if_wpi.c revision 280112
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280112 2015-03-15 21:25:06Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_reset_rx_ring(struct wpi_softc *);
156static void	wpi_free_rx_ring(struct wpi_softc *);
157static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158		    int);
159static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162static int	wpi_read_eeprom(struct wpi_softc *,
163		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
164static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
165static void	wpi_read_eeprom_band(struct wpi_softc *, int);
166static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
167static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
168		    struct ieee80211_channel *);
169static int	wpi_setregdomain(struct ieee80211com *,
170		    struct ieee80211_regdomain *, int,
171		    struct ieee80211_channel[]);
172static int	wpi_read_eeprom_group(struct wpi_softc *, int);
173static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
174static void	wpi_node_free(struct ieee80211_node *);
175static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
176		    const uint8_t mac[IEEE80211_ADDR_LEN]);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_calib_timeout(void *);
179static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
182		    struct wpi_rx_data *);
183static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
184static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
185static void	wpi_notif_intr(struct wpi_softc *);
186static void	wpi_wakeup_intr(struct wpi_softc *);
187#ifdef WPI_DEBUG
188static void	wpi_debug_registers(struct wpi_softc *);
189#endif
190static void	wpi_fatal_intr(struct wpi_softc *);
191static void	wpi_intr(void *);
192static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
193static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
194		    struct ieee80211_node *);
195static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
196		    struct ieee80211_node *,
197		    const struct ieee80211_bpf_params *);
198static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
199		    const struct ieee80211_bpf_params *);
200static void	wpi_start(struct ifnet *);
201static void	wpi_start_task(void *, int);
202static void	wpi_watchdog_rfkill(void *);
203static void	wpi_scan_timeout(void *);
204static void	wpi_tx_timeout(void *);
205static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
206static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
207static int	wpi_mrr_setup(struct wpi_softc *);
208static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
209static int	wpi_add_broadcast_node(struct wpi_softc *, int);
210static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
211static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
212static int	wpi_updateedca(struct ieee80211com *);
213static void	wpi_set_promisc(struct wpi_softc *);
214static void	wpi_update_promisc(struct ifnet *);
215static void	wpi_update_mcast(struct ifnet *);
216static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
217static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
218static void	wpi_power_calibration(struct wpi_softc *);
219static int	wpi_set_txpower(struct wpi_softc *, int);
220static int	wpi_get_power_index(struct wpi_softc *,
221		    struct wpi_power_group *, struct ieee80211_channel *, int);
222static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
223static int	wpi_send_btcoex(struct wpi_softc *);
224static int	wpi_send_rxon(struct wpi_softc *, int, int);
225static int	wpi_config(struct wpi_softc *);
226static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
227		    struct ieee80211_channel *, uint8_t);
228static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
229static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
230		    struct ieee80211_channel *);
231static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
232static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
233static int	wpi_config_beacon(struct wpi_vap *);
234static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
235static void	wpi_update_beacon(struct ieee80211vap *, int);
236static void	wpi_newassoc(struct ieee80211_node *, int);
237static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
238static int	wpi_load_key(struct ieee80211_node *,
239		    const struct ieee80211_key *);
240static void	wpi_load_key_cb(void *, struct ieee80211_node *);
241static int	wpi_set_global_keys(struct ieee80211_node *);
242static int	wpi_del_key(struct ieee80211_node *,
243		    const struct ieee80211_key *);
244static void	wpi_del_key_cb(void *, struct ieee80211_node *);
245static int	wpi_process_key(struct ieee80211vap *,
246		    const struct ieee80211_key *, int);
247static int	wpi_key_set(struct ieee80211vap *,
248		    const struct ieee80211_key *,
249		    const uint8_t mac[IEEE80211_ADDR_LEN]);
250static int	wpi_key_delete(struct ieee80211vap *,
251		    const struct ieee80211_key *);
252static int	wpi_post_alive(struct wpi_softc *);
253static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
254static int	wpi_load_firmware(struct wpi_softc *);
255static int	wpi_read_firmware(struct wpi_softc *);
256static void	wpi_unload_firmware(struct wpi_softc *);
257static int	wpi_clock_wait(struct wpi_softc *);
258static int	wpi_apm_init(struct wpi_softc *);
259static void	wpi_apm_stop_master(struct wpi_softc *);
260static void	wpi_apm_stop(struct wpi_softc *);
261static void	wpi_nic_config(struct wpi_softc *);
262static int	wpi_hw_init(struct wpi_softc *);
263static void	wpi_hw_stop(struct wpi_softc *);
264static void	wpi_radio_on(void *, int);
265static void	wpi_radio_off(void *, int);
266static void	wpi_init(void *);
267static void	wpi_stop_locked(struct wpi_softc *);
268static void	wpi_stop(struct wpi_softc *);
269static void	wpi_scan_start(struct ieee80211com *);
270static void	wpi_scan_end(struct ieee80211com *);
271static void	wpi_set_channel(struct ieee80211com *);
272static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
273static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
274static void	wpi_hw_reset(void *, int);
275
276static device_method_t wpi_methods[] = {
277	/* Device interface */
278	DEVMETHOD(device_probe,		wpi_probe),
279	DEVMETHOD(device_attach,	wpi_attach),
280	DEVMETHOD(device_detach,	wpi_detach),
281	DEVMETHOD(device_shutdown,	wpi_shutdown),
282	DEVMETHOD(device_suspend,	wpi_suspend),
283	DEVMETHOD(device_resume,	wpi_resume),
284
285	DEVMETHOD_END
286};
287
288static driver_t wpi_driver = {
289	"wpi",
290	wpi_methods,
291	sizeof (struct wpi_softc)
292};
293static devclass_t wpi_devclass;
294
295DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
296
297MODULE_VERSION(wpi, 1);
298
299MODULE_DEPEND(wpi, pci,  1, 1, 1);
300MODULE_DEPEND(wpi, wlan, 1, 1, 1);
301MODULE_DEPEND(wpi, firmware, 1, 1, 1);
302
303static int
304wpi_probe(device_t dev)
305{
306	const struct wpi_ident *ident;
307
308	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
309		if (pci_get_vendor(dev) == ident->vendor &&
310		    pci_get_device(dev) == ident->device) {
311			device_set_desc(dev, ident->name);
312			return (BUS_PROBE_DEFAULT);
313		}
314	}
315	return ENXIO;
316}
317
318static int
319wpi_attach(device_t dev)
320{
321	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
322	struct ieee80211com *ic;
323	struct ifnet *ifp;
324	int i, error, rid;
325#ifdef WPI_DEBUG
326	int supportsa = 1;
327	const struct wpi_ident *ident;
328#endif
329	uint8_t macaddr[IEEE80211_ADDR_LEN];
330
331	sc->sc_dev = dev;
332
333#ifdef WPI_DEBUG
334	error = resource_int_value(device_get_name(sc->sc_dev),
335	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
336	if (error != 0)
337		sc->sc_debug = 0;
338#else
339	sc->sc_debug = 0;
340#endif
341
342	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
343
344	/*
345	 * Get the offset of the PCI Express Capability Structure in PCI
346	 * Configuration Space.
347	 */
348	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
349	if (error != 0) {
350		device_printf(dev, "PCIe capability structure not found!\n");
351		return error;
352	}
353
354	/*
355	 * Some card's only support 802.11b/g not a, check to see if
356	 * this is one such card. A 0x0 in the subdevice table indicates
357	 * the entire subdevice range is to be ignored.
358	 */
359#ifdef WPI_DEBUG
360	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
361		if (ident->subdevice &&
362		    pci_get_subdevice(dev) == ident->subdevice) {
363		    supportsa = 0;
364		    break;
365		}
366	}
367#endif
368
369	/* Clear device-specific "PCI retry timeout" register (41h). */
370	pci_write_config(dev, 0x41, 0, 1);
371
372	/* Enable bus-mastering. */
373	pci_enable_busmaster(dev);
374
375	rid = PCIR_BAR(0);
376	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
377	    RF_ACTIVE);
378	if (sc->mem == NULL) {
379		device_printf(dev, "can't map mem space\n");
380		return ENOMEM;
381	}
382	sc->sc_st = rman_get_bustag(sc->mem);
383	sc->sc_sh = rman_get_bushandle(sc->mem);
384
385	i = 1;
386	rid = 0;
387	if (pci_alloc_msi(dev, &i) == 0)
388		rid = 1;
389	/* Install interrupt handler. */
390	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
391	    (rid != 0 ? 0 : RF_SHAREABLE));
392	if (sc->irq == NULL) {
393		device_printf(dev, "can't map interrupt\n");
394		error = ENOMEM;
395		goto fail;
396	}
397
398	WPI_LOCK_INIT(sc);
399	WPI_RXON_LOCK_INIT(sc);
400	WPI_NT_LOCK_INIT(sc);
401	WPI_TXQ_LOCK_INIT(sc);
402	WPI_TXQ_STATE_LOCK_INIT(sc);
403
404	/* Allocate DMA memory for firmware transfers. */
405	if ((error = wpi_alloc_fwmem(sc)) != 0) {
406		device_printf(dev,
407		    "could not allocate memory for firmware, error %d\n",
408		    error);
409		goto fail;
410	}
411
412	/* Allocate shared page. */
413	if ((error = wpi_alloc_shared(sc)) != 0) {
414		device_printf(dev, "could not allocate shared page\n");
415		goto fail;
416	}
417
418	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
419	for (i = 0; i < WPI_NTXQUEUES; i++) {
420		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
421			device_printf(dev,
422			    "could not allocate TX ring %d, error %d\n", i,
423			    error);
424			goto fail;
425		}
426	}
427
428	/* Allocate RX ring. */
429	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
430		device_printf(dev, "could not allocate RX ring, error %d\n",
431		    error);
432		goto fail;
433	}
434
435	/* Clear pending interrupts. */
436	WPI_WRITE(sc, WPI_INT, 0xffffffff);
437
438	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
439	if (ifp == NULL) {
440		device_printf(dev, "can not allocate ifnet structure\n");
441		goto fail;
442	}
443
444	ic = ifp->if_l2com;
445	ic->ic_ifp = ifp;
446	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
447	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
448
449	/* Set device capabilities. */
450	ic->ic_caps =
451		  IEEE80211_C_STA		/* station mode supported */
452		| IEEE80211_C_IBSS		/* IBSS mode supported */
453		| IEEE80211_C_HOSTAP		/* Host access point mode */
454		| IEEE80211_C_MONITOR		/* monitor mode supported */
455		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
456		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
457		| IEEE80211_C_TXPMGT		/* tx power management */
458		| IEEE80211_C_SHSLOT		/* short slot time supported */
459		| IEEE80211_C_WPA		/* 802.11i */
460		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
461		| IEEE80211_C_WME		/* 802.11e */
462		| IEEE80211_C_PMGT		/* Station-side power mgmt */
463		;
464
465	ic->ic_cryptocaps =
466		  IEEE80211_CRYPTO_AES_CCM;
467
468	/*
469	 * Read in the eeprom and also setup the channels for
470	 * net80211. We don't set the rates as net80211 does this for us
471	 */
472	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
473		device_printf(dev, "could not read EEPROM, error %d\n",
474		    error);
475		goto fail;
476	}
477
478#ifdef WPI_DEBUG
479	if (bootverbose) {
480		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
481		    sc->domain);
482		device_printf(sc->sc_dev, "Hardware Type: %c\n",
483		    sc->type > 1 ? 'B': '?');
484		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
485		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
486		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
487		    supportsa ? "does" : "does not");
488
489		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
490		   check what sc->rev really represents - benjsc 20070615 */
491	}
492#endif
493
494	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
495	ifp->if_softc = sc;
496	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
497	ifp->if_init = wpi_init;
498	ifp->if_ioctl = wpi_ioctl;
499	ifp->if_start = wpi_start;
500	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
501	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
502	IFQ_SET_READY(&ifp->if_snd);
503
504	ieee80211_ifattach(ic, macaddr);
505	ic->ic_vap_create = wpi_vap_create;
506	ic->ic_vap_delete = wpi_vap_delete;
507	ic->ic_raw_xmit = wpi_raw_xmit;
508	ic->ic_node_alloc = wpi_node_alloc;
509	sc->sc_node_free = ic->ic_node_free;
510	ic->ic_node_free = wpi_node_free;
511	ic->ic_wme.wme_update = wpi_updateedca;
512	ic->ic_update_promisc = wpi_update_promisc;
513	ic->ic_update_mcast = wpi_update_mcast;
514	ic->ic_newassoc = wpi_newassoc;
515	ic->ic_scan_start = wpi_scan_start;
516	ic->ic_scan_end = wpi_scan_end;
517	ic->ic_set_channel = wpi_set_channel;
518	sc->sc_scan_curchan = ic->ic_scan_curchan;
519	ic->ic_scan_curchan = wpi_scan_curchan;
520	ic->ic_scan_mindwell = wpi_scan_mindwell;
521	ic->ic_setregdomain = wpi_setregdomain;
522
523	wpi_radiotap_attach(sc);
524
525	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
526	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
527	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
528	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
529	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
530	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
531	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
532	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
533
534	wpi_sysctlattach(sc);
535
536	/*
537	 * Hook our interrupt after all initialization is complete.
538	 */
539	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
540	    NULL, wpi_intr, sc, &sc->sc_ih);
541	if (error != 0) {
542		device_printf(dev, "can't establish interrupt, error %d\n",
543		    error);
544		goto fail;
545	}
546
547	if (bootverbose)
548		ieee80211_announce(ic);
549
550#ifdef WPI_DEBUG
551	if (sc->sc_debug & WPI_DEBUG_HW)
552		ieee80211_announce_channels(ic);
553#endif
554
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
556	return 0;
557
558fail:	wpi_detach(dev);
559	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
560	return error;
561}
562
563/*
564 * Attach the interface to 802.11 radiotap.
565 */
566static void
567wpi_radiotap_attach(struct wpi_softc *sc)
568{
569	struct ifnet *ifp = sc->sc_ifp;
570	struct ieee80211com *ic = ifp->if_l2com;
571	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
572	ieee80211_radiotap_attach(ic,
573	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
574		WPI_TX_RADIOTAP_PRESENT,
575	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
576		WPI_RX_RADIOTAP_PRESENT);
577	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
578}
579
580static void
581wpi_sysctlattach(struct wpi_softc *sc)
582{
583#ifdef WPI_DEBUG
584	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
585	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
586
587	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
588	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
589		"control debugging printfs");
590#endif
591}
592
593static void
594wpi_init_beacon(struct wpi_vap *wvp)
595{
596	struct wpi_buf *bcn = &wvp->wv_bcbuf;
597	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
598
599	cmd->id = WPI_ID_BROADCAST;
600	cmd->ofdm_mask = 0xff;
601	cmd->cck_mask = 0x0f;
602	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
603	cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
604
605	bcn->code = WPI_CMD_SET_BEACON;
606	bcn->ac = WPI_CMD_QUEUE_NUM;
607	bcn->size = sizeof(struct wpi_cmd_beacon);
608}
609
610static struct ieee80211vap *
611wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
612    enum ieee80211_opmode opmode, int flags,
613    const uint8_t bssid[IEEE80211_ADDR_LEN],
614    const uint8_t mac[IEEE80211_ADDR_LEN])
615{
616	struct wpi_vap *wvp;
617	struct ieee80211vap *vap;
618
619	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
620		return NULL;
621
622	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
623	    M_80211_VAP, M_NOWAIT | M_ZERO);
624	if (wvp == NULL)
625		return NULL;
626	vap = &wvp->wv_vap;
627	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
628
629	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
630		WPI_VAP_LOCK_INIT(wvp);
631		wpi_init_beacon(wvp);
632	}
633
634	/* Override with driver methods. */
635	vap->iv_key_set = wpi_key_set;
636	vap->iv_key_delete = wpi_key_delete;
637	wvp->wv_newstate = vap->iv_newstate;
638	vap->iv_newstate = wpi_newstate;
639	vap->iv_update_beacon = wpi_update_beacon;
640	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
641
642	ieee80211_ratectl_init(vap);
643	/* Complete setup. */
644	ieee80211_vap_attach(vap, ieee80211_media_change,
645	    ieee80211_media_status);
646	ic->ic_opmode = opmode;
647	return vap;
648}
649
650static void
651wpi_vap_delete(struct ieee80211vap *vap)
652{
653	struct wpi_vap *wvp = WPI_VAP(vap);
654	struct wpi_buf *bcn = &wvp->wv_bcbuf;
655	enum ieee80211_opmode opmode = vap->iv_opmode;
656
657	ieee80211_ratectl_deinit(vap);
658	ieee80211_vap_detach(vap);
659
660	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
661		if (bcn->m != NULL)
662			m_freem(bcn->m);
663
664		WPI_VAP_LOCK_DESTROY(wvp);
665	}
666
667	free(wvp, M_80211_VAP);
668}
669
670static int
671wpi_detach(device_t dev)
672{
673	struct wpi_softc *sc = device_get_softc(dev);
674	struct ifnet *ifp = sc->sc_ifp;
675	struct ieee80211com *ic;
676	int qid;
677
678	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
679
680	if (ifp != NULL) {
681		ic = ifp->if_l2com;
682
683		ieee80211_draintask(ic, &sc->sc_reinittask);
684		ieee80211_draintask(ic, &sc->sc_radiooff_task);
685		ieee80211_draintask(ic, &sc->sc_radioon_task);
686		ieee80211_draintask(ic, &sc->sc_start_task);
687
688		wpi_stop(sc);
689
690		callout_drain(&sc->watchdog_rfkill);
691		callout_drain(&sc->tx_timeout);
692		callout_drain(&sc->scan_timeout);
693		callout_drain(&sc->calib_to);
694		ieee80211_ifdetach(ic);
695	}
696
697	/* Uninstall interrupt handler. */
698	if (sc->irq != NULL) {
699		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
700		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
701		    sc->irq);
702		pci_release_msi(dev);
703	}
704
705	if (sc->txq[0].data_dmat) {
706		/* Free DMA resources. */
707		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
708			wpi_free_tx_ring(sc, &sc->txq[qid]);
709
710		wpi_free_rx_ring(sc);
711		wpi_free_shared(sc);
712	}
713
714	if (sc->fw_dma.tag)
715		wpi_free_fwmem(sc);
716
717	if (sc->mem != NULL)
718		bus_release_resource(dev, SYS_RES_MEMORY,
719		    rman_get_rid(sc->mem), sc->mem);
720
721	if (ifp != NULL)
722		if_free(ifp);
723
724	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
725	WPI_TXQ_STATE_LOCK_DESTROY(sc);
726	WPI_TXQ_LOCK_DESTROY(sc);
727	WPI_NT_LOCK_DESTROY(sc);
728	WPI_RXON_LOCK_DESTROY(sc);
729	WPI_LOCK_DESTROY(sc);
730	return 0;
731}
732
733static int
734wpi_shutdown(device_t dev)
735{
736	struct wpi_softc *sc = device_get_softc(dev);
737
738	wpi_stop(sc);
739	return 0;
740}
741
742static int
743wpi_suspend(device_t dev)
744{
745	struct wpi_softc *sc = device_get_softc(dev);
746	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
747
748	ieee80211_suspend_all(ic);
749	return 0;
750}
751
752static int
753wpi_resume(device_t dev)
754{
755	struct wpi_softc *sc = device_get_softc(dev);
756	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
757
758	/* Clear device-specific "PCI retry timeout" register (41h). */
759	pci_write_config(dev, 0x41, 0, 1);
760
761	ieee80211_resume_all(ic);
762	return 0;
763}
764
765/*
766 * Grab exclusive access to NIC memory.
767 */
768static int
769wpi_nic_lock(struct wpi_softc *sc)
770{
771	int ntries;
772
773	/* Request exclusive access to NIC. */
774	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
775
776	/* Spin until we actually get the lock. */
777	for (ntries = 0; ntries < 1000; ntries++) {
778		if ((WPI_READ(sc, WPI_GP_CNTRL) &
779		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
780		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
781			return 0;
782		DELAY(10);
783	}
784
785	device_printf(sc->sc_dev, "could not lock memory\n");
786
787	return ETIMEDOUT;
788}
789
790/*
791 * Release lock on NIC memory.
792 */
793static __inline void
794wpi_nic_unlock(struct wpi_softc *sc)
795{
796	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
797}
798
799static __inline uint32_t
800wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
801{
802	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
803	WPI_BARRIER_READ_WRITE(sc);
804	return WPI_READ(sc, WPI_PRPH_RDATA);
805}
806
807static __inline void
808wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
809{
810	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
811	WPI_BARRIER_WRITE(sc);
812	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
813}
814
815static __inline void
816wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
817{
818	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
819}
820
821static __inline void
822wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
823{
824	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
825}
826
827static __inline void
828wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
829    const uint32_t *data, int count)
830{
831	for (; count > 0; count--, data++, addr += 4)
832		wpi_prph_write(sc, addr, *data);
833}
834
835static __inline uint32_t
836wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
837{
838	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
839	WPI_BARRIER_READ_WRITE(sc);
840	return WPI_READ(sc, WPI_MEM_RDATA);
841}
842
843static __inline void
844wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
845    int count)
846{
847	for (; count > 0; count--, addr += 4)
848		*data++ = wpi_mem_read(sc, addr);
849}
850
851static int
852wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
853{
854	uint8_t *out = data;
855	uint32_t val;
856	int error, ntries;
857
858	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
859
860	if ((error = wpi_nic_lock(sc)) != 0)
861		return error;
862
863	for (; count > 0; count -= 2, addr++) {
864		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
865		for (ntries = 0; ntries < 10; ntries++) {
866			val = WPI_READ(sc, WPI_EEPROM);
867			if (val & WPI_EEPROM_READ_VALID)
868				break;
869			DELAY(5);
870		}
871		if (ntries == 10) {
872			device_printf(sc->sc_dev,
873			    "timeout reading ROM at 0x%x\n", addr);
874			return ETIMEDOUT;
875		}
876		*out++= val >> 16;
877		if (count > 1)
878			*out ++= val >> 24;
879	}
880
881	wpi_nic_unlock(sc);
882
883	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
884
885	return 0;
886}
887
888static void
889wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
890{
891	if (error != 0)
892		return;
893	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
894	*(bus_addr_t *)arg = segs[0].ds_addr;
895}
896
897/*
898 * Allocates a contiguous block of dma memory of the requested size and
899 * alignment.
900 */
901static int
902wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
903    void **kvap, bus_size_t size, bus_size_t alignment)
904{
905	int error;
906
907	dma->tag = NULL;
908	dma->size = size;
909
910	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
911	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
912	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
913	if (error != 0)
914		goto fail;
915
916	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
917	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
918	if (error != 0)
919		goto fail;
920
921	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
922	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
923	if (error != 0)
924		goto fail;
925
926	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
927
928	if (kvap != NULL)
929		*kvap = dma->vaddr;
930
931	return 0;
932
933fail:	wpi_dma_contig_free(dma);
934	return error;
935}
936
937static void
938wpi_dma_contig_free(struct wpi_dma_info *dma)
939{
940	if (dma->vaddr != NULL) {
941		bus_dmamap_sync(dma->tag, dma->map,
942		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
943		bus_dmamap_unload(dma->tag, dma->map);
944		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
945		dma->vaddr = NULL;
946	}
947	if (dma->tag != NULL) {
948		bus_dma_tag_destroy(dma->tag);
949		dma->tag = NULL;
950	}
951}
952
953/*
954 * Allocate a shared page between host and NIC.
955 */
956static int
957wpi_alloc_shared(struct wpi_softc *sc)
958{
959	/* Shared buffer must be aligned on a 4KB boundary. */
960	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
961	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
962}
963
964static void
965wpi_free_shared(struct wpi_softc *sc)
966{
967	wpi_dma_contig_free(&sc->shared_dma);
968}
969
970/*
971 * Allocate DMA-safe memory for firmware transfer.
972 */
973static int
974wpi_alloc_fwmem(struct wpi_softc *sc)
975{
976	/* Must be aligned on a 16-byte boundary. */
977	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
978	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
979}
980
981static void
982wpi_free_fwmem(struct wpi_softc *sc)
983{
984	wpi_dma_contig_free(&sc->fw_dma);
985}
986
987static int
988wpi_alloc_rx_ring(struct wpi_softc *sc)
989{
990	struct wpi_rx_ring *ring = &sc->rxq;
991	bus_size_t size;
992	int i, error;
993
994	ring->cur = 0;
995	ring->update = 0;
996
997	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
998
999	/* Allocate RX descriptors (16KB aligned.) */
1000	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1001	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1002	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1003	if (error != 0) {
1004		device_printf(sc->sc_dev,
1005		    "%s: could not allocate RX ring DMA memory, error %d\n",
1006		    __func__, error);
1007		goto fail;
1008	}
1009
1010	/* Create RX buffer DMA tag. */
1011	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1012	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1013	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1014	    &ring->data_dmat);
1015	if (error != 0) {
1016		device_printf(sc->sc_dev,
1017		    "%s: could not create RX buf DMA tag, error %d\n",
1018		    __func__, error);
1019		goto fail;
1020	}
1021
1022	/*
1023	 * Allocate and map RX buffers.
1024	 */
1025	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1026		struct wpi_rx_data *data = &ring->data[i];
1027		bus_addr_t paddr;
1028
1029		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1030		if (error != 0) {
1031			device_printf(sc->sc_dev,
1032			    "%s: could not create RX buf DMA map, error %d\n",
1033			    __func__, error);
1034			goto fail;
1035		}
1036
1037		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1038		if (data->m == NULL) {
1039			device_printf(sc->sc_dev,
1040			    "%s: could not allocate RX mbuf\n", __func__);
1041			error = ENOBUFS;
1042			goto fail;
1043		}
1044
1045		error = bus_dmamap_load(ring->data_dmat, data->map,
1046		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1047		    &paddr, BUS_DMA_NOWAIT);
1048		if (error != 0 && error != EFBIG) {
1049			device_printf(sc->sc_dev,
1050			    "%s: can't map mbuf (error %d)\n", __func__,
1051			    error);
1052			goto fail;
1053		}
1054
1055		/* Set physical address of RX buffer. */
1056		ring->desc[i] = htole32(paddr);
1057	}
1058
1059	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1060	    BUS_DMASYNC_PREWRITE);
1061
1062	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1063
1064	return 0;
1065
1066fail:	wpi_free_rx_ring(sc);
1067
1068	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1069
1070	return error;
1071}
1072
1073static void
1074wpi_update_rx_ring(struct wpi_softc *sc)
1075{
1076	struct wpi_rx_ring *ring = &sc->rxq;
1077
1078	if (ring->update != 0) {
1079		/* Wait for INT_WAKEUP event. */
1080		return;
1081	}
1082
1083	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1084		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1085		    __func__);
1086
1087		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1088		ring->update = 1;
1089	} else
1090		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1091}
1092
1093static void
1094wpi_reset_rx_ring(struct wpi_softc *sc)
1095{
1096	struct wpi_rx_ring *ring = &sc->rxq;
1097	int ntries;
1098
1099	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1100
1101	if (wpi_nic_lock(sc) == 0) {
1102		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1103		for (ntries = 0; ntries < 1000; ntries++) {
1104			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1105			    WPI_FH_RX_STATUS_IDLE)
1106				break;
1107			DELAY(10);
1108		}
1109		wpi_nic_unlock(sc);
1110	}
1111
1112	ring->cur = 0;
1113	ring->update = 0;
1114}
1115
1116static void
1117wpi_free_rx_ring(struct wpi_softc *sc)
1118{
1119	struct wpi_rx_ring *ring = &sc->rxq;
1120	int i;
1121
1122	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1123
1124	wpi_dma_contig_free(&ring->desc_dma);
1125
1126	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1127		struct wpi_rx_data *data = &ring->data[i];
1128
1129		if (data->m != NULL) {
1130			bus_dmamap_sync(ring->data_dmat, data->map,
1131			    BUS_DMASYNC_POSTREAD);
1132			bus_dmamap_unload(ring->data_dmat, data->map);
1133			m_freem(data->m);
1134			data->m = NULL;
1135		}
1136		if (data->map != NULL)
1137			bus_dmamap_destroy(ring->data_dmat, data->map);
1138	}
1139	if (ring->data_dmat != NULL) {
1140		bus_dma_tag_destroy(ring->data_dmat);
1141		ring->data_dmat = NULL;
1142	}
1143}
1144
1145static int
1146wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1147{
1148	bus_addr_t paddr;
1149	bus_size_t size;
1150	int i, error;
1151
1152	ring->qid = qid;
1153	ring->queued = 0;
1154	ring->cur = 0;
1155	ring->update = 0;
1156
1157	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1158
1159	/* Allocate TX descriptors (16KB aligned.) */
1160	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1161	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1162	    size, WPI_RING_DMA_ALIGN);
1163	if (error != 0) {
1164		device_printf(sc->sc_dev,
1165		    "%s: could not allocate TX ring DMA memory, error %d\n",
1166		    __func__, error);
1167		goto fail;
1168	}
1169
1170	/* Update shared area with ring physical address. */
1171	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1172	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1173	    BUS_DMASYNC_PREWRITE);
1174
1175	/*
1176	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1177	 * to allocate commands space for other rings.
1178	 * XXX Do we really need to allocate descriptors for other rings?
1179	 */
1180	if (qid > WPI_CMD_QUEUE_NUM) {
1181		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1182		return 0;
1183	}
1184
1185	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1186	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1187	    size, 4);
1188	if (error != 0) {
1189		device_printf(sc->sc_dev,
1190		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1191		    __func__, error);
1192		goto fail;
1193	}
1194
1195	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1196	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1197	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1198	    &ring->data_dmat);
1199	if (error != 0) {
1200		device_printf(sc->sc_dev,
1201		    "%s: could not create TX buf DMA tag, error %d\n",
1202		    __func__, error);
1203		goto fail;
1204	}
1205
1206	paddr = ring->cmd_dma.paddr;
1207	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1208		struct wpi_tx_data *data = &ring->data[i];
1209
1210		data->cmd_paddr = paddr;
1211		paddr += sizeof (struct wpi_tx_cmd);
1212
1213		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1214		if (error != 0) {
1215			device_printf(sc->sc_dev,
1216			    "%s: could not create TX buf DMA map, error %d\n",
1217			    __func__, error);
1218			goto fail;
1219		}
1220	}
1221
1222	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1223
1224	return 0;
1225
1226fail:	wpi_free_tx_ring(sc, ring);
1227	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1228	return error;
1229}
1230
1231static void
1232wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233{
1234	if (ring->update != 0) {
1235		/* Wait for INT_WAKEUP event. */
1236		return;
1237	}
1238
1239	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1240		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1241		    __func__, ring->qid);
1242
1243		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1244		ring->update = 1;
1245	} else
1246		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1247}
1248
1249static void
1250wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1251{
1252	int i;
1253
1254	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1255
1256	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1257		struct wpi_tx_data *data = &ring->data[i];
1258
1259		if (data->m != NULL) {
1260			bus_dmamap_sync(ring->data_dmat, data->map,
1261			    BUS_DMASYNC_POSTWRITE);
1262			bus_dmamap_unload(ring->data_dmat, data->map);
1263			m_freem(data->m);
1264			data->m = NULL;
1265		}
1266	}
1267	/* Clear TX descriptors. */
1268	memset(ring->desc, 0, ring->desc_dma.size);
1269	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1270	    BUS_DMASYNC_PREWRITE);
1271	sc->qfullmsk &= ~(1 << ring->qid);
1272	ring->queued = 0;
1273	ring->cur = 0;
1274	ring->update = 0;
1275}
1276
1277static void
1278wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1279{
1280	int i;
1281
1282	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1283
1284	wpi_dma_contig_free(&ring->desc_dma);
1285	wpi_dma_contig_free(&ring->cmd_dma);
1286
1287	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1288		struct wpi_tx_data *data = &ring->data[i];
1289
1290		if (data->m != NULL) {
1291			bus_dmamap_sync(ring->data_dmat, data->map,
1292			    BUS_DMASYNC_POSTWRITE);
1293			bus_dmamap_unload(ring->data_dmat, data->map);
1294			m_freem(data->m);
1295		}
1296		if (data->map != NULL)
1297			bus_dmamap_destroy(ring->data_dmat, data->map);
1298	}
1299	if (ring->data_dmat != NULL) {
1300		bus_dma_tag_destroy(ring->data_dmat);
1301		ring->data_dmat = NULL;
1302	}
1303}
1304
1305/*
1306 * Extract various information from EEPROM.
1307 */
1308static int
1309wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1310{
1311#define WPI_CHK(res) do {		\
1312	if ((error = res) != 0)		\
1313		goto fail;		\
1314} while (0)
1315	int error, i;
1316
1317	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1318
1319	/* Adapter has to be powered on for EEPROM access to work. */
1320	if ((error = wpi_apm_init(sc)) != 0) {
1321		device_printf(sc->sc_dev,
1322		    "%s: could not power ON adapter, error %d\n", __func__,
1323		    error);
1324		return error;
1325	}
1326
1327	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1328		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1329		error = EIO;
1330		goto fail;
1331	}
1332	/* Clear HW ownership of EEPROM. */
1333	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1334
1335	/* Read the hardware capabilities, revision and SKU type. */
1336	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1337	    sizeof(sc->cap)));
1338	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1339	    sizeof(sc->rev)));
1340	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1341	    sizeof(sc->type)));
1342
1343	sc->rev = le16toh(sc->rev);
1344	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1345	    sc->rev, sc->type);
1346
1347	/* Read the regulatory domain (4 ASCII characters.) */
1348	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1349	    sizeof(sc->domain)));
1350
1351	/* Read MAC address. */
1352	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1353	    IEEE80211_ADDR_LEN));
1354
1355	/* Read the list of authorized channels. */
1356	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1357		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1358
1359	/* Read the list of TX power groups. */
1360	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1361		WPI_CHK(wpi_read_eeprom_group(sc, i));
1362
1363fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1364
1365	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1366	    __func__);
1367
1368	return error;
1369#undef WPI_CHK
1370}
1371
1372/*
1373 * Translate EEPROM flags to net80211.
1374 */
1375static uint32_t
1376wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1377{
1378	uint32_t nflags;
1379
1380	nflags = 0;
1381	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1382		nflags |= IEEE80211_CHAN_PASSIVE;
1383	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1384		nflags |= IEEE80211_CHAN_NOADHOC;
1385	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1386		nflags |= IEEE80211_CHAN_DFS;
1387		/* XXX apparently IBSS may still be marked */
1388		nflags |= IEEE80211_CHAN_NOADHOC;
1389	}
1390
1391	/* XXX HOSTAP uses WPI_MODE_IBSS */
1392	if (nflags & IEEE80211_CHAN_NOADHOC)
1393		nflags |= IEEE80211_CHAN_NOHOSTAP;
1394
1395	return nflags;
1396}
1397
1398static void
1399wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1400{
1401	struct ifnet *ifp = sc->sc_ifp;
1402	struct ieee80211com *ic = ifp->if_l2com;
1403	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1404	const struct wpi_chan_band *band = &wpi_bands[n];
1405	struct ieee80211_channel *c;
1406	uint8_t chan;
1407	int i, nflags;
1408
1409	for (i = 0; i < band->nchan; i++) {
1410		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1411			DPRINTF(sc, WPI_DEBUG_EEPROM,
1412			    "Channel Not Valid: %d, band %d\n",
1413			     band->chan[i],n);
1414			continue;
1415		}
1416
1417		chan = band->chan[i];
1418		nflags = wpi_eeprom_channel_flags(&channels[i]);
1419
1420		c = &ic->ic_channels[ic->ic_nchans++];
1421		c->ic_ieee = chan;
1422		c->ic_maxregpower = channels[i].maxpwr;
1423		c->ic_maxpower = 2*c->ic_maxregpower;
1424
1425		if (n == 0) {	/* 2GHz band */
1426			c->ic_freq = ieee80211_ieee2mhz(chan,
1427			    IEEE80211_CHAN_G);
1428
1429			/* G =>'s B is supported */
1430			c->ic_flags = IEEE80211_CHAN_B | nflags;
1431			c = &ic->ic_channels[ic->ic_nchans++];
1432			c[0] = c[-1];
1433			c->ic_flags = IEEE80211_CHAN_G | nflags;
1434		} else {	/* 5GHz band */
1435			c->ic_freq = ieee80211_ieee2mhz(chan,
1436			    IEEE80211_CHAN_A);
1437
1438			c->ic_flags = IEEE80211_CHAN_A | nflags;
1439		}
1440
1441		/* Save maximum allowed TX power for this channel. */
1442		sc->maxpwr[chan] = channels[i].maxpwr;
1443
1444		DPRINTF(sc, WPI_DEBUG_EEPROM,
1445		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1446		    " offset %d\n", chan, c->ic_freq,
1447		    channels[i].flags, sc->maxpwr[chan],
1448		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1449	}
1450}
1451
1452/**
1453 * Read the eeprom to find out what channels are valid for the given
1454 * band and update net80211 with what we find.
1455 */
1456static int
1457wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1458{
1459	struct ifnet *ifp = sc->sc_ifp;
1460	struct ieee80211com *ic = ifp->if_l2com;
1461	const struct wpi_chan_band *band = &wpi_bands[n];
1462	int error;
1463
1464	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1465
1466	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1467	    band->nchan * sizeof (struct wpi_eeprom_chan));
1468	if (error != 0) {
1469		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1470		return error;
1471	}
1472
1473	wpi_read_eeprom_band(sc, n);
1474
1475	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1476
1477	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1478
1479	return 0;
1480}
1481
1482static struct wpi_eeprom_chan *
1483wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1484{
1485	int i, j;
1486
1487	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1488		for (i = 0; i < wpi_bands[j].nchan; i++)
1489			if (wpi_bands[j].chan[i] == c->ic_ieee)
1490				return &sc->eeprom_channels[j][i];
1491
1492	return NULL;
1493}
1494
1495/*
1496 * Enforce flags read from EEPROM.
1497 */
1498static int
1499wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1500    int nchan, struct ieee80211_channel chans[])
1501{
1502	struct ifnet *ifp = ic->ic_ifp;
1503	struct wpi_softc *sc = ifp->if_softc;
1504	int i;
1505
1506	for (i = 0; i < nchan; i++) {
1507		struct ieee80211_channel *c = &chans[i];
1508		struct wpi_eeprom_chan *channel;
1509
1510		channel = wpi_find_eeprom_channel(sc, c);
1511		if (channel == NULL) {
1512			if_printf(ic->ic_ifp,
1513			    "%s: invalid channel %u freq %u/0x%x\n",
1514			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1515			return EINVAL;
1516		}
1517		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1518	}
1519
1520	return 0;
1521}
1522
1523static int
1524wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1525{
1526	struct wpi_power_group *group = &sc->groups[n];
1527	struct wpi_eeprom_group rgroup;
1528	int i, error;
1529
1530	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1531
1532	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1533	    &rgroup, sizeof rgroup)) != 0) {
1534		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1535		return error;
1536	}
1537
1538	/* Save TX power group information. */
1539	group->chan   = rgroup.chan;
1540	group->maxpwr = rgroup.maxpwr;
1541	/* Retrieve temperature at which the samples were taken. */
1542	group->temp   = (int16_t)le16toh(rgroup.temp);
1543
1544	DPRINTF(sc, WPI_DEBUG_EEPROM,
1545	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1546	    group->maxpwr, group->temp);
1547
1548	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1549		group->samples[i].index = rgroup.samples[i].index;
1550		group->samples[i].power = rgroup.samples[i].power;
1551
1552		DPRINTF(sc, WPI_DEBUG_EEPROM,
1553		    "\tsample %d: index=%d power=%d\n", i,
1554		    group->samples[i].index, group->samples[i].power);
1555	}
1556
1557	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1558
1559	return 0;
1560}
1561
1562static int
1563wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1564{
1565	int newid = WPI_ID_IBSS_MIN;
1566
1567	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1568		if ((sc->nodesmsk & (1 << newid)) == 0) {
1569			sc->nodesmsk |= 1 << newid;
1570			return newid;
1571		}
1572	}
1573
1574	return WPI_ID_UNDEFINED;
1575}
1576
1577static __inline int
1578wpi_add_node_entry_sta(struct wpi_softc *sc)
1579{
1580	sc->nodesmsk |= 1 << WPI_ID_BSS;
1581
1582	return WPI_ID_BSS;
1583}
1584
1585static __inline int
1586wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1587{
1588	if (id == WPI_ID_UNDEFINED)
1589		return 0;
1590
1591	return (sc->nodesmsk >> id) & 1;
1592}
1593
1594static __inline void
1595wpi_clear_node_table(struct wpi_softc *sc)
1596{
1597	sc->nodesmsk = 0;
1598}
1599
1600static __inline void
1601wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1602{
1603	sc->nodesmsk &= ~(1 << id);
1604}
1605
1606static struct ieee80211_node *
1607wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1608{
1609	struct wpi_node *wn;
1610
1611	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1612	    M_NOWAIT | M_ZERO);
1613
1614	if (wn == NULL)
1615		return NULL;
1616
1617	wn->id = WPI_ID_UNDEFINED;
1618
1619	return &wn->ni;
1620}
1621
1622static void
1623wpi_node_free(struct ieee80211_node *ni)
1624{
1625	struct ieee80211com *ic = ni->ni_ic;
1626	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1627	struct wpi_node *wn = WPI_NODE(ni);
1628
1629	if (wn->id != WPI_ID_UNDEFINED) {
1630		WPI_NT_LOCK(sc);
1631		if (wpi_check_node_entry(sc, wn->id)) {
1632			wpi_del_node_entry(sc, wn->id);
1633			wpi_del_node(sc, ni);
1634		}
1635		WPI_NT_UNLOCK(sc);
1636	}
1637
1638	sc->sc_node_free(ni);
1639}
1640
1641/**
1642 * Called by net80211 when ever there is a change to 80211 state machine
1643 */
1644static int
1645wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1646{
1647	struct wpi_vap *wvp = WPI_VAP(vap);
1648	struct ieee80211com *ic = vap->iv_ic;
1649	struct ifnet *ifp = ic->ic_ifp;
1650	struct wpi_softc *sc = ifp->if_softc;
1651	int error = 0;
1652
1653	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1654
1655	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1656		ieee80211_state_name[vap->iv_state],
1657		ieee80211_state_name[nstate]);
1658
1659	switch (nstate) {
1660	case IEEE80211_S_SCAN:
1661		WPI_RXON_LOCK(sc);
1662		if ((sc->rxon.filter & htole32(WPI_FILTER_BSS)) &&
1663		    vap->iv_opmode != IEEE80211_M_STA) {
1664			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1665			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1666				device_printf(sc->sc_dev,
1667				    "%s: could not send RXON\n", __func__);
1668			}
1669		}
1670		WPI_RXON_UNLOCK(sc);
1671		break;
1672
1673	case IEEE80211_S_ASSOC:
1674		if (vap->iv_state != IEEE80211_S_RUN)
1675			break;
1676		/* FALLTHROUGH */
1677	case IEEE80211_S_AUTH:
1678		/*
1679		 * The node must be registered in the firmware before auth.
1680		 * Also the associd must be cleared on RUN -> ASSOC
1681		 * transitions.
1682		 */
1683		if ((error = wpi_auth(sc, vap)) != 0) {
1684			device_printf(sc->sc_dev,
1685			    "%s: could not move to AUTH state, error %d\n",
1686			    __func__, error);
1687		}
1688		break;
1689
1690	case IEEE80211_S_RUN:
1691		/*
1692		 * RUN -> RUN transition; Just restart the timers.
1693		 */
1694		if (vap->iv_state == IEEE80211_S_RUN) {
1695			WPI_RXON_LOCK(sc);
1696			wpi_calib_timeout(sc);
1697			WPI_RXON_UNLOCK(sc);
1698			break;
1699		}
1700
1701		/*
1702		 * !RUN -> RUN requires setting the association id
1703		 * which is done with a firmware cmd.  We also defer
1704		 * starting the timers until that work is done.
1705		 */
1706		if ((error = wpi_run(sc, vap)) != 0) {
1707			device_printf(sc->sc_dev,
1708			    "%s: could not move to RUN state\n", __func__);
1709		}
1710		break;
1711
1712	default:
1713		break;
1714	}
1715	if (error != 0) {
1716		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1717		return error;
1718	}
1719
1720	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1721
1722	return wvp->wv_newstate(vap, nstate, arg);
1723}
1724
1725static void
1726wpi_calib_timeout(void *arg)
1727{
1728	struct wpi_softc *sc = arg;
1729
1730	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS)))
1731		return;
1732
1733	wpi_power_calibration(sc);
1734
1735	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1736}
1737
1738static __inline uint8_t
1739rate2plcp(const uint8_t rate)
1740{
1741	switch (rate) {
1742	case 12:	return 0xd;
1743	case 18:	return 0xf;
1744	case 24:	return 0x5;
1745	case 36:	return 0x7;
1746	case 48:	return 0x9;
1747	case 72:	return 0xb;
1748	case 96:	return 0x1;
1749	case 108:	return 0x3;
1750	case 2:		return 10;
1751	case 4:		return 20;
1752	case 11:	return 55;
1753	case 22:	return 110;
1754	default:	return 0;
1755	}
1756}
1757
1758static __inline uint8_t
1759plcp2rate(const uint8_t plcp)
1760{
1761	switch (plcp) {
1762	case 0xd:	return 12;
1763	case 0xf:	return 18;
1764	case 0x5:	return 24;
1765	case 0x7:	return 36;
1766	case 0x9:	return 48;
1767	case 0xb:	return 72;
1768	case 0x1:	return 96;
1769	case 0x3:	return 108;
1770	case 10:	return 2;
1771	case 20:	return 4;
1772	case 55:	return 11;
1773	case 110:	return 22;
1774	default:	return 0;
1775	}
1776}
1777
1778/* Quickly determine if a given rate is CCK or OFDM. */
1779#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1780
1781static void
1782wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1783    struct wpi_rx_data *data)
1784{
1785	struct ifnet *ifp = sc->sc_ifp;
1786	struct ieee80211com *ic = ifp->if_l2com;
1787	struct wpi_rx_ring *ring = &sc->rxq;
1788	struct wpi_rx_stat *stat;
1789	struct wpi_rx_head *head;
1790	struct wpi_rx_tail *tail;
1791	struct ieee80211_frame *wh;
1792	struct ieee80211_node *ni;
1793	struct mbuf *m, *m1;
1794	bus_addr_t paddr;
1795	uint32_t flags;
1796	uint16_t len;
1797	int error;
1798
1799	stat = (struct wpi_rx_stat *)(desc + 1);
1800
1801	if (stat->len > WPI_STAT_MAXLEN) {
1802		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1803		goto fail1;
1804	}
1805
1806	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1807	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1808	len = le16toh(head->len);
1809	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1810	flags = le32toh(tail->flags);
1811
1812	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1813	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1814	    le32toh(desc->len), len, (int8_t)stat->rssi,
1815	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1816
1817	/* Discard frames with a bad FCS early. */
1818	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1819		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1820		    __func__, flags);
1821		goto fail1;
1822	}
1823	/* Discard frames that are too short. */
1824	if (len < sizeof (*wh)) {
1825		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1826		    __func__, len);
1827		goto fail1;
1828	}
1829
1830	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1831	if (m1 == NULL) {
1832		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1833		    __func__);
1834		goto fail1;
1835	}
1836	bus_dmamap_unload(ring->data_dmat, data->map);
1837
1838	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1839	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1840	if (error != 0 && error != EFBIG) {
1841		device_printf(sc->sc_dev,
1842		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1843		m_freem(m1);
1844
1845		/* Try to reload the old mbuf. */
1846		error = bus_dmamap_load(ring->data_dmat, data->map,
1847		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1848		    &paddr, BUS_DMA_NOWAIT);
1849		if (error != 0 && error != EFBIG) {
1850			panic("%s: could not load old RX mbuf", __func__);
1851		}
1852		/* Physical address may have changed. */
1853		ring->desc[ring->cur] = htole32(paddr);
1854		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1855		    BUS_DMASYNC_PREWRITE);
1856		goto fail1;
1857	}
1858
1859	m = data->m;
1860	data->m = m1;
1861	/* Update RX descriptor. */
1862	ring->desc[ring->cur] = htole32(paddr);
1863	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1864	    BUS_DMASYNC_PREWRITE);
1865
1866	/* Finalize mbuf. */
1867	m->m_pkthdr.rcvif = ifp;
1868	m->m_data = (caddr_t)(head + 1);
1869	m->m_pkthdr.len = m->m_len = len;
1870
1871	/* Grab a reference to the source node. */
1872	wh = mtod(m, struct ieee80211_frame *);
1873
1874	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1875	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1876		/* Check whether decryption was successful or not. */
1877		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1878			DPRINTF(sc, WPI_DEBUG_RECV,
1879			    "CCMP decryption failed 0x%x\n", flags);
1880			goto fail2;
1881		}
1882		m->m_flags |= M_WEP;
1883	}
1884
1885	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1886
1887	if (ieee80211_radiotap_active(ic)) {
1888		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1889
1890		tap->wr_flags = 0;
1891		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1892			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1893		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1894		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
1895		tap->wr_tsft = tail->tstamp;
1896		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1897		tap->wr_rate = plcp2rate(head->plcp);
1898	}
1899
1900	WPI_UNLOCK(sc);
1901
1902	/* Send the frame to the 802.11 layer. */
1903	if (ni != NULL) {
1904		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1905		/* Node is no longer needed. */
1906		ieee80211_free_node(ni);
1907	} else
1908		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1909
1910	WPI_LOCK(sc);
1911
1912	return;
1913
1914fail2:	m_freem(m);
1915
1916fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1917}
1918
1919static void
1920wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1921    struct wpi_rx_data *data)
1922{
1923	/* Ignore */
1924}
1925
1926static void
1927wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1928{
1929	struct ifnet *ifp = sc->sc_ifp;
1930	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1931	struct wpi_tx_data *data = &ring->data[desc->idx];
1932	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1933	struct mbuf *m;
1934	struct ieee80211_node *ni;
1935	struct ieee80211vap *vap;
1936	struct ieee80211com *ic;
1937	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1938	int status = le32toh(stat->status);
1939
1940	KASSERT(data->ni != NULL, ("no node"));
1941	KASSERT(data->m != NULL, ("no mbuf"));
1942
1943	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1944
1945	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1946	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1947	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1948	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1949
1950	/* Unmap and free mbuf. */
1951	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1952	bus_dmamap_unload(ring->data_dmat, data->map);
1953	m = data->m, data->m = NULL;
1954	ni = data->ni, data->ni = NULL;
1955	vap = ni->ni_vap;
1956	ic = vap->iv_ic;
1957
1958	/*
1959	 * Update rate control statistics for the node.
1960	 */
1961	WPI_UNLOCK(sc);
1962	if ((status & 0xff) != 1) {
1963		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1964		ieee80211_ratectl_tx_complete(vap, ni,
1965		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1966	} else {
1967		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1968		ieee80211_ratectl_tx_complete(vap, ni,
1969		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1970	}
1971
1972	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1973	WPI_LOCK(sc);
1974
1975	WPI_TXQ_STATE_LOCK(sc);
1976	ring->queued -= 1;
1977	if (ring->queued > 0) {
1978		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
1979
1980		if (sc->qfullmsk != 0 &&
1981		    ring->queued < WPI_TX_RING_LOMARK) {
1982			sc->qfullmsk &= ~(1 << ring->qid);
1983			IF_LOCK(&ifp->if_snd);
1984			if (sc->qfullmsk == 0 &&
1985			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1986				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1987				IF_UNLOCK(&ifp->if_snd);
1988				ieee80211_runtask(ic, &sc->sc_start_task);
1989			} else
1990				IF_UNLOCK(&ifp->if_snd);
1991		}
1992	} else
1993		callout_stop(&sc->tx_timeout);
1994	WPI_TXQ_STATE_UNLOCK(sc);
1995
1996	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1997}
1998
1999/*
2000 * Process a "command done" firmware notification.  This is where we wakeup
2001 * processes waiting for a synchronous command completion.
2002 */
2003static void
2004wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2005{
2006	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2007	struct wpi_tx_data *data;
2008
2009	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2010				   "type %s len %d\n", desc->qid, desc->idx,
2011				   desc->flags, wpi_cmd_str(desc->type),
2012				   le32toh(desc->len));
2013
2014	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2015		return;	/* Not a command ack. */
2016
2017	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2018
2019	data = &ring->data[desc->idx];
2020
2021	/* If the command was mapped in an mbuf, free it. */
2022	if (data->m != NULL) {
2023		bus_dmamap_sync(ring->data_dmat, data->map,
2024		    BUS_DMASYNC_POSTWRITE);
2025		bus_dmamap_unload(ring->data_dmat, data->map);
2026		m_freem(data->m);
2027		data->m = NULL;
2028	}
2029
2030	wakeup(&ring->cmd[desc->idx]);
2031}
2032
2033static void
2034wpi_notif_intr(struct wpi_softc *sc)
2035{
2036	struct ifnet *ifp = sc->sc_ifp;
2037	struct ieee80211com *ic = ifp->if_l2com;
2038	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2039	int hw;
2040
2041	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2042	    BUS_DMASYNC_POSTREAD);
2043
2044	hw = le32toh(sc->shared->next);
2045	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2046
2047	while (sc->rxq.cur != hw) {
2048		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2049
2050		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2051		struct wpi_rx_desc *desc;
2052
2053		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2054		    BUS_DMASYNC_POSTREAD);
2055		desc = mtod(data->m, struct wpi_rx_desc *);
2056
2057		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2058		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2059		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2060		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2061
2062		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2063			/* Reply to a command. */
2064			wpi_cmd_done(sc, desc);
2065		}
2066
2067		switch (desc->type) {
2068		case WPI_RX_DONE:
2069			/* An 802.11 frame has been received. */
2070			wpi_rx_done(sc, desc, data);
2071
2072			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2073				/* wpi_stop() was called. */
2074				return;
2075			}
2076
2077			break;
2078
2079		case WPI_TX_DONE:
2080			/* An 802.11 frame has been transmitted. */
2081			wpi_tx_done(sc, desc);
2082			break;
2083
2084		case WPI_RX_STATISTICS:
2085		case WPI_BEACON_STATISTICS:
2086			wpi_rx_statistics(sc, desc, data);
2087			break;
2088
2089		case WPI_BEACON_MISSED:
2090		{
2091			struct wpi_beacon_missed *miss =
2092			    (struct wpi_beacon_missed *)(desc + 1);
2093			int misses;
2094
2095			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2096			    BUS_DMASYNC_POSTREAD);
2097			misses = le32toh(miss->consecutive);
2098
2099			DPRINTF(sc, WPI_DEBUG_STATE,
2100			    "%s: beacons missed %d/%d\n", __func__, misses,
2101			    le32toh(miss->total));
2102
2103			if (vap->iv_state == IEEE80211_S_RUN &&
2104			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2105				if (misses >=  vap->iv_bmissthreshold) {
2106					WPI_UNLOCK(sc);
2107					ieee80211_beacon_miss(ic);
2108					WPI_LOCK(sc);
2109				}
2110			}
2111			break;
2112		}
2113		case WPI_UC_READY:
2114		{
2115			struct wpi_ucode_info *uc =
2116			    (struct wpi_ucode_info *)(desc + 1);
2117
2118			/* The microcontroller is ready. */
2119			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2120			    BUS_DMASYNC_POSTREAD);
2121			DPRINTF(sc, WPI_DEBUG_RESET,
2122			    "microcode alive notification version=%d.%d "
2123			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2124			    uc->subtype, le32toh(uc->valid));
2125
2126			if (le32toh(uc->valid) != 1) {
2127				device_printf(sc->sc_dev,
2128				    "microcontroller initialization failed\n");
2129				wpi_stop_locked(sc);
2130			}
2131			/* Save the address of the error log in SRAM. */
2132			sc->errptr = le32toh(uc->errptr);
2133			break;
2134		}
2135		case WPI_STATE_CHANGED:
2136		{
2137			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2138			    BUS_DMASYNC_POSTREAD);
2139
2140			uint32_t *status = (uint32_t *)(desc + 1);
2141
2142			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2143			    le32toh(*status));
2144
2145			if (le32toh(*status) & 1) {
2146				WPI_NT_LOCK(sc);
2147				wpi_clear_node_table(sc);
2148				WPI_NT_UNLOCK(sc);
2149				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2150				return;
2151			}
2152			break;
2153		}
2154		case WPI_START_SCAN:
2155		{
2156			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2157			    BUS_DMASYNC_POSTREAD);
2158#ifdef WPI_DEBUG
2159			struct wpi_start_scan *scan =
2160			    (struct wpi_start_scan *)(desc + 1);
2161			DPRINTF(sc, WPI_DEBUG_SCAN,
2162			    "%s: scanning channel %d status %x\n",
2163			    __func__, scan->chan, le32toh(scan->status));
2164#endif
2165			break;
2166		}
2167		case WPI_STOP_SCAN:
2168		{
2169			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2170			    BUS_DMASYNC_POSTREAD);
2171#ifdef WPI_DEBUG
2172			struct wpi_stop_scan *scan =
2173			    (struct wpi_stop_scan *)(desc + 1);
2174			DPRINTF(sc, WPI_DEBUG_SCAN,
2175			    "scan finished nchan=%d status=%d chan=%d\n",
2176			    scan->nchan, scan->status, scan->chan);
2177#endif
2178			WPI_RXON_LOCK(sc);
2179			callout_stop(&sc->scan_timeout);
2180			WPI_RXON_UNLOCK(sc);
2181			WPI_UNLOCK(sc);
2182			ieee80211_scan_next(vap);
2183			WPI_LOCK(sc);
2184			break;
2185		}
2186		}
2187	}
2188
2189	/* Tell the firmware what we have processed. */
2190	wpi_update_rx_ring(sc);
2191}
2192
2193/*
2194 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2195 * from power-down sleep mode.
2196 */
2197static void
2198wpi_wakeup_intr(struct wpi_softc *sc)
2199{
2200	int qid;
2201
2202	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2203	    "%s: ucode wakeup from power-down sleep\n", __func__);
2204
2205	/* Wakeup RX and TX rings. */
2206	if (sc->rxq.update) {
2207		sc->rxq.update = 0;
2208		wpi_update_rx_ring(sc);
2209	}
2210	WPI_TXQ_LOCK(sc);
2211	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2212		struct wpi_tx_ring *ring = &sc->txq[qid];
2213
2214		if (ring->update) {
2215			ring->update = 0;
2216			wpi_update_tx_ring(sc, ring);
2217		}
2218	}
2219	WPI_TXQ_UNLOCK(sc);
2220
2221	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2222}
2223
2224/*
2225 * This function prints firmware registers
2226 */
2227#ifdef WPI_DEBUG
2228static void
2229wpi_debug_registers(struct wpi_softc *sc)
2230{
2231#define COUNTOF(array) (sizeof(array) / sizeof(array[0]))
2232	int i;
2233	static const uint32_t csr_tbl[] = {
2234		WPI_HW_IF_CONFIG,
2235		WPI_INT,
2236		WPI_INT_MASK,
2237		WPI_FH_INT,
2238		WPI_GPIO_IN,
2239		WPI_RESET,
2240		WPI_GP_CNTRL,
2241		WPI_EEPROM,
2242		WPI_EEPROM_GP,
2243		WPI_GIO,
2244		WPI_UCODE_GP1,
2245		WPI_UCODE_GP2,
2246		WPI_GIO_CHICKEN,
2247		WPI_ANA_PLL,
2248		WPI_DBG_HPET_MEM,
2249	};
2250	static const uint32_t prph_tbl[] = {
2251		WPI_APMG_CLK_CTRL,
2252		WPI_APMG_PS,
2253		WPI_APMG_PCI_STT,
2254		WPI_APMG_RFKILL,
2255	};
2256
2257	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2258
2259	for (i = 0; i <  COUNTOF(csr_tbl); i++) {
2260		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2261		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2262
2263		if ((i + 1) % 2 == 0)
2264			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2265	}
2266	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2267
2268	if (wpi_nic_lock(sc) == 0) {
2269		for (i = 0; i < COUNTOF(prph_tbl); i++) {
2270			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2271			    wpi_get_prph_string(prph_tbl[i]),
2272			    wpi_prph_read(sc, prph_tbl[i]));
2273
2274			if ((i + 1) % 2 == 0)
2275				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2276		}
2277		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2278		wpi_nic_unlock(sc);
2279	} else {
2280		DPRINTF(sc, WPI_DEBUG_REGISTER,
2281		    "Cannot access internal registers.\n");
2282	}
2283#undef COUNTOF
2284}
2285#endif
2286
2287/*
2288 * Dump the error log of the firmware when a firmware panic occurs.  Although
2289 * we can't debug the firmware because it is neither open source nor free, it
2290 * can help us to identify certain classes of problems.
2291 */
2292static void
2293wpi_fatal_intr(struct wpi_softc *sc)
2294{
2295	struct wpi_fw_dump dump;
2296	uint32_t i, offset, count;
2297	const uint32_t size_errmsg =
2298	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2299
2300	/* Check that the error log address is valid. */
2301	if (sc->errptr < WPI_FW_DATA_BASE ||
2302	    sc->errptr + sizeof (dump) >
2303	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2304		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2305		    sc->errptr);
2306		return;
2307	}
2308	if (wpi_nic_lock(sc) != 0) {
2309		printf("%s: could not read firmware error log\n", __func__);
2310		return;
2311	}
2312	/* Read number of entries in the log. */
2313	count = wpi_mem_read(sc, sc->errptr);
2314	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2315		printf("%s: invalid count field (count = %u)\n", __func__,
2316		    count);
2317		wpi_nic_unlock(sc);
2318		return;
2319	}
2320	/* Skip "count" field. */
2321	offset = sc->errptr + sizeof (uint32_t);
2322	printf("firmware error log (count = %u):\n", count);
2323	for (i = 0; i < count; i++) {
2324		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2325		    sizeof (dump) / sizeof (uint32_t));
2326
2327		printf("  error type = \"%s\" (0x%08X)\n",
2328		    (dump.desc < size_errmsg) ?
2329		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2330		    dump.desc);
2331		printf("  error data      = 0x%08X\n",
2332		    dump.data);
2333		printf("  branch link     = 0x%08X%08X\n",
2334		    dump.blink[0], dump.blink[1]);
2335		printf("  interrupt link  = 0x%08X%08X\n",
2336		    dump.ilink[0], dump.ilink[1]);
2337		printf("  time            = %u\n", dump.time);
2338
2339		offset += sizeof (dump);
2340	}
2341	wpi_nic_unlock(sc);
2342	/* Dump driver status (TX and RX rings) while we're here. */
2343	printf("driver status:\n");
2344	WPI_TXQ_LOCK(sc);
2345	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2346		struct wpi_tx_ring *ring = &sc->txq[i];
2347		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2348		    i, ring->qid, ring->cur, ring->queued);
2349	}
2350	WPI_TXQ_UNLOCK(sc);
2351	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2352}
2353
2354static void
2355wpi_intr(void *arg)
2356{
2357	struct wpi_softc *sc = arg;
2358	struct ifnet *ifp = sc->sc_ifp;
2359	uint32_t r1, r2;
2360
2361	WPI_LOCK(sc);
2362
2363	/* Disable interrupts. */
2364	WPI_WRITE(sc, WPI_INT_MASK, 0);
2365
2366	r1 = WPI_READ(sc, WPI_INT);
2367
2368	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2369		goto end;	/* Hardware gone! */
2370
2371	r2 = WPI_READ(sc, WPI_FH_INT);
2372
2373	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2374	    r1, r2);
2375
2376	if (r1 == 0 && r2 == 0)
2377		goto done;	/* Interrupt not for us. */
2378
2379	/* Acknowledge interrupts. */
2380	WPI_WRITE(sc, WPI_INT, r1);
2381	WPI_WRITE(sc, WPI_FH_INT, r2);
2382
2383	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2384		struct ieee80211com *ic = ifp->if_l2com;
2385
2386		device_printf(sc->sc_dev, "fatal firmware error\n");
2387#ifdef WPI_DEBUG
2388		wpi_debug_registers(sc);
2389#endif
2390		wpi_fatal_intr(sc);
2391		DPRINTF(sc, WPI_DEBUG_HW,
2392		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2393		    "(Hardware Error)");
2394		ieee80211_runtask(ic, &sc->sc_reinittask);
2395		goto end;
2396	}
2397
2398	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2399	    (r2 & WPI_FH_INT_RX))
2400		wpi_notif_intr(sc);
2401
2402	if (r1 & WPI_INT_ALIVE)
2403		wakeup(sc);	/* Firmware is alive. */
2404
2405	if (r1 & WPI_INT_WAKEUP)
2406		wpi_wakeup_intr(sc);
2407
2408done:
2409	/* Re-enable interrupts. */
2410	if (ifp->if_flags & IFF_UP)
2411		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2412
2413end:	WPI_UNLOCK(sc);
2414}
2415
2416static int
2417wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2418{
2419	struct ifnet *ifp = sc->sc_ifp;
2420	struct ieee80211_frame *wh;
2421	struct wpi_tx_cmd *cmd;
2422	struct wpi_tx_data *data;
2423	struct wpi_tx_desc *desc;
2424	struct wpi_tx_ring *ring;
2425	struct mbuf *m1;
2426	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2427	int error, i, hdrlen, nsegs, totlen, pad;
2428
2429	WPI_TXQ_LOCK(sc);
2430
2431	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2432
2433	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2434
2435	if (sc->txq_active == 0) {
2436		/* wpi_stop() was called */
2437		error = ENETDOWN;
2438		goto fail;
2439	}
2440
2441	wh = mtod(buf->m, struct ieee80211_frame *);
2442	hdrlen = ieee80211_anyhdrsize(wh);
2443	totlen = buf->m->m_pkthdr.len;
2444
2445	if (hdrlen & 3) {
2446		/* First segment length must be a multiple of 4. */
2447		pad = 4 - (hdrlen & 3);
2448	} else
2449		pad = 0;
2450
2451	ring = &sc->txq[buf->ac];
2452	desc = &ring->desc[ring->cur];
2453	data = &ring->data[ring->cur];
2454
2455	/* Prepare TX firmware command. */
2456	cmd = &ring->cmd[ring->cur];
2457	cmd->code = buf->code;
2458	cmd->flags = 0;
2459	cmd->qid = ring->qid;
2460	cmd->idx = ring->cur;
2461
2462	memcpy(cmd->data, buf->data, buf->size);
2463
2464	/* Save and trim IEEE802.11 header. */
2465	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2466	m_adj(buf->m, hdrlen);
2467
2468	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2469	    segs, &nsegs, BUS_DMA_NOWAIT);
2470	if (error != 0 && error != EFBIG) {
2471		device_printf(sc->sc_dev,
2472		    "%s: can't map mbuf (error %d)\n", __func__, error);
2473		goto fail;
2474	}
2475	if (error != 0) {
2476		/* Too many DMA segments, linearize mbuf. */
2477		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2478		if (m1 == NULL) {
2479			device_printf(sc->sc_dev,
2480			    "%s: could not defrag mbuf\n", __func__);
2481			error = ENOBUFS;
2482			goto fail;
2483		}
2484		buf->m = m1;
2485
2486		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2487		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2488		if (error != 0) {
2489			device_printf(sc->sc_dev,
2490			    "%s: can't map mbuf (error %d)\n", __func__,
2491			    error);
2492			goto fail;
2493		}
2494	}
2495
2496	KASSERT(nsegs < WPI_MAX_SCATTER,
2497	    ("too many DMA segments, nsegs (%d) should be less than %d",
2498	     nsegs, WPI_MAX_SCATTER));
2499
2500	data->m = buf->m;
2501	data->ni = buf->ni;
2502
2503	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2504	    __func__, ring->qid, ring->cur, totlen, nsegs);
2505
2506	/* Fill TX descriptor. */
2507	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2508	/* First DMA segment is used by the TX command. */
2509	desc->segs[0].addr = htole32(data->cmd_paddr);
2510	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2511	/* Other DMA segments are for data payload. */
2512	seg = &segs[0];
2513	for (i = 1; i <= nsegs; i++) {
2514		desc->segs[i].addr = htole32(seg->ds_addr);
2515		desc->segs[i].len  = htole32(seg->ds_len);
2516		seg++;
2517	}
2518
2519	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2520	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2521	    BUS_DMASYNC_PREWRITE);
2522	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2523	    BUS_DMASYNC_PREWRITE);
2524
2525	/* Kick TX ring. */
2526	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2527	wpi_update_tx_ring(sc, ring);
2528
2529	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2530		/* Mark TX ring as full if we reach a certain threshold. */
2531		WPI_TXQ_STATE_LOCK(sc);
2532		if (++ring->queued > WPI_TX_RING_HIMARK) {
2533			sc->qfullmsk |= 1 << ring->qid;
2534
2535			IF_LOCK(&ifp->if_snd);
2536			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2537			IF_UNLOCK(&ifp->if_snd);
2538		}
2539
2540		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2541		WPI_TXQ_STATE_UNLOCK(sc);
2542	}
2543
2544	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2545
2546	WPI_TXQ_UNLOCK(sc);
2547
2548	return 0;
2549
2550fail:	m_freem(buf->m);
2551
2552	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2553
2554	WPI_TXQ_UNLOCK(sc);
2555
2556	return error;
2557}
2558
2559/*
2560 * Construct the data packet for a transmit buffer.
2561 */
2562static int
2563wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2564{
2565	const struct ieee80211_txparam *tp;
2566	struct ieee80211vap *vap = ni->ni_vap;
2567	struct ieee80211com *ic = ni->ni_ic;
2568	struct wpi_node *wn = WPI_NODE(ni);
2569	struct ieee80211_channel *chan;
2570	struct ieee80211_frame *wh;
2571	struct ieee80211_key *k = NULL;
2572	struct wpi_buf tx_data;
2573	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2574	uint32_t flags;
2575	uint16_t qos;
2576	uint8_t tid, type;
2577	int ac, error, swcrypt, rate, ismcast, totlen;
2578
2579	wh = mtod(m, struct ieee80211_frame *);
2580	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2581	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2582
2583	/* Select EDCA Access Category and TX ring for this frame. */
2584	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2585 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2586		tid = qos & IEEE80211_QOS_TID;
2587	} else {
2588		qos = 0;
2589		tid = 0;
2590	}
2591	ac = M_WME_GETAC(m);
2592
2593	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2594		ni->ni_chan : ic->ic_curchan;
2595	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2596
2597	/* Choose a TX rate index. */
2598	if (type == IEEE80211_FC0_TYPE_MGT)
2599		rate = tp->mgmtrate;
2600	else if (ismcast)
2601		rate = tp->mcastrate;
2602	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2603		rate = tp->ucastrate;
2604	else if (m->m_flags & M_EAPOL)
2605		rate = tp->mgmtrate;
2606	else {
2607		/* XXX pass pktlen */
2608		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2609		rate = ni->ni_txrate;
2610	}
2611
2612	/* Encrypt the frame if need be. */
2613	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2614		/* Retrieve key for TX. */
2615		k = ieee80211_crypto_encap(ni, m);
2616		if (k == NULL) {
2617			error = ENOBUFS;
2618			goto fail;
2619		}
2620		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2621
2622		/* 802.11 header may have moved. */
2623		wh = mtod(m, struct ieee80211_frame *);
2624	}
2625	totlen = m->m_pkthdr.len;
2626
2627	if (ieee80211_radiotap_active_vap(vap)) {
2628		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2629
2630		tap->wt_flags = 0;
2631		tap->wt_rate = rate;
2632		if (k != NULL)
2633			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2634
2635		ieee80211_radiotap_tx(vap, m);
2636	}
2637
2638	flags = 0;
2639	if (!ismcast) {
2640		/* Unicast frame, check if an ACK is expected. */
2641		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2642		    IEEE80211_QOS_ACKPOLICY_NOACK)
2643			flags |= WPI_TX_NEED_ACK;
2644	}
2645
2646	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2647		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2648
2649	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2650	if (!ismcast) {
2651		/* NB: Group frames are sent using CCK in 802.11b/g. */
2652		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2653			flags |= WPI_TX_NEED_RTS;
2654		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2655		    WPI_RATE_IS_OFDM(rate)) {
2656			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2657				flags |= WPI_TX_NEED_CTS;
2658			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2659				flags |= WPI_TX_NEED_RTS;
2660		}
2661
2662		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2663			flags |= WPI_TX_FULL_TXOP;
2664	}
2665
2666	memset(tx, 0, sizeof (struct wpi_cmd_data));
2667	if (type == IEEE80211_FC0_TYPE_MGT) {
2668		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2669
2670		/* Tell HW to set timestamp in probe responses. */
2671		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2672			flags |= WPI_TX_INSERT_TSTAMP;
2673		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2674		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2675			tx->timeout = htole16(3);
2676		else
2677			tx->timeout = htole16(2);
2678	}
2679
2680	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2681		tx->id = WPI_ID_BROADCAST;
2682	else {
2683		if (wn->id == WPI_ID_UNDEFINED) {
2684			device_printf(sc->sc_dev,
2685			    "%s: undefined node id\n", __func__);
2686			error = EINVAL;
2687			goto fail;
2688		}
2689
2690		tx->id = wn->id;
2691	}
2692
2693	if (type != IEEE80211_FC0_TYPE_MGT)
2694		tx->data_ntries = tp->maxretry;
2695
2696	if (k != NULL && !swcrypt) {
2697		switch (k->wk_cipher->ic_cipher) {
2698		case IEEE80211_CIPHER_AES_CCM:
2699			tx->security = WPI_CIPHER_CCMP;
2700			break;
2701
2702		default:
2703			break;
2704		}
2705
2706		memcpy(tx->key, k->wk_key, k->wk_keylen);
2707	}
2708
2709	tx->len = htole16(totlen);
2710	tx->flags = htole32(flags);
2711	tx->plcp = rate2plcp(rate);
2712	tx->tid = tid;
2713	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2714	tx->ofdm_mask = 0xff;
2715	tx->cck_mask = 0x0f;
2716	tx->rts_ntries = 7;
2717
2718	tx_data.ni = ni;
2719	tx_data.m = m;
2720	tx_data.size = sizeof(struct wpi_cmd_data);
2721	tx_data.code = WPI_CMD_TX_DATA;
2722	tx_data.ac = ac;
2723
2724	return wpi_cmd2(sc, &tx_data);
2725
2726fail:	m_freem(m);
2727	return error;
2728}
2729
2730static int
2731wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2732    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2733{
2734	struct ieee80211vap *vap = ni->ni_vap;
2735	struct ieee80211_key *k = NULL;
2736	struct ieee80211_frame *wh;
2737	struct wpi_buf tx_data;
2738	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2739	uint32_t flags;
2740	uint8_t type;
2741	int ac, rate, swcrypt, totlen;
2742
2743	wh = mtod(m, struct ieee80211_frame *);
2744	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2745
2746	ac = params->ibp_pri & 3;
2747
2748	/* Choose a TX rate index. */
2749	rate = params->ibp_rate0;
2750
2751	flags = 0;
2752	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2753		flags |= WPI_TX_NEED_ACK;
2754	if (params->ibp_flags & IEEE80211_BPF_RTS)
2755		flags |= WPI_TX_NEED_RTS;
2756	if (params->ibp_flags & IEEE80211_BPF_CTS)
2757		flags |= WPI_TX_NEED_CTS;
2758	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2759		flags |= WPI_TX_FULL_TXOP;
2760
2761	/* Encrypt the frame if need be. */
2762	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2763		/* Retrieve key for TX. */
2764		k = ieee80211_crypto_encap(ni, m);
2765		if (k == NULL) {
2766			m_freem(m);
2767			return ENOBUFS;
2768		}
2769		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2770
2771		/* 802.11 header may have moved. */
2772		wh = mtod(m, struct ieee80211_frame *);
2773	}
2774	totlen = m->m_pkthdr.len;
2775
2776	if (ieee80211_radiotap_active_vap(vap)) {
2777		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2778
2779		tap->wt_flags = 0;
2780		tap->wt_rate = rate;
2781		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2782			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2783
2784		ieee80211_radiotap_tx(vap, m);
2785	}
2786
2787	memset(tx, 0, sizeof (struct wpi_cmd_data));
2788	if (type == IEEE80211_FC0_TYPE_MGT) {
2789		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2790
2791		/* Tell HW to set timestamp in probe responses. */
2792		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2793			flags |= WPI_TX_INSERT_TSTAMP;
2794		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2795		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2796			tx->timeout = htole16(3);
2797		else
2798			tx->timeout = htole16(2);
2799	}
2800
2801	if (k != NULL && !swcrypt) {
2802		switch (k->wk_cipher->ic_cipher) {
2803		case IEEE80211_CIPHER_AES_CCM:
2804			tx->security = WPI_CIPHER_CCMP;
2805			break;
2806
2807		default:
2808			break;
2809		}
2810
2811		memcpy(tx->key, k->wk_key, k->wk_keylen);
2812	}
2813
2814	tx->len = htole16(totlen);
2815	tx->flags = htole32(flags);
2816	tx->plcp = rate2plcp(rate);
2817	tx->id = WPI_ID_BROADCAST;
2818	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2819	tx->rts_ntries = params->ibp_try1;
2820	tx->data_ntries = params->ibp_try0;
2821
2822	tx_data.ni = ni;
2823	tx_data.m = m;
2824	tx_data.size = sizeof(struct wpi_cmd_data);
2825	tx_data.code = WPI_CMD_TX_DATA;
2826	tx_data.ac = ac;
2827
2828	return wpi_cmd2(sc, &tx_data);
2829}
2830
2831static int
2832wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2833    const struct ieee80211_bpf_params *params)
2834{
2835	struct ieee80211com *ic = ni->ni_ic;
2836	struct ifnet *ifp = ic->ic_ifp;
2837	struct wpi_softc *sc = ifp->if_softc;
2838	int error = 0;
2839
2840	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2841
2842	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2843		ieee80211_free_node(ni);
2844		m_freem(m);
2845		return ENETDOWN;
2846	}
2847
2848	WPI_LOCK(sc);
2849	if (params == NULL) {
2850		/*
2851		 * Legacy path; interpret frame contents to decide
2852		 * precisely how to send the frame.
2853		 */
2854		error = wpi_tx_data(sc, m, ni);
2855	} else {
2856		/*
2857		 * Caller supplied explicit parameters to use in
2858		 * sending the frame.
2859		 */
2860		error = wpi_tx_data_raw(sc, m, ni, params);
2861	}
2862	WPI_UNLOCK(sc);
2863
2864	if (error != 0) {
2865		/* NB: m is reclaimed on tx failure */
2866		ieee80211_free_node(ni);
2867		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2868
2869		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2870
2871		return error;
2872	}
2873
2874	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2875
2876	return 0;
2877}
2878
2879/**
2880 * Process data waiting to be sent on the IFNET output queue
2881 */
2882static void
2883wpi_start(struct ifnet *ifp)
2884{
2885	struct wpi_softc *sc = ifp->if_softc;
2886	struct ieee80211_node *ni;
2887	struct mbuf *m;
2888
2889	WPI_LOCK(sc);
2890	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2891
2892	for (;;) {
2893		IF_LOCK(&ifp->if_snd);
2894		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2895		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2896			IF_UNLOCK(&ifp->if_snd);
2897			break;
2898		}
2899		IF_UNLOCK(&ifp->if_snd);
2900
2901		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2902		if (m == NULL)
2903			break;
2904		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2905		if (wpi_tx_data(sc, m, ni) != 0) {
2906			WPI_UNLOCK(sc);
2907			ieee80211_free_node(ni);
2908			WPI_LOCK(sc);
2909			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2910		}
2911	}
2912
2913	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2914	WPI_UNLOCK(sc);
2915}
2916
2917static void
2918wpi_start_task(void *arg0, int pending)
2919{
2920	struct wpi_softc *sc = arg0;
2921	struct ifnet *ifp = sc->sc_ifp;
2922
2923	wpi_start(ifp);
2924}
2925
2926static void
2927wpi_watchdog_rfkill(void *arg)
2928{
2929	struct wpi_softc *sc = arg;
2930	struct ifnet *ifp = sc->sc_ifp;
2931	struct ieee80211com *ic = ifp->if_l2com;
2932
2933	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2934
2935	/* No need to lock firmware memory. */
2936	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2937		/* Radio kill switch is still off. */
2938		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2939		    sc);
2940	} else
2941		ieee80211_runtask(ic, &sc->sc_radioon_task);
2942}
2943
2944static void
2945wpi_scan_timeout(void *arg)
2946{
2947	struct wpi_softc *sc = arg;
2948	struct ifnet *ifp = sc->sc_ifp;
2949	struct ieee80211com *ic = ifp->if_l2com;
2950
2951	if_printf(ifp, "scan timeout\n");
2952	ieee80211_runtask(ic, &sc->sc_reinittask);
2953}
2954
2955static void
2956wpi_tx_timeout(void *arg)
2957{
2958	struct wpi_softc *sc = arg;
2959	struct ifnet *ifp = sc->sc_ifp;
2960	struct ieee80211com *ic = ifp->if_l2com;
2961
2962	if_printf(ifp, "device timeout\n");
2963	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2964	ieee80211_runtask(ic, &sc->sc_reinittask);
2965}
2966
2967static int
2968wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2969{
2970	struct wpi_softc *sc = ifp->if_softc;
2971	struct ieee80211com *ic = ifp->if_l2com;
2972	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2973	struct ifreq *ifr = (struct ifreq *) data;
2974	int error = 0;
2975
2976	switch (cmd) {
2977	case SIOCGIFADDR:
2978		error = ether_ioctl(ifp, cmd, data);
2979		break;
2980	case SIOCSIFFLAGS:
2981		if (ifp->if_flags & IFF_UP) {
2982			wpi_init(sc);
2983
2984			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
2985			    vap != NULL)
2986				ieee80211_stop(vap);
2987		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2988			wpi_stop(sc);
2989		break;
2990	case SIOCGIFMEDIA:
2991		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2992		break;
2993	default:
2994		error = EINVAL;
2995		break;
2996	}
2997	return error;
2998}
2999
3000/*
3001 * Send a command to the firmware.
3002 */
3003static int
3004wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3005    int async)
3006{
3007	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3008	struct wpi_tx_desc *desc;
3009	struct wpi_tx_data *data;
3010	struct wpi_tx_cmd *cmd;
3011	struct mbuf *m;
3012	bus_addr_t paddr;
3013	int totlen, error;
3014
3015	WPI_TXQ_LOCK(sc);
3016
3017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3018
3019	if (sc->txq_active == 0) {
3020		/* wpi_stop() was called */
3021		error = 0;
3022		goto fail;
3023	}
3024
3025	if (async == 0)
3026		WPI_LOCK_ASSERT(sc);
3027
3028	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3029	    __func__, wpi_cmd_str(code), size, async);
3030
3031	desc = &ring->desc[ring->cur];
3032	data = &ring->data[ring->cur];
3033	totlen = 4 + size;
3034
3035	if (size > sizeof cmd->data) {
3036		/* Command is too large to fit in a descriptor. */
3037		if (totlen > MCLBYTES) {
3038			error = EINVAL;
3039			goto fail;
3040		}
3041		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3042		if (m == NULL) {
3043			error = ENOMEM;
3044			goto fail;
3045		}
3046		cmd = mtod(m, struct wpi_tx_cmd *);
3047		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3048		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3049		if (error != 0) {
3050			m_freem(m);
3051			goto fail;
3052		}
3053		data->m = m;
3054	} else {
3055		cmd = &ring->cmd[ring->cur];
3056		paddr = data->cmd_paddr;
3057	}
3058
3059	cmd->code = code;
3060	cmd->flags = 0;
3061	cmd->qid = ring->qid;
3062	cmd->idx = ring->cur;
3063	memcpy(cmd->data, buf, size);
3064
3065	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3066	desc->segs[0].addr = htole32(paddr);
3067	desc->segs[0].len  = htole32(totlen);
3068
3069	if (size > sizeof cmd->data) {
3070		bus_dmamap_sync(ring->data_dmat, data->map,
3071		    BUS_DMASYNC_PREWRITE);
3072	} else {
3073		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3074		    BUS_DMASYNC_PREWRITE);
3075	}
3076	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3077	    BUS_DMASYNC_PREWRITE);
3078
3079	/* Kick command ring. */
3080	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3081	wpi_update_tx_ring(sc, ring);
3082
3083	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3084
3085	WPI_TXQ_UNLOCK(sc);
3086
3087	if (async)
3088		return 0;
3089
3090	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3091
3092fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3093
3094	WPI_TXQ_UNLOCK(sc);
3095
3096	return error;
3097}
3098
3099/*
3100 * Configure HW multi-rate retries.
3101 */
3102static int
3103wpi_mrr_setup(struct wpi_softc *sc)
3104{
3105	struct ifnet *ifp = sc->sc_ifp;
3106	struct ieee80211com *ic = ifp->if_l2com;
3107	struct wpi_mrr_setup mrr;
3108	int i, error;
3109
3110	/* CCK rates (not used with 802.11a). */
3111	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3112		mrr.rates[i].flags = 0;
3113		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3114		/* Fallback to the immediate lower CCK rate (if any.) */
3115		mrr.rates[i].next =
3116		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3117		/* Try one time at this rate before falling back to "next". */
3118		mrr.rates[i].ntries = 1;
3119	}
3120	/* OFDM rates (not used with 802.11b). */
3121	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3122		mrr.rates[i].flags = 0;
3123		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3124		/* Fallback to the immediate lower rate (if any.) */
3125		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3126		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3127		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3128			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3129		    i - 1;
3130		/* Try one time at this rate before falling back to "next". */
3131		mrr.rates[i].ntries = 1;
3132	}
3133	/* Setup MRR for control frames. */
3134	mrr.which = htole32(WPI_MRR_CTL);
3135	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3136	if (error != 0) {
3137		device_printf(sc->sc_dev,
3138		    "could not setup MRR for control frames\n");
3139		return error;
3140	}
3141	/* Setup MRR for data frames. */
3142	mrr.which = htole32(WPI_MRR_DATA);
3143	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3144	if (error != 0) {
3145		device_printf(sc->sc_dev,
3146		    "could not setup MRR for data frames\n");
3147		return error;
3148	}
3149	return 0;
3150}
3151
3152static int
3153wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3154{
3155	struct ieee80211com *ic = ni->ni_ic;
3156	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3157	struct wpi_node *wn = WPI_NODE(ni);
3158	struct wpi_node_info node;
3159	int error;
3160
3161	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3162
3163	if (wn->id == WPI_ID_UNDEFINED)
3164		return EINVAL;
3165
3166	memset(&node, 0, sizeof node);
3167	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3168	node.id = wn->id;
3169	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3170	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3171	node.action = htole32(WPI_ACTION_SET_RATE);
3172	node.antenna = WPI_ANTENNA_BOTH;
3173
3174	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3175	    wn->id, ether_sprintf(ni->ni_macaddr));
3176
3177	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3178	if (error != 0) {
3179		device_printf(sc->sc_dev,
3180		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3181		    error);
3182		return error;
3183	}
3184
3185	if (wvp->wv_gtk != 0) {
3186		error = wpi_set_global_keys(ni);
3187		if (error != 0) {
3188			device_printf(sc->sc_dev,
3189			    "%s: error while setting global keys\n", __func__);
3190			return ENXIO;
3191		}
3192	}
3193
3194	return 0;
3195}
3196
3197/*
3198 * Broadcast node is used to send group-addressed and management frames.
3199 */
3200static int
3201wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3202{
3203	struct ifnet *ifp = sc->sc_ifp;
3204	struct ieee80211com *ic = ifp->if_l2com;
3205	struct wpi_node_info node;
3206
3207	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3208
3209	memset(&node, 0, sizeof node);
3210	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3211	node.id = WPI_ID_BROADCAST;
3212	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3213	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3214	node.action = htole32(WPI_ACTION_SET_RATE);
3215	node.antenna = WPI_ANTENNA_BOTH;
3216
3217	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3218
3219	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3220}
3221
3222static int
3223wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3224{
3225	struct wpi_node *wn = WPI_NODE(ni);
3226	int error;
3227
3228	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3229
3230	wn->id = wpi_add_node_entry_sta(sc);
3231
3232	if ((error = wpi_add_node(sc, ni)) != 0) {
3233		wpi_del_node_entry(sc, wn->id);
3234		wn->id = WPI_ID_UNDEFINED;
3235		return error;
3236	}
3237
3238	return 0;
3239}
3240
3241static int
3242wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3243{
3244	struct wpi_node *wn = WPI_NODE(ni);
3245	int error;
3246
3247	KASSERT(wn->id == WPI_ID_UNDEFINED,
3248	    ("the node %d was added before", wn->id));
3249
3250	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3251
3252	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3253		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3254		return ENOMEM;
3255	}
3256
3257	if ((error = wpi_add_node(sc, ni)) != 0) {
3258		wpi_del_node_entry(sc, wn->id);
3259		wn->id = WPI_ID_UNDEFINED;
3260		return error;
3261	}
3262
3263	return 0;
3264}
3265
3266static void
3267wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3268{
3269	struct wpi_node *wn = WPI_NODE(ni);
3270	struct wpi_cmd_del_node node;
3271	int error;
3272
3273	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3274
3275	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3276
3277	memset(&node, 0, sizeof node);
3278	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3279	node.count = 1;
3280
3281	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3282	    wn->id, ether_sprintf(ni->ni_macaddr));
3283
3284	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3285	if (error != 0) {
3286		device_printf(sc->sc_dev,
3287		    "%s: could not delete node %u, error %d\n", __func__,
3288		    wn->id, error);
3289	}
3290}
3291
3292static int
3293wpi_updateedca(struct ieee80211com *ic)
3294{
3295#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3296	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3297	struct wpi_edca_params cmd;
3298	int aci, error;
3299
3300	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3301
3302	memset(&cmd, 0, sizeof cmd);
3303	cmd.flags = htole32(WPI_EDCA_UPDATE);
3304	for (aci = 0; aci < WME_NUM_AC; aci++) {
3305		const struct wmeParams *ac =
3306		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3307		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3308		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3309		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3310		cmd.ac[aci].txoplimit =
3311		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3312
3313		DPRINTF(sc, WPI_DEBUG_EDCA,
3314		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3315		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3316		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3317		    cmd.ac[aci].txoplimit);
3318	}
3319	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3320
3321	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3322
3323	return error;
3324#undef WPI_EXP2
3325}
3326
3327static void
3328wpi_set_promisc(struct wpi_softc *sc)
3329{
3330	struct ifnet *ifp = sc->sc_ifp;
3331	struct ieee80211com *ic = ifp->if_l2com;
3332	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3333	uint32_t promisc_filter;
3334
3335	promisc_filter = WPI_FILTER_CTL;
3336	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3337		promisc_filter |= WPI_FILTER_PROMISC;
3338
3339	if (ifp->if_flags & IFF_PROMISC)
3340		sc->rxon.filter |= htole32(promisc_filter);
3341	else
3342		sc->rxon.filter &= ~htole32(promisc_filter);
3343}
3344
3345static void
3346wpi_update_promisc(struct ifnet *ifp)
3347{
3348	struct wpi_softc *sc = ifp->if_softc;
3349
3350	WPI_RXON_LOCK(sc);
3351	wpi_set_promisc(sc);
3352
3353	if (wpi_send_rxon(sc, 1, 1) != 0) {
3354		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3355		    __func__);
3356	}
3357	WPI_RXON_UNLOCK(sc);
3358}
3359
3360static void
3361wpi_update_mcast(struct ifnet *ifp)
3362{
3363	/* Ignore */
3364}
3365
3366static void
3367wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3368{
3369	struct wpi_cmd_led led;
3370
3371	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3372
3373	led.which = which;
3374	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3375	led.off = off;
3376	led.on = on;
3377	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3378}
3379
3380static int
3381wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3382{
3383	struct wpi_cmd_timing cmd;
3384	uint64_t val, mod;
3385
3386	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3387
3388	memset(&cmd, 0, sizeof cmd);
3389	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3390	cmd.bintval = htole16(ni->ni_intval);
3391	cmd.lintval = htole16(10);
3392
3393	/* Compute remaining time until next beacon. */
3394	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3395	mod = le64toh(cmd.tstamp) % val;
3396	cmd.binitval = htole32((uint32_t)(val - mod));
3397
3398	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3399	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3400
3401	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3402}
3403
3404/*
3405 * This function is called periodically (every 60 seconds) to adjust output
3406 * power to temperature changes.
3407 */
3408static void
3409wpi_power_calibration(struct wpi_softc *sc)
3410{
3411	int temp;
3412
3413	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3414
3415	/* Update sensor data. */
3416	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3417	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3418
3419	/* Sanity-check read value. */
3420	if (temp < -260 || temp > 25) {
3421		/* This can't be correct, ignore. */
3422		DPRINTF(sc, WPI_DEBUG_TEMP,
3423		    "out-of-range temperature reported: %d\n", temp);
3424		return;
3425	}
3426
3427	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3428
3429	/* Adjust Tx power if need be. */
3430	if (abs(temp - sc->temp) <= 6)
3431		return;
3432
3433	sc->temp = temp;
3434
3435	if (wpi_set_txpower(sc, 1) != 0) {
3436		/* just warn, too bad for the automatic calibration... */
3437		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3438	}
3439}
3440
3441/*
3442 * Set TX power for current channel.
3443 */
3444static int
3445wpi_set_txpower(struct wpi_softc *sc, int async)
3446{
3447	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3448	struct ieee80211_channel *ch;
3449	struct wpi_power_group *group;
3450	struct wpi_cmd_txpower cmd;
3451	uint8_t chan;
3452	int idx, i;
3453
3454	/* Retrieve current channel from last RXON. */
3455	chan = sc->rxon.chan;
3456	ch = &ic->ic_channels[chan];
3457
3458	/* Find the TX power group to which this channel belongs. */
3459	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3460		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3461			if (chan <= group->chan)
3462				break;
3463	} else
3464		group = &sc->groups[0];
3465
3466	memset(&cmd, 0, sizeof cmd);
3467	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3468	cmd.chan = htole16(chan);
3469
3470	/* Set TX power for all OFDM and CCK rates. */
3471	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3472		/* Retrieve TX power for this channel/rate. */
3473		idx = wpi_get_power_index(sc, group, ch, i);
3474
3475		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3476
3477		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3478			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3479			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3480		} else {
3481			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3482			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3483		}
3484		DPRINTF(sc, WPI_DEBUG_TEMP,
3485		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3486	}
3487
3488	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3489}
3490
3491/*
3492 * Determine Tx power index for a given channel/rate combination.
3493 * This takes into account the regulatory information from EEPROM and the
3494 * current temperature.
3495 */
3496static int
3497wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3498    struct ieee80211_channel *c, int ridx)
3499{
3500/* Fixed-point arithmetic division using a n-bit fractional part. */
3501#define fdivround(a, b, n)	\
3502	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3503
3504/* Linear interpolation. */
3505#define interpolate(x, x1, y1, x2, y2, n)	\
3506	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3507
3508	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3509	struct wpi_power_sample *sample;
3510	int pwr, idx;
3511	u_int chan;
3512
3513	/* Get channel number. */
3514	chan = ieee80211_chan2ieee(ic, c);
3515
3516	/* Default TX power is group maximum TX power minus 3dB. */
3517	pwr = group->maxpwr / 2;
3518
3519	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3520	switch (ridx) {
3521	case WPI_RIDX_OFDM36:
3522		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3523		break;
3524	case WPI_RIDX_OFDM48:
3525		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3526		break;
3527	case WPI_RIDX_OFDM54:
3528		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3529		break;
3530	}
3531
3532	/* Never exceed the channel maximum allowed TX power. */
3533	pwr = min(pwr, sc->maxpwr[chan]);
3534
3535	/* Retrieve TX power index into gain tables from samples. */
3536	for (sample = group->samples; sample < &group->samples[3]; sample++)
3537		if (pwr > sample[1].power)
3538			break;
3539	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3540	idx = interpolate(pwr, sample[0].power, sample[0].index,
3541	    sample[1].power, sample[1].index, 19);
3542
3543	/*-
3544	 * Adjust power index based on current temperature:
3545	 * - if cooler than factory-calibrated: decrease output power
3546	 * - if warmer than factory-calibrated: increase output power
3547	 */
3548	idx -= (sc->temp - group->temp) * 11 / 100;
3549
3550	/* Decrease TX power for CCK rates (-5dB). */
3551	if (ridx >= WPI_RIDX_CCK1)
3552		idx += 10;
3553
3554	/* Make sure idx stays in a valid range. */
3555	if (idx < 0)
3556		return 0;
3557	if (idx > WPI_MAX_PWR_INDEX)
3558		return WPI_MAX_PWR_INDEX;
3559	return idx;
3560
3561#undef interpolate
3562#undef fdivround
3563}
3564
3565/*
3566 * Set STA mode power saving level (between 0 and 5).
3567 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3568 */
3569static int
3570wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3571{
3572	struct wpi_pmgt_cmd cmd;
3573	const struct wpi_pmgt *pmgt;
3574	uint32_t max, skip_dtim;
3575	uint32_t reg;
3576	int i;
3577
3578	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3579	    "%s: dtim=%d, level=%d, async=%d\n",
3580	    __func__, dtim, level, async);
3581
3582	/* Select which PS parameters to use. */
3583	if (dtim <= 10)
3584		pmgt = &wpi_pmgt[0][level];
3585	else
3586		pmgt = &wpi_pmgt[1][level];
3587
3588	memset(&cmd, 0, sizeof cmd);
3589	if (level != 0)	/* not CAM */
3590		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3591	/* Retrieve PCIe Active State Power Management (ASPM). */
3592	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3593	if (!(reg & 0x1))	/* L0s Entry disabled. */
3594		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3595
3596	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3597	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3598
3599	if (dtim == 0) {
3600		dtim = 1;
3601		skip_dtim = 0;
3602	} else
3603		skip_dtim = pmgt->skip_dtim;
3604
3605	if (skip_dtim != 0) {
3606		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3607		max = pmgt->intval[4];
3608		if (max == (uint32_t)-1)
3609			max = dtim * (skip_dtim + 1);
3610		else if (max > dtim)
3611			max = (max / dtim) * dtim;
3612	} else
3613		max = dtim;
3614
3615	for (i = 0; i < 5; i++)
3616		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3617
3618	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3619}
3620
3621static int
3622wpi_send_btcoex(struct wpi_softc *sc)
3623{
3624	struct wpi_bluetooth cmd;
3625
3626	memset(&cmd, 0, sizeof cmd);
3627	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3628	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3629	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3630	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3631	    __func__);
3632	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3633}
3634
3635static int
3636wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3637{
3638	int error;
3639
3640	if (async)
3641		WPI_RXON_LOCK_ASSERT(sc);
3642
3643	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3644		struct wpi_assoc rxon_assoc;
3645
3646		rxon_assoc.flags = sc->rxon.flags;
3647		rxon_assoc.filter = sc->rxon.filter;
3648		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3649		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3650		rxon_assoc.reserved = 0;
3651
3652		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3653		    sizeof (struct wpi_assoc), async);
3654		if (error != 0) {
3655			device_printf(sc->sc_dev,
3656			    "RXON_ASSOC command failed, error %d\n", error);
3657			return error;
3658		}
3659	} else {
3660		if (async) {
3661			WPI_NT_LOCK(sc);
3662			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3663			    sizeof (struct wpi_rxon), async);
3664			if (error == 0)
3665				wpi_clear_node_table(sc);
3666			WPI_NT_UNLOCK(sc);
3667		} else {
3668			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3669			    sizeof (struct wpi_rxon), async);
3670			if (error == 0)
3671				wpi_clear_node_table(sc);
3672		}
3673
3674		if (error != 0) {
3675			device_printf(sc->sc_dev,
3676			    "RXON command failed, error %d\n", error);
3677			return error;
3678		}
3679
3680		/* Add broadcast node. */
3681		error = wpi_add_broadcast_node(sc, async);
3682		if (error != 0) {
3683			device_printf(sc->sc_dev,
3684			    "could not add broadcast node, error %d\n", error);
3685			return error;
3686		}
3687	}
3688
3689	/* Configuration has changed, set Tx power accordingly. */
3690	if ((error = wpi_set_txpower(sc, async)) != 0) {
3691		device_printf(sc->sc_dev,
3692		    "%s: could not set TX power, error %d\n", __func__, error);
3693		return error;
3694	}
3695
3696	return 0;
3697}
3698
3699/**
3700 * Configure the card to listen to a particular channel, this transisions the
3701 * card in to being able to receive frames from remote devices.
3702 */
3703static int
3704wpi_config(struct wpi_softc *sc)
3705{
3706	struct ifnet *ifp = sc->sc_ifp;
3707	struct ieee80211com *ic = ifp->if_l2com;
3708	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3709	uint32_t flags;
3710	int error;
3711
3712	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3713
3714	/* Set power saving level to CAM during initialization. */
3715	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3716		device_printf(sc->sc_dev,
3717		    "%s: could not set power saving level\n", __func__);
3718		return error;
3719	}
3720
3721	/* Configure bluetooth coexistence. */
3722	if ((error = wpi_send_btcoex(sc)) != 0) {
3723		device_printf(sc->sc_dev,
3724		    "could not configure bluetooth coexistence\n");
3725		return error;
3726	}
3727
3728	/* Configure adapter. */
3729	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3730	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3731
3732	/* Set default channel. */
3733	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3734	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3735	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3736		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3737
3738	sc->rxon.filter = WPI_FILTER_MULTICAST;
3739	switch (ic->ic_opmode) {
3740	case IEEE80211_M_STA:
3741		sc->rxon.mode = WPI_MODE_STA;
3742		break;
3743	case IEEE80211_M_IBSS:
3744		sc->rxon.mode = WPI_MODE_IBSS;
3745		sc->rxon.filter |= WPI_FILTER_BEACON;
3746		break;
3747	case IEEE80211_M_HOSTAP:
3748		/* XXX workaround for beaconing */
3749		sc->rxon.mode = WPI_MODE_IBSS;
3750		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3751		break;
3752	case IEEE80211_M_AHDEMO:
3753		/* XXX workaround for passive channels selection */
3754		sc->rxon.mode = WPI_MODE_HOSTAP;
3755		break;
3756	case IEEE80211_M_MONITOR:
3757		sc->rxon.mode = WPI_MODE_MONITOR;
3758		break;
3759	default:
3760		device_printf(sc->sc_dev, "unknown opmode %d\n",
3761		    ic->ic_opmode);
3762		return EINVAL;
3763	}
3764	sc->rxon.filter = htole32(sc->rxon.filter);
3765	wpi_set_promisc(sc);
3766	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3767	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3768
3769	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3770		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3771		    __func__);
3772		return error;
3773	}
3774
3775	/* Setup rate scalling. */
3776	if ((error = wpi_mrr_setup(sc)) != 0) {
3777		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3778		    error);
3779		return error;
3780	}
3781
3782	/* Disable beacon notifications (unused). */
3783	flags = WPI_STATISTICS_BEACON_DISABLE;
3784	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3785	if (error != 0) {
3786		device_printf(sc->sc_dev,
3787		    "could not disable beacon statistics, error %d\n", error);
3788		return error;
3789	}
3790
3791	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3792
3793	return 0;
3794}
3795
3796static uint16_t
3797wpi_get_active_dwell_time(struct wpi_softc *sc,
3798    struct ieee80211_channel *c, uint8_t n_probes)
3799{
3800	/* No channel? Default to 2GHz settings. */
3801	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3802		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3803		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3804	}
3805
3806	/* 5GHz dwell time. */
3807	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3808	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3809}
3810
3811/*
3812 * Limit the total dwell time to 85% of the beacon interval.
3813 *
3814 * Returns the dwell time in milliseconds.
3815 */
3816static uint16_t
3817wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3818{
3819	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3820	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3821	int bintval = 0;
3822
3823	/* bintval is in TU (1.024mS) */
3824	if (vap != NULL)
3825		bintval = vap->iv_bss->ni_intval;
3826
3827	/*
3828	 * If it's non-zero, we should calculate the minimum of
3829	 * it and the DWELL_BASE.
3830	 *
3831	 * XXX Yes, the math should take into account that bintval
3832	 * is 1.024mS, not 1mS..
3833	 */
3834	if (bintval > 0) {
3835		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3836		    bintval);
3837		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3838	}
3839
3840	/* No association context? Default. */
3841	return (WPI_PASSIVE_DWELL_BASE);
3842}
3843
3844static uint16_t
3845wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3846{
3847	uint16_t passive;
3848
3849	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3850		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3851	else
3852		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3853
3854	/* Clamp to the beacon interval if we're associated. */
3855	return (wpi_limit_dwell(sc, passive));
3856}
3857
3858/*
3859 * Send a scan request to the firmware.
3860 */
3861static int
3862wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3863{
3864	struct ifnet *ifp = sc->sc_ifp;
3865	struct ieee80211com *ic = ifp->if_l2com;
3866	struct ieee80211_scan_state *ss = ic->ic_scan;
3867	struct ieee80211vap *vap = ss->ss_vap;
3868	struct wpi_scan_hdr *hdr;
3869	struct wpi_cmd_data *tx;
3870	struct wpi_scan_essid *essids;
3871	struct wpi_scan_chan *chan;
3872	struct ieee80211_frame *wh;
3873	struct ieee80211_rateset *rs;
3874	uint16_t dwell_active, dwell_passive;
3875	uint8_t *buf, *frm;
3876	int buflen, error, i, nssid;
3877
3878	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3879
3880	/*
3881	 * We are absolutely not allowed to send a scan command when another
3882	 * scan command is pending.
3883	 */
3884	if (callout_pending(&sc->scan_timeout)) {
3885		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3886		    __func__);
3887
3888		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3889
3890		return (EAGAIN);
3891	}
3892
3893	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3894	if (buf == NULL) {
3895		device_printf(sc->sc_dev,
3896		    "%s: could not allocate buffer for scan command\n",
3897		    __func__);
3898		error = ENOMEM;
3899		goto fail;
3900	}
3901	hdr = (struct wpi_scan_hdr *)buf;
3902
3903	/*
3904	 * Move to the next channel if no packets are received within 10 msecs
3905	 * after sending the probe request.
3906	 */
3907	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3908	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3909	/*
3910	 * Max needs to be greater than active and passive and quiet!
3911	 * It's also in microseconds!
3912	 */
3913	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3914	hdr->pause_svc = htole32((4 << 24) |
3915	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3916	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3917
3918	tx = (struct wpi_cmd_data *)(hdr + 1);
3919	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3920	tx->id = WPI_ID_BROADCAST;
3921	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3922
3923	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3924		/* Send probe requests at 6Mbps. */
3925		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3926		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3927	} else {
3928		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3929		/* Send probe requests at 1Mbps. */
3930		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3931		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3932	}
3933
3934	essids = (struct wpi_scan_essid *)(tx + 1);
3935	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3936	for (i = 0; i < nssid; i++) {
3937		essids[i].id = IEEE80211_ELEMID_SSID;
3938		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3939		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3940#ifdef WPI_DEBUG
3941		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3942			printf("Scanning Essid: ");
3943			ieee80211_print_essid(essids[i].data, essids[i].len);
3944			printf("\n");
3945		}
3946#endif
3947	}
3948
3949	/*
3950	 * Build a probe request frame.  Most of the following code is a
3951	 * copy & paste of what is done in net80211.
3952	 */
3953	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3954	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3955		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3956	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3957	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3958	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3959	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3960	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3961	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3962
3963	frm = (uint8_t *)(wh + 1);
3964	frm = ieee80211_add_ssid(frm, NULL, 0);
3965	frm = ieee80211_add_rates(frm, rs);
3966	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3967		frm = ieee80211_add_xrates(frm, rs);
3968
3969	/* Set length of probe request. */
3970	tx->len = htole16(frm - (uint8_t *)wh);
3971
3972	/*
3973	 * Construct information about the channel that we
3974	 * want to scan. The firmware expects this to be directly
3975	 * after the scan probe request
3976	 */
3977	chan = (struct wpi_scan_chan *)frm;
3978	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3979	chan->flags = 0;
3980	if (nssid) {
3981		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3982		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3983	} else
3984		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3985
3986	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3987		chan->flags |= WPI_CHAN_ACTIVE;
3988
3989	/*
3990	 * Calculate the active/passive dwell times.
3991	 */
3992
3993	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3994	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3995
3996	/* Make sure they're valid. */
3997	if (dwell_passive <= dwell_active)
3998		dwell_passive = dwell_active + 1;
3999
4000	chan->active = htole16(dwell_active);
4001	chan->passive = htole16(dwell_passive);
4002
4003	chan->dsp_gain = 0x6e;  /* Default level */
4004
4005	if (IEEE80211_IS_CHAN_5GHZ(c))
4006		chan->rf_gain = 0x3b;
4007	else
4008		chan->rf_gain = 0x28;
4009
4010	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4011	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4012
4013	hdr->nchan++;
4014	chan++;
4015
4016	buflen = (uint8_t *)chan - buf;
4017	hdr->len = htole16(buflen);
4018
4019	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4020	    hdr->nchan);
4021	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4022	free(buf, M_DEVBUF);
4023
4024	if (error != 0)
4025		goto fail;
4026
4027	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4028
4029	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4030
4031	return 0;
4032
4033fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4034
4035	return error;
4036}
4037
4038static int
4039wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4040{
4041	struct ieee80211com *ic = vap->iv_ic;
4042	struct ieee80211_node *ni = vap->iv_bss;
4043	int error;
4044
4045	WPI_RXON_LOCK(sc);
4046
4047	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4048
4049	/* Update adapter configuration. */
4050	sc->rxon.associd = 0;
4051	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4052	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4053	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4054	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4055	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4056		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4057	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4058		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4059	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4060		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4061	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4062		sc->rxon.cck_mask  = 0;
4063		sc->rxon.ofdm_mask = 0x15;
4064	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4065		sc->rxon.cck_mask  = 0x03;
4066		sc->rxon.ofdm_mask = 0;
4067	} else {
4068		/* Assume 802.11b/g. */
4069		sc->rxon.cck_mask  = 0x0f;
4070		sc->rxon.ofdm_mask = 0x15;
4071	}
4072
4073	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4074	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4075	    sc->rxon.ofdm_mask);
4076
4077	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4078		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4079		    __func__);
4080	}
4081
4082	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4083
4084	WPI_RXON_UNLOCK(sc);
4085
4086	return error;
4087}
4088
4089static int
4090wpi_config_beacon(struct wpi_vap *wvp)
4091{
4092	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4093	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4094	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4095	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4096	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4097	struct ieee80211_tim_ie *tie;
4098	struct mbuf *m;
4099	uint8_t *ptr;
4100	int error;
4101
4102	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4103
4104	WPI_VAP_LOCK_ASSERT(wvp);
4105
4106	cmd->len = htole16(bcn->m->m_pkthdr.len);
4107	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4108	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4109
4110	/* XXX seems to be unused */
4111	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4112		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4113		ptr = mtod(bcn->m, uint8_t *);
4114
4115		cmd->tim = htole16(bo->bo_tim - ptr);
4116		cmd->timsz = tie->tim_len;
4117	}
4118
4119	/* Necessary for recursion in ieee80211_beacon_update(). */
4120	m = bcn->m;
4121	bcn->m = m_dup(m, M_NOWAIT);
4122	if (bcn->m == NULL) {
4123		device_printf(sc->sc_dev,
4124		    "%s: could not copy beacon frame\n", __func__);
4125		error = ENOMEM;
4126		goto end;
4127	}
4128
4129	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4130		device_printf(sc->sc_dev,
4131		    "%s: could not update beacon frame, error %d", __func__,
4132		    error);
4133	}
4134
4135	/* Restore mbuf. */
4136end:	bcn->m = m;
4137
4138	return error;
4139}
4140
4141static int
4142wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4143{
4144	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4145	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4146	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4147	struct mbuf *m;
4148	int error;
4149
4150	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4151
4152	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4153		return EINVAL;
4154
4155	m = ieee80211_beacon_alloc(ni, bo);
4156	if (m == NULL) {
4157		device_printf(sc->sc_dev,
4158		    "%s: could not allocate beacon frame\n", __func__);
4159		return ENOMEM;
4160	}
4161
4162	WPI_VAP_LOCK(wvp);
4163	if (bcn->m != NULL)
4164		m_freem(bcn->m);
4165
4166	bcn->m = m;
4167
4168	error = wpi_config_beacon(wvp);
4169	WPI_VAP_UNLOCK(wvp);
4170
4171	return error;
4172}
4173
4174static void
4175wpi_update_beacon(struct ieee80211vap *vap, int item)
4176{
4177	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4178	struct wpi_vap *wvp = WPI_VAP(vap);
4179	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4180	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4181	struct ieee80211_node *ni = vap->iv_bss;
4182	int mcast = 0;
4183
4184	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4185
4186	WPI_VAP_LOCK(wvp);
4187	if (bcn->m == NULL) {
4188		bcn->m = ieee80211_beacon_alloc(ni, bo);
4189		if (bcn->m == NULL) {
4190			device_printf(sc->sc_dev,
4191			    "%s: could not allocate beacon frame\n", __func__);
4192
4193			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4194			    __func__);
4195
4196			WPI_VAP_UNLOCK(wvp);
4197			return;
4198		}
4199	}
4200	WPI_VAP_UNLOCK(wvp);
4201
4202	if (item == IEEE80211_BEACON_TIM)
4203		mcast = 1;	/* TODO */
4204
4205	setbit(bo->bo_flags, item);
4206	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4207
4208	WPI_VAP_LOCK(wvp);
4209	wpi_config_beacon(wvp);
4210	WPI_VAP_UNLOCK(wvp);
4211
4212	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4213}
4214
4215static void
4216wpi_newassoc(struct ieee80211_node *ni, int isnew)
4217{
4218	struct ieee80211vap *vap = ni->ni_vap;
4219	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4220	struct wpi_node *wn = WPI_NODE(ni);
4221	int error;
4222
4223	WPI_NT_LOCK(sc);
4224
4225	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4226
4227	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4228		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4229			device_printf(sc->sc_dev,
4230			    "%s: could not add IBSS node, error %d\n",
4231			    __func__, error);
4232		}
4233	}
4234	WPI_NT_UNLOCK(sc);
4235}
4236
4237static int
4238wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4239{
4240	struct ieee80211com *ic = vap->iv_ic;
4241	struct ieee80211_node *ni = vap->iv_bss;
4242	int error;
4243
4244	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4245
4246	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4247		/* Link LED blinks while monitoring. */
4248		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4249		return 0;
4250	}
4251
4252	/* XXX kernel panic workaround */
4253	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
4254		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4255		    __func__);
4256		return EINVAL;
4257	}
4258
4259	if ((error = wpi_set_timing(sc, ni)) != 0) {
4260		device_printf(sc->sc_dev,
4261		    "%s: could not set timing, error %d\n", __func__, error);
4262		return error;
4263	}
4264
4265	/* Update adapter configuration. */
4266	WPI_RXON_LOCK(sc);
4267	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4268	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4269	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4270	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4271	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4272		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4273	/* Short preamble and slot time are negotiated when associating. */
4274	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
4275	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4276		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4277	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4278		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4279	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4280		sc->rxon.cck_mask  = 0;
4281		sc->rxon.ofdm_mask = 0x15;
4282	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4283		sc->rxon.cck_mask  = 0x03;
4284		sc->rxon.ofdm_mask = 0;
4285	} else {
4286		/* Assume 802.11b/g. */
4287		sc->rxon.cck_mask  = 0x0f;
4288		sc->rxon.ofdm_mask = 0x15;
4289	}
4290	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4291
4292	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4293	    sc->rxon.chan, sc->rxon.flags);
4294
4295	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4296		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4297		    __func__);
4298		return error;
4299	}
4300
4301	/* Start periodic calibration timer. */
4302	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4303
4304	WPI_RXON_UNLOCK(sc);
4305
4306	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4307	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4308		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4309			device_printf(sc->sc_dev,
4310			    "%s: could not setup beacon, error %d\n", __func__,
4311			    error);
4312			return error;
4313		}
4314	}
4315
4316	if (vap->iv_opmode == IEEE80211_M_STA) {
4317		/* Add BSS node. */
4318		WPI_NT_LOCK(sc);
4319		error = wpi_add_sta_node(sc, ni);
4320		WPI_NT_UNLOCK(sc);
4321		if (error != 0) {
4322			device_printf(sc->sc_dev,
4323			    "%s: could not add BSS node, error %d\n", __func__,
4324			    error);
4325			return error;
4326		}
4327	}
4328
4329	/* Link LED always on while associated. */
4330	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4331
4332	/* Enable power-saving mode if requested by user. */
4333	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4334	    vap->iv_opmode != IEEE80211_M_IBSS)
4335		(void)wpi_set_pslevel(sc, 0, 3, 1);
4336	else
4337		(void)wpi_set_pslevel(sc, 0, 0, 1);
4338
4339	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4340
4341	return 0;
4342}
4343
4344static int
4345wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4346{
4347	const struct ieee80211_cipher *cip = k->wk_cipher;
4348	struct ieee80211vap *vap = ni->ni_vap;
4349	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4350	struct wpi_node *wn = WPI_NODE(ni);
4351	struct wpi_node_info node;
4352	uint16_t kflags;
4353	int error;
4354
4355	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4356
4357	if (wpi_check_node_entry(sc, wn->id) == 0) {
4358		device_printf(sc->sc_dev, "%s: node does not exist\n",
4359		    __func__);
4360		return 0;
4361	}
4362
4363	switch (cip->ic_cipher) {
4364	case IEEE80211_CIPHER_AES_CCM:
4365		kflags = WPI_KFLAG_CCMP;
4366		break;
4367
4368	default:
4369		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4370		    cip->ic_cipher);
4371		return 0;
4372	}
4373
4374	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4375	if (k->wk_flags & IEEE80211_KEY_GROUP)
4376		kflags |= WPI_KFLAG_MULTICAST;
4377
4378	memset(&node, 0, sizeof node);
4379	node.id = wn->id;
4380	node.control = WPI_NODE_UPDATE;
4381	node.flags = WPI_FLAG_KEY_SET;
4382	node.kflags = htole16(kflags);
4383	memcpy(node.key, k->wk_key, k->wk_keylen);
4384again:
4385	DPRINTF(sc, WPI_DEBUG_KEY,
4386	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4387	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4388	    node.id, ether_sprintf(ni->ni_macaddr));
4389
4390	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4391	if (error != 0) {
4392		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4393		    error);
4394		return !error;
4395	}
4396
4397	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4398	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4399		kflags |= WPI_KFLAG_MULTICAST;
4400		node.kflags = htole16(kflags);
4401
4402		goto again;
4403	}
4404
4405	return 1;
4406}
4407
4408static void
4409wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4410{
4411	const struct ieee80211_key *k = arg;
4412	struct ieee80211vap *vap = ni->ni_vap;
4413	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4414	struct wpi_node *wn = WPI_NODE(ni);
4415	int error;
4416
4417	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4418		return;
4419
4420	WPI_NT_LOCK(sc);
4421	error = wpi_load_key(ni, k);
4422	WPI_NT_UNLOCK(sc);
4423
4424	if (error == 0) {
4425		device_printf(sc->sc_dev, "%s: error while setting key\n",
4426		    __func__);
4427	}
4428}
4429
4430static int
4431wpi_set_global_keys(struct ieee80211_node *ni)
4432{
4433	struct ieee80211vap *vap = ni->ni_vap;
4434	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4435	int error = 1;
4436
4437	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4438		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4439			error = wpi_load_key(ni, wk);
4440
4441	return !error;
4442}
4443
4444static int
4445wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4446{
4447	struct ieee80211vap *vap = ni->ni_vap;
4448	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4449	struct wpi_node *wn = WPI_NODE(ni);
4450	struct wpi_node_info node;
4451	uint16_t kflags;
4452	int error;
4453
4454	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4455
4456	if (wpi_check_node_entry(sc, wn->id) == 0) {
4457		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4458		return 1;	/* Nothing to do. */
4459	}
4460
4461	kflags = WPI_KFLAG_KID(k->wk_keyix);
4462	if (k->wk_flags & IEEE80211_KEY_GROUP)
4463		kflags |= WPI_KFLAG_MULTICAST;
4464
4465	memset(&node, 0, sizeof node);
4466	node.id = wn->id;
4467	node.control = WPI_NODE_UPDATE;
4468	node.flags = WPI_FLAG_KEY_SET;
4469	node.kflags = htole16(kflags);
4470again:
4471	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4472	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4473	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4474
4475	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4476	if (error != 0) {
4477		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4478		    error);
4479		return !error;
4480	}
4481
4482	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4483	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4484		kflags |= WPI_KFLAG_MULTICAST;
4485		node.kflags = htole16(kflags);
4486
4487		goto again;
4488	}
4489
4490	return 1;
4491}
4492
4493static void
4494wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4495{
4496	const struct ieee80211_key *k = arg;
4497	struct ieee80211vap *vap = ni->ni_vap;
4498	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4499	struct wpi_node *wn = WPI_NODE(ni);
4500	int error;
4501
4502	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4503		return;
4504
4505	WPI_NT_LOCK(sc);
4506	error = wpi_del_key(ni, k);
4507	WPI_NT_UNLOCK(sc);
4508
4509	if (error == 0) {
4510		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4511		    __func__);
4512	}
4513}
4514
4515static int
4516wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4517    int set)
4518{
4519	struct ieee80211com *ic = vap->iv_ic;
4520	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4521	struct wpi_vap *wvp = WPI_VAP(vap);
4522	struct ieee80211_node *ni;
4523	int error, ni_ref = 0;
4524
4525	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4526
4527	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4528		/* Not for us. */
4529		return 1;
4530	}
4531
4532	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4533		/* XMIT keys are handled in wpi_tx_data(). */
4534		return 1;
4535	}
4536
4537	/* Handle group keys. */
4538	if (&vap->iv_nw_keys[0] <= k &&
4539	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4540		WPI_NT_LOCK(sc);
4541		if (set)
4542			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4543		else
4544			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4545		WPI_NT_UNLOCK(sc);
4546
4547		if (vap->iv_state == IEEE80211_S_RUN) {
4548			ieee80211_iterate_nodes(&ic->ic_sta,
4549			    set ? wpi_load_key_cb : wpi_del_key_cb, (void *)k);
4550		}
4551
4552		return 1;
4553	}
4554
4555	switch (vap->iv_opmode) {
4556	case IEEE80211_M_STA:
4557		ni = vap->iv_bss;
4558		break;
4559
4560	case IEEE80211_M_IBSS:
4561	case IEEE80211_M_AHDEMO:
4562	case IEEE80211_M_HOSTAP:
4563		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4564		if (ni == NULL)
4565			return 0;	/* should not happen */
4566
4567		ni_ref = 1;
4568		break;
4569
4570	default:
4571		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4572		    vap->iv_opmode);
4573		return 0;
4574	}
4575
4576	WPI_NT_LOCK(sc);
4577	if (set)
4578		error = wpi_load_key(ni, k);
4579	else
4580		error = wpi_del_key(ni, k);
4581	WPI_NT_UNLOCK(sc);
4582
4583	if (ni_ref)
4584		ieee80211_node_decref(ni);
4585
4586	return error;
4587}
4588
4589static int
4590wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4591    const uint8_t mac[IEEE80211_ADDR_LEN])
4592{
4593	return wpi_process_key(vap, k, 1);
4594}
4595
4596static int
4597wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4598{
4599	return wpi_process_key(vap, k, 0);
4600}
4601
4602/*
4603 * This function is called after the runtime firmware notifies us of its
4604 * readiness (called in a process context).
4605 */
4606static int
4607wpi_post_alive(struct wpi_softc *sc)
4608{
4609	int ntries, error;
4610
4611	/* Check (again) that the radio is not disabled. */
4612	if ((error = wpi_nic_lock(sc)) != 0)
4613		return error;
4614
4615	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4616
4617	/* NB: Runtime firmware must be up and running. */
4618	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4619 		device_printf(sc->sc_dev,
4620		    "RF switch: radio disabled (%s)\n", __func__);
4621		wpi_nic_unlock(sc);
4622		return EPERM;   /* :-) */
4623	}
4624	wpi_nic_unlock(sc);
4625
4626	/* Wait for thermal sensor to calibrate. */
4627	for (ntries = 0; ntries < 1000; ntries++) {
4628		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4629			break;
4630		DELAY(10);
4631	}
4632
4633	if (ntries == 1000) {
4634		device_printf(sc->sc_dev,
4635		    "timeout waiting for thermal sensor calibration\n");
4636		return ETIMEDOUT;
4637	}
4638
4639	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4640	return 0;
4641}
4642
4643/*
4644 * The firmware boot code is small and is intended to be copied directly into
4645 * the NIC internal memory (no DMA transfer).
4646 */
4647static int
4648wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4649{
4650	int error, ntries;
4651
4652	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4653
4654	size /= sizeof (uint32_t);
4655
4656	if ((error = wpi_nic_lock(sc)) != 0)
4657		return error;
4658
4659	/* Copy microcode image into NIC memory. */
4660	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4661	    (const uint32_t *)ucode, size);
4662
4663	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4664	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4665	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4666
4667	/* Start boot load now. */
4668	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4669
4670	/* Wait for transfer to complete. */
4671	for (ntries = 0; ntries < 1000; ntries++) {
4672		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4673		DPRINTF(sc, WPI_DEBUG_HW,
4674		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4675		    WPI_FH_TX_STATUS_IDLE(6),
4676		    status & WPI_FH_TX_STATUS_IDLE(6));
4677		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4678			DPRINTF(sc, WPI_DEBUG_HW,
4679			    "Status Match! - ntries = %d\n", ntries);
4680			break;
4681		}
4682		DELAY(10);
4683	}
4684	if (ntries == 1000) {
4685		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4686		    __func__);
4687		wpi_nic_unlock(sc);
4688		return ETIMEDOUT;
4689	}
4690
4691	/* Enable boot after power up. */
4692	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4693
4694	wpi_nic_unlock(sc);
4695	return 0;
4696}
4697
4698static int
4699wpi_load_firmware(struct wpi_softc *sc)
4700{
4701	struct wpi_fw_info *fw = &sc->fw;
4702	struct wpi_dma_info *dma = &sc->fw_dma;
4703	int error;
4704
4705	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4706
4707	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4708	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4709	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4710	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4711	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4712
4713	/* Tell adapter where to find initialization sections. */
4714	if ((error = wpi_nic_lock(sc)) != 0)
4715		return error;
4716	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4717	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4718	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4719	    dma->paddr + WPI_FW_DATA_MAXSZ);
4720	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4721	wpi_nic_unlock(sc);
4722
4723	/* Load firmware boot code. */
4724	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4725	if (error != 0) {
4726		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4727		    __func__);
4728		return error;
4729	}
4730
4731	/* Now press "execute". */
4732	WPI_WRITE(sc, WPI_RESET, 0);
4733
4734	/* Wait at most one second for first alive notification. */
4735	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4736		device_printf(sc->sc_dev,
4737		    "%s: timeout waiting for adapter to initialize, error %d\n",
4738		    __func__, error);
4739		return error;
4740	}
4741
4742	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4743	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4744	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4745	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4746	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4747
4748	/* Tell adapter where to find runtime sections. */
4749	if ((error = wpi_nic_lock(sc)) != 0)
4750		return error;
4751	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4752	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4753	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4754	    dma->paddr + WPI_FW_DATA_MAXSZ);
4755	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4756	    WPI_FW_UPDATED | fw->main.textsz);
4757	wpi_nic_unlock(sc);
4758
4759	return 0;
4760}
4761
4762static int
4763wpi_read_firmware(struct wpi_softc *sc)
4764{
4765	const struct firmware *fp;
4766	struct wpi_fw_info *fw = &sc->fw;
4767	const struct wpi_firmware_hdr *hdr;
4768	int error;
4769
4770	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4771
4772	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4773	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4774
4775	WPI_UNLOCK(sc);
4776	fp = firmware_get(WPI_FW_NAME);
4777	WPI_LOCK(sc);
4778
4779	if (fp == NULL) {
4780		device_printf(sc->sc_dev,
4781		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4782		return EINVAL;
4783	}
4784
4785	sc->fw_fp = fp;
4786
4787	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4788		device_printf(sc->sc_dev,
4789		    "firmware file too short: %zu bytes\n", fp->datasize);
4790		error = EINVAL;
4791		goto fail;
4792	}
4793
4794	fw->size = fp->datasize;
4795	fw->data = (const uint8_t *)fp->data;
4796
4797	/* Extract firmware header information. */
4798	hdr = (const struct wpi_firmware_hdr *)fw->data;
4799
4800	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4801	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4802
4803	fw->main.textsz = le32toh(hdr->rtextsz);
4804	fw->main.datasz = le32toh(hdr->rdatasz);
4805	fw->init.textsz = le32toh(hdr->itextsz);
4806	fw->init.datasz = le32toh(hdr->idatasz);
4807	fw->boot.textsz = le32toh(hdr->btextsz);
4808	fw->boot.datasz = 0;
4809
4810	/* Sanity-check firmware header. */
4811	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4812	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4813	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4814	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4815	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4816	    (fw->boot.textsz & 3) != 0) {
4817		device_printf(sc->sc_dev, "invalid firmware header\n");
4818		error = EINVAL;
4819		goto fail;
4820	}
4821
4822	/* Check that all firmware sections fit. */
4823	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4824	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4825		device_printf(sc->sc_dev,
4826		    "firmware file too short: %zu bytes\n", fw->size);
4827		error = EINVAL;
4828		goto fail;
4829	}
4830
4831	/* Get pointers to firmware sections. */
4832	fw->main.text = (const uint8_t *)(hdr + 1);
4833	fw->main.data = fw->main.text + fw->main.textsz;
4834	fw->init.text = fw->main.data + fw->main.datasz;
4835	fw->init.data = fw->init.text + fw->init.textsz;
4836	fw->boot.text = fw->init.data + fw->init.datasz;
4837
4838	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4839	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4840	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4841	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4842	    fw->main.textsz, fw->main.datasz,
4843	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4844
4845	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4846	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4847	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4848	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4849	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4850
4851	return 0;
4852
4853fail:	wpi_unload_firmware(sc);
4854	return error;
4855}
4856
4857/**
4858 * Free the referenced firmware image
4859 */
4860static void
4861wpi_unload_firmware(struct wpi_softc *sc)
4862{
4863	if (sc->fw_fp != NULL) {
4864		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4865		sc->fw_fp = NULL;
4866	}
4867}
4868
4869static int
4870wpi_clock_wait(struct wpi_softc *sc)
4871{
4872	int ntries;
4873
4874	/* Set "initialization complete" bit. */
4875	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4876
4877	/* Wait for clock stabilization. */
4878	for (ntries = 0; ntries < 2500; ntries++) {
4879		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4880			return 0;
4881		DELAY(100);
4882	}
4883	device_printf(sc->sc_dev,
4884	    "%s: timeout waiting for clock stabilization\n", __func__);
4885
4886	return ETIMEDOUT;
4887}
4888
4889static int
4890wpi_apm_init(struct wpi_softc *sc)
4891{
4892	uint32_t reg;
4893	int error;
4894
4895	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4896
4897	/* Disable L0s exit timer (NMI bug workaround). */
4898	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4899	/* Don't wait for ICH L0s (ICH bug workaround). */
4900	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4901
4902	/* Set FH wait threshold to max (HW bug under stress workaround). */
4903	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4904
4905	/* Cleanup. */
4906	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
4907	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4908
4909	/* Retrieve PCIe Active State Power Management (ASPM). */
4910	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4911	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4912	if (reg & 0x02)	/* L1 Entry enabled. */
4913		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4914	else
4915		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4916
4917	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4918
4919	/* Wait for clock stabilization before accessing prph. */
4920	if ((error = wpi_clock_wait(sc)) != 0)
4921		return error;
4922
4923	if ((error = wpi_nic_lock(sc)) != 0)
4924		return error;
4925	/* Enable DMA and BSM (Bootstrap State Machine). */
4926	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4927	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4928	DELAY(20);
4929	/* Disable L1-Active. */
4930	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4931	wpi_nic_unlock(sc);
4932
4933	return 0;
4934}
4935
4936static void
4937wpi_apm_stop_master(struct wpi_softc *sc)
4938{
4939	int ntries;
4940
4941	/* Stop busmaster DMA activity. */
4942	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4943
4944	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4945	    WPI_GP_CNTRL_MAC_PS)
4946		return; /* Already asleep. */
4947
4948	for (ntries = 0; ntries < 100; ntries++) {
4949		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4950			return;
4951		DELAY(10);
4952	}
4953	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
4954	    __func__);
4955}
4956
4957static void
4958wpi_apm_stop(struct wpi_softc *sc)
4959{
4960	wpi_apm_stop_master(sc);
4961
4962	/* Reset the entire device. */
4963	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4964	DELAY(10);
4965	/* Clear "initialization complete" bit. */
4966	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4967}
4968
4969static void
4970wpi_nic_config(struct wpi_softc *sc)
4971{
4972	uint32_t rev;
4973
4974	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4975
4976	/* voodoo from the Linux "driver".. */
4977	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4978	if ((rev & 0xc0) == 0x40)
4979		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4980	else if (!(rev & 0x80))
4981		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4982
4983	if (sc->cap == 0x80)
4984		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4985
4986	if ((sc->rev & 0xf0) == 0xd0)
4987		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4988	else
4989		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4990
4991	if (sc->type > 1)
4992		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4993}
4994
4995static int
4996wpi_hw_init(struct wpi_softc *sc)
4997{
4998	int chnl, ntries, error;
4999
5000	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5001
5002	/* Clear pending interrupts. */
5003	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5004
5005	if ((error = wpi_apm_init(sc)) != 0) {
5006		device_printf(sc->sc_dev,
5007		    "%s: could not power ON adapter, error %d\n", __func__,
5008		    error);
5009		return error;
5010	}
5011
5012	/* Select VMAIN power source. */
5013	if ((error = wpi_nic_lock(sc)) != 0)
5014		return error;
5015	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5016	wpi_nic_unlock(sc);
5017	/* Spin until VMAIN gets selected. */
5018	for (ntries = 0; ntries < 5000; ntries++) {
5019		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5020			break;
5021		DELAY(10);
5022	}
5023	if (ntries == 5000) {
5024		device_printf(sc->sc_dev, "timeout selecting power source\n");
5025		return ETIMEDOUT;
5026	}
5027
5028	/* Perform adapter initialization. */
5029	wpi_nic_config(sc);
5030
5031	/* Initialize RX ring. */
5032	if ((error = wpi_nic_lock(sc)) != 0)
5033		return error;
5034	/* Set physical address of RX ring. */
5035	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5036	/* Set physical address of RX read pointer. */
5037	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5038	    offsetof(struct wpi_shared, next));
5039	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5040	/* Enable RX. */
5041	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5042	    WPI_FH_RX_CONFIG_DMA_ENA |
5043	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5044	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5045	    WPI_FH_RX_CONFIG_MAXFRAG |
5046	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5047	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5048	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5049	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5050	wpi_nic_unlock(sc);
5051	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5052
5053	/* Initialize TX rings. */
5054	if ((error = wpi_nic_lock(sc)) != 0)
5055		return error;
5056	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5057	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5058	/* Enable all 6 TX rings. */
5059	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5060	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5061	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5062	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5063	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5064	/* Set physical address of TX rings. */
5065	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5066	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5067
5068	/* Enable all DMA channels. */
5069	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5070		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5071		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5072		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5073	}
5074	wpi_nic_unlock(sc);
5075	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5076
5077	/* Clear "radio off" and "commands blocked" bits. */
5078	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5079	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5080
5081	/* Clear pending interrupts. */
5082	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5083	/* Enable interrupts. */
5084	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5085
5086	/* _Really_ make sure "radio off" bit is cleared! */
5087	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5088	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5089
5090	if ((error = wpi_load_firmware(sc)) != 0) {
5091		device_printf(sc->sc_dev,
5092		    "%s: could not load firmware, error %d\n", __func__,
5093		    error);
5094		return error;
5095	}
5096	/* Wait at most one second for firmware alive notification. */
5097	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5098		device_printf(sc->sc_dev,
5099		    "%s: timeout waiting for adapter to initialize, error %d\n",
5100		    __func__, error);
5101		return error;
5102	}
5103
5104	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5105
5106	/* Do post-firmware initialization. */
5107	return wpi_post_alive(sc);
5108}
5109
5110static void
5111wpi_hw_stop(struct wpi_softc *sc)
5112{
5113	int chnl, qid, ntries;
5114
5115	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5116
5117	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5118		wpi_nic_lock(sc);
5119
5120	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5121
5122	/* Disable interrupts. */
5123	WPI_WRITE(sc, WPI_INT_MASK, 0);
5124	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5125	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5126
5127	/* Make sure we no longer hold the NIC lock. */
5128	wpi_nic_unlock(sc);
5129
5130	if (wpi_nic_lock(sc) == 0) {
5131		/* Stop TX scheduler. */
5132		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5133		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5134
5135		/* Stop all DMA channels. */
5136		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5137			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5138			for (ntries = 0; ntries < 200; ntries++) {
5139				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5140				    WPI_FH_TX_STATUS_IDLE(chnl))
5141					break;
5142				DELAY(10);
5143			}
5144		}
5145		wpi_nic_unlock(sc);
5146	}
5147
5148	/* Stop RX ring. */
5149	wpi_reset_rx_ring(sc);
5150
5151	/* Reset all TX rings. */
5152	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5153		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5154
5155	if (wpi_nic_lock(sc) == 0) {
5156		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5157		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5158		wpi_nic_unlock(sc);
5159	}
5160	DELAY(5);
5161	/* Power OFF adapter. */
5162	wpi_apm_stop(sc);
5163}
5164
5165static void
5166wpi_radio_on(void *arg0, int pending)
5167{
5168	struct wpi_softc *sc = arg0;
5169	struct ifnet *ifp = sc->sc_ifp;
5170	struct ieee80211com *ic = ifp->if_l2com;
5171	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5172
5173	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5174
5175	if (vap != NULL) {
5176		wpi_init(sc);
5177		ieee80211_init(vap);
5178	}
5179
5180	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5181		WPI_LOCK(sc);
5182		callout_stop(&sc->watchdog_rfkill);
5183		WPI_UNLOCK(sc);
5184	}
5185}
5186
5187static void
5188wpi_radio_off(void *arg0, int pending)
5189{
5190	struct wpi_softc *sc = arg0;
5191	struct ifnet *ifp = sc->sc_ifp;
5192	struct ieee80211com *ic = ifp->if_l2com;
5193	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5194
5195	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5196
5197	wpi_stop(sc);
5198	if (vap != NULL)
5199		ieee80211_stop(vap);
5200
5201	WPI_LOCK(sc);
5202	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5203	WPI_UNLOCK(sc);
5204}
5205
5206static void
5207wpi_init(void *arg)
5208{
5209	struct wpi_softc *sc = arg;
5210	struct ifnet *ifp = sc->sc_ifp;
5211	struct ieee80211com *ic = ifp->if_l2com;
5212	int error;
5213
5214	WPI_LOCK(sc);
5215
5216	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5217
5218	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5219		goto end;
5220
5221	/* Check that the radio is not disabled by hardware switch. */
5222	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5223		device_printf(sc->sc_dev,
5224		    "RF switch: radio disabled (%s)\n", __func__);
5225		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5226		    sc);
5227		goto end;
5228	}
5229
5230	/* Read firmware images from the filesystem. */
5231	if ((error = wpi_read_firmware(sc)) != 0) {
5232		device_printf(sc->sc_dev,
5233		    "%s: could not read firmware, error %d\n", __func__,
5234		    error);
5235		goto fail;
5236	}
5237
5238	/* Initialize hardware and upload firmware. */
5239	error = wpi_hw_init(sc);
5240	wpi_unload_firmware(sc);
5241	if (error != 0) {
5242		device_printf(sc->sc_dev,
5243		    "%s: could not initialize hardware, error %d\n", __func__,
5244		    error);
5245		goto fail;
5246	}
5247
5248	/* Configure adapter now that it is ready. */
5249	sc->txq_active = 1;
5250	if ((error = wpi_config(sc)) != 0) {
5251		device_printf(sc->sc_dev,
5252		    "%s: could not configure device, error %d\n", __func__,
5253		    error);
5254		goto fail;
5255	}
5256
5257	IF_LOCK(&ifp->if_snd);
5258	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5259	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5260	IF_UNLOCK(&ifp->if_snd);
5261
5262	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5263
5264	WPI_UNLOCK(sc);
5265
5266	ieee80211_start_all(ic);
5267
5268	return;
5269
5270fail:	wpi_stop_locked(sc);
5271end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5272	WPI_UNLOCK(sc);
5273}
5274
5275static void
5276wpi_stop_locked(struct wpi_softc *sc)
5277{
5278	struct ifnet *ifp = sc->sc_ifp;
5279
5280	WPI_LOCK_ASSERT(sc);
5281
5282	WPI_TXQ_LOCK(sc);
5283	sc->txq_active = 0;
5284	WPI_TXQ_UNLOCK(sc);
5285
5286	WPI_TXQ_STATE_LOCK(sc);
5287	callout_stop(&sc->tx_timeout);
5288	WPI_TXQ_STATE_UNLOCK(sc);
5289
5290	WPI_RXON_LOCK(sc);
5291	callout_stop(&sc->scan_timeout);
5292	callout_stop(&sc->calib_to);
5293	WPI_RXON_UNLOCK(sc);
5294
5295	IF_LOCK(&ifp->if_snd);
5296	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5297	IF_UNLOCK(&ifp->if_snd);
5298
5299	/* Power OFF hardware. */
5300	wpi_hw_stop(sc);
5301}
5302
5303static void
5304wpi_stop(struct wpi_softc *sc)
5305{
5306	WPI_LOCK(sc);
5307	wpi_stop_locked(sc);
5308	WPI_UNLOCK(sc);
5309}
5310
5311/*
5312 * Callback from net80211 to start a scan.
5313 */
5314static void
5315wpi_scan_start(struct ieee80211com *ic)
5316{
5317	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5318
5319	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5320}
5321
5322/*
5323 * Callback from net80211 to terminate a scan.
5324 */
5325static void
5326wpi_scan_end(struct ieee80211com *ic)
5327{
5328	struct ifnet *ifp = ic->ic_ifp;
5329	struct wpi_softc *sc = ifp->if_softc;
5330	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5331
5332	if (vap->iv_state == IEEE80211_S_RUN)
5333		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5334}
5335
5336/**
5337 * Called by the net80211 framework to indicate to the driver
5338 * that the channel should be changed
5339 */
5340static void
5341wpi_set_channel(struct ieee80211com *ic)
5342{
5343	const struct ieee80211_channel *c = ic->ic_curchan;
5344	struct ifnet *ifp = ic->ic_ifp;
5345	struct wpi_softc *sc = ifp->if_softc;
5346	int error;
5347
5348	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5349
5350	WPI_LOCK(sc);
5351	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5352	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5353	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5354	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5355	WPI_UNLOCK(sc);
5356
5357	/*
5358	 * Only need to set the channel in Monitor mode. AP scanning and auth
5359	 * are already taken care of by their respective firmware commands.
5360	 */
5361	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5362		WPI_RXON_LOCK(sc);
5363		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5364		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5365			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5366			    WPI_RXON_24GHZ);
5367		} else {
5368			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5369			    WPI_RXON_24GHZ);
5370		}
5371		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5372			device_printf(sc->sc_dev,
5373			    "%s: error %d setting channel\n", __func__,
5374			    error);
5375		WPI_RXON_UNLOCK(sc);
5376	}
5377}
5378
5379/**
5380 * Called by net80211 to indicate that we need to scan the current
5381 * channel. The channel is previously be set via the wpi_set_channel
5382 * callback.
5383 */
5384static void
5385wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5386{
5387	struct ieee80211vap *vap = ss->ss_vap;
5388	struct ieee80211com *ic = vap->iv_ic;
5389	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5390	int error;
5391
5392	WPI_RXON_LOCK(sc);
5393	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
5394		error = wpi_scan(sc, ic->ic_curchan);
5395		WPI_RXON_UNLOCK(sc);
5396		if (error != 0)
5397			ieee80211_cancel_scan(vap);
5398	} else {
5399		WPI_RXON_UNLOCK(sc);
5400		/* Send probe request when associated. */
5401		sc->sc_scan_curchan(ss, maxdwell);
5402	}
5403}
5404
5405/**
5406 * Called by the net80211 framework to indicate
5407 * the minimum dwell time has been met, terminate the scan.
5408 * We don't actually terminate the scan as the firmware will notify
5409 * us when it's finished and we have no way to interrupt it.
5410 */
5411static void
5412wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5413{
5414	/* NB: don't try to abort scan; wait for firmware to finish */
5415}
5416
5417static void
5418wpi_hw_reset(void *arg, int pending)
5419{
5420	struct wpi_softc *sc = arg;
5421	struct ifnet *ifp = sc->sc_ifp;
5422	struct ieee80211com *ic = ifp->if_l2com;
5423	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5424
5425	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5426
5427	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5428		ieee80211_cancel_scan(vap);
5429
5430	wpi_stop(sc);
5431	if (vap != NULL)
5432		ieee80211_stop(vap);
5433	wpi_init(sc);
5434	if (vap != NULL)
5435		ieee80211_init(vap);
5436}
5437