample[1].power, sample[1].index, 19);
3636
3637	/*-
3638	 * Adjust power index based on current temperature:
3639	 * - if cooler than factory-calibrated: decrease output power
3640	 * - if warmer than factory-calibrated: increase output power
3641	 */
3642	idx -= (sc->temp - group->temp) * 11 / 100;
3643
3644	/* Decrease TX power for CCK rates (-5dB). */
3645	if (ridx >= WPI_RIDX_CCK1)
3646		idx += 10;
3647
3648	/* Make sure idx stays in a valid range. */
3649	if (idx < 0)
3650		return 0;
3651	if (idx > WPI_MAX_PWR_INDEX)
3652		return WPI_MAX_PWR_INDEX;
3653	return idx;
3654
3655#undef interpolate
3656#undef fdivround
3657}
3658
3659/*
3660 * Set STA mode power saving level (between 0 and 5).
3661 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3662 */
3663static int
3664wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3665{
3666	struct wpi_pmgt_cmd cmd;
3667	const struct wpi_pmgt *pmgt;
3668	uint32_t max, skip_dtim;
3669	uint32_t reg;
3670	int i;
3671
3672	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3673	    "%s: dtim=%d, level=%d, async=%d\n",
3674	    __func__, dtim, level, async);
3675
3676	/* Select which PS parameters to use. */
3677	if (dtim <= 10)
3678		pmgt = &wpi_pmgt[0][level];
3679	else
3680		pmgt = &wpi_pmgt[1][level];
3681
3682	memset(&cmd, 0, sizeof cmd);
3683	WPI_TXQ_LOCK(sc);
3684	if (level != 0)	{	/* not CAM */
3685		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3686		sc->sc_flags |= WPI_PS_PATH;
3687	} else
3688		sc->sc_flags &= ~WPI_PS_PATH;
3689	WPI_TXQ_UNLOCK(sc);
3690	/* Retrieve PCIe Active State Power Management (ASPM). */
3691	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3692	if (!(reg & 0x1))	/* L0s Entry disabled. */
3693		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3694
3695	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3696	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3697
3698	if (dtim == 0) {
3699		dtim = 1;
3700		skip_dtim = 0;
3701	} else
3702		skip_dtim = pmgt->skip_dtim;
3703
3704	if (skip_dtim != 0) {
3705		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3706		max = pmgt->intval[4];
3707		if (max == (uint32_t)-1)
3708			max = dtim * (skip_dtim + 1);
3709		else if (max > dtim)
3710			max = (max / dtim) * dtim;
3711	} else
3712		max = dtim;
3713
3714	for (i = 0; i < 5; i++)
3715		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3716
3717	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3718}
3719
3720static int
3721wpi_send_btcoex(struct wpi_softc *sc)
3722{
3723	struct wpi_bluetooth cmd;
3724
3725	memset(&cmd, 0, sizeof cmd);
3726	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3727	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3728	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3729	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3730	    __func__);
3731	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3732}
3733
3734static int
3735wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3736{
3737	int error;
3738
3739	if (async)
3740		WPI_RXON_LOCK_ASSERT(sc);
3741
3742	if (assoc && wpi_check_bss_filter(sc) != 0) {
3743		struct wpi_assoc rxon_assoc;
3744
3745		rxon_assoc.flags = sc->rxon.flags;
3746		rxon_assoc.filter = sc->rxon.filter;
3747		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3748		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3749		rxon_assoc.reserved = 0;
3750
3751		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3752		    sizeof (struct wpi_assoc), async);
3753		if (error != 0) {
3754			device_printf(sc->sc_dev,
3755			    "RXON_ASSOC command failed, error %d\n", error);
3756			return error;
3757		}
3758	} else {
3759		if (async) {
3760			WPI_NT_LOCK(sc);
3761			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3762			    sizeof (struct wpi_rxon), async);
3763			if (error == 0)
3764				wpi_clear_node_table(sc);
3765			WPI_NT_UNLOCK(sc);
3766		} else {
3767			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3768			    sizeof (struct wpi_rxon), async);
3769			if (error == 0)
3770				wpi_clear_node_table(sc);
3771		}
3772
3773		if (error != 0) {
3774			device_printf(sc->sc_dev,
3775			    "RXON command failed, error %d\n", error);
3776			return error;
3777		}
3778
3779		/* Add broadcast node. */
3780		error = wpi_add_broadcast_node(sc, async);
3781		if (error != 0) {
3782			device_printf(sc->sc_dev,
3783			    "could not add broadcast node, error %d\n", error);
3784			return error;
3785		}
3786	}
3787
3788	/* Configuration has changed, set Tx power accordingly. */
3789	if ((error = wpi_set_txpower(sc, async)) != 0) {
3790		device_printf(sc->sc_dev,
3791		    "%s: could not set TX power, error %d\n", __func__, error);
3792		return error;
3793	}
3794
3795	return 0;
3796}
3797
3798/**
3799 * Configure the card to listen to a particular channel, this transisions the
3800 * card in to being able to receive frames from remote devices.
3801 */
3802static int
3803wpi_config(struct wpi_softc *sc)
3804{
3805	struct ifnet *ifp = sc->sc_ifp;
3806	struct ieee80211com *ic = ifp->if_l2com;
3807	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3808	struct ieee80211_channel *c = ic->ic_curchan;
3809	int error;
3810
3811	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3812
3813	/* Set power saving level to CAM during initialization. */
3814	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3815		device_printf(sc->sc_dev,
3816		    "%s: could not set power saving level\n", __func__);
3817		return error;
3818	}
3819
3820	/* Configure bluetooth coexistence. */
3821	if ((error = wpi_send_btcoex(sc)) != 0) {
3822		device_printf(sc->sc_dev,
3823		    "could not configure bluetooth coexistence\n");
3824		return error;
3825	}
3826
3827	/* Configure adapter. */
3828	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3829	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3830
3831	/* Set default channel. */
3832	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3833	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3834	if (IEEE80211_IS_CHAN_2GHZ(c))
3835		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3836
3837	sc->rxon.filter = WPI_FILTER_MULTICAST;
3838	switch (ic->ic_opmode) {
3839	case IEEE80211_M_STA:
3840		sc->rxon.mode = WPI_MODE_STA;
3841		break;
3842	case IEEE80211_M_IBSS:
3843		sc->rxon.mode = WPI_MODE_IBSS;
3844		sc->rxon.filter |= WPI_FILTER_BEACON;
3845		break;
3846	case IEEE80211_M_HOSTAP:
3847		/* XXX workaround for beaconing */
3848		sc->rxon.mode = WPI_MODE_IBSS;
3849		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3850		break;
3851	case IEEE80211_M_AHDEMO:
3852		sc->rxon.mode = WPI_MODE_HOSTAP;
3853		break;
3854	case IEEE80211_M_MONITOR:
3855		sc->rxon.mode = WPI_MODE_MONITOR;
3856		break;
3857	default:
3858		device_printf(sc->sc_dev, "unknown opmode %d\n",
3859		    ic->ic_opmode);
3860		return EINVAL;
3861	}
3862	sc->rxon.filter = htole32(sc->rxon.filter);
3863	wpi_set_promisc(sc);
3864	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3865	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3866
3867	/* XXX Current configuration may be unusable. */
3868	if (IEEE80211_IS_CHAN_NOADHOC(c) && sc->rxon.mode == WPI_MODE_IBSS) {
3869		device_printf(sc->sc_dev,
3870		    "%s: invalid channel (%d) selected for IBSS mode\n",
3871		    __func__, ieee80211_chan2ieee(ic, c));
3872		return EINVAL;
3873	}
3874
3875	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3876		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3877		    __func__);
3878		return error;
3879	}
3880
3881	/* Setup rate scalling. */
3882	if ((error = wpi_mrr_setup(sc)) != 0) {
3883		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3884		    error);
3885		return error;
3886	}
3887
3888	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3889
3890	return 0;
3891}
3892
3893static uint16_t
3894wpi_get_active_dwell_time(struct wpi_softc *sc,
3895    struct ieee80211_channel *c, uint8_t n_probes)
3896{
3897	/* No channel? Default to 2GHz settings. */
3898	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3899		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3900		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3901	}
3902
3903	/* 5GHz dwell time. */
3904	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3905	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3906}
3907
3908/*
3909 * Limit the total dwell time.
3910 *
3911 * Returns the dwell time in milliseconds.
3912 */
3913static uint16_t
3914wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3915{
3916	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3917	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3918	int bintval = 0;
3919
3920	/* bintval is in TU (1.024mS) */
3921	if (vap != NULL)
3922		bintval = vap->iv_bss->ni_intval;
3923
3924	/*
3925	 * If it's non-zero, we should calculate the minimum of
3926	 * it and the DWELL_BASE.
3927	 *
3928	 * XXX Yes, the math should take into account that bintval
3929	 * is 1.024mS, not 1mS..
3930	 */
3931	if (bintval > 0) {
3932		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3933		    bintval);
3934		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
3935	}
3936
3937	/* No association context? Default. */
3938	return dwell_time;
3939}
3940
3941static uint16_t
3942wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3943{
3944	uint16_t passive;
3945
3946	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3947		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3948	else
3949		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3950
3951	/* Clamp to the beacon interval if we're associated. */
3952	return (wpi_limit_dwell(sc, passive));
3953}
3954
3955static uint32_t
3956wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
3957{
3958	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
3959	uint32_t nbeacons = time / bintval;
3960
3961	if (mod > WPI_PAUSE_MAX_TIME)
3962		mod = WPI_PAUSE_MAX_TIME;
3963
3964	return WPI_PAUSE_SCAN(nbeacons, mod);
3965}
3966
3967/*
3968 * Send a scan request to the firmware.
3969 */
3970static int
3971wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3972{
3973	struct ifnet *ifp = sc->sc_ifp;
3974	struct ieee80211com *ic = ifp->if_l2com;
3975	struct ieee80211_scan_state *ss = ic->ic_scan;
3976	struct ieee80211vap *vap = ss->ss_vap;
3977	struct wpi_scan_hdr *hdr;
3978	struct wpi_cmd_data *tx;
3979	struct wpi_scan_essid *essids;
3980	struct wpi_scan_chan *chan;
3981	struct ieee80211_frame *wh;
3982	struct ieee80211_rateset *rs;
3983	uint16_t dwell_active, dwell_passive;
3984	uint8_t *buf, *frm;
3985	int bgscan, bintval, buflen, error, i, nssid;
3986
3987	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3988
3989	/*
3990	 * We are absolutely not allowed to send a scan command when another
3991	 * scan command is pending.
3992	 */
3993	if (callout_pending(&sc->scan_timeout)) {
3994		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3995		    __func__);
3996		error = EAGAIN;
3997		goto fail;
3998	}
3999
4000	bgscan = wpi_check_bss_filter(sc);
4001	bintval = vap->iv_bss->ni_intval;
4002	if (bgscan != 0 &&
4003	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4004		error = EOPNOTSUPP;
4005		goto fail;
4006	}
4007
4008	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4009	if (buf == NULL) {
4010		device_printf(sc->sc_dev,
4011		    "%s: could not allocate buffer for scan command\n",
4012		    __func__);
4013		error = ENOMEM;
4014		goto fail;
4015	}
4016	hdr = (struct wpi_scan_hdr *)buf;
4017
4018	/*
4019	 * Move to the next channel if no packets are received within 10 msecs
4020	 * after sending the probe request.
4021	 */
4022	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4023	hdr->quiet_threshold = htole16(1);
4024
4025	if (bgscan != 0) {
4026		/*
4027		 * Max needs to be greater than active and passive and quiet!
4028		 * It's also in microseconds!
4029		 */
4030		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4031		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4032		    bintval));
4033	}
4034
4035	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4036
4037	tx = (struct wpi_cmd_data *)(hdr + 1);
4038	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4039	tx->id = WPI_ID_BROADCAST;
4040	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4041
4042	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4043		/* Send probe requests at 6Mbps. */
4044		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4045		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4046	} else {
4047		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4048		/* Send probe requests at 1Mbps. */
4049		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4050		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4051	}
4052
4053	essids = (struct wpi_scan_essid *)(tx + 1);
4054	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4055	for (i = 0; i < nssid; i++) {
4056		essids[i].id = IEEE80211_ELEMID_SSID;
4057		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4058		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4059#ifdef WPI_DEBUG
4060		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4061			printf("Scanning Essid: ");
4062			ieee80211_print_essid(essids[i].data, essids[i].len);
4063			printf("\n");
4064		}
4065#endif
4066	}
4067
4068	/*
4069	 * Build a probe request frame.  Most of the following code is a
4070	 * copy & paste of what is done in net80211.
4071	 */
4072	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4073	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4074		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4075	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4076	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4077	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4078	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4079	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
4080	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
4081
4082	frm = (uint8_t *)(wh + 1);
4083	frm = ieee80211_add_ssid(frm, NULL, 0);
4084	frm = ieee80211_add_rates(frm, rs);
4085	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4086		frm = ieee80211_add_xrates(frm, rs);
4087
4088	/* Set length of probe request. */
4089	tx->len = htole16(frm - (uint8_t *)wh);
4090
4091	/*
4092	 * Construct information about the channel that we
4093	 * want to scan. The firmware expects this to be directly
4094	 * after the scan probe request
4095	 */
4096	chan = (struct wpi_scan_chan *)frm;
4097	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4098	chan->flags = 0;
4099	if (nssid) {
4100		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4101		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4102	} else
4103		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4104
4105	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4106		chan->flags |= WPI_CHAN_ACTIVE;
4107
4108	/*
4109	 * Calculate the active/passive dwell times.
4110	 */
4111
4112	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4113	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4114
4115	/* Make sure they're valid. */
4116	if (dwell_active > dwell_passive)
4117		dwell_active = dwell_passive;
4118
4119	chan->active = htole16(dwell_active);
4120	chan->passive = htole16(dwell_passive);
4121
4122	chan->dsp_gain = 0x6e;  /* Default level */
4123
4124	if (IEEE80211_IS_CHAN_5GHZ(c))
4125		chan->rf_gain = 0x3b;
4126	else
4127		chan->rf_gain = 0x28;
4128
4129	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4130	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4131
4132	hdr->nchan++;
4133
4134	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4135		/* XXX Force probe request transmission. */
4136		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4137
4138		chan++;
4139
4140		/* Reduce unnecessary delay. */
4141		chan->flags = 0;
4142		chan->passive = chan->active = hdr->quiet_time;
4143
4144		hdr->nchan++;
4145	}
4146
4147	chan++;
4148
4149	buflen = (uint8_t *)chan - buf;
4150	hdr->len = htole16(buflen);
4151
4152	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4153	    hdr->nchan);
4154	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4155	free(buf, M_DEVBUF);
4156
4157	if (error != 0)
4158		goto fail;
4159
4160	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4161
4162	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4163
4164	return 0;
4165
4166fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4167
4168	return error;
4169}
4170
4171static int
4172wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4173{
4174	struct ieee80211com *ic = vap->iv_ic;
4175	struct ieee80211_node *ni = vap->iv_bss;
4176	struct ieee80211_channel *c = ni->ni_chan;
4177	int error;
4178
4179	WPI_RXON_LOCK(sc);
4180
4181	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4182
4183	/* Update adapter configuration. */
4184	sc->rxon.associd = 0;
4185	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4186	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4187	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4188	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4189	if (IEEE80211_IS_CHAN_2GHZ(c))
4190		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4191	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4192		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4193	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4194		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4195	if (IEEE80211_IS_CHAN_A(c)) {
4196		sc->rxon.cck_mask  = 0;
4197		sc->rxon.ofdm_mask = 0x15;
4198	} else if (IEEE80211_IS_CHAN_B(c)) {
4199		sc->rxon.cck_mask  = 0x03;
4200		sc->rxon.ofdm_mask = 0;
4201	} else {
4202		/* Assume 802.11b/g. */
4203		sc->rxon.cck_mask  = 0x0f;
4204		sc->rxon.ofdm_mask = 0x15;
4205	}
4206
4207	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4208	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4209	    sc->rxon.ofdm_mask);
4210
4211	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4212		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4213		    __func__);
4214	}
4215
4216	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4217
4218	WPI_RXON_UNLOCK(sc);
4219
4220	return error;
4221}
4222
4223static int
4224wpi_config_beacon(struct wpi_vap *wvp)
4225{
4226	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4227	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4228	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4229	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4230	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4231	struct ieee80211_tim_ie *tie;
4232	struct mbuf *m;
4233	uint8_t *ptr;
4234	int error;
4235
4236	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4237
4238	WPI_VAP_LOCK_ASSERT(wvp);
4239
4240	cmd->len = htole16(bcn->m->m_pkthdr.len);
4241	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4242	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4243
4244	/* XXX seems to be unused */
4245	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4246		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4247		ptr = mtod(bcn->m, uint8_t *);
4248
4249		cmd->tim = htole16(bo->bo_tim - ptr);
4250		cmd->timsz = tie->tim_len;
4251	}
4252
4253	/* Necessary for recursion in ieee80211_beacon_update(). */
4254	m = bcn->m;
4255	bcn->m = m_dup(m, M_NOWAIT);
4256	if (bcn->m == NULL) {
4257		device_printf(sc->sc_dev,
4258		    "%s: could not copy beacon frame\n", __func__);
4259		error = ENOMEM;
4260		goto end;
4261	}
4262
4263	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4264		device_printf(sc->sc_dev,
4265		    "%s: could not update beacon frame, error %d", __func__,
4266		    error);
4267	}
4268
4269	/* Restore mbuf. */
4270end:	bcn->m = m;
4271
4272	return error;
4273}
4274
4275static int
4276wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4277{
4278	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4279	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4280	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4281	struct mbuf *m;
4282	int error;
4283
4284	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4285
4286	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4287		return EINVAL;
4288
4289	m = ieee80211_beacon_alloc(ni, bo);
4290	if (m == NULL) {
4291		device_printf(sc->sc_dev,
4292		    "%s: could not allocate beacon frame\n", __func__);
4293		return ENOMEM;
4294	}
4295
4296	WPI_VAP_LOCK(wvp);
4297	if (bcn->m != NULL)
4298		m_freem(bcn->m);
4299
4300	bcn->m = m;
4301
4302	error = wpi_config_beacon(wvp);
4303	WPI_VAP_UNLOCK(wvp);
4304
4305	return error;
4306}
4307
4308static void
4309wpi_update_beacon(struct ieee80211vap *vap, int item)
4310{
4311	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4312	struct wpi_vap *wvp = WPI_VAP(vap);
4313	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4314	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4315	struct ieee80211_node *ni = vap->iv_bss;
4316	int mcast = 0;
4317
4318	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4319
4320	WPI_VAP_LOCK(wvp);
4321	if (bcn->m == NULL) {
4322		bcn->m = ieee80211_beacon_alloc(ni, bo);
4323		if (bcn->m == NULL) {
4324			device_printf(sc->sc_dev,
4325			    "%s: could not allocate beacon frame\n", __func__);
4326
4327			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4328			    __func__);
4329
4330			WPI_VAP_UNLOCK(wvp);
4331			return;
4332		}
4333	}
4334	WPI_VAP_UNLOCK(wvp);
4335
4336	if (item == IEEE80211_BEACON_TIM)
4337		mcast = 1;	/* TODO */
4338
4339	setbit(bo->bo_flags, item);
4340	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4341
4342	WPI_VAP_LOCK(wvp);
4343	wpi_config_beacon(wvp);
4344	WPI_VAP_UNLOCK(wvp);
4345
4346	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4347}
4348
4349static void
4350wpi_newassoc(struct ieee80211_node *ni, int isnew)
4351{
4352	struct ieee80211vap *vap = ni->ni_vap;
4353	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4354	struct wpi_node *wn = WPI_NODE(ni);
4355	int error;
4356
4357	WPI_NT_LOCK(sc);
4358
4359	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4360
4361	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4362		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4363			device_printf(sc->sc_dev,
4364			    "%s: could not add IBSS node, error %d\n",
4365			    __func__, error);
4366		}
4367	}
4368	WPI_NT_UNLOCK(sc);
4369}
4370
4371static int
4372wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4373{
4374	struct ieee80211com *ic = vap->iv_ic;
4375	struct ieee80211_node *ni = vap->iv_bss;
4376	struct ieee80211_channel *c = ni->ni_chan;
4377	int error;
4378
4379	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4380
4381	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4382		/* Link LED blinks while monitoring. */
4383		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4384		return 0;
4385	}
4386
4387	/* XXX kernel panic workaround */
4388	if (c == IEEE80211_CHAN_ANYC) {
4389		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4390		    __func__);
4391		return EINVAL;
4392	}
4393
4394	if ((error = wpi_set_timing(sc, ni)) != 0) {
4395		device_printf(sc->sc_dev,
4396		    "%s: could not set timing, error %d\n", __func__, error);
4397		return error;
4398	}
4399
4400	/* Update adapter configuration. */
4401	WPI_RXON_LOCK(sc);
4402	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4403	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4404	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4405	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4406	if (IEEE80211_IS_CHAN_2GHZ(c))
4407		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4408	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4409		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4410	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4411		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4412	if (IEEE80211_IS_CHAN_A(c)) {
4413		sc->rxon.cck_mask  = 0;
4414		sc->rxon.ofdm_mask = 0x15;
4415	} else if (IEEE80211_IS_CHAN_B(c)) {
4416		sc->rxon.cck_mask  = 0x03;
4417		sc->rxon.ofdm_mask = 0;
4418	} else {
4419		/* Assume 802.11b/g. */
4420		sc->rxon.cck_mask  = 0x0f;
4421		sc->rxon.ofdm_mask = 0x15;
4422	}
4423	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4424
4425	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4426	    sc->rxon.chan, sc->rxon.flags);
4427
4428	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4429		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4430		    __func__);
4431		return error;
4432	}
4433
4434	/* Start periodic calibration timer. */
4435	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4436
4437	WPI_RXON_UNLOCK(sc);
4438
4439	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4440	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4441		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4442			device_printf(sc->sc_dev,
4443			    "%s: could not setup beacon, error %d\n", __func__,
4444			    error);
4445			return error;
4446		}
4447	}
4448
4449	if (vap->iv_opmode == IEEE80211_M_STA) {
4450		/* Add BSS node. */
4451		WPI_NT_LOCK(sc);
4452		error = wpi_add_sta_node(sc, ni);
4453		WPI_NT_UNLOCK(sc);
4454		if (error != 0) {
4455			device_printf(sc->sc_dev,
4456			    "%s: could not add BSS node, error %d\n", __func__,
4457			    error);
4458			return error;
4459		}
4460	}
4461
4462	/* Link LED always on while associated. */
4463	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4464
4465	/* Enable power-saving mode if requested by user. */
4466	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4467	    vap->iv_opmode != IEEE80211_M_IBSS)
4468		(void)wpi_set_pslevel(sc, 0, 3, 1);
4469
4470	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4471
4472	return 0;
4473}
4474
4475static int
4476wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4477{
4478	const struct ieee80211_cipher *cip = k->wk_cipher;
4479	struct ieee80211vap *vap = ni->ni_vap;
4480	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4481	struct wpi_node *wn = WPI_NODE(ni);
4482	struct wpi_node_info node;
4483	uint16_t kflags;
4484	int error;
4485
4486	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4487
4488	if (wpi_check_node_entry(sc, wn->id) == 0) {
4489		device_printf(sc->sc_dev, "%s: node does not exist\n",
4490		    __func__);
4491		return 0;
4492	}
4493
4494	switch (cip->ic_cipher) {
4495	case IEEE80211_CIPHER_AES_CCM:
4496		kflags = WPI_KFLAG_CCMP;
4497		break;
4498
4499	default:
4500		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4501		    cip->ic_cipher);
4502		return 0;
4503	}
4504
4505	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4506	if (k->wk_flags & IEEE80211_KEY_GROUP)
4507		kflags |= WPI_KFLAG_MULTICAST;
4508
4509	memset(&node, 0, sizeof node);
4510	node.id = wn->id;
4511	node.control = WPI_NODE_UPDATE;
4512	node.flags = WPI_FLAG_KEY_SET;
4513	node.kflags = htole16(kflags);
4514	memcpy(node.key, k->wk_key, k->wk_keylen);
4515again:
4516	DPRINTF(sc, WPI_DEBUG_KEY,
4517	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4518	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4519	    node.id, ether_sprintf(ni->ni_macaddr));
4520
4521	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4522	if (error != 0) {
4523		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4524		    error);
4525		return !error;
4526	}
4527
4528	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4529	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4530		kflags |= WPI_KFLAG_MULTICAST;
4531		node.kflags = htole16(kflags);
4532
4533		goto again;
4534	}
4535
4536	return 1;
4537}
4538
4539static void
4540wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4541{
4542	const struct ieee80211_key *k = arg;
4543	struct ieee80211vap *vap = ni->ni_vap;
4544	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4545	struct wpi_node *wn = WPI_NODE(ni);
4546	int error;
4547
4548	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4549		return;
4550
4551	WPI_NT_LOCK(sc);
4552	error = wpi_load_key(ni, k);
4553	WPI_NT_UNLOCK(sc);
4554
4555	if (error == 0) {
4556		device_printf(sc->sc_dev, "%s: error while setting key\n",
4557		    __func__);
4558	}
4559}
4560
4561static int
4562wpi_set_global_keys(struct ieee80211_node *ni)
4563{
4564	struct ieee80211vap *vap = ni->ni_vap;
4565	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4566	int error = 1;
4567
4568	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4569		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4570			error = wpi_load_key(ni, wk);
4571
4572	return !error;
4573}
4574
4575static int
4576wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4577{
4578	struct ieee80211vap *vap = ni->ni_vap;
4579	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4580	struct wpi_node *wn = WPI_NODE(ni);
4581	struct wpi_node_info node;
4582	uint16_t kflags;
4583	int error;
4584
4585	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4586
4587	if (wpi_check_node_entry(sc, wn->id) == 0) {
4588		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4589		return 1;	/* Nothing to do. */
4590	}
4591
4592	kflags = WPI_KFLAG_KID(k->wk_keyix);
4593	if (k->wk_flags & IEEE80211_KEY_GROUP)
4594		kflags |= WPI_KFLAG_MULTICAST;
4595
4596	memset(&node, 0, sizeof node);
4597	node.id = wn->id;
4598	node.control = WPI_NODE_UPDATE;
4599	node.flags = WPI_FLAG_KEY_SET;
4600	node.kflags = htole16(kflags);
4601again:
4602	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4603	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4604	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4605
4606	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4607	if (error != 0) {
4608		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4609		    error);
4610		return !error;
4611	}
4612
4613	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4614	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4615		kflags |= WPI_KFLAG_MULTICAST;
4616		node.kflags = htole16(kflags);
4617
4618		goto again;
4619	}
4620
4621	return 1;
4622}
4623
4624static void
4625wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4626{
4627	const struct ieee80211_key *k = arg;
4628	struct ieee80211vap *vap = ni->ni_vap;
4629	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4630	struct wpi_node *wn = WPI_NODE(ni);
4631	int error;
4632
4633	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4634		return;
4635
4636	WPI_NT_LOCK(sc);
4637	error = wpi_del_key(ni, k);
4638	WPI_NT_UNLOCK(sc);
4639
4640	if (error == 0) {
4641		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4642		    __func__);
4643	}
4644}
4645
4646static int
4647wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4648    int set)
4649{
4650	struct ieee80211com *ic = vap->iv_ic;
4651	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4652	struct wpi_vap *wvp = WPI_VAP(vap);
4653	struct ieee80211_node *ni;
4654	int error, ni_ref = 0;
4655
4656	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4657
4658	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4659		/* Not for us. */
4660		return 1;
4661	}
4662
4663	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4664		/* XMIT keys are handled in wpi_tx_data(). */
4665		return 1;
4666	}
4667
4668	/* Handle group keys. */
4669	if (&vap->iv_nw_keys[0] <= k &&
4670	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4671		WPI_NT_LOCK(sc);
4672		if (set)
4673			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4674		else
4675			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4676		WPI_NT_UNLOCK(sc);
4677
4678		if (vap->iv_state == IEEE80211_S_RUN) {
4679			ieee80211_iterate_nodes(&ic->ic_sta,
4680			    set ? wpi_load_key_cb : wpi_del_key_cb,
4681			    __DECONST(void *, k));
4682		}
4683
4684		return 1;
4685	}
4686
4687	switch (vap->iv_opmode) {
4688	case IEEE80211_M_STA:
4689		ni = vap->iv_bss;
4690		break;
4691
4692	case IEEE80211_M_IBSS:
4693	case IEEE80211_M_AHDEMO:
4694	case IEEE80211_M_HOSTAP:
4695		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4696		if (ni == NULL)
4697			return 0;	/* should not happen */
4698
4699		ni_ref = 1;
4700		break;
4701
4702	default:
4703		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4704		    vap->iv_opmode);
4705		return 0;
4706	}
4707
4708	WPI_NT_LOCK(sc);
4709	if (set)
4710		error = wpi_load_key(ni, k);
4711	else
4712		error = wpi_del_key(ni, k);
4713	WPI_NT_UNLOCK(sc);
4714
4715	if (ni_ref)
4716		ieee80211_node_decref(ni);
4717
4718	return error;
4719}
4720
4721static int
4722wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4723    const uint8_t mac[IEEE80211_ADDR_LEN])
4724{
4725	return wpi_process_key(vap, k, 1);
4726}
4727
4728static int
4729wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4730{
4731	return wpi_process_key(vap, k, 0);
4732}
4733
4734/*
4735 * This function is called after the runtime firmware notifies us of its
4736 * readiness (called in a process context).
4737 */
4738static int
4739wpi_post_alive(struct wpi_softc *sc)
4740{
4741	int ntries, error;
4742
4743	/* Check (again) that the radio is not disabled. */
4744	if ((error = wpi_nic_lock(sc)) != 0)
4745		return error;
4746
4747	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4748
4749	/* NB: Runtime firmware must be up and running. */
4750	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4751		device_printf(sc->sc_dev,
4752		    "RF switch: radio disabled (%s)\n", __func__);
4753		wpi_nic_unlock(sc);
4754		return EPERM;   /* :-) */
4755	}
4756	wpi_nic_unlock(sc);
4757
4758	/* Wait for thermal sensor to calibrate. */
4759	for (ntries = 0; ntries < 1000; ntries++) {
4760		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4761			break;
4762		DELAY(10);
4763	}
4764
4765	if (ntries == 1000) {
4766		device_printf(sc->sc_dev,
4767		    "timeout waiting for thermal sensor calibration\n");
4768		return ETIMEDOUT;
4769	}
4770
4771	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4772	return 0;
4773}
4774
4775/*
4776 * The firmware boot code is small and is intended to be copied directly into
4777 * the NIC internal memory (no DMA transfer).
4778 */
4779static int
4780wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4781{
4782	int error, ntries;
4783
4784	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4785
4786	size /= sizeof (uint32_t);
4787
4788	if ((error = wpi_nic_lock(sc)) != 0)
4789		return error;
4790
4791	/* Copy microcode image into NIC memory. */
4792	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4793	    (const uint32_t *)ucode, size);
4794
4795	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4796	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4797	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4798
4799	/* Start boot load now. */
4800	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4801
4802	/* Wait for transfer to complete. */
4803	for (ntries = 0; ntries < 1000; ntries++) {
4804		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4805		DPRINTF(sc, WPI_DEBUG_HW,
4806		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4807		    WPI_FH_TX_STATUS_IDLE(6),
4808		    status & WPI_FH_TX_STATUS_IDLE(6));
4809		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4810			DPRINTF(sc, WPI_DEBUG_HW,
4811			    "Status Match! - ntries = %d\n", ntries);
4812			break;
4813		}
4814		DELAY(10);
4815	}
4816	if (ntries == 1000) {
4817		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4818		    __func__);
4819		wpi_nic_unlock(sc);
4820		return ETIMEDOUT;
4821	}
4822
4823	/* Enable boot after power up. */
4824	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4825
4826	wpi_nic_unlock(sc);
4827	return 0;
4828}
4829
4830static int
4831wpi_load_firmware(struct wpi_softc *sc)
4832{
4833	struct wpi_fw_info *fw = &sc->fw;
4834	struct wpi_dma_info *dma = &sc->fw_dma;
4835	int error;
4836
4837	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4838
4839	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4840	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4841	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4842	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4843	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4844
4845	/* Tell adapter where to find initialization sections. */
4846	if ((error = wpi_nic_lock(sc)) != 0)
4847		return error;
4848	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4849	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4850	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4851	    dma->paddr + WPI_FW_DATA_MAXSZ);
4852	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4853	wpi_nic_unlock(sc);
4854
4855	/* Load firmware boot code. */
4856	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4857	if (error != 0) {
4858		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4859		    __func__);
4860		return error;
4861	}
4862
4863	/* Now press "execute". */
4864	WPI_WRITE(sc, WPI_RESET, 0);
4865
4866	/* Wait at most one second for first alive notification. */
4867	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4868		device_printf(sc->sc_dev,
4869		    "%s: timeout waiting for adapter to initialize, error %d\n",
4870		    __func__, error);
4871		return error;
4872	}
4873
4874	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4875	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4876	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4877	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4878	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4879
4880	/* Tell adapter where to find runtime sections. */
4881	if ((error = wpi_nic_lock(sc)) != 0)
4882		return error;
4883	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4884	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4885	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4886	    dma->paddr + WPI_FW_DATA_MAXSZ);
4887	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4888	    WPI_FW_UPDATED | fw->main.textsz);
4889	wpi_nic_unlock(sc);
4890
4891	return 0;
4892}
4893
4894static int
4895wpi_read_firmware(struct wpi_softc *sc)
4896{
4897	const struct firmware *fp;
4898	struct wpi_fw_info *fw = &sc->fw;
4899	const struct wpi_firmware_hdr *hdr;
4900	int error;
4901
4902	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4903
4904	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4905	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4906
4907	WPI_UNLOCK(sc);
4908	fp = firmware_get(WPI_FW_NAME);
4909	WPI_LOCK(sc);
4910
4911	if (fp == NULL) {
4912		device_printf(sc->sc_dev,
4913		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4914		return EINVAL;
4915	}
4916
4917	sc->fw_fp = fp;
4918
4919	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4920		device_printf(sc->sc_dev,
4921		    "firmware file too short: %zu bytes\n", fp->datasize);
4922		error = EINVAL;
4923		goto fail;
4924	}
4925
4926	fw->size = fp->datasize;
4927	fw->data = (const uint8_t *)fp->data;
4928
4929	/* Extract firmware header information. */
4930	hdr = (const struct wpi_firmware_hdr *)fw->data;
4931
4932	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4933	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4934
4935	fw->main.textsz = le32toh(hdr->rtextsz);
4936	fw->main.datasz = le32toh(hdr->rdatasz);
4937	fw->init.textsz = le32toh(hdr->itextsz);
4938	fw->init.datasz = le32toh(hdr->idatasz);
4939	fw->boot.textsz = le32toh(hdr->btextsz);
4940	fw->boot.datasz = 0;
4941
4942	/* Sanity-check firmware header. */
4943	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4944	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4945	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4946	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4947	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4948	    (fw->boot.textsz & 3) != 0) {
4949		device_printf(sc->sc_dev, "invalid firmware header\n");
4950		error = EINVAL;
4951		goto fail;
4952	}
4953
4954	/* Check that all firmware sections fit. */
4955	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4956	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4957		device_printf(sc->sc_dev,
4958		    "firmware file too short: %zu bytes\n", fw->size);
4959		error = EINVAL;
4960		goto fail;
4961	}
4962
4963	/* Get pointers to firmware sections. */
4964	fw->main.text = (const uint8_t *)(hdr + 1);
4965	fw->main.data = fw->main.text + fw->main.textsz;
4966	fw->init.text = fw->main.data + fw->main.datasz;
4967	fw->init.data = fw->init.text + fw->init.textsz;
4968	fw->boot.text = fw->init.data + fw->init.datasz;
4969
4970	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4971	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4972	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4973	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4974	    fw->main.textsz, fw->main.datasz,
4975	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4976
4977	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4978	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4979	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4980	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4981	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4982
4983	return 0;
4984
4985fail:	wpi_unload_firmware(sc);
4986	return error;
4987}
4988
4989/**
4990 * Free the referenced firmware image
4991 */
4992static void
4993wpi_unload_firmware(struct wpi_softc *sc)
4994{
4995	if (sc->fw_fp != NULL) {
4996		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4997		sc->fw_fp = NULL;
4998	}
4999}
5000
5001static int
5002wpi_clock_wait(struct wpi_softc *sc)
5003{
5004	int ntries;
5005
5006	/* Set "initialization complete" bit. */
5007	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5008
5009	/* Wait for clock stabilization. */
5010	for (ntries = 0; ntries < 2500; ntries++) {
5011		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5012			return 0;
5013		DELAY(100);
5014	}
5015	device_printf(sc->sc_dev,
5016	    "%s: timeout waiting for clock stabilization\n", __func__);
5017
5018	return ETIMEDOUT;
5019}
5020
5021static int
5022wpi_apm_init(struct wpi_softc *sc)
5023{
5024	uint32_t reg;
5025	int error;
5026
5027	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5028
5029	/* Disable L0s exit timer (NMI bug workaround). */
5030	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5031	/* Don't wait for ICH L0s (ICH bug workaround). */
5032	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5033
5034	/* Set FH wait threshold to max (HW bug under stress workaround). */
5035	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5036
5037	/* Retrieve PCIe Active State Power Management (ASPM). */
5038	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5039	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5040	if (reg & 0x02)	/* L1 Entry enabled. */
5041		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5042	else
5043		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5044
5045	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5046
5047	/* Wait for clock stabilization before accessing prph. */
5048	if ((error = wpi_clock_wait(sc)) != 0)
5049		return error;
5050
5051	if ((error = wpi_nic_lock(sc)) != 0)
5052		return error;
5053	/* Cleanup. */
5054	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5055	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5056
5057	/* Enable DMA and BSM (Bootstrap State Machine). */
5058	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5059	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5060	DELAY(20);
5061	/* Disable L1-Active. */
5062	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5063	wpi_nic_unlock(sc);
5064
5065	return 0;
5066}
5067
5068static void
5069wpi_apm_stop_master(struct wpi_softc *sc)
5070{
5071	int ntries;
5072
5073	/* Stop busmaster DMA activity. */
5074	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5075
5076	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5077	    WPI_GP_CNTRL_MAC_PS)
5078		return; /* Already asleep. */
5079
5080	for (ntries = 0; ntries < 100; ntries++) {
5081		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5082			return;
5083		DELAY(10);
5084	}
5085	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5086	    __func__);
5087}
5088
5089static void
5090wpi_apm_stop(struct wpi_softc *sc)
5091{
5092	wpi_apm_stop_master(sc);
5093
5094	/* Reset the entire device. */
5095	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5096	DELAY(10);
5097	/* Clear "initialization complete" bit. */
5098	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5099}
5100
5101static void
5102wpi_nic_config(struct wpi_softc *sc)
5103{
5104	uint32_t rev;
5105
5106	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5107
5108	/* voodoo from the Linux "driver".. */
5109	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5110	if ((rev & 0xc0) == 0x40)
5111		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5112	else if (!(rev & 0x80))
5113		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5114
5115	if (sc->cap == 0x80)
5116		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5117
5118	if ((sc->rev & 0xf0) == 0xd0)
5119		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5120	else
5121		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5122
5123	if (sc->type > 1)
5124		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5125}
5126
5127static int
5128wpi_hw_init(struct wpi_softc *sc)
5129{
5130	int chnl, ntries, error;
5131
5132	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5133
5134	/* Clear pending interrupts. */
5135	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5136
5137	if ((error = wpi_apm_init(sc)) != 0) {
5138		device_printf(sc->sc_dev,
5139		    "%s: could not power ON adapter, error %d\n", __func__,
5140		    error);
5141		return error;
5142	}
5143
5144	/* Select VMAIN power source. */
5145	if ((error = wpi_nic_lock(sc)) != 0)
5146		return error;
5147	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5148	wpi_nic_unlock(sc);
5149	/* Spin until VMAIN gets selected. */
5150	for (ntries = 0; ntries < 5000; ntries++) {
5151		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5152			break;
5153		DELAY(10);
5154	}
5155	if (ntries == 5000) {
5156		device_printf(sc->sc_dev, "timeout selecting power source\n");
5157		return ETIMEDOUT;
5158	}
5159
5160	/* Perform adapter initialization. */
5161	wpi_nic_config(sc);
5162
5163	/* Initialize RX ring. */
5164	if ((error = wpi_nic_lock(sc)) != 0)
5165		return error;
5166	/* Set physical address of RX ring. */
5167	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5168	/* Set physical address of RX read pointer. */
5169	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5170	    offsetof(struct wpi_shared, next));
5171	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5172	/* Enable RX. */
5173	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5174	    WPI_FH_RX_CONFIG_DMA_ENA |
5175	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5176	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5177	    WPI_FH_RX_CONFIG_MAXFRAG |
5178	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5179	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5180	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5181	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5182	wpi_nic_unlock(sc);
5183	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5184
5185	/* Initialize TX rings. */
5186	if ((error = wpi_nic_lock(sc)) != 0)
5187		return error;
5188	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5189	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5190	/* Enable all 6 TX rings. */
5191	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5192	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5193	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5194	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5195	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5196	/* Set physical address of TX rings. */
5197	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5198	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5199
5200	/* Enable all DMA channels. */
5201	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5202		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5203		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5204		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5205	}
5206	wpi_nic_unlock(sc);
5207	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5208
5209	/* Clear "radio off" and "commands blocked" bits. */
5210	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5211	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5212
5213	/* Clear pending interrupts. */
5214	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5215	/* Enable interrupts. */
5216	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5217
5218	/* _Really_ make sure "radio off" bit is cleared! */
5219	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5220	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5221
5222	if ((error = wpi_load_firmware(sc)) != 0) {
5223		device_printf(sc->sc_dev,
5224		    "%s: could not load firmware, error %d\n", __func__,
5225		    error);
5226		return error;
5227	}
5228	/* Wait at most one second for firmware alive notification. */
5229	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5230		device_printf(sc->sc_dev,
5231		    "%s: timeout waiting for adapter to initialize, error %d\n",
5232		    __func__, error);
5233		return error;
5234	}
5235
5236	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5237
5238	/* Do post-firmware initialization. */
5239	return wpi_post_alive(sc);
5240}
5241
5242static void
5243wpi_hw_stop(struct wpi_softc *sc)
5244{
5245	int chnl, qid, ntries;
5246
5247	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5248
5249	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5250		wpi_nic_lock(sc);
5251
5252	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5253
5254	/* Disable interrupts. */
5255	WPI_WRITE(sc, WPI_INT_MASK, 0);
5256	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5257	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5258
5259	/* Make sure we no longer hold the NIC lock. */
5260	wpi_nic_unlock(sc);
5261
5262	if (wpi_nic_lock(sc) == 0) {
5263		/* Stop TX scheduler. */
5264		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5265		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5266
5267		/* Stop all DMA channels. */
5268		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5269			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5270			for (ntries = 0; ntries < 200; ntries++) {
5271				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5272				    WPI_FH_TX_STATUS_IDLE(chnl))
5273					break;
5274				DELAY(10);
5275			}
5276		}
5277		wpi_nic_unlock(sc);
5278	}
5279
5280	/* Stop RX ring. */
5281	wpi_reset_rx_ring(sc);
5282
5283	/* Reset all TX rings. */
5284	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5285		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5286
5287	if (wpi_nic_lock(sc) == 0) {
5288		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5289		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5290		wpi_nic_unlock(sc);
5291	}
5292	DELAY(5);
5293	/* Power OFF adapter. */
5294	wpi_apm_stop(sc);
5295}
5296
5297static void
5298wpi_radio_on(void *arg0, int pending)
5299{
5300	struct wpi_softc *sc = arg0;
5301	struct ifnet *ifp = sc->sc_ifp;
5302	struct ieee80211com *ic = ifp->if_l2com;
5303	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5304
5305	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5306
5307	if (vap != NULL) {
5308		wpi_init(sc);
5309		ieee80211_init(vap);
5310	}
5311
5312	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5313		WPI_LOCK(sc);
5314		callout_stop(&sc->watchdog_rfkill);
5315		WPI_UNLOCK(sc);
5316	}
5317}
5318
5319static void
5320wpi_radio_off(void *arg0, int pending)
5321{
5322	struct wpi_softc *sc = arg0;
5323	struct ifnet *ifp = sc->sc_ifp;
5324	struct ieee80211com *ic = ifp->if_l2com;
5325	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5326
5327	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5328
5329	wpi_stop(sc);
5330	if (vap != NULL)
5331		ieee80211_stop(vap);
5332
5333	WPI_LOCK(sc);
5334	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5335	WPI_UNLOCK(sc);
5336}
5337
5338static void
5339wpi_init(void *arg)
5340{
5341	struct wpi_softc *sc = arg;
5342	struct ifnet *ifp = sc->sc_ifp;
5343	struct ieee80211com *ic = ifp->if_l2com;
5344	int error;
5345
5346	WPI_LOCK(sc);
5347
5348	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5349
5350	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5351		goto end;
5352
5353	/* Check that the radio is not disabled by hardware switch. */
5354	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5355		device_printf(sc->sc_dev,
5356		    "RF switch: radio disabled (%s)\n", __func__);
5357		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5358		    sc);
5359		goto end;
5360	}
5361
5362	/* Read firmware images from the filesystem. */
5363	if ((error = wpi_read_firmware(sc)) != 0) {
5364		device_printf(sc->sc_dev,
5365		    "%s: could not read firmware, error %d\n", __func__,
5366		    error);
5367		goto fail;
5368	}
5369
5370	/* Initialize hardware and upload firmware. */
5371	error = wpi_hw_init(sc);
5372	wpi_unload_firmware(sc);
5373	if (error != 0) {
5374		device_printf(sc->sc_dev,
5375		    "%s: could not initialize hardware, error %d\n", __func__,
5376		    error);
5377		goto fail;
5378	}
5379
5380	/* Configure adapter now that it is ready. */
5381	sc->txq_active = 1;
5382	if ((error = wpi_config(sc)) != 0) {
5383		device_printf(sc->sc_dev,
5384		    "%s: could not configure device, error %d\n", __func__,
5385		    error);
5386		goto fail;
5387	}
5388
5389	IF_LOCK(&ifp->if_snd);
5390	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5391	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5392	IF_UNLOCK(&ifp->if_snd);
5393
5394	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5395
5396	WPI_UNLOCK(sc);
5397
5398	ieee80211_start_all(ic);
5399
5400	return;
5401
5402fail:	wpi_stop_locked(sc);
5403end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5404	WPI_UNLOCK(sc);
5405}
5406
5407static void
5408wpi_stop_locked(struct wpi_softc *sc)
5409{
5410	struct ifnet *ifp = sc->sc_ifp;
5411
5412	WPI_LOCK_ASSERT(sc);
5413
5414	WPI_TXQ_LOCK(sc);
5415	sc->txq_active = 0;
5416	WPI_TXQ_UNLOCK(sc);
5417
5418	WPI_TXQ_STATE_LOCK(sc);
5419	callout_stop(&sc->tx_timeout);
5420	WPI_TXQ_STATE_UNLOCK(sc);
5421
5422	WPI_RXON_LOCK(sc);
5423	callout_stop(&sc->scan_timeout);
5424	callout_stop(&sc->calib_to);
5425	WPI_RXON_UNLOCK(sc);
5426
5427	IF_LOCK(&ifp->if_snd);
5428	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5429	IF_UNLOCK(&ifp->if_snd);
5430
5431	/* Power OFF hardware. */
5432	wpi_hw_stop(sc);
5433}
5434
5435static void
5436wpi_stop(struct wpi_softc *sc)
5437{
5438	WPI_LOCK(sc);
5439	wpi_stop_locked(sc);
5440	WPI_UNLOCK(sc);
5441}
5442
5443/*
5444 * Callback from net80211 to start a scan.
5445 */
5446static void
5447wpi_scan_start(struct ieee80211com *ic)
5448{
5449	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5450
5451	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5452}
5453
5454/*
5455 * Callback from net80211 to terminate a scan.
5456 */
5457static void
5458wpi_scan_end(struct ieee80211com *ic)
5459{
5460	struct ifnet *ifp = ic->ic_ifp;
5461	struct wpi_softc *sc = ifp->if_softc;
5462	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5463
5464	if (vap->iv_state == IEEE80211_S_RUN)
5465		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5466}
5467
5468/**
5469 * Called by the net80211 framework to indicate to the driver
5470 * that the channel should be changed
5471 */
5472static void
5473wpi_set_channel(struct ieee80211com *ic)
5474{
5475	const struct ieee80211_channel *c = ic->ic_curchan;
5476	struct ifnet *ifp = ic->ic_ifp;
5477	struct wpi_softc *sc = ifp->if_softc;
5478	int error;
5479
5480	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5481
5482	WPI_LOCK(sc);
5483	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5484	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5485	WPI_UNLOCK(sc);
5486	WPI_TX_LOCK(sc);
5487	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5488	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5489	WPI_TX_UNLOCK(sc);
5490
5491	/*
5492	 * Only need to set the channel in Monitor mode. AP scanning and auth
5493	 * are already taken care of by their respective firmware commands.
5494	 */
5495	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5496		WPI_RXON_LOCK(sc);
5497		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5498		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5499			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5500			    WPI_RXON_24GHZ);
5501		} else {
5502			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5503			    WPI_RXON_24GHZ);
5504		}
5505		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5506			device_printf(sc->sc_dev,
5507			    "%s: error %d setting channel\n", __func__,
5508			    error);
5509		WPI_RXON_UNLOCK(sc);
5510	}
5511}
5512
5513/**
5514 * Called by net80211 to indicate that we need to scan the current
5515 * channel. The channel is previously be set via the wpi_set_channel
5516 * callback.
5517 */
5518static void
5519wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5520{
5521	struct ieee80211vap *vap = ss->ss_vap;
5522	struct ieee80211com *ic = vap->iv_ic;
5523	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5524	int error;
5525
5526	WPI_RXON_LOCK(sc);
5527	error = wpi_scan(sc, ic->ic_curchan);
5528	WPI_RXON_UNLOCK(sc);
5529	if (error != 0)
5530		ieee80211_cancel_scan(vap);
5531}
5532
5533/**
5534 * Called by the net80211 framework to indicate
5535 * the minimum dwell time has been met, terminate the scan.
5536 * We don't actually terminate the scan as the firmware will notify
5537 * us when it's finished and we have no way to interrupt it.
5538 */
5539static void
5540wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5541{
5542	/* NB: don't try to abort scan; wait for firmware to finish */
5543}
5544
5545static void
5546wpi_hw_reset(void *arg, int pending)
5547{
5548	struct wpi_softc *sc = arg;
5549	struct ifnet *ifp = sc->sc_ifp;
5550	struct ieee80211com *ic = ifp->if_l2com;
5551	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5552
5553	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5554
5555	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5556		ieee80211_cancel_scan(vap);
5557
5558	wpi_stop(sc);
5559	if (vap != NULL)
5560		ieee80211_stop(vap);
5561	wpi_init(sc);
5562	if (vap != NULL)
5563		ieee80211_init(vap);
5564}
5565