if_wpi.c revision 280111
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280111 2015-03-15 21:24:11Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_reset_rx_ring(struct wpi_softc *);
156static void	wpi_free_rx_ring(struct wpi_softc *);
157static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158		    int);
159static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162static int	wpi_read_eeprom(struct wpi_softc *,
163		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
164static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
165static void	wpi_read_eeprom_band(struct wpi_softc *, int);
166static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
167static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
168		    struct ieee80211_channel *);
169static int	wpi_setregdomain(struct ieee80211com *,
170		    struct ieee80211_regdomain *, int,
171		    struct ieee80211_channel[]);
172static int	wpi_read_eeprom_group(struct wpi_softc *, int);
173static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
174static void	wpi_node_free(struct ieee80211_node *);
175static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
176		    const uint8_t mac[IEEE80211_ADDR_LEN]);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_calib_timeout(void *);
179static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
182		    struct wpi_rx_data *);
183static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
184static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
185static void	wpi_notif_intr(struct wpi_softc *);
186static void	wpi_wakeup_intr(struct wpi_softc *);
187#ifdef WPI_DEBUG
188static void	wpi_debug_registers(struct wpi_softc *);
189#endif
190static void	wpi_fatal_intr(struct wpi_softc *);
191static void	wpi_intr(void *);
192static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
193static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
194		    struct ieee80211_node *);
195static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
196		    struct ieee80211_node *,
197		    const struct ieee80211_bpf_params *);
198static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
199		    const struct ieee80211_bpf_params *);
200static void	wpi_start(struct ifnet *);
201static void	wpi_start_task(void *, int);
202static void	wpi_watchdog_rfkill(void *);
203static void	wpi_scan_timeout(void *);
204static void	wpi_tx_timeout(void *);
205static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
206static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
207static int	wpi_mrr_setup(struct wpi_softc *);
208static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
209static int	wpi_add_broadcast_node(struct wpi_softc *, int);
210static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
211static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
212static int	wpi_updateedca(struct ieee80211com *);
213static void	wpi_set_promisc(struct wpi_softc *);
214static void	wpi_update_promisc(struct ifnet *);
215static void	wpi_update_mcast(struct ifnet *);
216static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
217static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
218static void	wpi_power_calibration(struct wpi_softc *);
219static int	wpi_set_txpower(struct wpi_softc *, int);
220static int	wpi_get_power_index(struct wpi_softc *,
221		    struct wpi_power_group *, struct ieee80211_channel *, int);
222static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
223static int	wpi_send_btcoex(struct wpi_softc *);
224static int	wpi_send_rxon(struct wpi_softc *, int, int);
225static int	wpi_config(struct wpi_softc *);
226static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
227		    struct ieee80211_channel *, uint8_t);
228static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
229static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
230		    struct ieee80211_channel *);
231static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
232static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
233static int	wpi_config_beacon(struct wpi_vap *);
234static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
235static void	wpi_update_beacon(struct ieee80211vap *, int);
236static void	wpi_newassoc(struct ieee80211_node *, int);
237static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
238static int	wpi_load_key(struct ieee80211_node *,
239		    const struct ieee80211_key *);
240static void	wpi_load_key_cb(void *, struct ieee80211_node *);
241static int	wpi_set_global_keys(struct ieee80211_node *);
242static int	wpi_del_key(struct ieee80211_node *,
243		    const struct ieee80211_key *);
244static void	wpi_del_key_cb(void *, struct ieee80211_node *);
245static int	wpi_process_key(struct ieee80211vap *,
246		    const struct ieee80211_key *, int);
247static int	wpi_key_set(struct ieee80211vap *,
248		    const struct ieee80211_key *,
249		    const uint8_t mac[IEEE80211_ADDR_LEN]);
250static int	wpi_key_delete(struct ieee80211vap *,
251		    const struct ieee80211_key *);
252static int	wpi_post_alive(struct wpi_softc *);
253static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
254static int	wpi_load_firmware(struct wpi_softc *);
255static int	wpi_read_firmware(struct wpi_softc *);
256static void	wpi_unload_firmware(struct wpi_softc *);
257static int	wpi_clock_wait(struct wpi_softc *);
258static int	wpi_apm_init(struct wpi_softc *);
259static void	wpi_apm_stop_master(struct wpi_softc *);
260static void	wpi_apm_stop(struct wpi_softc *);
261static void	wpi_nic_config(struct wpi_softc *);
262static int	wpi_hw_init(struct wpi_softc *);
263static void	wpi_hw_stop(struct wpi_softc *);
264static void	wpi_radio_on(void *, int);
265static void	wpi_radio_off(void *, int);
266static void	wpi_init(void *);
267static void	wpi_stop_locked(struct wpi_softc *);
268static void	wpi_stop(struct wpi_softc *);
269static void	wpi_scan_start(struct ieee80211com *);
270static void	wpi_scan_end(struct ieee80211com *);
271static void	wpi_set_channel(struct ieee80211com *);
272static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
273static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
274static void	wpi_hw_reset(void *, int);
275
276static device_method_t wpi_methods[] = {
277	/* Device interface */
278	DEVMETHOD(device_probe,		wpi_probe),
279	DEVMETHOD(device_attach,	wpi_attach),
280	DEVMETHOD(device_detach,	wpi_detach),
281	DEVMETHOD(device_shutdown,	wpi_shutdown),
282	DEVMETHOD(device_suspend,	wpi_suspend),
283	DEVMETHOD(device_resume,	wpi_resume),
284
285	DEVMETHOD_END
286};
287
288static driver_t wpi_driver = {
289	"wpi",
290	wpi_methods,
291	sizeof (struct wpi_softc)
292};
293static devclass_t wpi_devclass;
294
295DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
296
297MODULE_VERSION(wpi, 1);
298
299MODULE_DEPEND(wpi, pci,  1, 1, 1);
300MODULE_DEPEND(wpi, wlan, 1, 1, 1);
301MODULE_DEPEND(wpi, firmware, 1, 1, 1);
302
303static int
304wpi_probe(device_t dev)
305{
306	const struct wpi_ident *ident;
307
308	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
309		if (pci_get_vendor(dev) == ident->vendor &&
310		    pci_get_device(dev) == ident->device) {
311			device_set_desc(dev, ident->name);
312			return (BUS_PROBE_DEFAULT);
313		}
314	}
315	return ENXIO;
316}
317
318static int
319wpi_attach(device_t dev)
320{
321	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
322	struct ieee80211com *ic;
323	struct ifnet *ifp;
324	int i, error, rid;
325#ifdef WPI_DEBUG
326	int supportsa = 1;
327	const struct wpi_ident *ident;
328#endif
329	uint8_t macaddr[IEEE80211_ADDR_LEN];
330
331	sc->sc_dev = dev;
332
333#ifdef WPI_DEBUG
334	error = resource_int_value(device_get_name(sc->sc_dev),
335	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
336	if (error != 0)
337		sc->sc_debug = 0;
338#else
339	sc->sc_debug = 0;
340#endif
341
342	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
343
344	/*
345	 * Get the offset of the PCI Express Capability Structure in PCI
346	 * Configuration Space.
347	 */
348	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
349	if (error != 0) {
350		device_printf(dev, "PCIe capability structure not found!\n");
351		return error;
352	}
353
354	/*
355	 * Some card's only support 802.11b/g not a, check to see if
356	 * this is one such card. A 0x0 in the subdevice table indicates
357	 * the entire subdevice range is to be ignored.
358	 */
359#ifdef WPI_DEBUG
360	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
361		if (ident->subdevice &&
362		    pci_get_subdevice(dev) == ident->subdevice) {
363		    supportsa = 0;
364		    break;
365		}
366	}
367#endif
368
369	/* Clear device-specific "PCI retry timeout" register (41h). */
370	pci_write_config(dev, 0x41, 0, 1);
371
372	/* Enable bus-mastering. */
373	pci_enable_busmaster(dev);
374
375	rid = PCIR_BAR(0);
376	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
377	    RF_ACTIVE);
378	if (sc->mem == NULL) {
379		device_printf(dev, "can't map mem space\n");
380		return ENOMEM;
381	}
382	sc->sc_st = rman_get_bustag(sc->mem);
383	sc->sc_sh = rman_get_bushandle(sc->mem);
384
385	i = 1;
386	rid = 0;
387	if (pci_alloc_msi(dev, &i) == 0)
388		rid = 1;
389	/* Install interrupt handler. */
390	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
391	    (rid != 0 ? 0 : RF_SHAREABLE));
392	if (sc->irq == NULL) {
393		device_printf(dev, "can't map interrupt\n");
394		error = ENOMEM;
395		goto fail;
396	}
397
398	WPI_LOCK_INIT(sc);
399	WPI_RXON_LOCK_INIT(sc);
400	WPI_NT_LOCK_INIT(sc);
401	WPI_TXQ_LOCK_INIT(sc);
402
403	/* Allocate DMA memory for firmware transfers. */
404	if ((error = wpi_alloc_fwmem(sc)) != 0) {
405		device_printf(dev,
406		    "could not allocate memory for firmware, error %d\n",
407		    error);
408		goto fail;
409	}
410
411	/* Allocate shared page. */
412	if ((error = wpi_alloc_shared(sc)) != 0) {
413		device_printf(dev, "could not allocate shared page\n");
414		goto fail;
415	}
416
417	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
418	for (i = 0; i < WPI_NTXQUEUES; i++) {
419		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
420			device_printf(dev,
421			    "could not allocate TX ring %d, error %d\n", i,
422			    error);
423			goto fail;
424		}
425	}
426
427	/* Allocate RX ring. */
428	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
429		device_printf(dev, "could not allocate RX ring, error %d\n",
430		    error);
431		goto fail;
432	}
433
434	/* Clear pending interrupts. */
435	WPI_WRITE(sc, WPI_INT, 0xffffffff);
436
437	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
438	if (ifp == NULL) {
439		device_printf(dev, "can not allocate ifnet structure\n");
440		goto fail;
441	}
442
443	ic = ifp->if_l2com;
444	ic->ic_ifp = ifp;
445	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
446	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
447
448	/* Set device capabilities. */
449	ic->ic_caps =
450		  IEEE80211_C_STA		/* station mode supported */
451		| IEEE80211_C_IBSS		/* IBSS mode supported */
452		| IEEE80211_C_HOSTAP		/* Host access point mode */
453		| IEEE80211_C_MONITOR		/* monitor mode supported */
454		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
455		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
456		| IEEE80211_C_TXPMGT		/* tx power management */
457		| IEEE80211_C_SHSLOT		/* short slot time supported */
458		| IEEE80211_C_WPA		/* 802.11i */
459		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
460		| IEEE80211_C_WME		/* 802.11e */
461		| IEEE80211_C_PMGT		/* Station-side power mgmt */
462		;
463
464	ic->ic_cryptocaps =
465		  IEEE80211_CRYPTO_AES_CCM;
466
467	/*
468	 * Read in the eeprom and also setup the channels for
469	 * net80211. We don't set the rates as net80211 does this for us
470	 */
471	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
472		device_printf(dev, "could not read EEPROM, error %d\n",
473		    error);
474		goto fail;
475	}
476
477#ifdef WPI_DEBUG
478	if (bootverbose) {
479		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
480		    sc->domain);
481		device_printf(sc->sc_dev, "Hardware Type: %c\n",
482		    sc->type > 1 ? 'B': '?');
483		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
484		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
485		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
486		    supportsa ? "does" : "does not");
487
488		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
489		   check what sc->rev really represents - benjsc 20070615 */
490	}
491#endif
492
493	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
494	ifp->if_softc = sc;
495	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
496	ifp->if_init = wpi_init;
497	ifp->if_ioctl = wpi_ioctl;
498	ifp->if_start = wpi_start;
499	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
500	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
501	IFQ_SET_READY(&ifp->if_snd);
502
503	ieee80211_ifattach(ic, macaddr);
504	ic->ic_vap_create = wpi_vap_create;
505	ic->ic_vap_delete = wpi_vap_delete;
506	ic->ic_raw_xmit = wpi_raw_xmit;
507	ic->ic_node_alloc = wpi_node_alloc;
508	sc->sc_node_free = ic->ic_node_free;
509	ic->ic_node_free = wpi_node_free;
510	ic->ic_wme.wme_update = wpi_updateedca;
511	ic->ic_update_promisc = wpi_update_promisc;
512	ic->ic_update_mcast = wpi_update_mcast;
513	ic->ic_newassoc = wpi_newassoc;
514	ic->ic_scan_start = wpi_scan_start;
515	ic->ic_scan_end = wpi_scan_end;
516	ic->ic_set_channel = wpi_set_channel;
517	sc->sc_scan_curchan = ic->ic_scan_curchan;
518	ic->ic_scan_curchan = wpi_scan_curchan;
519	ic->ic_scan_mindwell = wpi_scan_mindwell;
520	ic->ic_setregdomain = wpi_setregdomain;
521
522	wpi_radiotap_attach(sc);
523
524	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
525	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
526	callout_init_mtx(&sc->tx_timeout, &sc->sc_mtx, 0);
527	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
528	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
529	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
530	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
531	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
532
533	wpi_sysctlattach(sc);
534
535	/*
536	 * Hook our interrupt after all initialization is complete.
537	 */
538	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
539	    NULL, wpi_intr, sc, &sc->sc_ih);
540	if (error != 0) {
541		device_printf(dev, "can't establish interrupt, error %d\n",
542		    error);
543		goto fail;
544	}
545
546	if (bootverbose)
547		ieee80211_announce(ic);
548
549#ifdef WPI_DEBUG
550	if (sc->sc_debug & WPI_DEBUG_HW)
551		ieee80211_announce_channels(ic);
552#endif
553
554	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
555	return 0;
556
557fail:	wpi_detach(dev);
558	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
559	return error;
560}
561
562/*
563 * Attach the interface to 802.11 radiotap.
564 */
565static void
566wpi_radiotap_attach(struct wpi_softc *sc)
567{
568	struct ifnet *ifp = sc->sc_ifp;
569	struct ieee80211com *ic = ifp->if_l2com;
570	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
571	ieee80211_radiotap_attach(ic,
572	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
573		WPI_TX_RADIOTAP_PRESENT,
574	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
575		WPI_RX_RADIOTAP_PRESENT);
576	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
577}
578
579static void
580wpi_sysctlattach(struct wpi_softc *sc)
581{
582#ifdef WPI_DEBUG
583	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
584	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
585
586	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
587	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
588		"control debugging printfs");
589#endif
590}
591
592static void
593wpi_init_beacon(struct wpi_vap *wvp)
594{
595	struct wpi_buf *bcn = &wvp->wv_bcbuf;
596	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
597
598	cmd->id = WPI_ID_BROADCAST;
599	cmd->ofdm_mask = 0xff;
600	cmd->cck_mask = 0x0f;
601	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
602	cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
603
604	bcn->code = WPI_CMD_SET_BEACON;
605	bcn->ac = WPI_CMD_QUEUE_NUM;
606	bcn->size = sizeof(struct wpi_cmd_beacon);
607}
608
609static struct ieee80211vap *
610wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
611    enum ieee80211_opmode opmode, int flags,
612    const uint8_t bssid[IEEE80211_ADDR_LEN],
613    const uint8_t mac[IEEE80211_ADDR_LEN])
614{
615	struct wpi_vap *wvp;
616	struct ieee80211vap *vap;
617
618	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
619		return NULL;
620
621	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
622	    M_80211_VAP, M_NOWAIT | M_ZERO);
623	if (wvp == NULL)
624		return NULL;
625	vap = &wvp->wv_vap;
626	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
627
628	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
629		WPI_VAP_LOCK_INIT(wvp);
630		wpi_init_beacon(wvp);
631	}
632
633	/* Override with driver methods. */
634	vap->iv_key_set = wpi_key_set;
635	vap->iv_key_delete = wpi_key_delete;
636	wvp->wv_newstate = vap->iv_newstate;
637	vap->iv_newstate = wpi_newstate;
638	vap->iv_update_beacon = wpi_update_beacon;
639	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
640
641	ieee80211_ratectl_init(vap);
642	/* Complete setup. */
643	ieee80211_vap_attach(vap, ieee80211_media_change,
644	    ieee80211_media_status);
645	ic->ic_opmode = opmode;
646	return vap;
647}
648
649static void
650wpi_vap_delete(struct ieee80211vap *vap)
651{
652	struct wpi_vap *wvp = WPI_VAP(vap);
653	struct wpi_buf *bcn = &wvp->wv_bcbuf;
654	enum ieee80211_opmode opmode = vap->iv_opmode;
655
656	ieee80211_ratectl_deinit(vap);
657	ieee80211_vap_detach(vap);
658
659	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
660		if (bcn->m != NULL)
661			m_freem(bcn->m);
662
663		WPI_VAP_LOCK_DESTROY(wvp);
664	}
665
666	free(wvp, M_80211_VAP);
667}
668
669static int
670wpi_detach(device_t dev)
671{
672	struct wpi_softc *sc = device_get_softc(dev);
673	struct ifnet *ifp = sc->sc_ifp;
674	struct ieee80211com *ic;
675	int qid;
676
677	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
678
679	if (ifp != NULL) {
680		ic = ifp->if_l2com;
681
682		ieee80211_draintask(ic, &sc->sc_reinittask);
683		ieee80211_draintask(ic, &sc->sc_radiooff_task);
684		ieee80211_draintask(ic, &sc->sc_radioon_task);
685		ieee80211_draintask(ic, &sc->sc_start_task);
686
687		wpi_stop(sc);
688
689		callout_drain(&sc->watchdog_rfkill);
690		callout_drain(&sc->tx_timeout);
691		callout_drain(&sc->scan_timeout);
692		callout_drain(&sc->calib_to);
693		ieee80211_ifdetach(ic);
694	}
695
696	/* Uninstall interrupt handler. */
697	if (sc->irq != NULL) {
698		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
699		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
700		    sc->irq);
701		pci_release_msi(dev);
702	}
703
704	if (sc->txq[0].data_dmat) {
705		/* Free DMA resources. */
706		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
707			wpi_free_tx_ring(sc, &sc->txq[qid]);
708
709		wpi_free_rx_ring(sc);
710		wpi_free_shared(sc);
711	}
712
713	if (sc->fw_dma.tag)
714		wpi_free_fwmem(sc);
715
716	if (sc->mem != NULL)
717		bus_release_resource(dev, SYS_RES_MEMORY,
718		    rman_get_rid(sc->mem), sc->mem);
719
720	if (ifp != NULL)
721		if_free(ifp);
722
723	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
724	WPI_TXQ_LOCK_DESTROY(sc);
725	WPI_NT_LOCK_DESTROY(sc);
726	WPI_RXON_LOCK_DESTROY(sc);
727	WPI_LOCK_DESTROY(sc);
728	return 0;
729}
730
731static int
732wpi_shutdown(device_t dev)
733{
734	struct wpi_softc *sc = device_get_softc(dev);
735
736	wpi_stop(sc);
737	return 0;
738}
739
740static int
741wpi_suspend(device_t dev)
742{
743	struct wpi_softc *sc = device_get_softc(dev);
744	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
745
746	ieee80211_suspend_all(ic);
747	return 0;
748}
749
750static int
751wpi_resume(device_t dev)
752{
753	struct wpi_softc *sc = device_get_softc(dev);
754	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
755
756	/* Clear device-specific "PCI retry timeout" register (41h). */
757	pci_write_config(dev, 0x41, 0, 1);
758
759	ieee80211_resume_all(ic);
760	return 0;
761}
762
763/*
764 * Grab exclusive access to NIC memory.
765 */
766static int
767wpi_nic_lock(struct wpi_softc *sc)
768{
769	int ntries;
770
771	/* Request exclusive access to NIC. */
772	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
773
774	/* Spin until we actually get the lock. */
775	for (ntries = 0; ntries < 1000; ntries++) {
776		if ((WPI_READ(sc, WPI_GP_CNTRL) &
777		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
778		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
779			return 0;
780		DELAY(10);
781	}
782
783	device_printf(sc->sc_dev, "could not lock memory\n");
784
785	return ETIMEDOUT;
786}
787
788/*
789 * Release lock on NIC memory.
790 */
791static __inline void
792wpi_nic_unlock(struct wpi_softc *sc)
793{
794	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
795}
796
797static __inline uint32_t
798wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
799{
800	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
801	WPI_BARRIER_READ_WRITE(sc);
802	return WPI_READ(sc, WPI_PRPH_RDATA);
803}
804
805static __inline void
806wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
807{
808	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
809	WPI_BARRIER_WRITE(sc);
810	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
811}
812
813static __inline void
814wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
815{
816	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
817}
818
819static __inline void
820wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
821{
822	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
823}
824
825static __inline void
826wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
827    const uint32_t *data, int count)
828{
829	for (; count > 0; count--, data++, addr += 4)
830		wpi_prph_write(sc, addr, *data);
831}
832
833static __inline uint32_t
834wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
835{
836	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
837	WPI_BARRIER_READ_WRITE(sc);
838	return WPI_READ(sc, WPI_MEM_RDATA);
839}
840
841static __inline void
842wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
843    int count)
844{
845	for (; count > 0; count--, addr += 4)
846		*data++ = wpi_mem_read(sc, addr);
847}
848
849static int
850wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
851{
852	uint8_t *out = data;
853	uint32_t val;
854	int error, ntries;
855
856	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
857
858	if ((error = wpi_nic_lock(sc)) != 0)
859		return error;
860
861	for (; count > 0; count -= 2, addr++) {
862		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
863		for (ntries = 0; ntries < 10; ntries++) {
864			val = WPI_READ(sc, WPI_EEPROM);
865			if (val & WPI_EEPROM_READ_VALID)
866				break;
867			DELAY(5);
868		}
869		if (ntries == 10) {
870			device_printf(sc->sc_dev,
871			    "timeout reading ROM at 0x%x\n", addr);
872			return ETIMEDOUT;
873		}
874		*out++= val >> 16;
875		if (count > 1)
876			*out ++= val >> 24;
877	}
878
879	wpi_nic_unlock(sc);
880
881	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
882
883	return 0;
884}
885
886static void
887wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
888{
889	if (error != 0)
890		return;
891	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
892	*(bus_addr_t *)arg = segs[0].ds_addr;
893}
894
895/*
896 * Allocates a contiguous block of dma memory of the requested size and
897 * alignment.
898 */
899static int
900wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
901    void **kvap, bus_size_t size, bus_size_t alignment)
902{
903	int error;
904
905	dma->tag = NULL;
906	dma->size = size;
907
908	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
909	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
910	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
911	if (error != 0)
912		goto fail;
913
914	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
915	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
916	if (error != 0)
917		goto fail;
918
919	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
920	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
921	if (error != 0)
922		goto fail;
923
924	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
925
926	if (kvap != NULL)
927		*kvap = dma->vaddr;
928
929	return 0;
930
931fail:	wpi_dma_contig_free(dma);
932	return error;
933}
934
935static void
936wpi_dma_contig_free(struct wpi_dma_info *dma)
937{
938	if (dma->vaddr != NULL) {
939		bus_dmamap_sync(dma->tag, dma->map,
940		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
941		bus_dmamap_unload(dma->tag, dma->map);
942		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
943		dma->vaddr = NULL;
944	}
945	if (dma->tag != NULL) {
946		bus_dma_tag_destroy(dma->tag);
947		dma->tag = NULL;
948	}
949}
950
951/*
952 * Allocate a shared page between host and NIC.
953 */
954static int
955wpi_alloc_shared(struct wpi_softc *sc)
956{
957	/* Shared buffer must be aligned on a 4KB boundary. */
958	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
959	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
960}
961
962static void
963wpi_free_shared(struct wpi_softc *sc)
964{
965	wpi_dma_contig_free(&sc->shared_dma);
966}
967
968/*
969 * Allocate DMA-safe memory for firmware transfer.
970 */
971static int
972wpi_alloc_fwmem(struct wpi_softc *sc)
973{
974	/* Must be aligned on a 16-byte boundary. */
975	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
976	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
977}
978
979static void
980wpi_free_fwmem(struct wpi_softc *sc)
981{
982	wpi_dma_contig_free(&sc->fw_dma);
983}
984
985static int
986wpi_alloc_rx_ring(struct wpi_softc *sc)
987{
988	struct wpi_rx_ring *ring = &sc->rxq;
989	bus_size_t size;
990	int i, error;
991
992	ring->cur = 0;
993	ring->update = 0;
994
995	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
996
997	/* Allocate RX descriptors (16KB aligned.) */
998	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
999	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1000	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1001	if (error != 0) {
1002		device_printf(sc->sc_dev,
1003		    "%s: could not allocate RX ring DMA memory, error %d\n",
1004		    __func__, error);
1005		goto fail;
1006	}
1007
1008	/* Create RX buffer DMA tag. */
1009	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1010	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1011	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1012	    &ring->data_dmat);
1013	if (error != 0) {
1014		device_printf(sc->sc_dev,
1015		    "%s: could not create RX buf DMA tag, error %d\n",
1016		    __func__, error);
1017		goto fail;
1018	}
1019
1020	/*
1021	 * Allocate and map RX buffers.
1022	 */
1023	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1024		struct wpi_rx_data *data = &ring->data[i];
1025		bus_addr_t paddr;
1026
1027		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1028		if (error != 0) {
1029			device_printf(sc->sc_dev,
1030			    "%s: could not create RX buf DMA map, error %d\n",
1031			    __func__, error);
1032			goto fail;
1033		}
1034
1035		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1036		if (data->m == NULL) {
1037			device_printf(sc->sc_dev,
1038			    "%s: could not allocate RX mbuf\n", __func__);
1039			error = ENOBUFS;
1040			goto fail;
1041		}
1042
1043		error = bus_dmamap_load(ring->data_dmat, data->map,
1044		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1045		    &paddr, BUS_DMA_NOWAIT);
1046		if (error != 0 && error != EFBIG) {
1047			device_printf(sc->sc_dev,
1048			    "%s: can't map mbuf (error %d)\n", __func__,
1049			    error);
1050			goto fail;
1051		}
1052
1053		/* Set physical address of RX buffer. */
1054		ring->desc[i] = htole32(paddr);
1055	}
1056
1057	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1058	    BUS_DMASYNC_PREWRITE);
1059
1060	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1061
1062	return 0;
1063
1064fail:	wpi_free_rx_ring(sc);
1065
1066	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1067
1068	return error;
1069}
1070
1071static void
1072wpi_update_rx_ring(struct wpi_softc *sc)
1073{
1074	struct wpi_rx_ring *ring = &sc->rxq;
1075
1076	if (ring->update != 0) {
1077		/* Wait for INT_WAKEUP event. */
1078		return;
1079	}
1080
1081	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1082		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1083		    __func__);
1084
1085		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1086		ring->update = 1;
1087	} else
1088		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1089}
1090
1091static void
1092wpi_reset_rx_ring(struct wpi_softc *sc)
1093{
1094	struct wpi_rx_ring *ring = &sc->rxq;
1095	int ntries;
1096
1097	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1098
1099	if (wpi_nic_lock(sc) == 0) {
1100		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1101		for (ntries = 0; ntries < 1000; ntries++) {
1102			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1103			    WPI_FH_RX_STATUS_IDLE)
1104				break;
1105			DELAY(10);
1106		}
1107		wpi_nic_unlock(sc);
1108	}
1109
1110	ring->cur = 0;
1111	ring->update = 0;
1112}
1113
1114static void
1115wpi_free_rx_ring(struct wpi_softc *sc)
1116{
1117	struct wpi_rx_ring *ring = &sc->rxq;
1118	int i;
1119
1120	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1121
1122	wpi_dma_contig_free(&ring->desc_dma);
1123
1124	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1125		struct wpi_rx_data *data = &ring->data[i];
1126
1127		if (data->m != NULL) {
1128			bus_dmamap_sync(ring->data_dmat, data->map,
1129			    BUS_DMASYNC_POSTREAD);
1130			bus_dmamap_unload(ring->data_dmat, data->map);
1131			m_freem(data->m);
1132			data->m = NULL;
1133		}
1134		if (data->map != NULL)
1135			bus_dmamap_destroy(ring->data_dmat, data->map);
1136	}
1137	if (ring->data_dmat != NULL) {
1138		bus_dma_tag_destroy(ring->data_dmat);
1139		ring->data_dmat = NULL;
1140	}
1141}
1142
1143static int
1144wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1145{
1146	bus_addr_t paddr;
1147	bus_size_t size;
1148	int i, error;
1149
1150	ring->qid = qid;
1151	ring->queued = 0;
1152	ring->cur = 0;
1153	ring->update = 0;
1154
1155	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1156
1157	/* Allocate TX descriptors (16KB aligned.) */
1158	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1159	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1160	    size, WPI_RING_DMA_ALIGN);
1161	if (error != 0) {
1162		device_printf(sc->sc_dev,
1163		    "%s: could not allocate TX ring DMA memory, error %d\n",
1164		    __func__, error);
1165		goto fail;
1166	}
1167
1168	/* Update shared area with ring physical address. */
1169	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1170	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1171	    BUS_DMASYNC_PREWRITE);
1172
1173	/*
1174	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1175	 * to allocate commands space for other rings.
1176	 * XXX Do we really need to allocate descriptors for other rings?
1177	 */
1178	if (qid > WPI_CMD_QUEUE_NUM) {
1179		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1180		return 0;
1181	}
1182
1183	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1184	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1185	    size, 4);
1186	if (error != 0) {
1187		device_printf(sc->sc_dev,
1188		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1189		    __func__, error);
1190		goto fail;
1191	}
1192
1193	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1194	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1195	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1196	    &ring->data_dmat);
1197	if (error != 0) {
1198		device_printf(sc->sc_dev,
1199		    "%s: could not create TX buf DMA tag, error %d\n",
1200		    __func__, error);
1201		goto fail;
1202	}
1203
1204	paddr = ring->cmd_dma.paddr;
1205	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1206		struct wpi_tx_data *data = &ring->data[i];
1207
1208		data->cmd_paddr = paddr;
1209		paddr += sizeof (struct wpi_tx_cmd);
1210
1211		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1212		if (error != 0) {
1213			device_printf(sc->sc_dev,
1214			    "%s: could not create TX buf DMA map, error %d\n",
1215			    __func__, error);
1216			goto fail;
1217		}
1218	}
1219
1220	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1221
1222	return 0;
1223
1224fail:	wpi_free_tx_ring(sc, ring);
1225	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1226	return error;
1227}
1228
1229static void
1230wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1231{
1232	if (ring->update != 0) {
1233		/* Wait for INT_WAKEUP event. */
1234		return;
1235	}
1236
1237	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1238		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1239		    __func__, ring->qid);
1240
1241		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1242		ring->update = 1;
1243	} else
1244		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1245}
1246
1247static void
1248wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1249{
1250	int i;
1251
1252	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1253
1254	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1255		struct wpi_tx_data *data = &ring->data[i];
1256
1257		if (data->m != NULL) {
1258			bus_dmamap_sync(ring->data_dmat, data->map,
1259			    BUS_DMASYNC_POSTWRITE);
1260			bus_dmamap_unload(ring->data_dmat, data->map);
1261			m_freem(data->m);
1262			data->m = NULL;
1263		}
1264	}
1265	/* Clear TX descriptors. */
1266	memset(ring->desc, 0, ring->desc_dma.size);
1267	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1268	    BUS_DMASYNC_PREWRITE);
1269	sc->qfullmsk &= ~(1 << ring->qid);
1270	ring->queued = 0;
1271	ring->cur = 0;
1272	ring->update = 0;
1273}
1274
1275static void
1276wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1277{
1278	int i;
1279
1280	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1281
1282	wpi_dma_contig_free(&ring->desc_dma);
1283	wpi_dma_contig_free(&ring->cmd_dma);
1284
1285	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1286		struct wpi_tx_data *data = &ring->data[i];
1287
1288		if (data->m != NULL) {
1289			bus_dmamap_sync(ring->data_dmat, data->map,
1290			    BUS_DMASYNC_POSTWRITE);
1291			bus_dmamap_unload(ring->data_dmat, data->map);
1292			m_freem(data->m);
1293		}
1294		if (data->map != NULL)
1295			bus_dmamap_destroy(ring->data_dmat, data->map);
1296	}
1297	if (ring->data_dmat != NULL) {
1298		bus_dma_tag_destroy(ring->data_dmat);
1299		ring->data_dmat = NULL;
1300	}
1301}
1302
1303/*
1304 * Extract various information from EEPROM.
1305 */
1306static int
1307wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1308{
1309#define WPI_CHK(res) do {		\
1310	if ((error = res) != 0)		\
1311		goto fail;		\
1312} while (0)
1313	int error, i;
1314
1315	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1316
1317	/* Adapter has to be powered on for EEPROM access to work. */
1318	if ((error = wpi_apm_init(sc)) != 0) {
1319		device_printf(sc->sc_dev,
1320		    "%s: could not power ON adapter, error %d\n", __func__,
1321		    error);
1322		return error;
1323	}
1324
1325	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1326		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1327		error = EIO;
1328		goto fail;
1329	}
1330	/* Clear HW ownership of EEPROM. */
1331	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1332
1333	/* Read the hardware capabilities, revision and SKU type. */
1334	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1335	    sizeof(sc->cap)));
1336	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1337	    sizeof(sc->rev)));
1338	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1339	    sizeof(sc->type)));
1340
1341	sc->rev = le16toh(sc->rev);
1342	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1343	    sc->rev, sc->type);
1344
1345	/* Read the regulatory domain (4 ASCII characters.) */
1346	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1347	    sizeof(sc->domain)));
1348
1349	/* Read MAC address. */
1350	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1351	    IEEE80211_ADDR_LEN));
1352
1353	/* Read the list of authorized channels. */
1354	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1355		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1356
1357	/* Read the list of TX power groups. */
1358	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1359		WPI_CHK(wpi_read_eeprom_group(sc, i));
1360
1361fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1362
1363	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1364	    __func__);
1365
1366	return error;
1367#undef WPI_CHK
1368}
1369
1370/*
1371 * Translate EEPROM flags to net80211.
1372 */
1373static uint32_t
1374wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1375{
1376	uint32_t nflags;
1377
1378	nflags = 0;
1379	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1380		nflags |= IEEE80211_CHAN_PASSIVE;
1381	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1382		nflags |= IEEE80211_CHAN_NOADHOC;
1383	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1384		nflags |= IEEE80211_CHAN_DFS;
1385		/* XXX apparently IBSS may still be marked */
1386		nflags |= IEEE80211_CHAN_NOADHOC;
1387	}
1388
1389	/* XXX HOSTAP uses WPI_MODE_IBSS */
1390	if (nflags & IEEE80211_CHAN_NOADHOC)
1391		nflags |= IEEE80211_CHAN_NOHOSTAP;
1392
1393	return nflags;
1394}
1395
1396static void
1397wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1398{
1399	struct ifnet *ifp = sc->sc_ifp;
1400	struct ieee80211com *ic = ifp->if_l2com;
1401	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1402	const struct wpi_chan_band *band = &wpi_bands[n];
1403	struct ieee80211_channel *c;
1404	uint8_t chan;
1405	int i, nflags;
1406
1407	for (i = 0; i < band->nchan; i++) {
1408		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1409			DPRINTF(sc, WPI_DEBUG_EEPROM,
1410			    "Channel Not Valid: %d, band %d\n",
1411			     band->chan[i],n);
1412			continue;
1413		}
1414
1415		chan = band->chan[i];
1416		nflags = wpi_eeprom_channel_flags(&channels[i]);
1417
1418		c = &ic->ic_channels[ic->ic_nchans++];
1419		c->ic_ieee = chan;
1420		c->ic_maxregpower = channels[i].maxpwr;
1421		c->ic_maxpower = 2*c->ic_maxregpower;
1422
1423		if (n == 0) {	/* 2GHz band */
1424			c->ic_freq = ieee80211_ieee2mhz(chan,
1425			    IEEE80211_CHAN_G);
1426
1427			/* G =>'s B is supported */
1428			c->ic_flags = IEEE80211_CHAN_B | nflags;
1429			c = &ic->ic_channels[ic->ic_nchans++];
1430			c[0] = c[-1];
1431			c->ic_flags = IEEE80211_CHAN_G | nflags;
1432		} else {	/* 5GHz band */
1433			c->ic_freq = ieee80211_ieee2mhz(chan,
1434			    IEEE80211_CHAN_A);
1435
1436			c->ic_flags = IEEE80211_CHAN_A | nflags;
1437		}
1438
1439		/* Save maximum allowed TX power for this channel. */
1440		sc->maxpwr[chan] = channels[i].maxpwr;
1441
1442		DPRINTF(sc, WPI_DEBUG_EEPROM,
1443		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1444		    " offset %d\n", chan, c->ic_freq,
1445		    channels[i].flags, sc->maxpwr[chan],
1446		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1447	}
1448}
1449
1450/**
1451 * Read the eeprom to find out what channels are valid for the given
1452 * band and update net80211 with what we find.
1453 */
1454static int
1455wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1456{
1457	struct ifnet *ifp = sc->sc_ifp;
1458	struct ieee80211com *ic = ifp->if_l2com;
1459	const struct wpi_chan_band *band = &wpi_bands[n];
1460	int error;
1461
1462	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1463
1464	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1465	    band->nchan * sizeof (struct wpi_eeprom_chan));
1466	if (error != 0) {
1467		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1468		return error;
1469	}
1470
1471	wpi_read_eeprom_band(sc, n);
1472
1473	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1474
1475	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1476
1477	return 0;
1478}
1479
1480static struct wpi_eeprom_chan *
1481wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1482{
1483	int i, j;
1484
1485	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1486		for (i = 0; i < wpi_bands[j].nchan; i++)
1487			if (wpi_bands[j].chan[i] == c->ic_ieee)
1488				return &sc->eeprom_channels[j][i];
1489
1490	return NULL;
1491}
1492
1493/*
1494 * Enforce flags read from EEPROM.
1495 */
1496static int
1497wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1498    int nchan, struct ieee80211_channel chans[])
1499{
1500	struct ifnet *ifp = ic->ic_ifp;
1501	struct wpi_softc *sc = ifp->if_softc;
1502	int i;
1503
1504	for (i = 0; i < nchan; i++) {
1505		struct ieee80211_channel *c = &chans[i];
1506		struct wpi_eeprom_chan *channel;
1507
1508		channel = wpi_find_eeprom_channel(sc, c);
1509		if (channel == NULL) {
1510			if_printf(ic->ic_ifp,
1511			    "%s: invalid channel %u freq %u/0x%x\n",
1512			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1513			return EINVAL;
1514		}
1515		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1516	}
1517
1518	return 0;
1519}
1520
1521static int
1522wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1523{
1524	struct wpi_power_group *group = &sc->groups[n];
1525	struct wpi_eeprom_group rgroup;
1526	int i, error;
1527
1528	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1529
1530	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1531	    &rgroup, sizeof rgroup)) != 0) {
1532		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1533		return error;
1534	}
1535
1536	/* Save TX power group information. */
1537	group->chan   = rgroup.chan;
1538	group->maxpwr = rgroup.maxpwr;
1539	/* Retrieve temperature at which the samples were taken. */
1540	group->temp   = (int16_t)le16toh(rgroup.temp);
1541
1542	DPRINTF(sc, WPI_DEBUG_EEPROM,
1543	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1544	    group->maxpwr, group->temp);
1545
1546	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1547		group->samples[i].index = rgroup.samples[i].index;
1548		group->samples[i].power = rgroup.samples[i].power;
1549
1550		DPRINTF(sc, WPI_DEBUG_EEPROM,
1551		    "\tsample %d: index=%d power=%d\n", i,
1552		    group->samples[i].index, group->samples[i].power);
1553	}
1554
1555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1556
1557	return 0;
1558}
1559
1560static int
1561wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1562{
1563	int newid = WPI_ID_IBSS_MIN;
1564
1565	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1566		if ((sc->nodesmsk & (1 << newid)) == 0) {
1567			sc->nodesmsk |= 1 << newid;
1568			return newid;
1569		}
1570	}
1571
1572	return WPI_ID_UNDEFINED;
1573}
1574
1575static __inline int
1576wpi_add_node_entry_sta(struct wpi_softc *sc)
1577{
1578	sc->nodesmsk |= 1 << WPI_ID_BSS;
1579
1580	return WPI_ID_BSS;
1581}
1582
1583static __inline int
1584wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1585{
1586	if (id == WPI_ID_UNDEFINED)
1587		return 0;
1588
1589	return (sc->nodesmsk >> id) & 1;
1590}
1591
1592static __inline void
1593wpi_clear_node_table(struct wpi_softc *sc)
1594{
1595	sc->nodesmsk = 0;
1596}
1597
1598static __inline void
1599wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1600{
1601	sc->nodesmsk &= ~(1 << id);
1602}
1603
1604static struct ieee80211_node *
1605wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1606{
1607	struct wpi_node *wn;
1608
1609	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1610	    M_NOWAIT | M_ZERO);
1611
1612	if (wn == NULL)
1613		return NULL;
1614
1615	wn->id = WPI_ID_UNDEFINED;
1616
1617	return &wn->ni;
1618}
1619
1620static void
1621wpi_node_free(struct ieee80211_node *ni)
1622{
1623	struct ieee80211com *ic = ni->ni_ic;
1624	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1625	struct wpi_node *wn = WPI_NODE(ni);
1626
1627	if (wn->id != WPI_ID_UNDEFINED) {
1628		WPI_NT_LOCK(sc);
1629		if (wpi_check_node_entry(sc, wn->id)) {
1630			wpi_del_node_entry(sc, wn->id);
1631			wpi_del_node(sc, ni);
1632		}
1633		WPI_NT_UNLOCK(sc);
1634	}
1635
1636	sc->sc_node_free(ni);
1637}
1638
1639/**
1640 * Called by net80211 when ever there is a change to 80211 state machine
1641 */
1642static int
1643wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1644{
1645	struct wpi_vap *wvp = WPI_VAP(vap);
1646	struct ieee80211com *ic = vap->iv_ic;
1647	struct ifnet *ifp = ic->ic_ifp;
1648	struct wpi_softc *sc = ifp->if_softc;
1649	int error = 0;
1650
1651	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1652
1653	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1654		ieee80211_state_name[vap->iv_state],
1655		ieee80211_state_name[nstate]);
1656
1657	switch (nstate) {
1658	case IEEE80211_S_SCAN:
1659		WPI_RXON_LOCK(sc);
1660		if ((sc->rxon.filter & htole32(WPI_FILTER_BSS)) &&
1661		    vap->iv_opmode != IEEE80211_M_STA) {
1662			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1663			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1664				device_printf(sc->sc_dev,
1665				    "%s: could not send RXON\n", __func__);
1666			}
1667		}
1668		WPI_RXON_UNLOCK(sc);
1669		break;
1670
1671	case IEEE80211_S_ASSOC:
1672		if (vap->iv_state != IEEE80211_S_RUN)
1673			break;
1674		/* FALLTHROUGH */
1675	case IEEE80211_S_AUTH:
1676		/*
1677		 * The node must be registered in the firmware before auth.
1678		 * Also the associd must be cleared on RUN -> ASSOC
1679		 * transitions.
1680		 */
1681		if ((error = wpi_auth(sc, vap)) != 0) {
1682			device_printf(sc->sc_dev,
1683			    "%s: could not move to AUTH state, error %d\n",
1684			    __func__, error);
1685		}
1686		break;
1687
1688	case IEEE80211_S_RUN:
1689		/*
1690		 * RUN -> RUN transition; Just restart the timers.
1691		 */
1692		if (vap->iv_state == IEEE80211_S_RUN) {
1693			WPI_RXON_LOCK(sc);
1694			wpi_calib_timeout(sc);
1695			WPI_RXON_UNLOCK(sc);
1696			break;
1697		}
1698
1699		/*
1700		 * !RUN -> RUN requires setting the association id
1701		 * which is done with a firmware cmd.  We also defer
1702		 * starting the timers until that work is done.
1703		 */
1704		if ((error = wpi_run(sc, vap)) != 0) {
1705			device_printf(sc->sc_dev,
1706			    "%s: could not move to RUN state\n", __func__);
1707		}
1708		break;
1709
1710	default:
1711		break;
1712	}
1713	if (error != 0) {
1714		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1715		return error;
1716	}
1717
1718	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1719
1720	return wvp->wv_newstate(vap, nstate, arg);
1721}
1722
1723static void
1724wpi_calib_timeout(void *arg)
1725{
1726	struct wpi_softc *sc = arg;
1727
1728	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS)))
1729		return;
1730
1731	wpi_power_calibration(sc);
1732
1733	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1734}
1735
1736static __inline uint8_t
1737rate2plcp(const uint8_t rate)
1738{
1739	switch (rate) {
1740	case 12:	return 0xd;
1741	case 18:	return 0xf;
1742	case 24:	return 0x5;
1743	case 36:	return 0x7;
1744	case 48:	return 0x9;
1745	case 72:	return 0xb;
1746	case 96:	return 0x1;
1747	case 108:	return 0x3;
1748	case 2:		return 10;
1749	case 4:		return 20;
1750	case 11:	return 55;
1751	case 22:	return 110;
1752	default:	return 0;
1753	}
1754}
1755
1756static __inline uint8_t
1757plcp2rate(const uint8_t plcp)
1758{
1759	switch (plcp) {
1760	case 0xd:	return 12;
1761	case 0xf:	return 18;
1762	case 0x5:	return 24;
1763	case 0x7:	return 36;
1764	case 0x9:	return 48;
1765	case 0xb:	return 72;
1766	case 0x1:	return 96;
1767	case 0x3:	return 108;
1768	case 10:	return 2;
1769	case 20:	return 4;
1770	case 55:	return 11;
1771	case 110:	return 22;
1772	default:	return 0;
1773	}
1774}
1775
1776/* Quickly determine if a given rate is CCK or OFDM. */
1777#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1778
1779static void
1780wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1781    struct wpi_rx_data *data)
1782{
1783	struct ifnet *ifp = sc->sc_ifp;
1784	struct ieee80211com *ic = ifp->if_l2com;
1785	struct wpi_rx_ring *ring = &sc->rxq;
1786	struct wpi_rx_stat *stat;
1787	struct wpi_rx_head *head;
1788	struct wpi_rx_tail *tail;
1789	struct ieee80211_frame *wh;
1790	struct ieee80211_node *ni;
1791	struct mbuf *m, *m1;
1792	bus_addr_t paddr;
1793	uint32_t flags;
1794	uint16_t len;
1795	int error;
1796
1797	stat = (struct wpi_rx_stat *)(desc + 1);
1798
1799	if (stat->len > WPI_STAT_MAXLEN) {
1800		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1801		goto fail1;
1802	}
1803
1804	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1805	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1806	len = le16toh(head->len);
1807	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1808	flags = le32toh(tail->flags);
1809
1810	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1811	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1812	    le32toh(desc->len), len, (int8_t)stat->rssi,
1813	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1814
1815	/* Discard frames with a bad FCS early. */
1816	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1817		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1818		    __func__, flags);
1819		goto fail1;
1820	}
1821	/* Discard frames that are too short. */
1822	if (len < sizeof (*wh)) {
1823		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1824		    __func__, len);
1825		goto fail1;
1826	}
1827
1828	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1829	if (m1 == NULL) {
1830		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1831		    __func__);
1832		goto fail1;
1833	}
1834	bus_dmamap_unload(ring->data_dmat, data->map);
1835
1836	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1837	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1838	if (error != 0 && error != EFBIG) {
1839		device_printf(sc->sc_dev,
1840		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1841		m_freem(m1);
1842
1843		/* Try to reload the old mbuf. */
1844		error = bus_dmamap_load(ring->data_dmat, data->map,
1845		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1846		    &paddr, BUS_DMA_NOWAIT);
1847		if (error != 0 && error != EFBIG) {
1848			panic("%s: could not load old RX mbuf", __func__);
1849		}
1850		/* Physical address may have changed. */
1851		ring->desc[ring->cur] = htole32(paddr);
1852		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1853		    BUS_DMASYNC_PREWRITE);
1854		goto fail1;
1855	}
1856
1857	m = data->m;
1858	data->m = m1;
1859	/* Update RX descriptor. */
1860	ring->desc[ring->cur] = htole32(paddr);
1861	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1862	    BUS_DMASYNC_PREWRITE);
1863
1864	/* Finalize mbuf. */
1865	m->m_pkthdr.rcvif = ifp;
1866	m->m_data = (caddr_t)(head + 1);
1867	m->m_pkthdr.len = m->m_len = len;
1868
1869	/* Grab a reference to the source node. */
1870	wh = mtod(m, struct ieee80211_frame *);
1871
1872	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1873	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1874		/* Check whether decryption was successful or not. */
1875		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1876			DPRINTF(sc, WPI_DEBUG_RECV,
1877			    "CCMP decryption failed 0x%x\n", flags);
1878			goto fail2;
1879		}
1880		m->m_flags |= M_WEP;
1881	}
1882
1883	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1884
1885	if (ieee80211_radiotap_active(ic)) {
1886		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1887
1888		tap->wr_flags = 0;
1889		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1890			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1891		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1892		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
1893		tap->wr_tsft = tail->tstamp;
1894		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1895		tap->wr_rate = plcp2rate(head->plcp);
1896	}
1897
1898	WPI_UNLOCK(sc);
1899
1900	/* Send the frame to the 802.11 layer. */
1901	if (ni != NULL) {
1902		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1903		/* Node is no longer needed. */
1904		ieee80211_free_node(ni);
1905	} else
1906		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1907
1908	WPI_LOCK(sc);
1909
1910	return;
1911
1912fail2:	m_freem(m);
1913
1914fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1915}
1916
1917static void
1918wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1919    struct wpi_rx_data *data)
1920{
1921	/* Ignore */
1922}
1923
1924static void
1925wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1926{
1927	struct ifnet *ifp = sc->sc_ifp;
1928	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1929	struct wpi_tx_data *data = &ring->data[desc->idx];
1930	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1931	struct mbuf *m;
1932	struct ieee80211_node *ni;
1933	struct ieee80211vap *vap;
1934	struct ieee80211com *ic;
1935	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1936	int status = le32toh(stat->status);
1937
1938	KASSERT(data->ni != NULL, ("no node"));
1939	KASSERT(data->m != NULL, ("no mbuf"));
1940
1941	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1942
1943	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1944	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1945	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1946	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1947
1948	/* Unmap and free mbuf. */
1949	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1950	bus_dmamap_unload(ring->data_dmat, data->map);
1951	m = data->m, data->m = NULL;
1952	ni = data->ni, data->ni = NULL;
1953	vap = ni->ni_vap;
1954	ic = vap->iv_ic;
1955
1956	/*
1957	 * Update rate control statistics for the node.
1958	 */
1959	WPI_UNLOCK(sc);
1960	if ((status & 0xff) != 1) {
1961		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1962		ieee80211_ratectl_tx_complete(vap, ni,
1963		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1964	} else {
1965		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1966		ieee80211_ratectl_tx_complete(vap, ni,
1967		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1968	}
1969
1970	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1971	WPI_LOCK(sc);
1972
1973	ring->queued -= 1;
1974	if (ring->queued > 0) {
1975		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
1976
1977		if (sc->qfullmsk != 0 &&
1978		    ring->queued < WPI_TX_RING_LOMARK) {
1979			sc->qfullmsk &= ~(1 << ring->qid);
1980			IF_LOCK(&ifp->if_snd);
1981			if (sc->qfullmsk == 0 &&
1982			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1983				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1984				IF_UNLOCK(&ifp->if_snd);
1985				ieee80211_runtask(ic, &sc->sc_start_task);
1986			} else
1987				IF_UNLOCK(&ifp->if_snd);
1988		}
1989	} else
1990		callout_stop(&sc->tx_timeout);
1991
1992	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1993}
1994
1995/*
1996 * Process a "command done" firmware notification.  This is where we wakeup
1997 * processes waiting for a synchronous command completion.
1998 */
1999static void
2000wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2001{
2002	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2003	struct wpi_tx_data *data;
2004
2005	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2006				   "type %s len %d\n", desc->qid, desc->idx,
2007				   desc->flags, wpi_cmd_str(desc->type),
2008				   le32toh(desc->len));
2009
2010	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2011		return;	/* Not a command ack. */
2012
2013	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2014
2015	data = &ring->data[desc->idx];
2016
2017	/* If the command was mapped in an mbuf, free it. */
2018	if (data->m != NULL) {
2019		bus_dmamap_sync(ring->data_dmat, data->map,
2020		    BUS_DMASYNC_POSTWRITE);
2021		bus_dmamap_unload(ring->data_dmat, data->map);
2022		m_freem(data->m);
2023		data->m = NULL;
2024	}
2025
2026	wakeup(&ring->cmd[desc->idx]);
2027}
2028
2029static void
2030wpi_notif_intr(struct wpi_softc *sc)
2031{
2032	struct ifnet *ifp = sc->sc_ifp;
2033	struct ieee80211com *ic = ifp->if_l2com;
2034	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2035	int hw;
2036
2037	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2038	    BUS_DMASYNC_POSTREAD);
2039
2040	hw = le32toh(sc->shared->next);
2041	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2042
2043	while (sc->rxq.cur != hw) {
2044		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2045
2046		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2047		struct wpi_rx_desc *desc;
2048
2049		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2050		    BUS_DMASYNC_POSTREAD);
2051		desc = mtod(data->m, struct wpi_rx_desc *);
2052
2053		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2054		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2055		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2056		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2057
2058		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2059			/* Reply to a command. */
2060			wpi_cmd_done(sc, desc);
2061		}
2062
2063		switch (desc->type) {
2064		case WPI_RX_DONE:
2065			/* An 802.11 frame has been received. */
2066			wpi_rx_done(sc, desc, data);
2067
2068			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2069				/* wpi_stop() was called. */
2070				return;
2071			}
2072
2073			break;
2074
2075		case WPI_TX_DONE:
2076			/* An 802.11 frame has been transmitted. */
2077			wpi_tx_done(sc, desc);
2078			break;
2079
2080		case WPI_RX_STATISTICS:
2081		case WPI_BEACON_STATISTICS:
2082			wpi_rx_statistics(sc, desc, data);
2083			break;
2084
2085		case WPI_BEACON_MISSED:
2086		{
2087			struct wpi_beacon_missed *miss =
2088			    (struct wpi_beacon_missed *)(desc + 1);
2089			int misses;
2090
2091			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2092			    BUS_DMASYNC_POSTREAD);
2093			misses = le32toh(miss->consecutive);
2094
2095			DPRINTF(sc, WPI_DEBUG_STATE,
2096			    "%s: beacons missed %d/%d\n", __func__, misses,
2097			    le32toh(miss->total));
2098
2099			if (vap->iv_state == IEEE80211_S_RUN &&
2100			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2101				if (misses >=  vap->iv_bmissthreshold) {
2102					WPI_UNLOCK(sc);
2103					ieee80211_beacon_miss(ic);
2104					WPI_LOCK(sc);
2105				}
2106			}
2107			break;
2108		}
2109		case WPI_UC_READY:
2110		{
2111			struct wpi_ucode_info *uc =
2112			    (struct wpi_ucode_info *)(desc + 1);
2113
2114			/* The microcontroller is ready. */
2115			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2116			    BUS_DMASYNC_POSTREAD);
2117			DPRINTF(sc, WPI_DEBUG_RESET,
2118			    "microcode alive notification version=%d.%d "
2119			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2120			    uc->subtype, le32toh(uc->valid));
2121
2122			if (le32toh(uc->valid) != 1) {
2123				device_printf(sc->sc_dev,
2124				    "microcontroller initialization failed\n");
2125				wpi_stop_locked(sc);
2126			}
2127			/* Save the address of the error log in SRAM. */
2128			sc->errptr = le32toh(uc->errptr);
2129			break;
2130		}
2131		case WPI_STATE_CHANGED:
2132		{
2133			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2134			    BUS_DMASYNC_POSTREAD);
2135
2136			uint32_t *status = (uint32_t *)(desc + 1);
2137
2138			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2139			    le32toh(*status));
2140
2141			if (le32toh(*status) & 1) {
2142				WPI_NT_LOCK(sc);
2143				wpi_clear_node_table(sc);
2144				WPI_NT_UNLOCK(sc);
2145				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2146				return;
2147			}
2148			break;
2149		}
2150		case WPI_START_SCAN:
2151		{
2152			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2153			    BUS_DMASYNC_POSTREAD);
2154#ifdef WPI_DEBUG
2155			struct wpi_start_scan *scan =
2156			    (struct wpi_start_scan *)(desc + 1);
2157			DPRINTF(sc, WPI_DEBUG_SCAN,
2158			    "%s: scanning channel %d status %x\n",
2159			    __func__, scan->chan, le32toh(scan->status));
2160#endif
2161			break;
2162		}
2163		case WPI_STOP_SCAN:
2164		{
2165			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2166			    BUS_DMASYNC_POSTREAD);
2167#ifdef WPI_DEBUG
2168			struct wpi_stop_scan *scan =
2169			    (struct wpi_stop_scan *)(desc + 1);
2170			DPRINTF(sc, WPI_DEBUG_SCAN,
2171			    "scan finished nchan=%d status=%d chan=%d\n",
2172			    scan->nchan, scan->status, scan->chan);
2173#endif
2174			WPI_RXON_LOCK(sc);
2175			callout_stop(&sc->scan_timeout);
2176			WPI_RXON_UNLOCK(sc);
2177			WPI_UNLOCK(sc);
2178			ieee80211_scan_next(vap);
2179			WPI_LOCK(sc);
2180			break;
2181		}
2182		}
2183	}
2184
2185	/* Tell the firmware what we have processed. */
2186	wpi_update_rx_ring(sc);
2187}
2188
2189/*
2190 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2191 * from power-down sleep mode.
2192 */
2193static void
2194wpi_wakeup_intr(struct wpi_softc *sc)
2195{
2196	int qid;
2197
2198	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2199	    "%s: ucode wakeup from power-down sleep\n", __func__);
2200
2201	/* Wakeup RX and TX rings. */
2202	if (sc->rxq.update) {
2203		sc->rxq.update = 0;
2204		wpi_update_rx_ring(sc);
2205	}
2206	WPI_TXQ_LOCK(sc);
2207	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2208		struct wpi_tx_ring *ring = &sc->txq[qid];
2209
2210		if (ring->update) {
2211			ring->update = 0;
2212			wpi_update_tx_ring(sc, ring);
2213		}
2214	}
2215	WPI_TXQ_UNLOCK(sc);
2216
2217	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2218}
2219
2220/*
2221 * This function prints firmware registers
2222 */
2223#ifdef WPI_DEBUG
2224static void
2225wpi_debug_registers(struct wpi_softc *sc)
2226{
2227#define COUNTOF(array) (sizeof(array) / sizeof(array[0]))
2228	int i;
2229	static const uint32_t csr_tbl[] = {
2230		WPI_HW_IF_CONFIG,
2231		WPI_INT,
2232		WPI_INT_MASK,
2233		WPI_FH_INT,
2234		WPI_GPIO_IN,
2235		WPI_RESET,
2236		WPI_GP_CNTRL,
2237		WPI_EEPROM,
2238		WPI_EEPROM_GP,
2239		WPI_GIO,
2240		WPI_UCODE_GP1,
2241		WPI_UCODE_GP2,
2242		WPI_GIO_CHICKEN,
2243		WPI_ANA_PLL,
2244		WPI_DBG_HPET_MEM,
2245	};
2246	static const uint32_t prph_tbl[] = {
2247		WPI_APMG_CLK_CTRL,
2248		WPI_APMG_PS,
2249		WPI_APMG_PCI_STT,
2250		WPI_APMG_RFKILL,
2251	};
2252
2253	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2254
2255	for (i = 0; i <  COUNTOF(csr_tbl); i++) {
2256		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2257		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2258
2259		if ((i + 1) % 2 == 0)
2260			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2261	}
2262	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2263
2264	if (wpi_nic_lock(sc) == 0) {
2265		for (i = 0; i < COUNTOF(prph_tbl); i++) {
2266			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2267			    wpi_get_prph_string(prph_tbl[i]),
2268			    wpi_prph_read(sc, prph_tbl[i]));
2269
2270			if ((i + 1) % 2 == 0)
2271				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2272		}
2273		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2274		wpi_nic_unlock(sc);
2275	} else {
2276		DPRINTF(sc, WPI_DEBUG_REGISTER,
2277		    "Cannot access internal registers.\n");
2278	}
2279#undef COUNTOF
2280}
2281#endif
2282
2283/*
2284 * Dump the error log of the firmware when a firmware panic occurs.  Although
2285 * we can't debug the firmware because it is neither open source nor free, it
2286 * can help us to identify certain classes of problems.
2287 */
2288static void
2289wpi_fatal_intr(struct wpi_softc *sc)
2290{
2291	struct wpi_fw_dump dump;
2292	uint32_t i, offset, count;
2293	const uint32_t size_errmsg =
2294	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2295
2296	/* Check that the error log address is valid. */
2297	if (sc->errptr < WPI_FW_DATA_BASE ||
2298	    sc->errptr + sizeof (dump) >
2299	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2300		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2301		    sc->errptr);
2302		return;
2303	}
2304	if (wpi_nic_lock(sc) != 0) {
2305		printf("%s: could not read firmware error log\n", __func__);
2306		return;
2307	}
2308	/* Read number of entries in the log. */
2309	count = wpi_mem_read(sc, sc->errptr);
2310	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2311		printf("%s: invalid count field (count = %u)\n", __func__,
2312		    count);
2313		wpi_nic_unlock(sc);
2314		return;
2315	}
2316	/* Skip "count" field. */
2317	offset = sc->errptr + sizeof (uint32_t);
2318	printf("firmware error log (count = %u):\n", count);
2319	for (i = 0; i < count; i++) {
2320		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2321		    sizeof (dump) / sizeof (uint32_t));
2322
2323		printf("  error type = \"%s\" (0x%08X)\n",
2324		    (dump.desc < size_errmsg) ?
2325		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2326		    dump.desc);
2327		printf("  error data      = 0x%08X\n",
2328		    dump.data);
2329		printf("  branch link     = 0x%08X%08X\n",
2330		    dump.blink[0], dump.blink[1]);
2331		printf("  interrupt link  = 0x%08X%08X\n",
2332		    dump.ilink[0], dump.ilink[1]);
2333		printf("  time            = %u\n", dump.time);
2334
2335		offset += sizeof (dump);
2336	}
2337	wpi_nic_unlock(sc);
2338	/* Dump driver status (TX and RX rings) while we're here. */
2339	printf("driver status:\n");
2340	WPI_TXQ_LOCK(sc);
2341	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2342		struct wpi_tx_ring *ring = &sc->txq[i];
2343		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2344		    i, ring->qid, ring->cur, ring->queued);
2345	}
2346	WPI_TXQ_UNLOCK(sc);
2347	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2348}
2349
2350static void
2351wpi_intr(void *arg)
2352{
2353	struct wpi_softc *sc = arg;
2354	struct ifnet *ifp = sc->sc_ifp;
2355	uint32_t r1, r2;
2356
2357	WPI_LOCK(sc);
2358
2359	/* Disable interrupts. */
2360	WPI_WRITE(sc, WPI_INT_MASK, 0);
2361
2362	r1 = WPI_READ(sc, WPI_INT);
2363
2364	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2365		goto end;	/* Hardware gone! */
2366
2367	r2 = WPI_READ(sc, WPI_FH_INT);
2368
2369	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2370	    r1, r2);
2371
2372	if (r1 == 0 && r2 == 0)
2373		goto done;	/* Interrupt not for us. */
2374
2375	/* Acknowledge interrupts. */
2376	WPI_WRITE(sc, WPI_INT, r1);
2377	WPI_WRITE(sc, WPI_FH_INT, r2);
2378
2379	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2380		struct ieee80211com *ic = ifp->if_l2com;
2381
2382		device_printf(sc->sc_dev, "fatal firmware error\n");
2383#ifdef WPI_DEBUG
2384		wpi_debug_registers(sc);
2385#endif
2386		wpi_fatal_intr(sc);
2387		DPRINTF(sc, WPI_DEBUG_HW,
2388		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2389		    "(Hardware Error)");
2390		ieee80211_runtask(ic, &sc->sc_reinittask);
2391		goto end;
2392	}
2393
2394	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2395	    (r2 & WPI_FH_INT_RX))
2396		wpi_notif_intr(sc);
2397
2398	if (r1 & WPI_INT_ALIVE)
2399		wakeup(sc);	/* Firmware is alive. */
2400
2401	if (r1 & WPI_INT_WAKEUP)
2402		wpi_wakeup_intr(sc);
2403
2404done:
2405	/* Re-enable interrupts. */
2406	if (ifp->if_flags & IFF_UP)
2407		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2408
2409end:	WPI_UNLOCK(sc);
2410}
2411
2412static int
2413wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2414{
2415	struct ifnet *ifp = sc->sc_ifp;
2416	struct ieee80211_frame *wh;
2417	struct wpi_tx_cmd *cmd;
2418	struct wpi_tx_data *data;
2419	struct wpi_tx_desc *desc;
2420	struct wpi_tx_ring *ring;
2421	struct mbuf *m1;
2422	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2423	int error, i, hdrlen, nsegs, totlen, pad;
2424
2425	WPI_TXQ_LOCK(sc);
2426
2427	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2428
2429	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2430
2431	if (sc->txq_active == 0) {
2432		/* wpi_stop() was called */
2433		error = ENETDOWN;
2434		goto fail;
2435	}
2436
2437	wh = mtod(buf->m, struct ieee80211_frame *);
2438	hdrlen = ieee80211_anyhdrsize(wh);
2439	totlen = buf->m->m_pkthdr.len;
2440
2441	if (hdrlen & 3) {
2442		/* First segment length must be a multiple of 4. */
2443		pad = 4 - (hdrlen & 3);
2444	} else
2445		pad = 0;
2446
2447	ring = &sc->txq[buf->ac];
2448	desc = &ring->desc[ring->cur];
2449	data = &ring->data[ring->cur];
2450
2451	/* Prepare TX firmware command. */
2452	cmd = &ring->cmd[ring->cur];
2453	cmd->code = buf->code;
2454	cmd->flags = 0;
2455	cmd->qid = ring->qid;
2456	cmd->idx = ring->cur;
2457
2458	memcpy(cmd->data, buf->data, buf->size);
2459
2460	/* Save and trim IEEE802.11 header. */
2461	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2462	m_adj(buf->m, hdrlen);
2463
2464	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2465	    segs, &nsegs, BUS_DMA_NOWAIT);
2466	if (error != 0 && error != EFBIG) {
2467		device_printf(sc->sc_dev,
2468		    "%s: can't map mbuf (error %d)\n", __func__, error);
2469		goto fail;
2470	}
2471	if (error != 0) {
2472		/* Too many DMA segments, linearize mbuf. */
2473		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2474		if (m1 == NULL) {
2475			device_printf(sc->sc_dev,
2476			    "%s: could not defrag mbuf\n", __func__);
2477			error = ENOBUFS;
2478			goto fail;
2479		}
2480		buf->m = m1;
2481
2482		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2483		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2484		if (error != 0) {
2485			device_printf(sc->sc_dev,
2486			    "%s: can't map mbuf (error %d)\n", __func__,
2487			    error);
2488			goto fail;
2489		}
2490	}
2491
2492	KASSERT(nsegs < WPI_MAX_SCATTER,
2493	    ("too many DMA segments, nsegs (%d) should be less than %d",
2494	     nsegs, WPI_MAX_SCATTER));
2495
2496	data->m = buf->m;
2497	data->ni = buf->ni;
2498
2499	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2500	    __func__, ring->qid, ring->cur, totlen, nsegs);
2501
2502	/* Fill TX descriptor. */
2503	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2504	/* First DMA segment is used by the TX command. */
2505	desc->segs[0].addr = htole32(data->cmd_paddr);
2506	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2507	/* Other DMA segments are for data payload. */
2508	seg = &segs[0];
2509	for (i = 1; i <= nsegs; i++) {
2510		desc->segs[i].addr = htole32(seg->ds_addr);
2511		desc->segs[i].len  = htole32(seg->ds_len);
2512		seg++;
2513	}
2514
2515	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2516	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2517	    BUS_DMASYNC_PREWRITE);
2518	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2519	    BUS_DMASYNC_PREWRITE);
2520
2521	/* Kick TX ring. */
2522	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2523	wpi_update_tx_ring(sc, ring);
2524
2525	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2526		/* Mark TX ring as full if we reach a certain threshold. */
2527		if (++ring->queued > WPI_TX_RING_HIMARK) {
2528			sc->qfullmsk |= 1 << ring->qid;
2529
2530			IF_LOCK(&ifp->if_snd);
2531			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2532			IF_UNLOCK(&ifp->if_snd);
2533		}
2534
2535		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2536	}
2537
2538	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2539
2540	WPI_TXQ_UNLOCK(sc);
2541
2542	return 0;
2543
2544fail:	m_freem(buf->m);
2545
2546	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2547
2548	WPI_TXQ_UNLOCK(sc);
2549
2550	return error;
2551}
2552
2553/*
2554 * Construct the data packet for a transmit buffer.
2555 */
2556static int
2557wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2558{
2559	const struct ieee80211_txparam *tp;
2560	struct ieee80211vap *vap = ni->ni_vap;
2561	struct ieee80211com *ic = ni->ni_ic;
2562	struct wpi_node *wn = WPI_NODE(ni);
2563	struct ieee80211_channel *chan;
2564	struct ieee80211_frame *wh;
2565	struct ieee80211_key *k = NULL;
2566	struct wpi_buf tx_data;
2567	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2568	uint32_t flags;
2569	uint16_t qos;
2570	uint8_t tid, type;
2571	int ac, error, swcrypt, rate, ismcast, totlen;
2572
2573	wh = mtod(m, struct ieee80211_frame *);
2574	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2575	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2576
2577	/* Select EDCA Access Category and TX ring for this frame. */
2578	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2579 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2580		tid = qos & IEEE80211_QOS_TID;
2581	} else {
2582		qos = 0;
2583		tid = 0;
2584	}
2585	ac = M_WME_GETAC(m);
2586
2587	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2588		ni->ni_chan : ic->ic_curchan;
2589	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2590
2591	/* Choose a TX rate index. */
2592	if (type == IEEE80211_FC0_TYPE_MGT)
2593		rate = tp->mgmtrate;
2594	else if (ismcast)
2595		rate = tp->mcastrate;
2596	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2597		rate = tp->ucastrate;
2598	else if (m->m_flags & M_EAPOL)
2599		rate = tp->mgmtrate;
2600	else {
2601		/* XXX pass pktlen */
2602		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2603		rate = ni->ni_txrate;
2604	}
2605
2606	/* Encrypt the frame if need be. */
2607	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2608		/* Retrieve key for TX. */
2609		k = ieee80211_crypto_encap(ni, m);
2610		if (k == NULL) {
2611			error = ENOBUFS;
2612			goto fail;
2613		}
2614		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2615
2616		/* 802.11 header may have moved. */
2617		wh = mtod(m, struct ieee80211_frame *);
2618	}
2619	totlen = m->m_pkthdr.len;
2620
2621	if (ieee80211_radiotap_active_vap(vap)) {
2622		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2623
2624		tap->wt_flags = 0;
2625		tap->wt_rate = rate;
2626		if (k != NULL)
2627			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2628
2629		ieee80211_radiotap_tx(vap, m);
2630	}
2631
2632	flags = 0;
2633	if (!ismcast) {
2634		/* Unicast frame, check if an ACK is expected. */
2635		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2636		    IEEE80211_QOS_ACKPOLICY_NOACK)
2637			flags |= WPI_TX_NEED_ACK;
2638	}
2639
2640	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2641		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2642
2643	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2644	if (!ismcast) {
2645		/* NB: Group frames are sent using CCK in 802.11b/g. */
2646		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2647			flags |= WPI_TX_NEED_RTS;
2648		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2649		    WPI_RATE_IS_OFDM(rate)) {
2650			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2651				flags |= WPI_TX_NEED_CTS;
2652			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2653				flags |= WPI_TX_NEED_RTS;
2654		}
2655
2656		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2657			flags |= WPI_TX_FULL_TXOP;
2658	}
2659
2660	memset(tx, 0, sizeof (struct wpi_cmd_data));
2661	if (type == IEEE80211_FC0_TYPE_MGT) {
2662		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2663
2664		/* Tell HW to set timestamp in probe responses. */
2665		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2666			flags |= WPI_TX_INSERT_TSTAMP;
2667		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2668		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2669			tx->timeout = htole16(3);
2670		else
2671			tx->timeout = htole16(2);
2672	}
2673
2674	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2675		tx->id = WPI_ID_BROADCAST;
2676	else {
2677		if (wn->id == WPI_ID_UNDEFINED) {
2678			device_printf(sc->sc_dev,
2679			    "%s: undefined node id\n", __func__);
2680			error = EINVAL;
2681			goto fail;
2682		}
2683
2684		tx->id = wn->id;
2685	}
2686
2687	if (type != IEEE80211_FC0_TYPE_MGT)
2688		tx->data_ntries = tp->maxretry;
2689
2690	if (k != NULL && !swcrypt) {
2691		switch (k->wk_cipher->ic_cipher) {
2692		case IEEE80211_CIPHER_AES_CCM:
2693			tx->security = WPI_CIPHER_CCMP;
2694			break;
2695
2696		default:
2697			break;
2698		}
2699
2700		memcpy(tx->key, k->wk_key, k->wk_keylen);
2701	}
2702
2703	tx->len = htole16(totlen);
2704	tx->flags = htole32(flags);
2705	tx->plcp = rate2plcp(rate);
2706	tx->tid = tid;
2707	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2708	tx->ofdm_mask = 0xff;
2709	tx->cck_mask = 0x0f;
2710	tx->rts_ntries = 7;
2711
2712	tx_data.ni = ni;
2713	tx_data.m = m;
2714	tx_data.size = sizeof(struct wpi_cmd_data);
2715	tx_data.code = WPI_CMD_TX_DATA;
2716	tx_data.ac = ac;
2717
2718	return wpi_cmd2(sc, &tx_data);
2719
2720fail:	m_freem(m);
2721	return error;
2722}
2723
2724static int
2725wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2726    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2727{
2728	struct ieee80211vap *vap = ni->ni_vap;
2729	struct ieee80211_key *k = NULL;
2730	struct ieee80211_frame *wh;
2731	struct wpi_buf tx_data;
2732	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2733	uint32_t flags;
2734	uint8_t type;
2735	int ac, rate, swcrypt, totlen;
2736
2737	wh = mtod(m, struct ieee80211_frame *);
2738	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2739
2740	ac = params->ibp_pri & 3;
2741
2742	/* Choose a TX rate index. */
2743	rate = params->ibp_rate0;
2744
2745	flags = 0;
2746	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2747		flags |= WPI_TX_NEED_ACK;
2748	if (params->ibp_flags & IEEE80211_BPF_RTS)
2749		flags |= WPI_TX_NEED_RTS;
2750	if (params->ibp_flags & IEEE80211_BPF_CTS)
2751		flags |= WPI_TX_NEED_CTS;
2752	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2753		flags |= WPI_TX_FULL_TXOP;
2754
2755	/* Encrypt the frame if need be. */
2756	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2757		/* Retrieve key for TX. */
2758		k = ieee80211_crypto_encap(ni, m);
2759		if (k == NULL) {
2760			m_freem(m);
2761			return ENOBUFS;
2762		}
2763		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2764
2765		/* 802.11 header may have moved. */
2766		wh = mtod(m, struct ieee80211_frame *);
2767	}
2768	totlen = m->m_pkthdr.len;
2769
2770	if (ieee80211_radiotap_active_vap(vap)) {
2771		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2772
2773		tap->wt_flags = 0;
2774		tap->wt_rate = rate;
2775		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2776			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2777
2778		ieee80211_radiotap_tx(vap, m);
2779	}
2780
2781	memset(tx, 0, sizeof (struct wpi_cmd_data));
2782	if (type == IEEE80211_FC0_TYPE_MGT) {
2783		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2784
2785		/* Tell HW to set timestamp in probe responses. */
2786		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2787			flags |= WPI_TX_INSERT_TSTAMP;
2788		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2789		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2790			tx->timeout = htole16(3);
2791		else
2792			tx->timeout = htole16(2);
2793	}
2794
2795	if (k != NULL && !swcrypt) {
2796		switch (k->wk_cipher->ic_cipher) {
2797		case IEEE80211_CIPHER_AES_CCM:
2798			tx->security = WPI_CIPHER_CCMP;
2799			break;
2800
2801		default:
2802			break;
2803		}
2804
2805		memcpy(tx->key, k->wk_key, k->wk_keylen);
2806	}
2807
2808	tx->len = htole16(totlen);
2809	tx->flags = htole32(flags);
2810	tx->plcp = rate2plcp(rate);
2811	tx->id = WPI_ID_BROADCAST;
2812	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2813	tx->rts_ntries = params->ibp_try1;
2814	tx->data_ntries = params->ibp_try0;
2815
2816	tx_data.ni = ni;
2817	tx_data.m = m;
2818	tx_data.size = sizeof(struct wpi_cmd_data);
2819	tx_data.code = WPI_CMD_TX_DATA;
2820	tx_data.ac = ac;
2821
2822	return wpi_cmd2(sc, &tx_data);
2823}
2824
2825static int
2826wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2827    const struct ieee80211_bpf_params *params)
2828{
2829	struct ieee80211com *ic = ni->ni_ic;
2830	struct ifnet *ifp = ic->ic_ifp;
2831	struct wpi_softc *sc = ifp->if_softc;
2832	int error = 0;
2833
2834	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2835
2836	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2837		ieee80211_free_node(ni);
2838		m_freem(m);
2839		return ENETDOWN;
2840	}
2841
2842	WPI_LOCK(sc);
2843	if (params == NULL) {
2844		/*
2845		 * Legacy path; interpret frame contents to decide
2846		 * precisely how to send the frame.
2847		 */
2848		error = wpi_tx_data(sc, m, ni);
2849	} else {
2850		/*
2851		 * Caller supplied explicit parameters to use in
2852		 * sending the frame.
2853		 */
2854		error = wpi_tx_data_raw(sc, m, ni, params);
2855	}
2856	WPI_UNLOCK(sc);
2857
2858	if (error != 0) {
2859		/* NB: m is reclaimed on tx failure */
2860		ieee80211_free_node(ni);
2861		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2862
2863		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2864
2865		return error;
2866	}
2867
2868	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2869
2870	return 0;
2871}
2872
2873/**
2874 * Process data waiting to be sent on the IFNET output queue
2875 */
2876static void
2877wpi_start(struct ifnet *ifp)
2878{
2879	struct wpi_softc *sc = ifp->if_softc;
2880	struct ieee80211_node *ni;
2881	struct mbuf *m;
2882
2883	WPI_LOCK(sc);
2884	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2885
2886	for (;;) {
2887		IF_LOCK(&ifp->if_snd);
2888		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2889		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2890			IF_UNLOCK(&ifp->if_snd);
2891			break;
2892		}
2893		IF_UNLOCK(&ifp->if_snd);
2894
2895		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2896		if (m == NULL)
2897			break;
2898		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2899		if (wpi_tx_data(sc, m, ni) != 0) {
2900			WPI_UNLOCK(sc);
2901			ieee80211_free_node(ni);
2902			WPI_LOCK(sc);
2903			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2904		}
2905	}
2906
2907	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2908	WPI_UNLOCK(sc);
2909}
2910
2911static void
2912wpi_start_task(void *arg0, int pending)
2913{
2914	struct wpi_softc *sc = arg0;
2915	struct ifnet *ifp = sc->sc_ifp;
2916
2917	wpi_start(ifp);
2918}
2919
2920static void
2921wpi_watchdog_rfkill(void *arg)
2922{
2923	struct wpi_softc *sc = arg;
2924	struct ifnet *ifp = sc->sc_ifp;
2925	struct ieee80211com *ic = ifp->if_l2com;
2926
2927	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2928
2929	/* No need to lock firmware memory. */
2930	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2931		/* Radio kill switch is still off. */
2932		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2933		    sc);
2934	} else
2935		ieee80211_runtask(ic, &sc->sc_radioon_task);
2936}
2937
2938static void
2939wpi_scan_timeout(void *arg)
2940{
2941	struct wpi_softc *sc = arg;
2942	struct ifnet *ifp = sc->sc_ifp;
2943	struct ieee80211com *ic = ifp->if_l2com;
2944
2945	if_printf(ifp, "scan timeout\n");
2946	ieee80211_runtask(ic, &sc->sc_reinittask);
2947}
2948
2949static void
2950wpi_tx_timeout(void *arg)
2951{
2952	struct wpi_softc *sc = arg;
2953	struct ifnet *ifp = sc->sc_ifp;
2954	struct ieee80211com *ic = ifp->if_l2com;
2955
2956	if_printf(ifp, "device timeout\n");
2957	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2958	ieee80211_runtask(ic, &sc->sc_reinittask);
2959}
2960
2961static int
2962wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2963{
2964	struct wpi_softc *sc = ifp->if_softc;
2965	struct ieee80211com *ic = ifp->if_l2com;
2966	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2967	struct ifreq *ifr = (struct ifreq *) data;
2968	int error = 0;
2969
2970	switch (cmd) {
2971	case SIOCGIFADDR:
2972		error = ether_ioctl(ifp, cmd, data);
2973		break;
2974	case SIOCSIFFLAGS:
2975		if (ifp->if_flags & IFF_UP) {
2976			wpi_init(sc);
2977
2978			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
2979			    vap != NULL)
2980				ieee80211_stop(vap);
2981		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2982			wpi_stop(sc);
2983		break;
2984	case SIOCGIFMEDIA:
2985		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2986		break;
2987	default:
2988		error = EINVAL;
2989		break;
2990	}
2991	return error;
2992}
2993
2994/*
2995 * Send a command to the firmware.
2996 */
2997static int
2998wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2999    int async)
3000{
3001	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3002	struct wpi_tx_desc *desc;
3003	struct wpi_tx_data *data;
3004	struct wpi_tx_cmd *cmd;
3005	struct mbuf *m;
3006	bus_addr_t paddr;
3007	int totlen, error;
3008
3009	WPI_TXQ_LOCK(sc);
3010
3011	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3012
3013	if (sc->txq_active == 0) {
3014		/* wpi_stop() was called */
3015		error = 0;
3016		goto fail;
3017	}
3018
3019	if (async == 0)
3020		WPI_LOCK_ASSERT(sc);
3021
3022	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3023	    __func__, wpi_cmd_str(code), size, async);
3024
3025	desc = &ring->desc[ring->cur];
3026	data = &ring->data[ring->cur];
3027	totlen = 4 + size;
3028
3029	if (size > sizeof cmd->data) {
3030		/* Command is too large to fit in a descriptor. */
3031		if (totlen > MCLBYTES) {
3032			error = EINVAL;
3033			goto fail;
3034		}
3035		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3036		if (m == NULL) {
3037			error = ENOMEM;
3038			goto fail;
3039		}
3040		cmd = mtod(m, struct wpi_tx_cmd *);
3041		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3042		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3043		if (error != 0) {
3044			m_freem(m);
3045			goto fail;
3046		}
3047		data->m = m;
3048	} else {
3049		cmd = &ring->cmd[ring->cur];
3050		paddr = data->cmd_paddr;
3051	}
3052
3053	cmd->code = code;
3054	cmd->flags = 0;
3055	cmd->qid = ring->qid;
3056	cmd->idx = ring->cur;
3057	memcpy(cmd->data, buf, size);
3058
3059	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3060	desc->segs[0].addr = htole32(paddr);
3061	desc->segs[0].len  = htole32(totlen);
3062
3063	if (size > sizeof cmd->data) {
3064		bus_dmamap_sync(ring->data_dmat, data->map,
3065		    BUS_DMASYNC_PREWRITE);
3066	} else {
3067		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3068		    BUS_DMASYNC_PREWRITE);
3069	}
3070	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3071	    BUS_DMASYNC_PREWRITE);
3072
3073	/* Kick command ring. */
3074	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3075	wpi_update_tx_ring(sc, ring);
3076
3077	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3078
3079	WPI_TXQ_UNLOCK(sc);
3080
3081	if (async)
3082		return 0;
3083
3084	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3085
3086fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3087
3088	WPI_TXQ_UNLOCK(sc);
3089
3090	return error;
3091}
3092
3093/*
3094 * Configure HW multi-rate retries.
3095 */
3096static int
3097wpi_mrr_setup(struct wpi_softc *sc)
3098{
3099	struct ifnet *ifp = sc->sc_ifp;
3100	struct ieee80211com *ic = ifp->if_l2com;
3101	struct wpi_mrr_setup mrr;
3102	int i, error;
3103
3104	/* CCK rates (not used with 802.11a). */
3105	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3106		mrr.rates[i].flags = 0;
3107		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3108		/* Fallback to the immediate lower CCK rate (if any.) */
3109		mrr.rates[i].next =
3110		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3111		/* Try one time at this rate before falling back to "next". */
3112		mrr.rates[i].ntries = 1;
3113	}
3114	/* OFDM rates (not used with 802.11b). */
3115	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3116		mrr.rates[i].flags = 0;
3117		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3118		/* Fallback to the immediate lower rate (if any.) */
3119		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3120		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3121		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3122			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3123		    i - 1;
3124		/* Try one time at this rate before falling back to "next". */
3125		mrr.rates[i].ntries = 1;
3126	}
3127	/* Setup MRR for control frames. */
3128	mrr.which = htole32(WPI_MRR_CTL);
3129	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3130	if (error != 0) {
3131		device_printf(sc->sc_dev,
3132		    "could not setup MRR for control frames\n");
3133		return error;
3134	}
3135	/* Setup MRR for data frames. */
3136	mrr.which = htole32(WPI_MRR_DATA);
3137	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3138	if (error != 0) {
3139		device_printf(sc->sc_dev,
3140		    "could not setup MRR for data frames\n");
3141		return error;
3142	}
3143	return 0;
3144}
3145
3146static int
3147wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3148{
3149	struct ieee80211com *ic = ni->ni_ic;
3150	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3151	struct wpi_node *wn = WPI_NODE(ni);
3152	struct wpi_node_info node;
3153	int error;
3154
3155	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3156
3157	if (wn->id == WPI_ID_UNDEFINED)
3158		return EINVAL;
3159
3160	memset(&node, 0, sizeof node);
3161	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3162	node.id = wn->id;
3163	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3164	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3165	node.action = htole32(WPI_ACTION_SET_RATE);
3166	node.antenna = WPI_ANTENNA_BOTH;
3167
3168	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3169	    wn->id, ether_sprintf(ni->ni_macaddr));
3170
3171	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3172	if (error != 0) {
3173		device_printf(sc->sc_dev,
3174		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3175		    error);
3176		return error;
3177	}
3178
3179	if (wvp->wv_gtk != 0) {
3180		error = wpi_set_global_keys(ni);
3181		if (error != 0) {
3182			device_printf(sc->sc_dev,
3183			    "%s: error while setting global keys\n", __func__);
3184			return ENXIO;
3185		}
3186	}
3187
3188	return 0;
3189}
3190
3191/*
3192 * Broadcast node is used to send group-addressed and management frames.
3193 */
3194static int
3195wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3196{
3197	struct ifnet *ifp = sc->sc_ifp;
3198	struct ieee80211com *ic = ifp->if_l2com;
3199	struct wpi_node_info node;
3200
3201	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3202
3203	memset(&node, 0, sizeof node);
3204	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3205	node.id = WPI_ID_BROADCAST;
3206	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3207	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3208	node.action = htole32(WPI_ACTION_SET_RATE);
3209	node.antenna = WPI_ANTENNA_BOTH;
3210
3211	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3212
3213	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3214}
3215
3216static int
3217wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3218{
3219	struct wpi_node *wn = WPI_NODE(ni);
3220	int error;
3221
3222	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3223
3224	wn->id = wpi_add_node_entry_sta(sc);
3225
3226	if ((error = wpi_add_node(sc, ni)) != 0) {
3227		wpi_del_node_entry(sc, wn->id);
3228		wn->id = WPI_ID_UNDEFINED;
3229		return error;
3230	}
3231
3232	return 0;
3233}
3234
3235static int
3236wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3237{
3238	struct wpi_node *wn = WPI_NODE(ni);
3239	int error;
3240
3241	KASSERT(wn->id == WPI_ID_UNDEFINED,
3242	    ("the node %d was added before", wn->id));
3243
3244	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3245
3246	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3247		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3248		return ENOMEM;
3249	}
3250
3251	if ((error = wpi_add_node(sc, ni)) != 0) {
3252		wpi_del_node_entry(sc, wn->id);
3253		wn->id = WPI_ID_UNDEFINED;
3254		return error;
3255	}
3256
3257	return 0;
3258}
3259
3260static void
3261wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3262{
3263	struct wpi_node *wn = WPI_NODE(ni);
3264	struct wpi_cmd_del_node node;
3265	int error;
3266
3267	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3268
3269	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3270
3271	memset(&node, 0, sizeof node);
3272	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3273	node.count = 1;
3274
3275	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3276	    wn->id, ether_sprintf(ni->ni_macaddr));
3277
3278	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3279	if (error != 0) {
3280		device_printf(sc->sc_dev,
3281		    "%s: could not delete node %u, error %d\n", __func__,
3282		    wn->id, error);
3283	}
3284}
3285
3286static int
3287wpi_updateedca(struct ieee80211com *ic)
3288{
3289#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3290	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3291	struct wpi_edca_params cmd;
3292	int aci, error;
3293
3294	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3295
3296	memset(&cmd, 0, sizeof cmd);
3297	cmd.flags = htole32(WPI_EDCA_UPDATE);
3298	for (aci = 0; aci < WME_NUM_AC; aci++) {
3299		const struct wmeParams *ac =
3300		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3301		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3302		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3303		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3304		cmd.ac[aci].txoplimit =
3305		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3306
3307		DPRINTF(sc, WPI_DEBUG_EDCA,
3308		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3309		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3310		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3311		    cmd.ac[aci].txoplimit);
3312	}
3313	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3314
3315	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3316
3317	return error;
3318#undef WPI_EXP2
3319}
3320
3321static void
3322wpi_set_promisc(struct wpi_softc *sc)
3323{
3324	struct ifnet *ifp = sc->sc_ifp;
3325	struct ieee80211com *ic = ifp->if_l2com;
3326	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3327	uint32_t promisc_filter;
3328
3329	promisc_filter = WPI_FILTER_CTL;
3330	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3331		promisc_filter |= WPI_FILTER_PROMISC;
3332
3333	if (ifp->if_flags & IFF_PROMISC)
3334		sc->rxon.filter |= htole32(promisc_filter);
3335	else
3336		sc->rxon.filter &= ~htole32(promisc_filter);
3337}
3338
3339static void
3340wpi_update_promisc(struct ifnet *ifp)
3341{
3342	struct wpi_softc *sc = ifp->if_softc;
3343
3344	WPI_RXON_LOCK(sc);
3345	wpi_set_promisc(sc);
3346
3347	if (wpi_send_rxon(sc, 1, 1) != 0) {
3348		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3349		    __func__);
3350	}
3351	WPI_RXON_UNLOCK(sc);
3352}
3353
3354static void
3355wpi_update_mcast(struct ifnet *ifp)
3356{
3357	/* Ignore */
3358}
3359
3360static void
3361wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3362{
3363	struct wpi_cmd_led led;
3364
3365	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3366
3367	led.which = which;
3368	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3369	led.off = off;
3370	led.on = on;
3371	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3372}
3373
3374static int
3375wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3376{
3377	struct wpi_cmd_timing cmd;
3378	uint64_t val, mod;
3379
3380	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3381
3382	memset(&cmd, 0, sizeof cmd);
3383	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3384	cmd.bintval = htole16(ni->ni_intval);
3385	cmd.lintval = htole16(10);
3386
3387	/* Compute remaining time until next beacon. */
3388	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3389	mod = le64toh(cmd.tstamp) % val;
3390	cmd.binitval = htole32((uint32_t)(val - mod));
3391
3392	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3393	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3394
3395	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3396}
3397
3398/*
3399 * This function is called periodically (every 60 seconds) to adjust output
3400 * power to temperature changes.
3401 */
3402static void
3403wpi_power_calibration(struct wpi_softc *sc)
3404{
3405	int temp;
3406
3407	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3408
3409	/* Update sensor data. */
3410	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3411	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3412
3413	/* Sanity-check read value. */
3414	if (temp < -260 || temp > 25) {
3415		/* This can't be correct, ignore. */
3416		DPRINTF(sc, WPI_DEBUG_TEMP,
3417		    "out-of-range temperature reported: %d\n", temp);
3418		return;
3419	}
3420
3421	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3422
3423	/* Adjust Tx power if need be. */
3424	if (abs(temp - sc->temp) <= 6)
3425		return;
3426
3427	sc->temp = temp;
3428
3429	if (wpi_set_txpower(sc, 1) != 0) {
3430		/* just warn, too bad for the automatic calibration... */
3431		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3432	}
3433}
3434
3435/*
3436 * Set TX power for current channel.
3437 */
3438static int
3439wpi_set_txpower(struct wpi_softc *sc, int async)
3440{
3441	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3442	struct ieee80211_channel *ch;
3443	struct wpi_power_group *group;
3444	struct wpi_cmd_txpower cmd;
3445	uint8_t chan;
3446	int idx, i;
3447
3448	/* Retrieve current channel from last RXON. */
3449	chan = sc->rxon.chan;
3450	ch = &ic->ic_channels[chan];
3451
3452	/* Find the TX power group to which this channel belongs. */
3453	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3454		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3455			if (chan <= group->chan)
3456				break;
3457	} else
3458		group = &sc->groups[0];
3459
3460	memset(&cmd, 0, sizeof cmd);
3461	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3462	cmd.chan = htole16(chan);
3463
3464	/* Set TX power for all OFDM and CCK rates. */
3465	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3466		/* Retrieve TX power for this channel/rate. */
3467		idx = wpi_get_power_index(sc, group, ch, i);
3468
3469		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3470
3471		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3472			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3473			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3474		} else {
3475			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3476			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3477		}
3478		DPRINTF(sc, WPI_DEBUG_TEMP,
3479		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3480	}
3481
3482	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3483}
3484
3485/*
3486 * Determine Tx power index for a given channel/rate combination.
3487 * This takes into account the regulatory information from EEPROM and the
3488 * current temperature.
3489 */
3490static int
3491wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3492    struct ieee80211_channel *c, int ridx)
3493{
3494/* Fixed-point arithmetic division using a n-bit fractional part. */
3495#define fdivround(a, b, n)	\
3496	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3497
3498/* Linear interpolation. */
3499#define interpolate(x, x1, y1, x2, y2, n)	\
3500	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3501
3502	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3503	struct wpi_power_sample *sample;
3504	int pwr, idx;
3505	u_int chan;
3506
3507	/* Get channel number. */
3508	chan = ieee80211_chan2ieee(ic, c);
3509
3510	/* Default TX power is group maximum TX power minus 3dB. */
3511	pwr = group->maxpwr / 2;
3512
3513	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3514	switch (ridx) {
3515	case WPI_RIDX_OFDM36:
3516		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3517		break;
3518	case WPI_RIDX_OFDM48:
3519		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3520		break;
3521	case WPI_RIDX_OFDM54:
3522		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3523		break;
3524	}
3525
3526	/* Never exceed the channel maximum allowed TX power. */
3527	pwr = min(pwr, sc->maxpwr[chan]);
3528
3529	/* Retrieve TX power index into gain tables from samples. */
3530	for (sample = group->samples; sample < &group->samples[3]; sample++)
3531		if (pwr > sample[1].power)
3532			break;
3533	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3534	idx = interpolate(pwr, sample[0].power, sample[0].index,
3535	    sample[1].power, sample[1].index, 19);
3536
3537	/*-
3538	 * Adjust power index based on current temperature:
3539	 * - if cooler than factory-calibrated: decrease output power
3540	 * - if warmer than factory-calibrated: increase output power
3541	 */
3542	idx -= (sc->temp - group->temp) * 11 / 100;
3543
3544	/* Decrease TX power for CCK rates (-5dB). */
3545	if (ridx >= WPI_RIDX_CCK1)
3546		idx += 10;
3547
3548	/* Make sure idx stays in a valid range. */
3549	if (idx < 0)
3550		return 0;
3551	if (idx > WPI_MAX_PWR_INDEX)
3552		return WPI_MAX_PWR_INDEX;
3553	return idx;
3554
3555#undef interpolate
3556#undef fdivround
3557}
3558
3559/*
3560 * Set STA mode power saving level (between 0 and 5).
3561 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3562 */
3563static int
3564wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3565{
3566	struct wpi_pmgt_cmd cmd;
3567	const struct wpi_pmgt *pmgt;
3568	uint32_t max, skip_dtim;
3569	uint32_t reg;
3570	int i;
3571
3572	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3573	    "%s: dtim=%d, level=%d, async=%d\n",
3574	    __func__, dtim, level, async);
3575
3576	/* Select which PS parameters to use. */
3577	if (dtim <= 10)
3578		pmgt = &wpi_pmgt[0][level];
3579	else
3580		pmgt = &wpi_pmgt[1][level];
3581
3582	memset(&cmd, 0, sizeof cmd);
3583	if (level != 0)	/* not CAM */
3584		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3585	/* Retrieve PCIe Active State Power Management (ASPM). */
3586	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3587	if (!(reg & 0x1))	/* L0s Entry disabled. */
3588		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3589
3590	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3591	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3592
3593	if (dtim == 0) {
3594		dtim = 1;
3595		skip_dtim = 0;
3596	} else
3597		skip_dtim = pmgt->skip_dtim;
3598
3599	if (skip_dtim != 0) {
3600		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3601		max = pmgt->intval[4];
3602		if (max == (uint32_t)-1)
3603			max = dtim * (skip_dtim + 1);
3604		else if (max > dtim)
3605			max = (max / dtim) * dtim;
3606	} else
3607		max = dtim;
3608
3609	for (i = 0; i < 5; i++)
3610		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3611
3612	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3613}
3614
3615static int
3616wpi_send_btcoex(struct wpi_softc *sc)
3617{
3618	struct wpi_bluetooth cmd;
3619
3620	memset(&cmd, 0, sizeof cmd);
3621	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3622	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3623	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3624	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3625	    __func__);
3626	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3627}
3628
3629static int
3630wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3631{
3632	int error;
3633
3634	if (async)
3635		WPI_RXON_LOCK_ASSERT(sc);
3636
3637	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3638		struct wpi_assoc rxon_assoc;
3639
3640		rxon_assoc.flags = sc->rxon.flags;
3641		rxon_assoc.filter = sc->rxon.filter;
3642		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3643		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3644		rxon_assoc.reserved = 0;
3645
3646		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3647		    sizeof (struct wpi_assoc), async);
3648		if (error != 0) {
3649			device_printf(sc->sc_dev,
3650			    "RXON_ASSOC command failed, error %d\n", error);
3651			return error;
3652		}
3653	} else {
3654		if (async) {
3655			WPI_NT_LOCK(sc);
3656			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3657			    sizeof (struct wpi_rxon), async);
3658			if (error == 0)
3659				wpi_clear_node_table(sc);
3660			WPI_NT_UNLOCK(sc);
3661		} else {
3662			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3663			    sizeof (struct wpi_rxon), async);
3664			if (error == 0)
3665				wpi_clear_node_table(sc);
3666		}
3667
3668		if (error != 0) {
3669			device_printf(sc->sc_dev,
3670			    "RXON command failed, error %d\n", error);
3671			return error;
3672		}
3673
3674		/* Add broadcast node. */
3675		error = wpi_add_broadcast_node(sc, async);
3676		if (error != 0) {
3677			device_printf(sc->sc_dev,
3678			    "could not add broadcast node, error %d\n", error);
3679			return error;
3680		}
3681	}
3682
3683	/* Configuration has changed, set Tx power accordingly. */
3684	if ((error = wpi_set_txpower(sc, async)) != 0) {
3685		device_printf(sc->sc_dev,
3686		    "%s: could not set TX power, error %d\n", __func__, error);
3687		return error;
3688	}
3689
3690	return 0;
3691}
3692
3693/**
3694 * Configure the card to listen to a particular channel, this transisions the
3695 * card in to being able to receive frames from remote devices.
3696 */
3697static int
3698wpi_config(struct wpi_softc *sc)
3699{
3700	struct ifnet *ifp = sc->sc_ifp;
3701	struct ieee80211com *ic = ifp->if_l2com;
3702	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3703	uint32_t flags;
3704	int error;
3705
3706	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3707
3708	/* Set power saving level to CAM during initialization. */
3709	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3710		device_printf(sc->sc_dev,
3711		    "%s: could not set power saving level\n", __func__);
3712		return error;
3713	}
3714
3715	/* Configure bluetooth coexistence. */
3716	if ((error = wpi_send_btcoex(sc)) != 0) {
3717		device_printf(sc->sc_dev,
3718		    "could not configure bluetooth coexistence\n");
3719		return error;
3720	}
3721
3722	/* Configure adapter. */
3723	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3724	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3725
3726	/* Set default channel. */
3727	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3728	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3729	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3730		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3731
3732	sc->rxon.filter = WPI_FILTER_MULTICAST;
3733	switch (ic->ic_opmode) {
3734	case IEEE80211_M_STA:
3735		sc->rxon.mode = WPI_MODE_STA;
3736		break;
3737	case IEEE80211_M_IBSS:
3738		sc->rxon.mode = WPI_MODE_IBSS;
3739		sc->rxon.filter |= WPI_FILTER_BEACON;
3740		break;
3741	case IEEE80211_M_HOSTAP:
3742		/* XXX workaround for beaconing */
3743		sc->rxon.mode = WPI_MODE_IBSS;
3744		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3745		break;
3746	case IEEE80211_M_AHDEMO:
3747		/* XXX workaround for passive channels selection */
3748		sc->rxon.mode = WPI_MODE_HOSTAP;
3749		break;
3750	case IEEE80211_M_MONITOR:
3751		sc->rxon.mode = WPI_MODE_MONITOR;
3752		break;
3753	default:
3754		device_printf(sc->sc_dev, "unknown opmode %d\n",
3755		    ic->ic_opmode);
3756		return EINVAL;
3757	}
3758	sc->rxon.filter = htole32(sc->rxon.filter);
3759	wpi_set_promisc(sc);
3760	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3761	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3762
3763	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3764		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3765		    __func__);
3766		return error;
3767	}
3768
3769	/* Setup rate scalling. */
3770	if ((error = wpi_mrr_setup(sc)) != 0) {
3771		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3772		    error);
3773		return error;
3774	}
3775
3776	/* Disable beacon notifications (unused). */
3777	flags = WPI_STATISTICS_BEACON_DISABLE;
3778	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3779	if (error != 0) {
3780		device_printf(sc->sc_dev,
3781		    "could not disable beacon statistics, error %d\n", error);
3782		return error;
3783	}
3784
3785	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3786
3787	return 0;
3788}
3789
3790static uint16_t
3791wpi_get_active_dwell_time(struct wpi_softc *sc,
3792    struct ieee80211_channel *c, uint8_t n_probes)
3793{
3794	/* No channel? Default to 2GHz settings. */
3795	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3796		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3797		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3798	}
3799
3800	/* 5GHz dwell time. */
3801	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3802	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3803}
3804
3805/*
3806 * Limit the total dwell time to 85% of the beacon interval.
3807 *
3808 * Returns the dwell time in milliseconds.
3809 */
3810static uint16_t
3811wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3812{
3813	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3814	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3815	int bintval = 0;
3816
3817	/* bintval is in TU (1.024mS) */
3818	if (vap != NULL)
3819		bintval = vap->iv_bss->ni_intval;
3820
3821	/*
3822	 * If it's non-zero, we should calculate the minimum of
3823	 * it and the DWELL_BASE.
3824	 *
3825	 * XXX Yes, the math should take into account that bintval
3826	 * is 1.024mS, not 1mS..
3827	 */
3828	if (bintval > 0) {
3829		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3830		    bintval);
3831		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3832	}
3833
3834	/* No association context? Default. */
3835	return (WPI_PASSIVE_DWELL_BASE);
3836}
3837
3838static uint16_t
3839wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3840{
3841	uint16_t passive;
3842
3843	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3844		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3845	else
3846		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3847
3848	/* Clamp to the beacon interval if we're associated. */
3849	return (wpi_limit_dwell(sc, passive));
3850}
3851
3852/*
3853 * Send a scan request to the firmware.
3854 */
3855static int
3856wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3857{
3858	struct ifnet *ifp = sc->sc_ifp;
3859	struct ieee80211com *ic = ifp->if_l2com;
3860	struct ieee80211_scan_state *ss = ic->ic_scan;
3861	struct ieee80211vap *vap = ss->ss_vap;
3862	struct wpi_scan_hdr *hdr;
3863	struct wpi_cmd_data *tx;
3864	struct wpi_scan_essid *essids;
3865	struct wpi_scan_chan *chan;
3866	struct ieee80211_frame *wh;
3867	struct ieee80211_rateset *rs;
3868	uint16_t dwell_active, dwell_passive;
3869	uint8_t *buf, *frm;
3870	int buflen, error, i, nssid;
3871
3872	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3873
3874	/*
3875	 * We are absolutely not allowed to send a scan command when another
3876	 * scan command is pending.
3877	 */
3878	if (callout_pending(&sc->scan_timeout)) {
3879		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3880		    __func__);
3881
3882		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3883
3884		return (EAGAIN);
3885	}
3886
3887	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3888	if (buf == NULL) {
3889		device_printf(sc->sc_dev,
3890		    "%s: could not allocate buffer for scan command\n",
3891		    __func__);
3892		error = ENOMEM;
3893		goto fail;
3894	}
3895	hdr = (struct wpi_scan_hdr *)buf;
3896
3897	/*
3898	 * Move to the next channel if no packets are received within 10 msecs
3899	 * after sending the probe request.
3900	 */
3901	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3902	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3903	/*
3904	 * Max needs to be greater than active and passive and quiet!
3905	 * It's also in microseconds!
3906	 */
3907	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3908	hdr->pause_svc = htole32((4 << 24) |
3909	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3910	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3911
3912	tx = (struct wpi_cmd_data *)(hdr + 1);
3913	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3914	tx->id = WPI_ID_BROADCAST;
3915	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3916
3917	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3918		/* Send probe requests at 6Mbps. */
3919		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3920		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3921	} else {
3922		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3923		/* Send probe requests at 1Mbps. */
3924		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3925		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3926	}
3927
3928	essids = (struct wpi_scan_essid *)(tx + 1);
3929	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3930	for (i = 0; i < nssid; i++) {
3931		essids[i].id = IEEE80211_ELEMID_SSID;
3932		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3933		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3934#ifdef WPI_DEBUG
3935		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3936			printf("Scanning Essid: ");
3937			ieee80211_print_essid(essids[i].data, essids[i].len);
3938			printf("\n");
3939		}
3940#endif
3941	}
3942
3943	/*
3944	 * Build a probe request frame.  Most of the following code is a
3945	 * copy & paste of what is done in net80211.
3946	 */
3947	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3948	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3949		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3950	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3951	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3952	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3953	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3954	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3955	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3956
3957	frm = (uint8_t *)(wh + 1);
3958	frm = ieee80211_add_ssid(frm, NULL, 0);
3959	frm = ieee80211_add_rates(frm, rs);
3960	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3961		frm = ieee80211_add_xrates(frm, rs);
3962
3963	/* Set length of probe request. */
3964	tx->len = htole16(frm - (uint8_t *)wh);
3965
3966	/*
3967	 * Construct information about the channel that we
3968	 * want to scan. The firmware expects this to be directly
3969	 * after the scan probe request
3970	 */
3971	chan = (struct wpi_scan_chan *)frm;
3972	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3973	chan->flags = 0;
3974	if (nssid) {
3975		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3976		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3977	} else
3978		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3979
3980	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3981		chan->flags |= WPI_CHAN_ACTIVE;
3982
3983	/*
3984	 * Calculate the active/passive dwell times.
3985	 */
3986
3987	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3988	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3989
3990	/* Make sure they're valid. */
3991	if (dwell_passive <= dwell_active)
3992		dwell_passive = dwell_active + 1;
3993
3994	chan->active = htole16(dwell_active);
3995	chan->passive = htole16(dwell_passive);
3996
3997	chan->dsp_gain = 0x6e;  /* Default level */
3998
3999	if (IEEE80211_IS_CHAN_5GHZ(c))
4000		chan->rf_gain = 0x3b;
4001	else
4002		chan->rf_gain = 0x28;
4003
4004	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4005	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4006
4007	hdr->nchan++;
4008	chan++;
4009
4010	buflen = (uint8_t *)chan - buf;
4011	hdr->len = htole16(buflen);
4012
4013	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4014	    hdr->nchan);
4015	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4016	free(buf, M_DEVBUF);
4017
4018	if (error != 0)
4019		goto fail;
4020
4021	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4022
4023	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4024
4025	return 0;
4026
4027fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4028
4029	return error;
4030}
4031
4032static int
4033wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4034{
4035	struct ieee80211com *ic = vap->iv_ic;
4036	struct ieee80211_node *ni = vap->iv_bss;
4037	int error;
4038
4039	WPI_RXON_LOCK(sc);
4040
4041	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4042
4043	/* Update adapter configuration. */
4044	sc->rxon.associd = 0;
4045	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4046	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4047	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4048	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4049	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4050		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4051	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4052		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4053	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4054		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4055	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4056		sc->rxon.cck_mask  = 0;
4057		sc->rxon.ofdm_mask = 0x15;
4058	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4059		sc->rxon.cck_mask  = 0x03;
4060		sc->rxon.ofdm_mask = 0;
4061	} else {
4062		/* Assume 802.11b/g. */
4063		sc->rxon.cck_mask  = 0x0f;
4064		sc->rxon.ofdm_mask = 0x15;
4065	}
4066
4067	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4068	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4069	    sc->rxon.ofdm_mask);
4070
4071	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4072		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4073		    __func__);
4074	}
4075
4076	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4077
4078	WPI_RXON_UNLOCK(sc);
4079
4080	return error;
4081}
4082
4083static int
4084wpi_config_beacon(struct wpi_vap *wvp)
4085{
4086	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4087	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4088	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4089	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4090	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4091	struct ieee80211_tim_ie *tie;
4092	struct mbuf *m;
4093	uint8_t *ptr;
4094	int error;
4095
4096	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4097
4098	WPI_VAP_LOCK_ASSERT(wvp);
4099
4100	cmd->len = htole16(bcn->m->m_pkthdr.len);
4101	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4102	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4103
4104	/* XXX seems to be unused */
4105	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4106		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4107		ptr = mtod(bcn->m, uint8_t *);
4108
4109		cmd->tim = htole16(bo->bo_tim - ptr);
4110		cmd->timsz = tie->tim_len;
4111	}
4112
4113	/* Necessary for recursion in ieee80211_beacon_update(). */
4114	m = bcn->m;
4115	bcn->m = m_dup(m, M_NOWAIT);
4116	if (bcn->m == NULL) {
4117		device_printf(sc->sc_dev,
4118		    "%s: could not copy beacon frame\n", __func__);
4119		error = ENOMEM;
4120		goto end;
4121	}
4122
4123	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4124		device_printf(sc->sc_dev,
4125		    "%s: could not update beacon frame, error %d", __func__,
4126		    error);
4127	}
4128
4129	/* Restore mbuf. */
4130end:	bcn->m = m;
4131
4132	return error;
4133}
4134
4135static int
4136wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4137{
4138	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4139	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4140	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4141	struct mbuf *m;
4142	int error;
4143
4144	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4145
4146	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4147		return EINVAL;
4148
4149	m = ieee80211_beacon_alloc(ni, bo);
4150	if (m == NULL) {
4151		device_printf(sc->sc_dev,
4152		    "%s: could not allocate beacon frame\n", __func__);
4153		return ENOMEM;
4154	}
4155
4156	WPI_VAP_LOCK(wvp);
4157	if (bcn->m != NULL)
4158		m_freem(bcn->m);
4159
4160	bcn->m = m;
4161
4162	error = wpi_config_beacon(wvp);
4163	WPI_VAP_UNLOCK(wvp);
4164
4165	return error;
4166}
4167
4168static void
4169wpi_update_beacon(struct ieee80211vap *vap, int item)
4170{
4171	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4172	struct wpi_vap *wvp = WPI_VAP(vap);
4173	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4174	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4175	struct ieee80211_node *ni = vap->iv_bss;
4176	int mcast = 0;
4177
4178	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4179
4180	WPI_VAP_LOCK(wvp);
4181	if (bcn->m == NULL) {
4182		bcn->m = ieee80211_beacon_alloc(ni, bo);
4183		if (bcn->m == NULL) {
4184			device_printf(sc->sc_dev,
4185			    "%s: could not allocate beacon frame\n", __func__);
4186
4187			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4188			    __func__);
4189
4190			WPI_VAP_UNLOCK(wvp);
4191			return;
4192		}
4193	}
4194	WPI_VAP_UNLOCK(wvp);
4195
4196	if (item == IEEE80211_BEACON_TIM)
4197		mcast = 1;	/* TODO */
4198
4199	setbit(bo->bo_flags, item);
4200	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4201
4202	WPI_VAP_LOCK(wvp);
4203	wpi_config_beacon(wvp);
4204	WPI_VAP_UNLOCK(wvp);
4205
4206	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4207}
4208
4209static void
4210wpi_newassoc(struct ieee80211_node *ni, int isnew)
4211{
4212	struct ieee80211vap *vap = ni->ni_vap;
4213	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4214	struct wpi_node *wn = WPI_NODE(ni);
4215	int error;
4216
4217	WPI_NT_LOCK(sc);
4218
4219	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4220
4221	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4222		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4223			device_printf(sc->sc_dev,
4224			    "%s: could not add IBSS node, error %d\n",
4225			    __func__, error);
4226		}
4227	}
4228	WPI_NT_UNLOCK(sc);
4229}
4230
4231static int
4232wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4233{
4234	struct ieee80211com *ic = vap->iv_ic;
4235	struct ieee80211_node *ni = vap->iv_bss;
4236	int error;
4237
4238	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4239
4240	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4241		/* Link LED blinks while monitoring. */
4242		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4243		return 0;
4244	}
4245
4246	/* XXX kernel panic workaround */
4247	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
4248		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4249		    __func__);
4250		return EINVAL;
4251	}
4252
4253	if ((error = wpi_set_timing(sc, ni)) != 0) {
4254		device_printf(sc->sc_dev,
4255		    "%s: could not set timing, error %d\n", __func__, error);
4256		return error;
4257	}
4258
4259	/* Update adapter configuration. */
4260	WPI_RXON_LOCK(sc);
4261	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4262	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4263	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4264	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4265	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4266		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4267	/* Short preamble and slot time are negotiated when associating. */
4268	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
4269	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4270		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4271	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4272		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4273	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4274		sc->rxon.cck_mask  = 0;
4275		sc->rxon.ofdm_mask = 0x15;
4276	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4277		sc->rxon.cck_mask  = 0x03;
4278		sc->rxon.ofdm_mask = 0;
4279	} else {
4280		/* Assume 802.11b/g. */
4281		sc->rxon.cck_mask  = 0x0f;
4282		sc->rxon.ofdm_mask = 0x15;
4283	}
4284	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4285
4286	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4287	    sc->rxon.chan, sc->rxon.flags);
4288
4289	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4290		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4291		    __func__);
4292		return error;
4293	}
4294
4295	/* Start periodic calibration timer. */
4296	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4297
4298	WPI_RXON_UNLOCK(sc);
4299
4300	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4301	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4302		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4303			device_printf(sc->sc_dev,
4304			    "%s: could not setup beacon, error %d\n", __func__,
4305			    error);
4306			return error;
4307		}
4308	}
4309
4310	if (vap->iv_opmode == IEEE80211_M_STA) {
4311		/* Add BSS node. */
4312		WPI_NT_LOCK(sc);
4313		error = wpi_add_sta_node(sc, ni);
4314		WPI_NT_UNLOCK(sc);
4315		if (error != 0) {
4316			device_printf(sc->sc_dev,
4317			    "%s: could not add BSS node, error %d\n", __func__,
4318			    error);
4319			return error;
4320		}
4321	}
4322
4323	/* Link LED always on while associated. */
4324	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4325
4326	/* Enable power-saving mode if requested by user. */
4327	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4328	    vap->iv_opmode != IEEE80211_M_IBSS)
4329		(void)wpi_set_pslevel(sc, 0, 3, 1);
4330	else
4331		(void)wpi_set_pslevel(sc, 0, 0, 1);
4332
4333	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4334
4335	return 0;
4336}
4337
4338static int
4339wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4340{
4341	const struct ieee80211_cipher *cip = k->wk_cipher;
4342	struct ieee80211vap *vap = ni->ni_vap;
4343	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4344	struct wpi_node *wn = WPI_NODE(ni);
4345	struct wpi_node_info node;
4346	uint16_t kflags;
4347	int error;
4348
4349	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4350
4351	if (wpi_check_node_entry(sc, wn->id) == 0) {
4352		device_printf(sc->sc_dev, "%s: node does not exist\n",
4353		    __func__);
4354		return 0;
4355	}
4356
4357	switch (cip->ic_cipher) {
4358	case IEEE80211_CIPHER_AES_CCM:
4359		kflags = WPI_KFLAG_CCMP;
4360		break;
4361
4362	default:
4363		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4364		    cip->ic_cipher);
4365		return 0;
4366	}
4367
4368	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4369	if (k->wk_flags & IEEE80211_KEY_GROUP)
4370		kflags |= WPI_KFLAG_MULTICAST;
4371
4372	memset(&node, 0, sizeof node);
4373	node.id = wn->id;
4374	node.control = WPI_NODE_UPDATE;
4375	node.flags = WPI_FLAG_KEY_SET;
4376	node.kflags = htole16(kflags);
4377	memcpy(node.key, k->wk_key, k->wk_keylen);
4378again:
4379	DPRINTF(sc, WPI_DEBUG_KEY,
4380	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4381	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4382	    node.id, ether_sprintf(ni->ni_macaddr));
4383
4384	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4385	if (error != 0) {
4386		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4387		    error);
4388		return !error;
4389	}
4390
4391	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4392	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4393		kflags |= WPI_KFLAG_MULTICAST;
4394		node.kflags = htole16(kflags);
4395
4396		goto again;
4397	}
4398
4399	return 1;
4400}
4401
4402static void
4403wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4404{
4405	const struct ieee80211_key *k = arg;
4406	struct ieee80211vap *vap = ni->ni_vap;
4407	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4408	struct wpi_node *wn = WPI_NODE(ni);
4409	int error;
4410
4411	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4412		return;
4413
4414	WPI_NT_LOCK(sc);
4415	error = wpi_load_key(ni, k);
4416	WPI_NT_UNLOCK(sc);
4417
4418	if (error == 0) {
4419		device_printf(sc->sc_dev, "%s: error while setting key\n",
4420		    __func__);
4421	}
4422}
4423
4424static int
4425wpi_set_global_keys(struct ieee80211_node *ni)
4426{
4427	struct ieee80211vap *vap = ni->ni_vap;
4428	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4429	int error = 1;
4430
4431	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4432		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4433			error = wpi_load_key(ni, wk);
4434
4435	return !error;
4436}
4437
4438static int
4439wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4440{
4441	struct ieee80211vap *vap = ni->ni_vap;
4442	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4443	struct wpi_node *wn = WPI_NODE(ni);
4444	struct wpi_node_info node;
4445	uint16_t kflags;
4446	int error;
4447
4448	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4449
4450	if (wpi_check_node_entry(sc, wn->id) == 0) {
4451		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4452		return 1;	/* Nothing to do. */
4453	}
4454
4455	kflags = WPI_KFLAG_KID(k->wk_keyix);
4456	if (k->wk_flags & IEEE80211_KEY_GROUP)
4457		kflags |= WPI_KFLAG_MULTICAST;
4458
4459	memset(&node, 0, sizeof node);
4460	node.id = wn->id;
4461	node.control = WPI_NODE_UPDATE;
4462	node.flags = WPI_FLAG_KEY_SET;
4463	node.kflags = htole16(kflags);
4464again:
4465	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4466	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4467	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4468
4469	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4470	if (error != 0) {
4471		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4472		    error);
4473		return !error;
4474	}
4475
4476	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4477	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4478		kflags |= WPI_KFLAG_MULTICAST;
4479		node.kflags = htole16(kflags);
4480
4481		goto again;
4482	}
4483
4484	return 1;
4485}
4486
4487static void
4488wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4489{
4490	const struct ieee80211_key *k = arg;
4491	struct ieee80211vap *vap = ni->ni_vap;
4492	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4493	struct wpi_node *wn = WPI_NODE(ni);
4494	int error;
4495
4496	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4497		return;
4498
4499	WPI_NT_LOCK(sc);
4500	error = wpi_del_key(ni, k);
4501	WPI_NT_UNLOCK(sc);
4502
4503	if (error == 0) {
4504		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4505		    __func__);
4506	}
4507}
4508
4509static int
4510wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4511    int set)
4512{
4513	struct ieee80211com *ic = vap->iv_ic;
4514	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4515	struct wpi_vap *wvp = WPI_VAP(vap);
4516	struct ieee80211_node *ni;
4517	int error, ni_ref = 0;
4518
4519	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4520
4521	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4522		/* Not for us. */
4523		return 1;
4524	}
4525
4526	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4527		/* XMIT keys are handled in wpi_tx_data(). */
4528		return 1;
4529	}
4530
4531	/* Handle group keys. */
4532	if (&vap->iv_nw_keys[0] <= k &&
4533	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4534		WPI_NT_LOCK(sc);
4535		if (set)
4536			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4537		else
4538			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4539		WPI_NT_UNLOCK(sc);
4540
4541		if (vap->iv_state == IEEE80211_S_RUN) {
4542			ieee80211_iterate_nodes(&ic->ic_sta,
4543			    set ? wpi_load_key_cb : wpi_del_key_cb, (void *)k);
4544		}
4545
4546		return 1;
4547	}
4548
4549	switch (vap->iv_opmode) {
4550	case IEEE80211_M_STA:
4551		ni = vap->iv_bss;
4552		break;
4553
4554	case IEEE80211_M_IBSS:
4555	case IEEE80211_M_AHDEMO:
4556	case IEEE80211_M_HOSTAP:
4557		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4558		if (ni == NULL)
4559			return 0;	/* should not happen */
4560
4561		ni_ref = 1;
4562		break;
4563
4564	default:
4565		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4566		    vap->iv_opmode);
4567		return 0;
4568	}
4569
4570	WPI_NT_LOCK(sc);
4571	if (set)
4572		error = wpi_load_key(ni, k);
4573	else
4574		error = wpi_del_key(ni, k);
4575	WPI_NT_UNLOCK(sc);
4576
4577	if (ni_ref)
4578		ieee80211_node_decref(ni);
4579
4580	return error;
4581}
4582
4583static int
4584wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4585    const uint8_t mac[IEEE80211_ADDR_LEN])
4586{
4587	return wpi_process_key(vap, k, 1);
4588}
4589
4590static int
4591wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4592{
4593	return wpi_process_key(vap, k, 0);
4594}
4595
4596/*
4597 * This function is called after the runtime firmware notifies us of its
4598 * readiness (called in a process context).
4599 */
4600static int
4601wpi_post_alive(struct wpi_softc *sc)
4602{
4603	int ntries, error;
4604
4605	/* Check (again) that the radio is not disabled. */
4606	if ((error = wpi_nic_lock(sc)) != 0)
4607		return error;
4608
4609	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4610
4611	/* NB: Runtime firmware must be up and running. */
4612	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4613 		device_printf(sc->sc_dev,
4614		    "RF switch: radio disabled (%s)\n", __func__);
4615		wpi_nic_unlock(sc);
4616		return EPERM;   /* :-) */
4617	}
4618	wpi_nic_unlock(sc);
4619
4620	/* Wait for thermal sensor to calibrate. */
4621	for (ntries = 0; ntries < 1000; ntries++) {
4622		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4623			break;
4624		DELAY(10);
4625	}
4626
4627	if (ntries == 1000) {
4628		device_printf(sc->sc_dev,
4629		    "timeout waiting for thermal sensor calibration\n");
4630		return ETIMEDOUT;
4631	}
4632
4633	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4634	return 0;
4635}
4636
4637/*
4638 * The firmware boot code is small and is intended to be copied directly into
4639 * the NIC internal memory (no DMA transfer).
4640 */
4641static int
4642wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4643{
4644	int error, ntries;
4645
4646	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4647
4648	size /= sizeof (uint32_t);
4649
4650	if ((error = wpi_nic_lock(sc)) != 0)
4651		return error;
4652
4653	/* Copy microcode image into NIC memory. */
4654	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4655	    (const uint32_t *)ucode, size);
4656
4657	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4658	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4659	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4660
4661	/* Start boot load now. */
4662	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4663
4664	/* Wait for transfer to complete. */
4665	for (ntries = 0; ntries < 1000; ntries++) {
4666		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4667		DPRINTF(sc, WPI_DEBUG_HW,
4668		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4669		    WPI_FH_TX_STATUS_IDLE(6),
4670		    status & WPI_FH_TX_STATUS_IDLE(6));
4671		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4672			DPRINTF(sc, WPI_DEBUG_HW,
4673			    "Status Match! - ntries = %d\n", ntries);
4674			break;
4675		}
4676		DELAY(10);
4677	}
4678	if (ntries == 1000) {
4679		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4680		    __func__);
4681		wpi_nic_unlock(sc);
4682		return ETIMEDOUT;
4683	}
4684
4685	/* Enable boot after power up. */
4686	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4687
4688	wpi_nic_unlock(sc);
4689	return 0;
4690}
4691
4692static int
4693wpi_load_firmware(struct wpi_softc *sc)
4694{
4695	struct wpi_fw_info *fw = &sc->fw;
4696	struct wpi_dma_info *dma = &sc->fw_dma;
4697	int error;
4698
4699	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4700
4701	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4702	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4703	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4704	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4705	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4706
4707	/* Tell adapter where to find initialization sections. */
4708	if ((error = wpi_nic_lock(sc)) != 0)
4709		return error;
4710	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4711	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4712	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4713	    dma->paddr + WPI_FW_DATA_MAXSZ);
4714	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4715	wpi_nic_unlock(sc);
4716
4717	/* Load firmware boot code. */
4718	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4719	if (error != 0) {
4720		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4721		    __func__);
4722		return error;
4723	}
4724
4725	/* Now press "execute". */
4726	WPI_WRITE(sc, WPI_RESET, 0);
4727
4728	/* Wait at most one second for first alive notification. */
4729	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4730		device_printf(sc->sc_dev,
4731		    "%s: timeout waiting for adapter to initialize, error %d\n",
4732		    __func__, error);
4733		return error;
4734	}
4735
4736	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4737	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4738	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4739	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4740	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4741
4742	/* Tell adapter where to find runtime sections. */
4743	if ((error = wpi_nic_lock(sc)) != 0)
4744		return error;
4745	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4746	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4747	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4748	    dma->paddr + WPI_FW_DATA_MAXSZ);
4749	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4750	    WPI_FW_UPDATED | fw->main.textsz);
4751	wpi_nic_unlock(sc);
4752
4753	return 0;
4754}
4755
4756static int
4757wpi_read_firmware(struct wpi_softc *sc)
4758{
4759	const struct firmware *fp;
4760	struct wpi_fw_info *fw = &sc->fw;
4761	const struct wpi_firmware_hdr *hdr;
4762	int error;
4763
4764	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4765
4766	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4767	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4768
4769	WPI_UNLOCK(sc);
4770	fp = firmware_get(WPI_FW_NAME);
4771	WPI_LOCK(sc);
4772
4773	if (fp == NULL) {
4774		device_printf(sc->sc_dev,
4775		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4776		return EINVAL;
4777	}
4778
4779	sc->fw_fp = fp;
4780
4781	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4782		device_printf(sc->sc_dev,
4783		    "firmware file too short: %zu bytes\n", fp->datasize);
4784		error = EINVAL;
4785		goto fail;
4786	}
4787
4788	fw->size = fp->datasize;
4789	fw->data = (const uint8_t *)fp->data;
4790
4791	/* Extract firmware header information. */
4792	hdr = (const struct wpi_firmware_hdr *)fw->data;
4793
4794	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4795	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4796
4797	fw->main.textsz = le32toh(hdr->rtextsz);
4798	fw->main.datasz = le32toh(hdr->rdatasz);
4799	fw->init.textsz = le32toh(hdr->itextsz);
4800	fw->init.datasz = le32toh(hdr->idatasz);
4801	fw->boot.textsz = le32toh(hdr->btextsz);
4802	fw->boot.datasz = 0;
4803
4804	/* Sanity-check firmware header. */
4805	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4806	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4807	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4808	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4809	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4810	    (fw->boot.textsz & 3) != 0) {
4811		device_printf(sc->sc_dev, "invalid firmware header\n");
4812		error = EINVAL;
4813		goto fail;
4814	}
4815
4816	/* Check that all firmware sections fit. */
4817	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4818	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4819		device_printf(sc->sc_dev,
4820		    "firmware file too short: %zu bytes\n", fw->size);
4821		error = EINVAL;
4822		goto fail;
4823	}
4824
4825	/* Get pointers to firmware sections. */
4826	fw->main.text = (const uint8_t *)(hdr + 1);
4827	fw->main.data = fw->main.text + fw->main.textsz;
4828	fw->init.text = fw->main.data + fw->main.datasz;
4829	fw->init.data = fw->init.text + fw->init.textsz;
4830	fw->boot.text = fw->init.data + fw->init.datasz;
4831
4832	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4833	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4834	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4835	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4836	    fw->main.textsz, fw->main.datasz,
4837	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4838
4839	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4840	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4841	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4842	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4843	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4844
4845	return 0;
4846
4847fail:	wpi_unload_firmware(sc);
4848	return error;
4849}
4850
4851/**
4852 * Free the referenced firmware image
4853 */
4854static void
4855wpi_unload_firmware(struct wpi_softc *sc)
4856{
4857	if (sc->fw_fp != NULL) {
4858		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4859		sc->fw_fp = NULL;
4860	}
4861}
4862
4863static int
4864wpi_clock_wait(struct wpi_softc *sc)
4865{
4866	int ntries;
4867
4868	/* Set "initialization complete" bit. */
4869	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4870
4871	/* Wait for clock stabilization. */
4872	for (ntries = 0; ntries < 2500; ntries++) {
4873		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4874			return 0;
4875		DELAY(100);
4876	}
4877	device_printf(sc->sc_dev,
4878	    "%s: timeout waiting for clock stabilization\n", __func__);
4879
4880	return ETIMEDOUT;
4881}
4882
4883static int
4884wpi_apm_init(struct wpi_softc *sc)
4885{
4886	uint32_t reg;
4887	int error;
4888
4889	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4890
4891	/* Disable L0s exit timer (NMI bug workaround). */
4892	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4893	/* Don't wait for ICH L0s (ICH bug workaround). */
4894	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4895
4896	/* Set FH wait threshold to max (HW bug under stress workaround). */
4897	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4898
4899	/* Cleanup. */
4900	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
4901	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4902
4903	/* Retrieve PCIe Active State Power Management (ASPM). */
4904	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4905	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4906	if (reg & 0x02)	/* L1 Entry enabled. */
4907		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4908	else
4909		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4910
4911	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4912
4913	/* Wait for clock stabilization before accessing prph. */
4914	if ((error = wpi_clock_wait(sc)) != 0)
4915		return error;
4916
4917	if ((error = wpi_nic_lock(sc)) != 0)
4918		return error;
4919	/* Enable DMA and BSM (Bootstrap State Machine). */
4920	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4921	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4922	DELAY(20);
4923	/* Disable L1-Active. */
4924	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4925	wpi_nic_unlock(sc);
4926
4927	return 0;
4928}
4929
4930static void
4931wpi_apm_stop_master(struct wpi_softc *sc)
4932{
4933	int ntries;
4934
4935	/* Stop busmaster DMA activity. */
4936	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4937
4938	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4939	    WPI_GP_CNTRL_MAC_PS)
4940		return; /* Already asleep. */
4941
4942	for (ntries = 0; ntries < 100; ntries++) {
4943		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4944			return;
4945		DELAY(10);
4946	}
4947	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
4948	    __func__);
4949}
4950
4951static void
4952wpi_apm_stop(struct wpi_softc *sc)
4953{
4954	wpi_apm_stop_master(sc);
4955
4956	/* Reset the entire device. */
4957	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4958	DELAY(10);
4959	/* Clear "initialization complete" bit. */
4960	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4961}
4962
4963static void
4964wpi_nic_config(struct wpi_softc *sc)
4965{
4966	uint32_t rev;
4967
4968	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4969
4970	/* voodoo from the Linux "driver".. */
4971	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4972	if ((rev & 0xc0) == 0x40)
4973		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4974	else if (!(rev & 0x80))
4975		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4976
4977	if (sc->cap == 0x80)
4978		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4979
4980	if ((sc->rev & 0xf0) == 0xd0)
4981		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4982	else
4983		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4984
4985	if (sc->type > 1)
4986		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4987}
4988
4989static int
4990wpi_hw_init(struct wpi_softc *sc)
4991{
4992	int chnl, ntries, error;
4993
4994	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4995
4996	/* Clear pending interrupts. */
4997	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4998
4999	if ((error = wpi_apm_init(sc)) != 0) {
5000		device_printf(sc->sc_dev,
5001		    "%s: could not power ON adapter, error %d\n", __func__,
5002		    error);
5003		return error;
5004	}
5005
5006	/* Select VMAIN power source. */
5007	if ((error = wpi_nic_lock(sc)) != 0)
5008		return error;
5009	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5010	wpi_nic_unlock(sc);
5011	/* Spin until VMAIN gets selected. */
5012	for (ntries = 0; ntries < 5000; ntries++) {
5013		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5014			break;
5015		DELAY(10);
5016	}
5017	if (ntries == 5000) {
5018		device_printf(sc->sc_dev, "timeout selecting power source\n");
5019		return ETIMEDOUT;
5020	}
5021
5022	/* Perform adapter initialization. */
5023	wpi_nic_config(sc);
5024
5025	/* Initialize RX ring. */
5026	if ((error = wpi_nic_lock(sc)) != 0)
5027		return error;
5028	/* Set physical address of RX ring. */
5029	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5030	/* Set physical address of RX read pointer. */
5031	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5032	    offsetof(struct wpi_shared, next));
5033	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5034	/* Enable RX. */
5035	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5036	    WPI_FH_RX_CONFIG_DMA_ENA |
5037	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5038	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5039	    WPI_FH_RX_CONFIG_MAXFRAG |
5040	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5041	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5042	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5043	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5044	wpi_nic_unlock(sc);
5045	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5046
5047	/* Initialize TX rings. */
5048	if ((error = wpi_nic_lock(sc)) != 0)
5049		return error;
5050	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5051	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5052	/* Enable all 6 TX rings. */
5053	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5054	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5055	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5056	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5057	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5058	/* Set physical address of TX rings. */
5059	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5060	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5061
5062	/* Enable all DMA channels. */
5063	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5064		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5065		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5066		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5067	}
5068	wpi_nic_unlock(sc);
5069	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5070
5071	/* Clear "radio off" and "commands blocked" bits. */
5072	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5073	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5074
5075	/* Clear pending interrupts. */
5076	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5077	/* Enable interrupts. */
5078	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5079
5080	/* _Really_ make sure "radio off" bit is cleared! */
5081	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5082	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5083
5084	if ((error = wpi_load_firmware(sc)) != 0) {
5085		device_printf(sc->sc_dev,
5086		    "%s: could not load firmware, error %d\n", __func__,
5087		    error);
5088		return error;
5089	}
5090	/* Wait at most one second for firmware alive notification. */
5091	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5092		device_printf(sc->sc_dev,
5093		    "%s: timeout waiting for adapter to initialize, error %d\n",
5094		    __func__, error);
5095		return error;
5096	}
5097
5098	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5099
5100	/* Do post-firmware initialization. */
5101	return wpi_post_alive(sc);
5102}
5103
5104static void
5105wpi_hw_stop(struct wpi_softc *sc)
5106{
5107	int chnl, qid, ntries;
5108
5109	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5110
5111	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5112		wpi_nic_lock(sc);
5113
5114	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5115
5116	/* Disable interrupts. */
5117	WPI_WRITE(sc, WPI_INT_MASK, 0);
5118	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5119	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5120
5121	/* Make sure we no longer hold the NIC lock. */
5122	wpi_nic_unlock(sc);
5123
5124	if (wpi_nic_lock(sc) == 0) {
5125		/* Stop TX scheduler. */
5126		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5127		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5128
5129		/* Stop all DMA channels. */
5130		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5131			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5132			for (ntries = 0; ntries < 200; ntries++) {
5133				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5134				    WPI_FH_TX_STATUS_IDLE(chnl))
5135					break;
5136				DELAY(10);
5137			}
5138		}
5139		wpi_nic_unlock(sc);
5140	}
5141
5142	/* Stop RX ring. */
5143	wpi_reset_rx_ring(sc);
5144
5145	/* Reset all TX rings. */
5146	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5147		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5148
5149	if (wpi_nic_lock(sc) == 0) {
5150		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5151		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5152		wpi_nic_unlock(sc);
5153	}
5154	DELAY(5);
5155	/* Power OFF adapter. */
5156	wpi_apm_stop(sc);
5157}
5158
5159static void
5160wpi_radio_on(void *arg0, int pending)
5161{
5162	struct wpi_softc *sc = arg0;
5163	struct ifnet *ifp = sc->sc_ifp;
5164	struct ieee80211com *ic = ifp->if_l2com;
5165	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5166
5167	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5168
5169	if (vap != NULL) {
5170		wpi_init(sc);
5171		ieee80211_init(vap);
5172	}
5173
5174	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5175		WPI_LOCK(sc);
5176		callout_stop(&sc->watchdog_rfkill);
5177		WPI_UNLOCK(sc);
5178	}
5179}
5180
5181static void
5182wpi_radio_off(void *arg0, int pending)
5183{
5184	struct wpi_softc *sc = arg0;
5185	struct ifnet *ifp = sc->sc_ifp;
5186	struct ieee80211com *ic = ifp->if_l2com;
5187	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5188
5189	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5190
5191	wpi_stop(sc);
5192	if (vap != NULL)
5193		ieee80211_stop(vap);
5194
5195	WPI_LOCK(sc);
5196	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5197	WPI_UNLOCK(sc);
5198}
5199
5200static void
5201wpi_init(void *arg)
5202{
5203	struct wpi_softc *sc = arg;
5204	struct ifnet *ifp = sc->sc_ifp;
5205	struct ieee80211com *ic = ifp->if_l2com;
5206	int error;
5207
5208	WPI_LOCK(sc);
5209
5210	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5211
5212	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5213		goto end;
5214
5215	/* Check that the radio is not disabled by hardware switch. */
5216	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5217		device_printf(sc->sc_dev,
5218		    "RF switch: radio disabled (%s)\n", __func__);
5219		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5220		    sc);
5221		goto end;
5222	}
5223
5224	/* Read firmware images from the filesystem. */
5225	if ((error = wpi_read_firmware(sc)) != 0) {
5226		device_printf(sc->sc_dev,
5227		    "%s: could not read firmware, error %d\n", __func__,
5228		    error);
5229		goto fail;
5230	}
5231
5232	/* Initialize hardware and upload firmware. */
5233	error = wpi_hw_init(sc);
5234	wpi_unload_firmware(sc);
5235	if (error != 0) {
5236		device_printf(sc->sc_dev,
5237		    "%s: could not initialize hardware, error %d\n", __func__,
5238		    error);
5239		goto fail;
5240	}
5241
5242	/* Configure adapter now that it is ready. */
5243	sc->txq_active = 1;
5244	if ((error = wpi_config(sc)) != 0) {
5245		device_printf(sc->sc_dev,
5246		    "%s: could not configure device, error %d\n", __func__,
5247		    error);
5248		goto fail;
5249	}
5250
5251	IF_LOCK(&ifp->if_snd);
5252	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5253	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5254	IF_UNLOCK(&ifp->if_snd);
5255
5256	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5257
5258	WPI_UNLOCK(sc);
5259
5260	ieee80211_start_all(ic);
5261
5262	return;
5263
5264fail:	wpi_stop_locked(sc);
5265end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5266	WPI_UNLOCK(sc);
5267}
5268
5269static void
5270wpi_stop_locked(struct wpi_softc *sc)
5271{
5272	struct ifnet *ifp = sc->sc_ifp;
5273
5274	WPI_LOCK_ASSERT(sc);
5275
5276	WPI_TXQ_LOCK(sc);
5277	sc->txq_active = 0;
5278	WPI_TXQ_UNLOCK(sc);
5279
5280	callout_stop(&sc->tx_timeout);
5281
5282	WPI_RXON_LOCK(sc);
5283	callout_stop(&sc->scan_timeout);
5284	callout_stop(&sc->calib_to);
5285	WPI_RXON_UNLOCK(sc);
5286
5287	IF_LOCK(&ifp->if_snd);
5288	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5289	IF_UNLOCK(&ifp->if_snd);
5290
5291	/* Power OFF hardware. */
5292	wpi_hw_stop(sc);
5293}
5294
5295static void
5296wpi_stop(struct wpi_softc *sc)
5297{
5298	WPI_LOCK(sc);
5299	wpi_stop_locked(sc);
5300	WPI_UNLOCK(sc);
5301}
5302
5303/*
5304 * Callback from net80211 to start a scan.
5305 */
5306static void
5307wpi_scan_start(struct ieee80211com *ic)
5308{
5309	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5310
5311	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5312}
5313
5314/*
5315 * Callback from net80211 to terminate a scan.
5316 */
5317static void
5318wpi_scan_end(struct ieee80211com *ic)
5319{
5320	struct ifnet *ifp = ic->ic_ifp;
5321	struct wpi_softc *sc = ifp->if_softc;
5322	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5323
5324	if (vap->iv_state == IEEE80211_S_RUN)
5325		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5326}
5327
5328/**
5329 * Called by the net80211 framework to indicate to the driver
5330 * that the channel should be changed
5331 */
5332static void
5333wpi_set_channel(struct ieee80211com *ic)
5334{
5335	const struct ieee80211_channel *c = ic->ic_curchan;
5336	struct ifnet *ifp = ic->ic_ifp;
5337	struct wpi_softc *sc = ifp->if_softc;
5338	int error;
5339
5340	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5341
5342	WPI_LOCK(sc);
5343	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5344	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5345	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5346	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5347	WPI_UNLOCK(sc);
5348
5349	/*
5350	 * Only need to set the channel in Monitor mode. AP scanning and auth
5351	 * are already taken care of by their respective firmware commands.
5352	 */
5353	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5354		WPI_RXON_LOCK(sc);
5355		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5356		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5357			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5358			    WPI_RXON_24GHZ);
5359		} else {
5360			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5361			    WPI_RXON_24GHZ);
5362		}
5363		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5364			device_printf(sc->sc_dev,
5365			    "%s: error %d setting channel\n", __func__,
5366			    error);
5367		WPI_RXON_UNLOCK(sc);
5368	}
5369}
5370
5371/**
5372 * Called by net80211 to indicate that we need to scan the current
5373 * channel. The channel is previously be set via the wpi_set_channel
5374 * callback.
5375 */
5376static void
5377wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5378{
5379	struct ieee80211vap *vap = ss->ss_vap;
5380	struct ieee80211com *ic = vap->iv_ic;
5381	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5382	int error;
5383
5384	WPI_RXON_LOCK(sc);
5385	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
5386		error = wpi_scan(sc, ic->ic_curchan);
5387		WPI_RXON_UNLOCK(sc);
5388		if (error != 0)
5389			ieee80211_cancel_scan(vap);
5390	} else {
5391		WPI_RXON_UNLOCK(sc);
5392		/* Send probe request when associated. */
5393		sc->sc_scan_curchan(ss, maxdwell);
5394	}
5395}
5396
5397/**
5398 * Called by the net80211 framework to indicate
5399 * the minimum dwell time has been met, terminate the scan.
5400 * We don't actually terminate the scan as the firmware will notify
5401 * us when it's finished and we have no way to interrupt it.
5402 */
5403static void
5404wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5405{
5406	/* NB: don't try to abort scan; wait for firmware to finish */
5407}
5408
5409static void
5410wpi_hw_reset(void *arg, int pending)
5411{
5412	struct wpi_softc *sc = arg;
5413	struct ifnet *ifp = sc->sc_ifp;
5414	struct ieee80211com *ic = ifp->if_l2com;
5415	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5416
5417	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5418
5419	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5420		ieee80211_cancel_scan(vap);
5421
5422	wpi_stop(sc);
5423	if (vap != NULL)
5424		ieee80211_stop(vap);
5425	wpi_init(sc);
5426	if (vap != NULL)
5427		ieee80211_init(vap);
5428}
5429