if_wpi.c revision 280085
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280085 2015-03-15 20:52:47Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static void	wpi_init_beacon(struct wpi_vap *);
134static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136		    const uint8_t [IEEE80211_ADDR_LEN],
137		    const uint8_t [IEEE80211_ADDR_LEN]);
138static void	wpi_vap_delete(struct ieee80211vap *);
139static int	wpi_detach(device_t);
140static int	wpi_shutdown(device_t);
141static int	wpi_suspend(device_t);
142static int	wpi_resume(device_t);
143static int	wpi_nic_lock(struct wpi_softc *);
144static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147		    void **, bus_size_t, bus_size_t);
148static void	wpi_dma_contig_free(struct wpi_dma_info *);
149static int	wpi_alloc_shared(struct wpi_softc *);
150static void	wpi_free_shared(struct wpi_softc *);
151static int	wpi_alloc_fwmem(struct wpi_softc *);
152static void	wpi_free_fwmem(struct wpi_softc *);
153static int	wpi_alloc_rx_ring(struct wpi_softc *);
154static void	wpi_update_rx_ring(struct wpi_softc *);
155static void	wpi_reset_rx_ring(struct wpi_softc *);
156static void	wpi_free_rx_ring(struct wpi_softc *);
157static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158		    int);
159static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162static int	wpi_read_eeprom(struct wpi_softc *,
163		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
164static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
165static void	wpi_read_eeprom_band(struct wpi_softc *, int);
166static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
167static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
168		    struct ieee80211_channel *);
169static int	wpi_setregdomain(struct ieee80211com *,
170		    struct ieee80211_regdomain *, int,
171		    struct ieee80211_channel[]);
172static int	wpi_read_eeprom_group(struct wpi_softc *, int);
173static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
174static void	wpi_node_free(struct ieee80211_node *);
175static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
176		    const uint8_t mac[IEEE80211_ADDR_LEN]);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_calib_timeout(void *);
179static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
182		    struct wpi_rx_data *);
183static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
184static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
185static void	wpi_notif_intr(struct wpi_softc *);
186static void	wpi_wakeup_intr(struct wpi_softc *);
187static void	wpi_fatal_intr(struct wpi_softc *);
188static void	wpi_intr(void *);
189static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
190static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
191		    struct ieee80211_node *);
192static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
193		    struct ieee80211_node *,
194		    const struct ieee80211_bpf_params *);
195static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
196		    const struct ieee80211_bpf_params *);
197static void	wpi_start(struct ifnet *);
198static void	wpi_start_locked(struct ifnet *);
199static void	wpi_start_task(void *, int);
200static void	wpi_watchdog_rfkill(void *);
201static void	wpi_watchdog(void *);
202static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
203static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
204static int	wpi_mrr_setup(struct wpi_softc *);
205static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
206static int	wpi_add_broadcast_node(struct wpi_softc *, int);
207static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
208static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
209static int	wpi_updateedca(struct ieee80211com *);
210static void	wpi_set_promisc(struct wpi_softc *);
211static void	wpi_update_promisc(struct ifnet *);
212static void	wpi_update_mcast(struct ifnet *);
213static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
214static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
215static void	wpi_power_calibration(struct wpi_softc *);
216static int	wpi_set_txpower(struct wpi_softc *, int);
217static int	wpi_get_power_index(struct wpi_softc *,
218		    struct wpi_power_group *, struct ieee80211_channel *, int);
219static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
220static int	wpi_send_btcoex(struct wpi_softc *);
221static int	wpi_send_rxon(struct wpi_softc *, int, int);
222static int	wpi_config(struct wpi_softc *);
223static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
224		    struct ieee80211_channel *, uint8_t);
225static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
226static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
227		    struct ieee80211_channel *);
228static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
229static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
230static int	wpi_config_beacon(struct wpi_vap *);
231static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
232static void	wpi_update_beacon(struct ieee80211vap *, int);
233static void	wpi_newassoc(struct ieee80211_node *, int);
234static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
235static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
236		    ieee80211_keyix *, ieee80211_keyix *);
237static int	wpi_key_set(struct ieee80211vap *,
238		    const struct ieee80211_key *,
239		    const uint8_t mac[IEEE80211_ADDR_LEN]);
240static int	wpi_key_delete(struct ieee80211vap *,
241		    const struct ieee80211_key *);
242static int	wpi_post_alive(struct wpi_softc *);
243static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
244static int	wpi_load_firmware(struct wpi_softc *);
245static int	wpi_read_firmware(struct wpi_softc *);
246static void	wpi_unload_firmware(struct wpi_softc *);
247static int	wpi_clock_wait(struct wpi_softc *);
248static int	wpi_apm_init(struct wpi_softc *);
249static void	wpi_apm_stop_master(struct wpi_softc *);
250static void	wpi_apm_stop(struct wpi_softc *);
251static void	wpi_nic_config(struct wpi_softc *);
252static int	wpi_hw_init(struct wpi_softc *);
253static void	wpi_hw_stop(struct wpi_softc *);
254static void	wpi_radio_on(void *, int);
255static void	wpi_radio_off(void *, int);
256static void	wpi_init_locked(struct wpi_softc *);
257static void	wpi_init(void *);
258static void	wpi_stop_locked(struct wpi_softc *);
259static void	wpi_stop(struct wpi_softc *);
260static void	wpi_scan_start(struct ieee80211com *);
261static void	wpi_scan_end(struct ieee80211com *);
262static void	wpi_set_channel(struct ieee80211com *);
263static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
264static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
265static void	wpi_hw_reset(void *, int);
266
267static device_method_t wpi_methods[] = {
268	/* Device interface */
269	DEVMETHOD(device_probe,		wpi_probe),
270	DEVMETHOD(device_attach,	wpi_attach),
271	DEVMETHOD(device_detach,	wpi_detach),
272	DEVMETHOD(device_shutdown,	wpi_shutdown),
273	DEVMETHOD(device_suspend,	wpi_suspend),
274	DEVMETHOD(device_resume,	wpi_resume),
275
276	DEVMETHOD_END
277};
278
279static driver_t wpi_driver = {
280	"wpi",
281	wpi_methods,
282	sizeof (struct wpi_softc)
283};
284static devclass_t wpi_devclass;
285
286DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
287
288MODULE_VERSION(wpi, 1);
289
290MODULE_DEPEND(wpi, pci,  1, 1, 1);
291MODULE_DEPEND(wpi, wlan, 1, 1, 1);
292MODULE_DEPEND(wpi, firmware, 1, 1, 1);
293
294static int
295wpi_probe(device_t dev)
296{
297	const struct wpi_ident *ident;
298
299	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
300		if (pci_get_vendor(dev) == ident->vendor &&
301		    pci_get_device(dev) == ident->device) {
302			device_set_desc(dev, ident->name);
303			return (BUS_PROBE_DEFAULT);
304		}
305	}
306	return ENXIO;
307}
308
309static int
310wpi_attach(device_t dev)
311{
312	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
313	struct ieee80211com *ic;
314	struct ifnet *ifp;
315	int i, error, rid;
316#ifdef WPI_DEBUG
317	int supportsa = 1;
318	const struct wpi_ident *ident;
319#endif
320	uint8_t macaddr[IEEE80211_ADDR_LEN];
321
322	sc->sc_dev = dev;
323
324#ifdef WPI_DEBUG
325	error = resource_int_value(device_get_name(sc->sc_dev),
326	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
327	if (error != 0)
328		sc->sc_debug = 0;
329#else
330	sc->sc_debug = 0;
331#endif
332
333	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
334
335	/*
336	 * Get the offset of the PCI Express Capability Structure in PCI
337	 * Configuration Space.
338	 */
339	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
340	if (error != 0) {
341		device_printf(dev, "PCIe capability structure not found!\n");
342		return error;
343	}
344
345	/*
346	 * Some card's only support 802.11b/g not a, check to see if
347	 * this is one such card. A 0x0 in the subdevice table indicates
348	 * the entire subdevice range is to be ignored.
349	 */
350#ifdef WPI_DEBUG
351	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
352		if (ident->subdevice &&
353		    pci_get_subdevice(dev) == ident->subdevice) {
354		    supportsa = 0;
355		    break;
356		}
357	}
358#endif
359
360	/* Clear device-specific "PCI retry timeout" register (41h). */
361	pci_write_config(dev, 0x41, 0, 1);
362
363	/* Enable bus-mastering. */
364	pci_enable_busmaster(dev);
365
366	rid = PCIR_BAR(0);
367	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
368	    RF_ACTIVE);
369	if (sc->mem == NULL) {
370		device_printf(dev, "can't map mem space\n");
371		error = ENOMEM;
372		return error;
373	}
374	sc->sc_st = rman_get_bustag(sc->mem);
375	sc->sc_sh = rman_get_bushandle(sc->mem);
376
377	i = 1;
378	rid = 0;
379	if (pci_alloc_msi(dev, &i) == 0)
380		rid = 1;
381	/* Install interrupt handler. */
382	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
383	    (rid != 0 ? 0 : RF_SHAREABLE));
384	if (sc->irq == NULL) {
385		device_printf(dev, "can't map interrupt\n");
386		error = ENOMEM;
387		goto fail;
388	}
389
390	WPI_LOCK_INIT(sc);
391	WPI_NT_LOCK_INIT(sc);
392	WPI_TXQ_LOCK_INIT(sc);
393
394	/* Allocate DMA memory for firmware transfers. */
395	if ((error = wpi_alloc_fwmem(sc)) != 0) {
396		device_printf(dev,
397		    "could not allocate memory for firmware, error %d\n",
398		    error);
399		goto fail;
400	}
401
402	/* Allocate shared page. */
403	if ((error = wpi_alloc_shared(sc)) != 0) {
404		device_printf(dev, "could not allocate shared page\n");
405		goto fail;
406	}
407
408	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
409	for (i = 0; i < WPI_NTXQUEUES; i++) {
410		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
411			device_printf(dev,
412			    "could not allocate TX ring %d, error %d\n", i,
413			    error);
414			goto fail;
415		}
416	}
417
418	/* Allocate RX ring. */
419	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
420		device_printf(dev, "could not allocate RX ring, error %d\n",
421		    error);
422		goto fail;
423	}
424
425	/* Clear pending interrupts. */
426	WPI_WRITE(sc, WPI_INT, 0xffffffff);
427
428	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
429	if (ifp == NULL) {
430		device_printf(dev, "can not allocate ifnet structure\n");
431		goto fail;
432	}
433
434	ic = ifp->if_l2com;
435	ic->ic_ifp = ifp;
436	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
437	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
438
439	/* Set device capabilities. */
440	ic->ic_caps =
441		  IEEE80211_C_STA		/* station mode supported */
442		| IEEE80211_C_IBSS		/* IBSS mode supported */
443		| IEEE80211_C_MONITOR		/* monitor mode supported */
444		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
445		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
446		| IEEE80211_C_TXPMGT		/* tx power management */
447		| IEEE80211_C_SHSLOT		/* short slot time supported */
448		| IEEE80211_C_WPA		/* 802.11i */
449		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
450#if 0
451		| IEEE80211_C_HOSTAP		/* Host access point mode */
452#endif
453		| IEEE80211_C_WME		/* 802.11e */
454		| IEEE80211_C_PMGT		/* Station-side power mgmt */
455		;
456
457	ic->ic_cryptocaps =
458		  IEEE80211_CRYPTO_AES_CCM;
459
460	/*
461	 * Read in the eeprom and also setup the channels for
462	 * net80211. We don't set the rates as net80211 does this for us
463	 */
464	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
465		device_printf(dev, "could not read EEPROM, error %d\n",
466		    error);
467		goto fail;
468	}
469
470#ifdef WPI_DEBUG
471	if (bootverbose) {
472		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
473		    sc->domain);
474		device_printf(sc->sc_dev, "Hardware Type: %c\n",
475		    sc->type > 1 ? 'B': '?');
476		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
477		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
478		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
479		    supportsa ? "does" : "does not");
480
481		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
482		   check what sc->rev really represents - benjsc 20070615 */
483	}
484#endif
485
486	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
487	ifp->if_softc = sc;
488	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
489	ifp->if_init = wpi_init;
490	ifp->if_ioctl = wpi_ioctl;
491	ifp->if_start = wpi_start;
492	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
493	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
494	IFQ_SET_READY(&ifp->if_snd);
495
496	ieee80211_ifattach(ic, macaddr);
497	ic->ic_vap_create = wpi_vap_create;
498	ic->ic_vap_delete = wpi_vap_delete;
499	ic->ic_raw_xmit = wpi_raw_xmit;
500	ic->ic_node_alloc = wpi_node_alloc;
501	sc->sc_node_free = ic->ic_node_free;
502	ic->ic_node_free = wpi_node_free;
503	ic->ic_wme.wme_update = wpi_updateedca;
504	ic->ic_update_promisc = wpi_update_promisc;
505	ic->ic_update_mcast = wpi_update_mcast;
506	ic->ic_newassoc = wpi_newassoc;
507	ic->ic_scan_start = wpi_scan_start;
508	ic->ic_scan_end = wpi_scan_end;
509	ic->ic_set_channel = wpi_set_channel;
510	sc->sc_scan_curchan = ic->ic_scan_curchan;
511	ic->ic_scan_curchan = wpi_scan_curchan;
512	ic->ic_scan_mindwell = wpi_scan_mindwell;
513	ic->ic_setregdomain = wpi_setregdomain;
514
515	wpi_radiotap_attach(sc);
516
517	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
518	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
519	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
520	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
521	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
522	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
523	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
524
525	wpi_sysctlattach(sc);
526
527	/*
528	 * Hook our interrupt after all initialization is complete.
529	 */
530	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
531	    NULL, wpi_intr, sc, &sc->sc_ih);
532	if (error != 0) {
533		device_printf(dev, "can't establish interrupt, error %d\n",
534		    error);
535		goto fail;
536	}
537
538	if (bootverbose)
539		ieee80211_announce(ic);
540
541#ifdef WPI_DEBUG
542	if (sc->sc_debug & WPI_DEBUG_HW)
543		ieee80211_announce_channels(ic);
544#endif
545
546	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
547	return 0;
548
549fail:	wpi_detach(dev);
550	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
551	return error;
552}
553
554/*
555 * Attach the interface to 802.11 radiotap.
556 */
557static void
558wpi_radiotap_attach(struct wpi_softc *sc)
559{
560	struct ifnet *ifp = sc->sc_ifp;
561	struct ieee80211com *ic = ifp->if_l2com;
562	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
563	ieee80211_radiotap_attach(ic,
564	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
565		WPI_TX_RADIOTAP_PRESENT,
566	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
567		WPI_RX_RADIOTAP_PRESENT);
568	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
569}
570
571static void
572wpi_sysctlattach(struct wpi_softc *sc)
573{
574#ifdef WPI_DEBUG
575	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
576	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
577
578	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
579	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
580		"control debugging printfs");
581#endif
582}
583
584static void
585wpi_init_beacon(struct wpi_vap *wvp)
586{
587	struct wpi_buf *bcn = &wvp->wv_bcbuf;
588	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
589
590	cmd->id = WPI_ID_BROADCAST;
591	cmd->ofdm_mask = 0xff;
592	cmd->cck_mask = 0x0f;
593	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
594	cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
595
596	bcn->code = WPI_CMD_SET_BEACON;
597	bcn->ac = WPI_CMD_QUEUE_NUM;
598	bcn->size = sizeof(struct wpi_cmd_beacon);
599}
600
601static struct ieee80211vap *
602wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
603    enum ieee80211_opmode opmode, int flags,
604    const uint8_t bssid[IEEE80211_ADDR_LEN],
605    const uint8_t mac[IEEE80211_ADDR_LEN])
606{
607	struct wpi_vap *wvp;
608	struct ieee80211vap *vap;
609
610	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
611		return NULL;
612
613	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
614	    M_80211_VAP, M_NOWAIT | M_ZERO);
615	if (wvp == NULL)
616		return NULL;
617	vap = &wvp->wv_vap;
618	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
619
620	if (opmode == IEEE80211_M_IBSS)
621		wpi_init_beacon(wvp);
622
623	/* Override with driver methods. */
624	vap->iv_key_alloc = wpi_key_alloc;
625	vap->iv_key_set = wpi_key_set;
626	vap->iv_key_delete = wpi_key_delete;
627	wvp->wv_newstate = vap->iv_newstate;
628	vap->iv_newstate = wpi_newstate;
629	vap->iv_update_beacon = wpi_update_beacon;
630
631	ieee80211_ratectl_init(vap);
632	/* Complete setup. */
633	ieee80211_vap_attach(vap, ieee80211_media_change,
634	    ieee80211_media_status);
635	ic->ic_opmode = opmode;
636	return vap;
637}
638
639static void
640wpi_vap_delete(struct ieee80211vap *vap)
641{
642	struct wpi_vap *wvp = WPI_VAP(vap);
643	struct wpi_buf *bcn = &wvp->wv_bcbuf;
644	enum ieee80211_opmode opmode = vap->iv_opmode;
645
646	ieee80211_ratectl_deinit(vap);
647	ieee80211_vap_detach(vap);
648
649	if (opmode == IEEE80211_M_IBSS) {
650		if (bcn->m != NULL)
651			m_freem(bcn->m);
652	}
653
654	free(wvp, M_80211_VAP);
655}
656
657static int
658wpi_detach(device_t dev)
659{
660	struct wpi_softc *sc = device_get_softc(dev);
661	struct ifnet *ifp = sc->sc_ifp;
662	struct ieee80211com *ic;
663	int qid;
664
665	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
666
667	if (ifp != NULL) {
668		ic = ifp->if_l2com;
669
670		ieee80211_draintask(ic, &sc->sc_reinittask);
671		ieee80211_draintask(ic, &sc->sc_radiooff_task);
672		ieee80211_draintask(ic, &sc->sc_radioon_task);
673		ieee80211_draintask(ic, &sc->sc_start_task);
674
675		wpi_stop(sc);
676
677		callout_drain(&sc->watchdog_to);
678		callout_drain(&sc->watchdog_rfkill);
679		callout_drain(&sc->calib_to);
680		ieee80211_ifdetach(ic);
681	}
682
683	/* Uninstall interrupt handler. */
684	if (sc->irq != NULL) {
685		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
686		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
687		    sc->irq);
688		pci_release_msi(dev);
689	}
690
691	if (sc->txq[0].data_dmat) {
692		/* Free DMA resources. */
693		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
694			wpi_free_tx_ring(sc, &sc->txq[qid]);
695
696		wpi_free_rx_ring(sc);
697		wpi_free_shared(sc);
698	}
699
700	if (sc->fw_dma.tag)
701		wpi_free_fwmem(sc);
702
703	if (sc->mem != NULL)
704		bus_release_resource(dev, SYS_RES_MEMORY,
705		    rman_get_rid(sc->mem), sc->mem);
706
707	if (ifp != NULL)
708		if_free(ifp);
709
710	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
711	WPI_TXQ_LOCK_DESTROY(sc);
712	WPI_NT_LOCK_DESTROY(sc);
713	WPI_LOCK_DESTROY(sc);
714	return 0;
715}
716
717static int
718wpi_shutdown(device_t dev)
719{
720	struct wpi_softc *sc = device_get_softc(dev);
721
722	wpi_stop(sc);
723	return 0;
724}
725
726static int
727wpi_suspend(device_t dev)
728{
729	struct wpi_softc *sc = device_get_softc(dev);
730	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
731
732	ieee80211_suspend_all(ic);
733	return 0;
734}
735
736static int
737wpi_resume(device_t dev)
738{
739	struct wpi_softc *sc = device_get_softc(dev);
740	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
741
742	/* Clear device-specific "PCI retry timeout" register (41h). */
743	pci_write_config(dev, 0x41, 0, 1);
744
745	ieee80211_resume_all(ic);
746	return 0;
747}
748
749/*
750 * Grab exclusive access to NIC memory.
751 */
752static int
753wpi_nic_lock(struct wpi_softc *sc)
754{
755	int ntries;
756
757	/* Request exclusive access to NIC. */
758	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
759
760	/* Spin until we actually get the lock. */
761	for (ntries = 0; ntries < 1000; ntries++) {
762		if ((WPI_READ(sc, WPI_GP_CNTRL) &
763		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
764		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
765			return 0;
766		DELAY(10);
767	}
768
769	device_printf(sc->sc_dev, "could not lock memory\n");
770
771	return ETIMEDOUT;
772}
773
774/*
775 * Release lock on NIC memory.
776 */
777static __inline void
778wpi_nic_unlock(struct wpi_softc *sc)
779{
780	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
781}
782
783static __inline uint32_t
784wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
785{
786	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
787	WPI_BARRIER_READ_WRITE(sc);
788	return WPI_READ(sc, WPI_PRPH_RDATA);
789}
790
791static __inline void
792wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
793{
794	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
795	WPI_BARRIER_WRITE(sc);
796	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
797}
798
799static __inline void
800wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
801{
802	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
803}
804
805static __inline void
806wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
807{
808	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
809}
810
811static __inline void
812wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
813    const uint32_t *data, int count)
814{
815	for (; count > 0; count--, data++, addr += 4)
816		wpi_prph_write(sc, addr, *data);
817}
818
819static __inline uint32_t
820wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
821{
822	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
823	WPI_BARRIER_READ_WRITE(sc);
824	return WPI_READ(sc, WPI_MEM_RDATA);
825}
826
827static __inline void
828wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
829    int count)
830{
831	for (; count > 0; count--, addr += 4)
832		*data++ = wpi_mem_read(sc, addr);
833}
834
835static int
836wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
837{
838	uint8_t *out = data;
839	uint32_t val;
840	int error, ntries;
841
842	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
843
844	if ((error = wpi_nic_lock(sc)) != 0)
845		return error;
846
847	for (; count > 0; count -= 2, addr++) {
848		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
849		for (ntries = 0; ntries < 10; ntries++) {
850			val = WPI_READ(sc, WPI_EEPROM);
851			if (val & WPI_EEPROM_READ_VALID)
852				break;
853			DELAY(5);
854		}
855		if (ntries == 10) {
856			device_printf(sc->sc_dev,
857			    "timeout reading ROM at 0x%x\n", addr);
858			return ETIMEDOUT;
859		}
860		*out++= val >> 16;
861		if (count > 1)
862			*out ++= val >> 24;
863	}
864
865	wpi_nic_unlock(sc);
866
867	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
868
869	return 0;
870}
871
872static void
873wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
874{
875	if (error != 0)
876		return;
877	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
878	*(bus_addr_t *)arg = segs[0].ds_addr;
879}
880
881/*
882 * Allocates a contiguous block of dma memory of the requested size and
883 * alignment.
884 */
885static int
886wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
887    void **kvap, bus_size_t size, bus_size_t alignment)
888{
889	int error;
890
891	dma->tag = NULL;
892	dma->size = size;
893
894	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
895	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
896	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
897	if (error != 0)
898		goto fail;
899
900	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
901	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
902	if (error != 0)
903		goto fail;
904
905	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
906	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
907	if (error != 0)
908		goto fail;
909
910	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
911
912	if (kvap != NULL)
913		*kvap = dma->vaddr;
914
915	return 0;
916
917fail:	wpi_dma_contig_free(dma);
918	return error;
919}
920
921static void
922wpi_dma_contig_free(struct wpi_dma_info *dma)
923{
924	if (dma->vaddr != NULL) {
925		bus_dmamap_sync(dma->tag, dma->map,
926		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
927		bus_dmamap_unload(dma->tag, dma->map);
928		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
929		dma->vaddr = NULL;
930	}
931	if (dma->tag != NULL) {
932		bus_dma_tag_destroy(dma->tag);
933		dma->tag = NULL;
934	}
935}
936
937/*
938 * Allocate a shared page between host and NIC.
939 */
940static int
941wpi_alloc_shared(struct wpi_softc *sc)
942{
943	/* Shared buffer must be aligned on a 4KB boundary. */
944	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
945	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
946}
947
948static void
949wpi_free_shared(struct wpi_softc *sc)
950{
951	wpi_dma_contig_free(&sc->shared_dma);
952}
953
954/*
955 * Allocate DMA-safe memory for firmware transfer.
956 */
957static int
958wpi_alloc_fwmem(struct wpi_softc *sc)
959{
960	/* Must be aligned on a 16-byte boundary. */
961	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
962	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
963}
964
965static void
966wpi_free_fwmem(struct wpi_softc *sc)
967{
968	wpi_dma_contig_free(&sc->fw_dma);
969}
970
971static int
972wpi_alloc_rx_ring(struct wpi_softc *sc)
973{
974	struct wpi_rx_ring *ring = &sc->rxq;
975	bus_size_t size;
976	int i, error;
977
978	ring->cur = 0;
979	ring->update = 0;
980
981	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
982
983	/* Allocate RX descriptors (16KB aligned.) */
984	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
985	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
986	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
987	if (error != 0) {
988		device_printf(sc->sc_dev,
989		    "%s: could not allocate RX ring DMA memory, error %d\n",
990		    __func__, error);
991		goto fail;
992	}
993
994	/* Create RX buffer DMA tag. */
995	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
996	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
997	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
998	    &ring->data_dmat);
999	if (error != 0) {
1000		device_printf(sc->sc_dev,
1001		    "%s: could not create RX buf DMA tag, error %d\n",
1002		    __func__, error);
1003		goto fail;
1004	}
1005
1006	/*
1007	 * Allocate and map RX buffers.
1008	 */
1009	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1010		struct wpi_rx_data *data = &ring->data[i];
1011		bus_addr_t paddr;
1012
1013		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1014		if (error != 0) {
1015			device_printf(sc->sc_dev,
1016			    "%s: could not create RX buf DMA map, error %d\n",
1017			    __func__, error);
1018			goto fail;
1019		}
1020
1021		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1022		if (data->m == NULL) {
1023			device_printf(sc->sc_dev,
1024			    "%s: could not allocate RX mbuf\n", __func__);
1025			error = ENOBUFS;
1026			goto fail;
1027		}
1028
1029		error = bus_dmamap_load(ring->data_dmat, data->map,
1030		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1031		    &paddr, BUS_DMA_NOWAIT);
1032		if (error != 0 && error != EFBIG) {
1033			device_printf(sc->sc_dev,
1034			    "%s: can't map mbuf (error %d)\n", __func__,
1035			    error);
1036			goto fail;
1037		}
1038
1039		/* Set physical address of RX buffer. */
1040		ring->desc[i] = htole32(paddr);
1041	}
1042
1043	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1044	    BUS_DMASYNC_PREWRITE);
1045
1046	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1047
1048	return 0;
1049
1050fail:	wpi_free_rx_ring(sc);
1051
1052	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1053
1054	return error;
1055}
1056
1057static void
1058wpi_update_rx_ring(struct wpi_softc *sc)
1059{
1060	struct wpi_rx_ring *ring = &sc->rxq;
1061
1062	if (ring->update != 0) {
1063		/* Wait for INT_WAKEUP event. */
1064		return;
1065	}
1066
1067	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1068		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1069		    __func__);
1070
1071		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1072		ring->update = 1;
1073	} else
1074		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1075}
1076
1077static void
1078wpi_reset_rx_ring(struct wpi_softc *sc)
1079{
1080	struct wpi_rx_ring *ring = &sc->rxq;
1081	int ntries;
1082
1083	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1084
1085	if (wpi_nic_lock(sc) == 0) {
1086		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1087		for (ntries = 0; ntries < 1000; ntries++) {
1088			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1089			    WPI_FH_RX_STATUS_IDLE)
1090				break;
1091			DELAY(10);
1092		}
1093#ifdef WPI_DEBUG
1094		if (ntries == 1000) {
1095			device_printf(sc->sc_dev,
1096			    "timeout resetting Rx ring\n");
1097		}
1098#endif
1099		wpi_nic_unlock(sc);
1100	}
1101
1102	ring->cur = 0;
1103	ring->update = 0;
1104}
1105
1106static void
1107wpi_free_rx_ring(struct wpi_softc *sc)
1108{
1109	struct wpi_rx_ring *ring = &sc->rxq;
1110	int i;
1111
1112	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1113
1114	wpi_dma_contig_free(&ring->desc_dma);
1115
1116	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1117		struct wpi_rx_data *data = &ring->data[i];
1118
1119		if (data->m != NULL) {
1120			bus_dmamap_sync(ring->data_dmat, data->map,
1121			    BUS_DMASYNC_POSTREAD);
1122			bus_dmamap_unload(ring->data_dmat, data->map);
1123			m_freem(data->m);
1124			data->m = NULL;
1125		}
1126		if (data->map != NULL)
1127			bus_dmamap_destroy(ring->data_dmat, data->map);
1128	}
1129	if (ring->data_dmat != NULL) {
1130		bus_dma_tag_destroy(ring->data_dmat);
1131		ring->data_dmat = NULL;
1132	}
1133}
1134
1135static int
1136wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1137{
1138	bus_addr_t paddr;
1139	bus_size_t size;
1140	int i, error;
1141
1142	ring->qid = qid;
1143	ring->queued = 0;
1144	ring->cur = 0;
1145	ring->update = 0;
1146
1147	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1148
1149	/* Allocate TX descriptors (16KB aligned.) */
1150	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1151	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1152	    size, WPI_RING_DMA_ALIGN);
1153	if (error != 0) {
1154		device_printf(sc->sc_dev,
1155		    "%s: could not allocate TX ring DMA memory, error %d\n",
1156		    __func__, error);
1157		goto fail;
1158	}
1159
1160	/* Update shared area with ring physical address. */
1161	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1162	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1163	    BUS_DMASYNC_PREWRITE);
1164
1165	/*
1166	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1167	 * to allocate commands space for other rings.
1168	 * XXX Do we really need to allocate descriptors for other rings?
1169	 */
1170	if (qid > WPI_CMD_QUEUE_NUM)
1171		return 0;
1172
1173	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1174	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1175	    size, 4);
1176	if (error != 0) {
1177		device_printf(sc->sc_dev,
1178		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1179		    __func__, error);
1180		goto fail;
1181	}
1182
1183	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1184	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1185	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1186	    &ring->data_dmat);
1187	if (error != 0) {
1188		device_printf(sc->sc_dev,
1189		    "%s: could not create TX buf DMA tag, error %d\n",
1190		    __func__, error);
1191		goto fail;
1192	}
1193
1194	paddr = ring->cmd_dma.paddr;
1195	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1196		struct wpi_tx_data *data = &ring->data[i];
1197
1198		data->cmd_paddr = paddr;
1199		paddr += sizeof (struct wpi_tx_cmd);
1200
1201		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1202		if (error != 0) {
1203			device_printf(sc->sc_dev,
1204			    "%s: could not create TX buf DMA map, error %d\n",
1205			    __func__, error);
1206			goto fail;
1207		}
1208	}
1209
1210	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1211
1212	return 0;
1213
1214fail:	wpi_free_tx_ring(sc, ring);
1215	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1216	return error;
1217}
1218
1219static void
1220wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1221{
1222	if (ring->update != 0) {
1223		/* Wait for INT_WAKEUP event. */
1224		return;
1225	}
1226
1227	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1228		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1229		    __func__, ring->qid);
1230
1231		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1232		ring->update = 1;
1233	} else
1234		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1235}
1236
1237static void
1238wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1239{
1240	int i;
1241
1242	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1243
1244	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1245		struct wpi_tx_data *data = &ring->data[i];
1246
1247		if (data->m != NULL) {
1248			bus_dmamap_sync(ring->data_dmat, data->map,
1249			    BUS_DMASYNC_POSTWRITE);
1250			bus_dmamap_unload(ring->data_dmat, data->map);
1251			m_freem(data->m);
1252			data->m = NULL;
1253		}
1254	}
1255	/* Clear TX descriptors. */
1256	memset(ring->desc, 0, ring->desc_dma.size);
1257	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1258	    BUS_DMASYNC_PREWRITE);
1259	sc->qfullmsk &= ~(1 << ring->qid);
1260	ring->queued = 0;
1261	ring->cur = 0;
1262	ring->update = 0;
1263}
1264
1265static void
1266wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1267{
1268	int i;
1269
1270	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1271
1272	wpi_dma_contig_free(&ring->desc_dma);
1273	wpi_dma_contig_free(&ring->cmd_dma);
1274
1275	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1276		struct wpi_tx_data *data = &ring->data[i];
1277
1278		if (data->m != NULL) {
1279			bus_dmamap_sync(ring->data_dmat, data->map,
1280			    BUS_DMASYNC_POSTWRITE);
1281			bus_dmamap_unload(ring->data_dmat, data->map);
1282			m_freem(data->m);
1283		}
1284		if (data->map != NULL)
1285			bus_dmamap_destroy(ring->data_dmat, data->map);
1286	}
1287	if (ring->data_dmat != NULL) {
1288		bus_dma_tag_destroy(ring->data_dmat);
1289		ring->data_dmat = NULL;
1290	}
1291}
1292
1293/*
1294 * Extract various information from EEPROM.
1295 */
1296static int
1297wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1298{
1299#define WPI_CHK(res) do {		\
1300	if ((error = res) != 0)		\
1301		goto fail;		\
1302} while (0)
1303	int error, i;
1304
1305	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1306
1307	/* Adapter has to be powered on for EEPROM access to work. */
1308	if ((error = wpi_apm_init(sc)) != 0) {
1309		device_printf(sc->sc_dev,
1310		    "%s: could not power ON adapter, error %d\n", __func__,
1311		    error);
1312		return error;
1313	}
1314
1315	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1316		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1317		error = EIO;
1318		goto fail;
1319	}
1320	/* Clear HW ownership of EEPROM. */
1321	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1322
1323	/* Read the hardware capabilities, revision and SKU type. */
1324	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1325	    sizeof(sc->cap)));
1326	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1327	    sizeof(sc->rev)));
1328	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1329	    sizeof(sc->type)));
1330
1331	sc->rev = le16toh(sc->rev);
1332	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1333	    sc->rev, sc->type);
1334
1335	/* Read the regulatory domain (4 ASCII characters.) */
1336	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1337	    sizeof(sc->domain)));
1338
1339	/* Read MAC address. */
1340	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1341	    IEEE80211_ADDR_LEN));
1342
1343	/* Read the list of authorized channels. */
1344	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1345		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1346
1347	/* Read the list of TX power groups. */
1348	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1349		WPI_CHK(wpi_read_eeprom_group(sc, i));
1350
1351fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1352
1353	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1354	    __func__);
1355
1356	return error;
1357#undef WPI_CHK
1358}
1359
1360/*
1361 * Translate EEPROM flags to net80211.
1362 */
1363static uint32_t
1364wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1365{
1366	uint32_t nflags;
1367
1368	nflags = 0;
1369	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1370		nflags |= IEEE80211_CHAN_PASSIVE;
1371	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1372		nflags |= IEEE80211_CHAN_NOADHOC;
1373	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1374		nflags |= IEEE80211_CHAN_DFS;
1375		/* XXX apparently IBSS may still be marked */
1376		nflags |= IEEE80211_CHAN_NOADHOC;
1377	}
1378
1379	return nflags;
1380}
1381
1382static void
1383wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1384{
1385	struct ifnet *ifp = sc->sc_ifp;
1386	struct ieee80211com *ic = ifp->if_l2com;
1387	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1388	const struct wpi_chan_band *band = &wpi_bands[n];
1389	struct ieee80211_channel *c;
1390	uint8_t chan;
1391	int i, nflags;
1392
1393	for (i = 0; i < band->nchan; i++) {
1394		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1395			DPRINTF(sc, WPI_DEBUG_EEPROM,
1396			    "Channel Not Valid: %d, band %d\n",
1397			     band->chan[i],n);
1398			continue;
1399		}
1400
1401		chan = band->chan[i];
1402		nflags = wpi_eeprom_channel_flags(&channels[i]);
1403
1404		c = &ic->ic_channels[ic->ic_nchans++];
1405		c->ic_ieee = chan;
1406		c->ic_maxregpower = channels[i].maxpwr;
1407		c->ic_maxpower = 2*c->ic_maxregpower;
1408
1409		if (n == 0) {	/* 2GHz band */
1410			c->ic_freq = ieee80211_ieee2mhz(chan,
1411			    IEEE80211_CHAN_G);
1412
1413			/* G =>'s B is supported */
1414			c->ic_flags = IEEE80211_CHAN_B | nflags;
1415			c = &ic->ic_channels[ic->ic_nchans++];
1416			c[0] = c[-1];
1417			c->ic_flags = IEEE80211_CHAN_G | nflags;
1418		} else {	/* 5GHz band */
1419			c->ic_freq = ieee80211_ieee2mhz(chan,
1420			    IEEE80211_CHAN_A);
1421
1422			c->ic_flags = IEEE80211_CHAN_A | nflags;
1423		}
1424
1425		/* Save maximum allowed TX power for this channel. */
1426		sc->maxpwr[chan] = channels[i].maxpwr;
1427
1428		DPRINTF(sc, WPI_DEBUG_EEPROM,
1429		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1430		    " offset %d\n", chan, c->ic_freq,
1431		    channels[i].flags, sc->maxpwr[chan],
1432		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1433	}
1434}
1435
1436/**
1437 * Read the eeprom to find out what channels are valid for the given
1438 * band and update net80211 with what we find.
1439 */
1440static int
1441wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1442{
1443	struct ifnet *ifp = sc->sc_ifp;
1444	struct ieee80211com *ic = ifp->if_l2com;
1445	const struct wpi_chan_band *band = &wpi_bands[n];
1446	int error;
1447
1448	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1449
1450	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1451	    band->nchan * sizeof (struct wpi_eeprom_chan));
1452	if (error != 0) {
1453		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1454		return error;
1455	}
1456
1457	wpi_read_eeprom_band(sc, n);
1458
1459	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1460
1461	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1462
1463	return 0;
1464}
1465
1466static struct wpi_eeprom_chan *
1467wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1468{
1469	int i, j;
1470
1471	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1472		for (i = 0; i < wpi_bands[j].nchan; i++)
1473			if (wpi_bands[j].chan[i] == c->ic_ieee)
1474				return &sc->eeprom_channels[j][i];
1475
1476	return NULL;
1477}
1478
1479/*
1480 * Enforce flags read from EEPROM.
1481 */
1482static int
1483wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1484    int nchan, struct ieee80211_channel chans[])
1485{
1486	struct ifnet *ifp = ic->ic_ifp;
1487	struct wpi_softc *sc = ifp->if_softc;
1488	int i;
1489
1490	for (i = 0; i < nchan; i++) {
1491		struct ieee80211_channel *c = &chans[i];
1492		struct wpi_eeprom_chan *channel;
1493
1494		channel = wpi_find_eeprom_channel(sc, c);
1495		if (channel == NULL) {
1496			if_printf(ic->ic_ifp,
1497			    "%s: invalid channel %u freq %u/0x%x\n",
1498			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1499			return EINVAL;
1500		}
1501		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1502	}
1503
1504	return 0;
1505}
1506
1507static int
1508wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1509{
1510	struct wpi_power_group *group = &sc->groups[n];
1511	struct wpi_eeprom_group rgroup;
1512	int i, error;
1513
1514	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1515
1516	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1517	    &rgroup, sizeof rgroup)) != 0) {
1518		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1519		return error;
1520	}
1521
1522	/* Save TX power group information. */
1523	group->chan   = rgroup.chan;
1524	group->maxpwr = rgroup.maxpwr;
1525	/* Retrieve temperature at which the samples were taken. */
1526	group->temp   = (int16_t)le16toh(rgroup.temp);
1527
1528	DPRINTF(sc, WPI_DEBUG_EEPROM,
1529	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1530	    group->maxpwr, group->temp);
1531
1532	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1533		group->samples[i].index = rgroup.samples[i].index;
1534		group->samples[i].power = rgroup.samples[i].power;
1535
1536		DPRINTF(sc, WPI_DEBUG_EEPROM,
1537		    "\tsample %d: index=%d power=%d\n", i,
1538		    group->samples[i].index, group->samples[i].power);
1539	}
1540
1541	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1542
1543	return 0;
1544}
1545
1546static int
1547wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1548{
1549	int newid = WPI_ID_IBSS_MIN;
1550
1551	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1552		if ((sc->nodesmsk & (1 << newid)) == 0) {
1553			sc->nodesmsk |= 1 << newid;
1554			return newid;
1555		}
1556	}
1557
1558	return WPI_ID_UNDEFINED;
1559}
1560
1561static __inline int
1562wpi_add_node_entry_sta(struct wpi_softc *sc)
1563{
1564	sc->nodesmsk |= 1 << WPI_ID_BSS;
1565
1566	return WPI_ID_BSS;
1567}
1568
1569static __inline int
1570wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1571{
1572	if (id == WPI_ID_UNDEFINED)
1573		return 0;
1574
1575	return (sc->nodesmsk >> id) & 1;
1576}
1577
1578static __inline void
1579wpi_clear_node_table(struct wpi_softc *sc)
1580{
1581	sc->nodesmsk = 0;
1582}
1583
1584static __inline void
1585wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1586{
1587	sc->nodesmsk &= ~(1 << id);
1588}
1589
1590static struct ieee80211_node *
1591wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1592{
1593	struct wpi_node *wn;
1594
1595	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1596	    M_NOWAIT | M_ZERO);
1597
1598	if (wn == NULL)
1599		return NULL;
1600
1601	wn->id = WPI_ID_UNDEFINED;
1602
1603	return &wn->ni;
1604}
1605
1606static void
1607wpi_node_free(struct ieee80211_node *ni)
1608{
1609	struct ieee80211com *ic = ni->ni_ic;
1610	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1611	struct wpi_node *wn = WPI_NODE(ni);
1612
1613	if (wn->id != WPI_ID_UNDEFINED) {
1614		WPI_NT_LOCK(sc);
1615		if (wpi_check_node_entry(sc, wn->id)) {
1616			wpi_del_node_entry(sc, wn->id);
1617			wpi_del_node(sc, ni);
1618		}
1619		WPI_NT_UNLOCK(sc);
1620	}
1621
1622	sc->sc_node_free(ni);
1623}
1624
1625/**
1626 * Called by net80211 when ever there is a change to 80211 state machine
1627 */
1628static int
1629wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1630{
1631	struct wpi_vap *wvp = WPI_VAP(vap);
1632	struct ieee80211com *ic = vap->iv_ic;
1633	struct ifnet *ifp = ic->ic_ifp;
1634	struct wpi_softc *sc = ifp->if_softc;
1635	int error = 0;
1636
1637	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1638
1639	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1640		ieee80211_state_name[vap->iv_state],
1641		ieee80211_state_name[nstate]);
1642
1643	IEEE80211_UNLOCK(ic);
1644	WPI_LOCK(sc);
1645	switch (nstate) {
1646	case IEEE80211_S_SCAN:
1647		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1648		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1649		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1650			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1651			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1652				device_printf(sc->sc_dev,
1653				    "%s: could not send RXON\n", __func__);
1654			}
1655		}
1656		break;
1657
1658	case IEEE80211_S_ASSOC:
1659		if (vap->iv_state != IEEE80211_S_RUN)
1660			break;
1661		/* FALLTHROUGH */
1662	case IEEE80211_S_AUTH:
1663		/*
1664		 * The node must be registered in the firmware before auth.
1665		 * Also the associd must be cleared on RUN -> ASSOC
1666		 * transitions.
1667		 */
1668		if ((error = wpi_auth(sc, vap)) != 0) {
1669			device_printf(sc->sc_dev,
1670			    "%s: could not move to AUTH state, error %d\n",
1671			    __func__, error);
1672		}
1673		break;
1674
1675	case IEEE80211_S_RUN:
1676		/*
1677		 * RUN -> RUN transition; Just restart the timers.
1678		 */
1679		if (vap->iv_state == IEEE80211_S_RUN) {
1680			wpi_calib_timeout(sc);
1681			break;
1682		}
1683
1684		/*
1685		 * !RUN -> RUN requires setting the association id
1686		 * which is done with a firmware cmd.  We also defer
1687		 * starting the timers until that work is done.
1688		 */
1689		if ((error = wpi_run(sc, vap)) != 0) {
1690			device_printf(sc->sc_dev,
1691			    "%s: could not move to RUN state\n", __func__);
1692		}
1693		break;
1694
1695	default:
1696		break;
1697	}
1698	WPI_UNLOCK(sc);
1699	IEEE80211_LOCK(ic);
1700	if (error != 0) {
1701		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1702		return error;
1703	}
1704
1705	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1706
1707	return wvp->wv_newstate(vap, nstate, arg);
1708}
1709
1710static void
1711wpi_calib_timeout(void *arg)
1712{
1713	struct wpi_softc *sc = arg;
1714	struct ifnet *ifp = sc->sc_ifp;
1715	struct ieee80211com *ic = ifp->if_l2com;
1716	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1717
1718	if (vap->iv_state != IEEE80211_S_RUN)
1719		return;
1720
1721	wpi_power_calibration(sc);
1722
1723	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1724}
1725
1726static __inline uint8_t
1727rate2plcp(const uint8_t rate)
1728{
1729	switch (rate) {
1730	case 12:	return 0xd;
1731	case 18:	return 0xf;
1732	case 24:	return 0x5;
1733	case 36:	return 0x7;
1734	case 48:	return 0x9;
1735	case 72:	return 0xb;
1736	case 96:	return 0x1;
1737	case 108:	return 0x3;
1738	case 2:		return 10;
1739	case 4:		return 20;
1740	case 11:	return 55;
1741	case 22:	return 110;
1742	default:	return 0;
1743	}
1744}
1745
1746static __inline uint8_t
1747plcp2rate(const uint8_t plcp)
1748{
1749	switch (plcp) {
1750	case 0xd:	return 12;
1751	case 0xf:	return 18;
1752	case 0x5:	return 24;
1753	case 0x7:	return 36;
1754	case 0x9:	return 48;
1755	case 0xb:	return 72;
1756	case 0x1:	return 96;
1757	case 0x3:	return 108;
1758	case 10:	return 2;
1759	case 20:	return 4;
1760	case 55:	return 11;
1761	case 110:	return 22;
1762	default:	return 0;
1763	}
1764}
1765
1766/* Quickly determine if a given rate is CCK or OFDM. */
1767#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1768
1769static void
1770wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1771    struct wpi_rx_data *data)
1772{
1773	struct ifnet *ifp = sc->sc_ifp;
1774	const struct ieee80211_cipher *cip = NULL;
1775	struct ieee80211com *ic = ifp->if_l2com;
1776	struct wpi_rx_ring *ring = &sc->rxq;
1777	struct wpi_rx_stat *stat;
1778	struct wpi_rx_head *head;
1779	struct wpi_rx_tail *tail;
1780	struct ieee80211_frame *wh;
1781	struct ieee80211_node *ni;
1782	struct mbuf *m, *m1;
1783	bus_addr_t paddr;
1784	uint32_t flags;
1785	uint16_t len;
1786	int error;
1787
1788	stat = (struct wpi_rx_stat *)(desc + 1);
1789
1790	if (stat->len > WPI_STAT_MAXLEN) {
1791		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1792		goto fail1;
1793	}
1794
1795	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1796	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1797	len = le16toh(head->len);
1798	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1799	flags = le32toh(tail->flags);
1800
1801	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1802	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1803	    le32toh(desc->len), len, (int8_t)stat->rssi,
1804	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1805
1806	/* Discard frames with a bad FCS early. */
1807	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1808		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1809		    __func__, flags);
1810		goto fail1;
1811	}
1812	/* Discard frames that are too short. */
1813	if (len < sizeof (*wh)) {
1814		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1815		    __func__, len);
1816		goto fail1;
1817	}
1818
1819	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1820	if (m1 == NULL) {
1821		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1822		    __func__);
1823		goto fail1;
1824	}
1825	bus_dmamap_unload(ring->data_dmat, data->map);
1826
1827	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1828	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1829	if (error != 0 && error != EFBIG) {
1830		device_printf(sc->sc_dev,
1831		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1832		m_freem(m1);
1833
1834		/* Try to reload the old mbuf. */
1835		error = bus_dmamap_load(ring->data_dmat, data->map,
1836		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1837		    &paddr, BUS_DMA_NOWAIT);
1838		if (error != 0 && error != EFBIG) {
1839			panic("%s: could not load old RX mbuf", __func__);
1840		}
1841		/* Physical address may have changed. */
1842		ring->desc[ring->cur] = htole32(paddr);
1843		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1844		    BUS_DMASYNC_PREWRITE);
1845		goto fail1;
1846	}
1847
1848	m = data->m;
1849	data->m = m1;
1850	/* Update RX descriptor. */
1851	ring->desc[ring->cur] = htole32(paddr);
1852	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1853	    BUS_DMASYNC_PREWRITE);
1854
1855	/* Finalize mbuf. */
1856	m->m_pkthdr.rcvif = ifp;
1857	m->m_data = (caddr_t)(head + 1);
1858	m->m_pkthdr.len = m->m_len = len;
1859
1860	/* Grab a reference to the source node. */
1861	wh = mtod(m, struct ieee80211_frame *);
1862	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1863
1864	if (ni != NULL)
1865		cip = ni->ni_ucastkey.wk_cipher;
1866	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1867	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1868	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1869		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1870			goto fail2;
1871
1872		/* Check whether decryption was successful or not. */
1873		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1874			DPRINTF(sc, WPI_DEBUG_RECV,
1875			    "CCMP decryption failed 0x%x\n", flags);
1876			goto fail2;
1877		}
1878		m->m_flags |= M_WEP;
1879	}
1880
1881	if (ieee80211_radiotap_active(ic)) {
1882		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1883
1884		tap->wr_flags = 0;
1885		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1886			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1887		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1888		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
1889		tap->wr_tsft = tail->tstamp;
1890		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1891		tap->wr_rate = plcp2rate(head->plcp);
1892	}
1893
1894	WPI_UNLOCK(sc);
1895
1896	/* Send the frame to the 802.11 layer. */
1897	if (ni != NULL) {
1898		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1899		/* Node is no longer needed. */
1900		ieee80211_free_node(ni);
1901	} else
1902		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1903
1904	WPI_LOCK(sc);
1905
1906	return;
1907
1908fail2:	ieee80211_free_node(ni);
1909	m_freem(m);
1910
1911fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1912}
1913
1914static void
1915wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1916    struct wpi_rx_data *data)
1917{
1918	/* Ignore */
1919}
1920
1921static void
1922wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1923{
1924	struct ifnet *ifp = sc->sc_ifp;
1925	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1926	struct wpi_tx_data *data = &ring->data[desc->idx];
1927	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1928	struct mbuf *m;
1929	struct ieee80211_node *ni;
1930	struct ieee80211vap *vap;
1931	struct ieee80211com *ic;
1932	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1933	int status = le32toh(stat->status);
1934
1935	KASSERT(data->ni != NULL, ("no node"));
1936
1937	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1938
1939	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1940	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1941	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1942	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1943
1944	/* Unmap and free mbuf. */
1945	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1946	bus_dmamap_unload(ring->data_dmat, data->map);
1947	m = data->m, data->m = NULL;
1948	ni = data->ni, data->ni = NULL;
1949	vap = ni->ni_vap;
1950	ic = vap->iv_ic;
1951
1952	/*
1953	 * Update rate control statistics for the node.
1954	 */
1955	WPI_UNLOCK(sc);
1956	if ((status & 0xff) != 1) {
1957		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1958		ieee80211_ratectl_tx_complete(vap, ni,
1959		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1960	} else {
1961		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1962		ieee80211_ratectl_tx_complete(vap, ni,
1963		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1964	}
1965
1966	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1967	WPI_LOCK(sc);
1968
1969	sc->sc_tx_timer = 0;
1970	if (--ring->queued < WPI_TX_RING_LOMARK) {
1971		sc->qfullmsk &= ~(1 << ring->qid);
1972		if (sc->qfullmsk == 0 &&
1973		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1974			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1975			ieee80211_runtask(ic, &sc->sc_start_task);
1976		}
1977	}
1978
1979	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1980}
1981
1982/*
1983 * Process a "command done" firmware notification.  This is where we wakeup
1984 * processes waiting for a synchronous command completion.
1985 */
1986static void
1987wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1988{
1989	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
1990	struct wpi_tx_data *data;
1991
1992	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1993				   "type=%s len=%d\n", desc->qid, desc->idx,
1994				   desc->flags, wpi_cmd_str(desc->type),
1995				   le32toh(desc->len));
1996
1997	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
1998		return;	/* Not a command ack. */
1999
2000	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2001
2002	data = &ring->data[desc->idx];
2003
2004	/* If the command was mapped in an mbuf, free it. */
2005	if (data->m != NULL) {
2006		bus_dmamap_sync(ring->data_dmat, data->map,
2007		    BUS_DMASYNC_POSTWRITE);
2008		bus_dmamap_unload(ring->data_dmat, data->map);
2009		m_freem(data->m);
2010		data->m = NULL;
2011	}
2012
2013	wakeup(&ring->cmd[desc->idx]);
2014}
2015
2016static void
2017wpi_notif_intr(struct wpi_softc *sc)
2018{
2019	struct ifnet *ifp = sc->sc_ifp;
2020	struct ieee80211com *ic = ifp->if_l2com;
2021	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2022	int hw;
2023
2024	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2025	    BUS_DMASYNC_POSTREAD);
2026
2027	hw = le32toh(sc->shared->next);
2028	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2029
2030	while (sc->rxq.cur != hw) {
2031		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2032
2033		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2034		struct wpi_rx_desc *desc;
2035
2036		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2037		    BUS_DMASYNC_POSTREAD);
2038		desc = mtod(data->m, struct wpi_rx_desc *);
2039
2040		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2041		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2042		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2043		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2044
2045		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2046			/* Reply to a command. */
2047			wpi_cmd_done(sc, desc);
2048		}
2049
2050		switch (desc->type) {
2051		case WPI_RX_DONE:
2052			/* An 802.11 frame has been received. */
2053			wpi_rx_done(sc, desc, data);
2054
2055			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2056				/* wpi_stop() was called. */
2057				return;
2058			}
2059
2060			break;
2061
2062		case WPI_TX_DONE:
2063			/* An 802.11 frame has been transmitted. */
2064			wpi_tx_done(sc, desc);
2065			break;
2066
2067		case WPI_RX_STATISTICS:
2068		case WPI_BEACON_STATISTICS:
2069			wpi_rx_statistics(sc, desc, data);
2070			break;
2071
2072		case WPI_BEACON_MISSED:
2073		{
2074			struct wpi_beacon_missed *miss =
2075			    (struct wpi_beacon_missed *)(desc + 1);
2076			int misses;
2077
2078			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2079			    BUS_DMASYNC_POSTREAD);
2080			misses = le32toh(miss->consecutive);
2081
2082			DPRINTF(sc, WPI_DEBUG_STATE,
2083			    "%s: beacons missed %d/%d\n", __func__, misses,
2084			    le32toh(miss->total));
2085
2086			if (vap->iv_state == IEEE80211_S_RUN &&
2087			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2088				if (misses >=  vap->iv_bmissthreshold) {
2089					WPI_UNLOCK(sc);
2090					ieee80211_beacon_miss(ic);
2091					WPI_LOCK(sc);
2092				}
2093			}
2094			break;
2095		}
2096		case WPI_UC_READY:
2097		{
2098			struct wpi_ucode_info *uc =
2099			    (struct wpi_ucode_info *)(desc + 1);
2100
2101			/* The microcontroller is ready. */
2102			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2103			    BUS_DMASYNC_POSTREAD);
2104			DPRINTF(sc, WPI_DEBUG_RESET,
2105			    "microcode alive notification version=%d.%d "
2106			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2107			    uc->subtype, le32toh(uc->valid));
2108
2109			if (le32toh(uc->valid) != 1) {
2110				device_printf(sc->sc_dev,
2111				    "microcontroller initialization failed\n");
2112				wpi_stop_locked(sc);
2113			}
2114			/* Save the address of the error log in SRAM. */
2115			sc->errptr = le32toh(uc->errptr);
2116			break;
2117		}
2118		case WPI_STATE_CHANGED:
2119		{
2120			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2121			    BUS_DMASYNC_POSTREAD);
2122
2123			uint32_t *status = (uint32_t *)(desc + 1);
2124
2125			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2126			    le32toh(*status));
2127
2128			if (le32toh(*status) & 1) {
2129				WPI_NT_LOCK(sc);
2130				wpi_clear_node_table(sc);
2131				WPI_NT_UNLOCK(sc);
2132				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2133				return;
2134			}
2135			break;
2136		}
2137		case WPI_START_SCAN:
2138		{
2139			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2140			    BUS_DMASYNC_POSTREAD);
2141#ifdef WPI_DEBUG
2142			struct wpi_start_scan *scan =
2143			    (struct wpi_start_scan *)(desc + 1);
2144			DPRINTF(sc, WPI_DEBUG_SCAN,
2145			    "%s: scanning channel %d status %x\n",
2146			    __func__, scan->chan, le32toh(scan->status));
2147#endif
2148			break;
2149		}
2150		case WPI_STOP_SCAN:
2151		{
2152			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2153			    BUS_DMASYNC_POSTREAD);
2154#ifdef WPI_DEBUG
2155			struct wpi_stop_scan *scan =
2156			    (struct wpi_stop_scan *)(desc + 1);
2157			DPRINTF(sc, WPI_DEBUG_SCAN,
2158			    "scan finished nchan=%d status=%d chan=%d\n",
2159			    scan->nchan, scan->status, scan->chan);
2160#endif
2161			sc->sc_scan_timer = 0;
2162			WPI_UNLOCK(sc);
2163			ieee80211_scan_next(vap);
2164			WPI_LOCK(sc);
2165			break;
2166		}
2167		}
2168	}
2169
2170	/* Tell the firmware what we have processed. */
2171	wpi_update_rx_ring(sc);
2172}
2173
2174/*
2175 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2176 * from power-down sleep mode.
2177 */
2178static void
2179wpi_wakeup_intr(struct wpi_softc *sc)
2180{
2181	int qid;
2182
2183	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2184	    "%s: ucode wakeup from power-down sleep\n", __func__);
2185
2186	/* Wakeup RX and TX rings. */
2187	if (sc->rxq.update) {
2188		sc->rxq.update = 0;
2189		wpi_update_rx_ring(sc);
2190	}
2191	WPI_TXQ_LOCK(sc);
2192	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2193		struct wpi_tx_ring *ring = &sc->txq[qid];
2194
2195		if (ring->update) {
2196			ring->update = 0;
2197			wpi_update_tx_ring(sc, ring);
2198		}
2199	}
2200	WPI_TXQ_UNLOCK(sc);
2201
2202	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2203}
2204
2205/*
2206 * Dump the error log of the firmware when a firmware panic occurs.  Although
2207 * we can't debug the firmware because it is neither open source nor free, it
2208 * can help us to identify certain classes of problems.
2209 */
2210static void
2211wpi_fatal_intr(struct wpi_softc *sc)
2212{
2213	struct wpi_fw_dump dump;
2214	uint32_t i, offset, count;
2215	const uint32_t size_errmsg =
2216	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2217
2218	/* Check that the error log address is valid. */
2219	if (sc->errptr < WPI_FW_DATA_BASE ||
2220	    sc->errptr + sizeof (dump) >
2221	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2222		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2223		    sc->errptr);
2224		return;
2225	}
2226	if (wpi_nic_lock(sc) != 0) {
2227		printf("%s: could not read firmware error log\n", __func__);
2228		return;
2229	}
2230	/* Read number of entries in the log. */
2231	count = wpi_mem_read(sc, sc->errptr);
2232	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2233		printf("%s: invalid count field (count = %u)\n", __func__,
2234		    count);
2235		wpi_nic_unlock(sc);
2236		return;
2237	}
2238	/* Skip "count" field. */
2239	offset = sc->errptr + sizeof (uint32_t);
2240	printf("firmware error log (count = %u):\n", count);
2241	for (i = 0; i < count; i++) {
2242		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2243		    sizeof (dump) / sizeof (uint32_t));
2244
2245		printf("  error type = \"%s\" (0x%08X)\n",
2246		    (dump.desc < size_errmsg) ?
2247		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2248		    dump.desc);
2249		printf("  error data      = 0x%08X\n",
2250		    dump.data);
2251		printf("  branch link     = 0x%08X%08X\n",
2252		    dump.blink[0], dump.blink[1]);
2253		printf("  interrupt link  = 0x%08X%08X\n",
2254		    dump.ilink[0], dump.ilink[1]);
2255		printf("  time            = %u\n", dump.time);
2256
2257		offset += sizeof (dump);
2258	}
2259	wpi_nic_unlock(sc);
2260	/* Dump driver status (TX and RX rings) while we're here. */
2261	printf("driver status:\n");
2262	WPI_TXQ_LOCK(sc);
2263	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2264		struct wpi_tx_ring *ring = &sc->txq[i];
2265		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2266		    i, ring->qid, ring->cur, ring->queued);
2267	}
2268	WPI_TXQ_UNLOCK(sc);
2269	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2270}
2271
2272static void
2273wpi_intr(void *arg)
2274{
2275	struct wpi_softc *sc = arg;
2276	struct ifnet *ifp = sc->sc_ifp;
2277	uint32_t r1, r2;
2278
2279	WPI_LOCK(sc);
2280
2281	/* Disable interrupts. */
2282	WPI_WRITE(sc, WPI_INT_MASK, 0);
2283
2284	r1 = WPI_READ(sc, WPI_INT);
2285
2286	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2287		goto end;	/* Hardware gone! */
2288
2289	r2 = WPI_READ(sc, WPI_FH_INT);
2290
2291	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2292	    r1, r2);
2293
2294	if (r1 == 0 && r2 == 0)
2295		goto done;	/* Interrupt not for us. */
2296
2297	/* Acknowledge interrupts. */
2298	WPI_WRITE(sc, WPI_INT, r1);
2299	WPI_WRITE(sc, WPI_FH_INT, r2);
2300
2301	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2302		struct ieee80211com *ic = ifp->if_l2com;
2303
2304		device_printf(sc->sc_dev, "fatal firmware error\n");
2305		wpi_fatal_intr(sc);
2306		DPRINTF(sc, WPI_DEBUG_HW,
2307		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2308		    "(Hardware Error)");
2309		ieee80211_runtask(ic, &sc->sc_reinittask);
2310		goto end;
2311	}
2312
2313	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2314	    (r2 & WPI_FH_INT_RX))
2315		wpi_notif_intr(sc);
2316
2317	if (r1 & WPI_INT_ALIVE)
2318		wakeup(sc);	/* Firmware is alive. */
2319
2320	if (r1 & WPI_INT_WAKEUP)
2321		wpi_wakeup_intr(sc);
2322
2323done:
2324	/* Re-enable interrupts. */
2325	if (ifp->if_flags & IFF_UP)
2326		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2327
2328end:	WPI_UNLOCK(sc);
2329}
2330
2331static int
2332wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2333{
2334	struct ieee80211_frame *wh;
2335	struct wpi_tx_cmd *cmd;
2336	struct wpi_tx_data *data;
2337	struct wpi_tx_desc *desc;
2338	struct wpi_tx_ring *ring;
2339	struct mbuf *m1;
2340	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2341	int error, i, hdrlen, nsegs, totlen, pad;
2342
2343	WPI_LOCK_ASSERT(sc);
2344
2345	WPI_TXQ_LOCK(sc);
2346
2347	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2348
2349	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2350
2351	if (sc->txq_active == 0) {
2352		/* wpi_stop() was called */
2353		error = ENETDOWN;
2354		goto fail;
2355	}
2356
2357	wh = mtod(buf->m, struct ieee80211_frame *);
2358	hdrlen = ieee80211_anyhdrsize(wh);
2359	totlen = buf->m->m_pkthdr.len;
2360
2361	if (hdrlen & 3) {
2362		/* First segment length must be a multiple of 4. */
2363		pad = 4 - (hdrlen & 3);
2364	} else
2365		pad = 0;
2366
2367	ring = &sc->txq[buf->ac];
2368	desc = &ring->desc[ring->cur];
2369	data = &ring->data[ring->cur];
2370
2371	/* Prepare TX firmware command. */
2372	cmd = &ring->cmd[ring->cur];
2373	cmd->code = buf->code;
2374	cmd->flags = 0;
2375	cmd->qid = ring->qid;
2376	cmd->idx = ring->cur;
2377
2378	memcpy(cmd->data, buf->data, buf->size);
2379
2380	/* Save and trim IEEE802.11 header. */
2381	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2382	m_adj(buf->m, hdrlen);
2383
2384	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2385	    segs, &nsegs, BUS_DMA_NOWAIT);
2386	if (error != 0 && error != EFBIG) {
2387		device_printf(sc->sc_dev,
2388		    "%s: can't map mbuf (error %d)\n", __func__, error);
2389		goto fail;
2390	}
2391	if (error != 0) {
2392		/* Too many DMA segments, linearize mbuf. */
2393		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2394		if (m1 == NULL) {
2395			device_printf(sc->sc_dev,
2396			    "%s: could not defrag mbuf\n", __func__);
2397			error = ENOBUFS;
2398			goto fail;
2399		}
2400		buf->m = m1;
2401
2402		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2403		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2404		if (error != 0) {
2405			device_printf(sc->sc_dev,
2406			    "%s: can't map mbuf (error %d)\n", __func__,
2407			    error);
2408			goto fail;
2409		}
2410	}
2411
2412	KASSERT(nsegs < WPI_MAX_SCATTER,
2413	    ("too many DMA segments, nsegs (%d) should be less than %d",
2414	     nsegs, WPI_MAX_SCATTER));
2415
2416	data->m = buf->m;
2417	data->ni = buf->ni;
2418
2419	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2420	    __func__, ring->qid, ring->cur, totlen, nsegs);
2421
2422	/* Fill TX descriptor. */
2423	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2424	/* First DMA segment is used by the TX command. */
2425	desc->segs[0].addr = htole32(data->cmd_paddr);
2426	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2427	/* Other DMA segments are for data payload. */
2428	seg = &segs[0];
2429	for (i = 1; i <= nsegs; i++) {
2430		desc->segs[i].addr = htole32(seg->ds_addr);
2431		desc->segs[i].len  = htole32(seg->ds_len);
2432		seg++;
2433	}
2434
2435	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2436	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2437	    BUS_DMASYNC_PREWRITE);
2438	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2439	    BUS_DMASYNC_PREWRITE);
2440
2441	/* Kick TX ring. */
2442	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2443	wpi_update_tx_ring(sc, ring);
2444
2445	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2446		/* Mark TX ring as full if we reach a certain threshold. */
2447		if (++ring->queued > WPI_TX_RING_HIMARK)
2448			sc->qfullmsk |= 1 << ring->qid;
2449
2450		sc->sc_tx_timer = 5;
2451	}
2452
2453	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2454
2455	WPI_TXQ_UNLOCK(sc);
2456
2457	return 0;
2458
2459fail:	m_freem(buf->m);
2460
2461	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2462
2463	WPI_TXQ_UNLOCK(sc);
2464
2465	return error;
2466}
2467
2468/*
2469 * Construct the data packet for a transmit buffer.
2470 */
2471static int
2472wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2473{
2474	const struct ieee80211_txparam *tp;
2475	struct ieee80211vap *vap = ni->ni_vap;
2476	struct ieee80211com *ic = ni->ni_ic;
2477	struct wpi_node *wn = WPI_NODE(ni);
2478	struct ieee80211_channel *chan;
2479	struct ieee80211_frame *wh;
2480	struct ieee80211_key *k = NULL;
2481	struct wpi_buf tx_data;
2482	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2483	uint32_t flags;
2484	uint16_t qos;
2485	uint8_t tid, type;
2486	int ac, error, swcrypt, rate, ismcast, totlen;
2487
2488	wh = mtod(m, struct ieee80211_frame *);
2489	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2490	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2491
2492	/* Select EDCA Access Category and TX ring for this frame. */
2493	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2494 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2495		tid = qos & IEEE80211_QOS_TID;
2496	} else {
2497		qos = 0;
2498		tid = 0;
2499	}
2500	ac = M_WME_GETAC(m);
2501
2502	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2503		ni->ni_chan : ic->ic_curchan;
2504	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2505
2506	/* Choose a TX rate index. */
2507	if (type == IEEE80211_FC0_TYPE_MGT)
2508		rate = tp->mgmtrate;
2509	else if (ismcast)
2510		rate = tp->mcastrate;
2511	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2512		rate = tp->ucastrate;
2513	else if (m->m_flags & M_EAPOL)
2514		rate = tp->mgmtrate;
2515	else {
2516		/* XXX pass pktlen */
2517		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2518		rate = ni->ni_txrate;
2519	}
2520
2521	/* Encrypt the frame if need be. */
2522	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2523		/* Retrieve key for TX. */
2524		k = ieee80211_crypto_encap(ni, m);
2525		if (k == NULL) {
2526			error = ENOBUFS;
2527			goto fail;
2528		}
2529		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2530
2531		/* 802.11 header may have moved. */
2532		wh = mtod(m, struct ieee80211_frame *);
2533	}
2534	totlen = m->m_pkthdr.len;
2535
2536	if (ieee80211_radiotap_active_vap(vap)) {
2537		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2538
2539		tap->wt_flags = 0;
2540		tap->wt_rate = rate;
2541		if (k != NULL)
2542			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2543
2544		ieee80211_radiotap_tx(vap, m);
2545	}
2546
2547	flags = 0;
2548	if (!ismcast) {
2549		/* Unicast frame, check if an ACK is expected. */
2550		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2551		    IEEE80211_QOS_ACKPOLICY_NOACK)
2552			flags |= WPI_TX_NEED_ACK;
2553	}
2554
2555	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2556		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2557
2558	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2559	if (!ismcast) {
2560		/* NB: Group frames are sent using CCK in 802.11b/g. */
2561		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2562			flags |= WPI_TX_NEED_RTS;
2563		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2564		    WPI_RATE_IS_OFDM(rate)) {
2565			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2566				flags |= WPI_TX_NEED_CTS;
2567			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2568				flags |= WPI_TX_NEED_RTS;
2569		}
2570
2571		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2572			flags |= WPI_TX_FULL_TXOP;
2573	}
2574
2575	memset(tx, 0, sizeof (struct wpi_cmd_data));
2576	if (type == IEEE80211_FC0_TYPE_MGT) {
2577		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2578
2579		/* Tell HW to set timestamp in probe responses. */
2580		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2581			flags |= WPI_TX_INSERT_TSTAMP;
2582		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2583		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2584			tx->timeout = htole16(3);
2585		else
2586			tx->timeout = htole16(2);
2587	}
2588
2589	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2590		tx->id = WPI_ID_BROADCAST;
2591	else {
2592		if (wn->id == WPI_ID_UNDEFINED) {
2593			device_printf(sc->sc_dev,
2594			    "%s: undefined node id\n", __func__);
2595			error = EINVAL;
2596			goto fail;
2597		}
2598
2599		tx->id = wn->id;
2600	}
2601
2602	if (type != IEEE80211_FC0_TYPE_MGT)
2603		tx->data_ntries = tp->maxretry;
2604
2605	if (k != NULL && !swcrypt) {
2606		switch (k->wk_cipher->ic_cipher) {
2607		case IEEE80211_CIPHER_AES_CCM:
2608			tx->security = WPI_CIPHER_CCMP;
2609			break;
2610
2611		default:
2612			break;
2613		}
2614
2615		memcpy(tx->key, k->wk_key, k->wk_keylen);
2616	}
2617
2618	tx->len = htole16(totlen);
2619	tx->flags = htole32(flags);
2620	tx->plcp = rate2plcp(rate);
2621	tx->tid = tid;
2622	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2623	tx->ofdm_mask = 0xff;
2624	tx->cck_mask = 0x0f;
2625	tx->rts_ntries = 7;
2626
2627	tx_data.ni = ni;
2628	tx_data.m = m;
2629	tx_data.size = sizeof(struct wpi_cmd_data);
2630	tx_data.code = WPI_CMD_TX_DATA;
2631	tx_data.ac = ac;
2632
2633	return wpi_cmd2(sc, &tx_data);
2634
2635fail:	m_freem(m);
2636	return error;
2637}
2638
2639static int
2640wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2641    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2642{
2643	struct ieee80211vap *vap = ni->ni_vap;
2644	struct ieee80211_frame *wh;
2645	struct wpi_buf tx_data;
2646	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2647	uint32_t flags;
2648	uint8_t type;
2649	int ac, rate, totlen;
2650
2651	wh = mtod(m, struct ieee80211_frame *);
2652	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2653	totlen = m->m_pkthdr.len;
2654
2655	ac = params->ibp_pri & 3;
2656
2657	/* Choose a TX rate index. */
2658	rate = params->ibp_rate0;
2659
2660	flags = 0;
2661	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2662		flags |= WPI_TX_NEED_ACK;
2663	if (params->ibp_flags & IEEE80211_BPF_RTS)
2664		flags |= WPI_TX_NEED_RTS;
2665	if (params->ibp_flags & IEEE80211_BPF_CTS)
2666		flags |= WPI_TX_NEED_CTS;
2667	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2668		flags |= WPI_TX_FULL_TXOP;
2669
2670	if (ieee80211_radiotap_active_vap(vap)) {
2671		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2672
2673		tap->wt_flags = 0;
2674		tap->wt_rate = rate;
2675
2676		ieee80211_radiotap_tx(vap, m);
2677	}
2678
2679	memset(tx, 0, sizeof (struct wpi_cmd_data));
2680	if (type == IEEE80211_FC0_TYPE_MGT) {
2681		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2682
2683		/* Tell HW to set timestamp in probe responses. */
2684		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2685			flags |= WPI_TX_INSERT_TSTAMP;
2686		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2687		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2688			tx->timeout = htole16(3);
2689		else
2690			tx->timeout = htole16(2);
2691	}
2692
2693	tx->len = htole16(totlen);
2694	tx->flags = htole32(flags);
2695	tx->plcp = rate2plcp(rate);
2696	tx->id = WPI_ID_BROADCAST;
2697	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2698	tx->rts_ntries = params->ibp_try1;
2699	tx->data_ntries = params->ibp_try0;
2700
2701	tx_data.ni = ni;
2702	tx_data.m = m;
2703	tx_data.size = sizeof(struct wpi_cmd_data);
2704	tx_data.code = WPI_CMD_TX_DATA;
2705	tx_data.ac = ac;
2706
2707	return wpi_cmd2(sc, &tx_data);
2708}
2709
2710static int
2711wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2712    const struct ieee80211_bpf_params *params)
2713{
2714	struct ieee80211com *ic = ni->ni_ic;
2715	struct ifnet *ifp = ic->ic_ifp;
2716	struct wpi_softc *sc = ifp->if_softc;
2717	int error = 0;
2718
2719	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2720
2721	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2722		ieee80211_free_node(ni);
2723		m_freem(m);
2724		return ENETDOWN;
2725	}
2726
2727	WPI_LOCK(sc);
2728	if (params == NULL) {
2729		/*
2730		 * Legacy path; interpret frame contents to decide
2731		 * precisely how to send the frame.
2732		 */
2733		error = wpi_tx_data(sc, m, ni);
2734	} else {
2735		/*
2736		 * Caller supplied explicit parameters to use in
2737		 * sending the frame.
2738		 */
2739		error = wpi_tx_data_raw(sc, m, ni, params);
2740	}
2741	WPI_UNLOCK(sc);
2742
2743	if (error != 0) {
2744		/* NB: m is reclaimed on tx failure */
2745		ieee80211_free_node(ni);
2746		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2747
2748		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2749
2750		return error;
2751	}
2752
2753	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2754
2755	return 0;
2756}
2757
2758/**
2759 * Process data waiting to be sent on the IFNET output queue
2760 */
2761static void
2762wpi_start(struct ifnet *ifp)
2763{
2764	struct wpi_softc *sc = ifp->if_softc;
2765
2766	WPI_LOCK(sc);
2767	wpi_start_locked(ifp);
2768	WPI_UNLOCK(sc);
2769}
2770
2771static void
2772wpi_start_locked(struct ifnet *ifp)
2773{
2774	struct wpi_softc *sc = ifp->if_softc;
2775	struct ieee80211_node *ni;
2776	struct mbuf *m;
2777
2778	WPI_LOCK_ASSERT(sc);
2779
2780	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2781
2782	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2783	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2784		return;
2785
2786	for (;;) {
2787		if (sc->qfullmsk != 0) {
2788			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2789			break;
2790		}
2791		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2792		if (m == NULL)
2793			break;
2794		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2795		if (wpi_tx_data(sc, m, ni) != 0) {
2796			WPI_UNLOCK(sc);
2797			ieee80211_free_node(ni);
2798			WPI_LOCK(sc);
2799			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2800		}
2801	}
2802
2803	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2804}
2805
2806static void
2807wpi_start_task(void *arg0, int pending)
2808{
2809	struct wpi_softc *sc = arg0;
2810	struct ifnet *ifp = sc->sc_ifp;
2811
2812	wpi_start(ifp);
2813}
2814
2815static void
2816wpi_watchdog_rfkill(void *arg)
2817{
2818	struct wpi_softc *sc = arg;
2819	struct ifnet *ifp = sc->sc_ifp;
2820	struct ieee80211com *ic = ifp->if_l2com;
2821
2822	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2823
2824	/* No need to lock firmware memory. */
2825	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2826		/* Radio kill switch is still off. */
2827		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2828		    sc);
2829	} else
2830		ieee80211_runtask(ic, &sc->sc_radioon_task);
2831}
2832
2833/**
2834 * Called every second, wpi_watchdog used by the watch dog timer
2835 * to check that the card is still alive
2836 */
2837static void
2838wpi_watchdog(void *arg)
2839{
2840	struct wpi_softc *sc = arg;
2841	struct ifnet *ifp = sc->sc_ifp;
2842	struct ieee80211com *ic = ifp->if_l2com;
2843
2844	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2845
2846	if (sc->sc_tx_timer > 0) {
2847		if (--sc->sc_tx_timer == 0) {
2848			if_printf(ifp, "device timeout\n");
2849			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2850			ieee80211_runtask(ic, &sc->sc_reinittask);
2851		}
2852	}
2853
2854	if (sc->sc_scan_timer > 0) {
2855		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2856		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2857			if_printf(ifp, "scan timeout\n");
2858			ieee80211_cancel_scan(vap);
2859			ieee80211_runtask(ic, &sc->sc_reinittask);
2860		}
2861	}
2862
2863	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2864		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2865}
2866
2867static int
2868wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2869{
2870	struct wpi_softc *sc = ifp->if_softc;
2871	struct ieee80211com *ic = ifp->if_l2com;
2872	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2873	struct ifreq *ifr = (struct ifreq *) data;
2874	int error = 0, startall = 0, stop = 0;
2875
2876	switch (cmd) {
2877	case SIOCGIFADDR:
2878		error = ether_ioctl(ifp, cmd, data);
2879		break;
2880	case SIOCSIFFLAGS:
2881		WPI_LOCK(sc);
2882		if (ifp->if_flags & IFF_UP) {
2883			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2884				wpi_init_locked(sc);
2885				if (WPI_READ(sc, WPI_GP_CNTRL) &
2886				    WPI_GP_CNTRL_RFKILL)
2887					startall = 1;
2888				else
2889					stop = 1;
2890			}
2891		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2892			wpi_stop_locked(sc);
2893		WPI_UNLOCK(sc);
2894		if (startall)
2895			ieee80211_start_all(ic);
2896		else if (vap != NULL && stop)
2897			ieee80211_stop(vap);
2898		break;
2899	case SIOCGIFMEDIA:
2900		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2901		break;
2902	default:
2903		error = EINVAL;
2904		break;
2905	}
2906	return error;
2907}
2908
2909/*
2910 * Send a command to the firmware.
2911 */
2912static int
2913wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2914    int async)
2915{
2916	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2917	struct wpi_tx_desc *desc;
2918	struct wpi_tx_data *data;
2919	struct wpi_tx_cmd *cmd;
2920	struct mbuf *m;
2921	bus_addr_t paddr;
2922	int totlen, error;
2923
2924	WPI_TXQ_LOCK(sc);
2925
2926	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2927
2928	if (sc->txq_active == 0) {
2929		/* wpi_stop() was called */
2930		error = 0;
2931		goto fail;
2932	}
2933
2934	if (async == 0)
2935		WPI_LOCK_ASSERT(sc);
2936
2937	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2938	    wpi_cmd_str(code), size, async);
2939
2940	desc = &ring->desc[ring->cur];
2941	data = &ring->data[ring->cur];
2942	totlen = 4 + size;
2943
2944	if (size > sizeof cmd->data) {
2945		/* Command is too large to fit in a descriptor. */
2946		if (totlen > MCLBYTES) {
2947			error = EINVAL;
2948			goto fail;
2949		}
2950		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2951		if (m == NULL) {
2952			error = ENOMEM;
2953			goto fail;
2954		}
2955		cmd = mtod(m, struct wpi_tx_cmd *);
2956		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2957		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2958		if (error != 0) {
2959			m_freem(m);
2960			goto fail;
2961		}
2962		data->m = m;
2963	} else {
2964		cmd = &ring->cmd[ring->cur];
2965		paddr = data->cmd_paddr;
2966	}
2967
2968	cmd->code = code;
2969	cmd->flags = 0;
2970	cmd->qid = ring->qid;
2971	cmd->idx = ring->cur;
2972	memcpy(cmd->data, buf, size);
2973
2974	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2975	desc->segs[0].addr = htole32(paddr);
2976	desc->segs[0].len  = htole32(totlen);
2977
2978	if (size > sizeof cmd->data) {
2979		bus_dmamap_sync(ring->data_dmat, data->map,
2980		    BUS_DMASYNC_PREWRITE);
2981	} else {
2982		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2983		    BUS_DMASYNC_PREWRITE);
2984	}
2985	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2986	    BUS_DMASYNC_PREWRITE);
2987
2988	/* Kick command ring. */
2989	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2990	wpi_update_tx_ring(sc, ring);
2991
2992	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2993
2994	WPI_TXQ_UNLOCK(sc);
2995
2996	if (async)
2997		return 0;
2998
2999	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3000
3001fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3002
3003	WPI_TXQ_UNLOCK(sc);
3004
3005	return error;
3006}
3007
3008/*
3009 * Configure HW multi-rate retries.
3010 */
3011static int
3012wpi_mrr_setup(struct wpi_softc *sc)
3013{
3014	struct ifnet *ifp = sc->sc_ifp;
3015	struct ieee80211com *ic = ifp->if_l2com;
3016	struct wpi_mrr_setup mrr;
3017	int i, error;
3018
3019	/* CCK rates (not used with 802.11a). */
3020	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3021		mrr.rates[i].flags = 0;
3022		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3023		/* Fallback to the immediate lower CCK rate (if any.) */
3024		mrr.rates[i].next =
3025		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3026		/* Try one time at this rate before falling back to "next". */
3027		mrr.rates[i].ntries = 1;
3028	}
3029	/* OFDM rates (not used with 802.11b). */
3030	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3031		mrr.rates[i].flags = 0;
3032		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3033		/* Fallback to the immediate lower rate (if any.) */
3034		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3035		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3036		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3037			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3038		    i - 1;
3039		/* Try one time at this rate before falling back to "next". */
3040		mrr.rates[i].ntries = 1;
3041	}
3042	/* Setup MRR for control frames. */
3043	mrr.which = htole32(WPI_MRR_CTL);
3044	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3045	if (error != 0) {
3046		device_printf(sc->sc_dev,
3047		    "could not setup MRR for control frames\n");
3048		return error;
3049	}
3050	/* Setup MRR for data frames. */
3051	mrr.which = htole32(WPI_MRR_DATA);
3052	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3053	if (error != 0) {
3054		device_printf(sc->sc_dev,
3055		    "could not setup MRR for data frames\n");
3056		return error;
3057	}
3058	return 0;
3059}
3060
3061static int
3062wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3063{
3064	struct ieee80211com *ic = ni->ni_ic;
3065	struct wpi_node *wn = WPI_NODE(ni);
3066	struct wpi_node_info node;
3067
3068	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3069
3070	if (wn->id == WPI_ID_UNDEFINED)
3071		return EINVAL;
3072
3073	memset(&node, 0, sizeof node);
3074	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3075	node.id = wn->id;
3076	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3077	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3078	node.action = htole32(WPI_ACTION_SET_RATE);
3079	node.antenna = WPI_ANTENNA_BOTH;
3080
3081	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3082}
3083
3084/*
3085 * Broadcast node is used to send group-addressed and management frames.
3086 */
3087static int
3088wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3089{
3090	struct ifnet *ifp = sc->sc_ifp;
3091	struct ieee80211com *ic = ifp->if_l2com;
3092	struct wpi_node_info node;
3093
3094	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3095
3096	memset(&node, 0, sizeof node);
3097	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3098	node.id = WPI_ID_BROADCAST;
3099	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3100	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3101	node.action = htole32(WPI_ACTION_SET_RATE);
3102	node.antenna = WPI_ANTENNA_BOTH;
3103
3104	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3105}
3106
3107static int
3108wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3109{
3110	struct wpi_node *wn = WPI_NODE(ni);
3111	int error;
3112
3113	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3114
3115	wn->id = wpi_add_node_entry_sta(sc);
3116
3117	if ((error = wpi_add_node(sc, ni)) != 0) {
3118		wpi_del_node_entry(sc, wn->id);
3119		wn->id = WPI_ID_UNDEFINED;
3120		return error;
3121	}
3122
3123	return 0;
3124}
3125
3126static int
3127wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3128{
3129	struct wpi_node *wn = WPI_NODE(ni);
3130	int error;
3131
3132	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3133
3134	if (wn->id != WPI_ID_UNDEFINED)
3135		return EINVAL;
3136
3137	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3138		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3139		return ENOMEM;
3140	}
3141
3142	if ((error = wpi_add_node(sc, ni)) != 0) {
3143		wpi_del_node_entry(sc, wn->id);
3144		wn->id = WPI_ID_UNDEFINED;
3145		return error;
3146	}
3147
3148	return 0;
3149}
3150
3151static void
3152wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3153{
3154	struct wpi_node *wn = WPI_NODE(ni);
3155	struct wpi_cmd_del_node node;
3156	int error;
3157
3158	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3159
3160	if (wn->id == WPI_ID_UNDEFINED) {
3161		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
3162		    __func__);
3163		return;
3164	}
3165
3166	memset(&node, 0, sizeof node);
3167	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3168	node.count = 1;
3169
3170	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3171	if (error != 0) {
3172		device_printf(sc->sc_dev,
3173		    "%s: could not delete node %u, error %d\n", __func__,
3174		    wn->id, error);
3175	}
3176}
3177
3178static int
3179wpi_updateedca(struct ieee80211com *ic)
3180{
3181#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3182	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3183	struct wpi_edca_params cmd;
3184	int aci, error;
3185
3186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3187
3188	memset(&cmd, 0, sizeof cmd);
3189	cmd.flags = htole32(WPI_EDCA_UPDATE);
3190	for (aci = 0; aci < WME_NUM_AC; aci++) {
3191		const struct wmeParams *ac =
3192		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3193		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3194		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3195		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3196		cmd.ac[aci].txoplimit =
3197		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3198
3199		DPRINTF(sc, WPI_DEBUG_EDCA,
3200		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3201		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3202		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3203		    cmd.ac[aci].txoplimit);
3204	}
3205	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3206
3207	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3208
3209	return error;
3210#undef WPI_EXP2
3211}
3212
3213static void
3214wpi_set_promisc(struct wpi_softc *sc)
3215{
3216	struct ifnet *ifp = sc->sc_ifp;
3217	uint32_t promisc_filter;
3218
3219	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3220
3221	if (ifp->if_flags & IFF_PROMISC)
3222		sc->rxon.filter |= htole32(promisc_filter);
3223	else
3224		sc->rxon.filter &= ~htole32(promisc_filter);
3225}
3226
3227static void
3228wpi_update_promisc(struct ifnet *ifp)
3229{
3230	struct wpi_softc *sc = ifp->if_softc;
3231
3232	WPI_LOCK(sc);
3233	wpi_set_promisc(sc);
3234
3235	if (wpi_send_rxon(sc, 1, 1) != 0) {
3236		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3237		    __func__);
3238	}
3239	WPI_UNLOCK(sc);
3240}
3241
3242static void
3243wpi_update_mcast(struct ifnet *ifp)
3244{
3245	/* Ignore */
3246}
3247
3248static void
3249wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3250{
3251	struct wpi_cmd_led led;
3252
3253	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3254
3255	led.which = which;
3256	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3257	led.off = off;
3258	led.on = on;
3259	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3260}
3261
3262static int
3263wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3264{
3265	struct wpi_cmd_timing cmd;
3266	uint64_t val, mod;
3267
3268	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3269
3270	memset(&cmd, 0, sizeof cmd);
3271	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3272	cmd.bintval = htole16(ni->ni_intval);
3273	cmd.lintval = htole16(10);
3274
3275	/* Compute remaining time until next beacon. */
3276	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3277	mod = le64toh(cmd.tstamp) % val;
3278	cmd.binitval = htole32((uint32_t)(val - mod));
3279
3280	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3281	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3282
3283	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3284}
3285
3286/*
3287 * This function is called periodically (every 60 seconds) to adjust output
3288 * power to temperature changes.
3289 */
3290static void
3291wpi_power_calibration(struct wpi_softc *sc)
3292{
3293	int temp;
3294
3295	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3296
3297	/* Update sensor data. */
3298	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3299	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3300
3301	/* Sanity-check read value. */
3302	if (temp < -260 || temp > 25) {
3303		/* This can't be correct, ignore. */
3304		DPRINTF(sc, WPI_DEBUG_TEMP,
3305		    "out-of-range temperature reported: %d\n", temp);
3306		return;
3307	}
3308
3309	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3310
3311	/* Adjust Tx power if need be. */
3312	if (abs(temp - sc->temp) <= 6)
3313		return;
3314
3315	sc->temp = temp;
3316
3317	if (wpi_set_txpower(sc, 1) != 0) {
3318		/* just warn, too bad for the automatic calibration... */
3319		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3320	}
3321}
3322
3323/*
3324 * Set TX power for current channel.
3325 */
3326static int
3327wpi_set_txpower(struct wpi_softc *sc, int async)
3328{
3329	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3330	struct ieee80211_channel *ch;
3331	struct wpi_power_group *group;
3332	struct wpi_cmd_txpower cmd;
3333	uint8_t chan;
3334	int idx, i;
3335
3336	/* Retrieve current channel from last RXON. */
3337	chan = sc->rxon.chan;
3338	ch = &ic->ic_channels[chan];
3339
3340	/* Find the TX power group to which this channel belongs. */
3341	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3342		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3343			if (chan <= group->chan)
3344				break;
3345	} else
3346		group = &sc->groups[0];
3347
3348	memset(&cmd, 0, sizeof cmd);
3349	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3350	cmd.chan = htole16(chan);
3351
3352	/* Set TX power for all OFDM and CCK rates. */
3353	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3354		/* Retrieve TX power for this channel/rate. */
3355		idx = wpi_get_power_index(sc, group, ch, i);
3356
3357		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3358
3359		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3360			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3361			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3362		} else {
3363			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3364			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3365		}
3366		DPRINTF(sc, WPI_DEBUG_TEMP,
3367		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3368	}
3369
3370	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3371}
3372
3373/*
3374 * Determine Tx power index for a given channel/rate combination.
3375 * This takes into account the regulatory information from EEPROM and the
3376 * current temperature.
3377 */
3378static int
3379wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3380    struct ieee80211_channel *c, int ridx)
3381{
3382/* Fixed-point arithmetic division using a n-bit fractional part. */
3383#define fdivround(a, b, n)	\
3384	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3385
3386/* Linear interpolation. */
3387#define interpolate(x, x1, y1, x2, y2, n)	\
3388	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3389
3390	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3391	struct wpi_power_sample *sample;
3392	int pwr, idx;
3393	u_int chan;
3394
3395	/* Get channel number. */
3396	chan = ieee80211_chan2ieee(ic, c);
3397
3398	/* Default TX power is group maximum TX power minus 3dB. */
3399	pwr = group->maxpwr / 2;
3400
3401	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3402	switch (ridx) {
3403	case WPI_RIDX_OFDM36:
3404		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3405		break;
3406	case WPI_RIDX_OFDM48:
3407		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3408		break;
3409	case WPI_RIDX_OFDM54:
3410		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3411		break;
3412	}
3413
3414	/* Never exceed the channel maximum allowed TX power. */
3415	pwr = min(pwr, sc->maxpwr[chan]);
3416
3417	/* Retrieve TX power index into gain tables from samples. */
3418	for (sample = group->samples; sample < &group->samples[3]; sample++)
3419		if (pwr > sample[1].power)
3420			break;
3421	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3422	idx = interpolate(pwr, sample[0].power, sample[0].index,
3423	    sample[1].power, sample[1].index, 19);
3424
3425	/*-
3426	 * Adjust power index based on current temperature:
3427	 * - if cooler than factory-calibrated: decrease output power
3428	 * - if warmer than factory-calibrated: increase output power
3429	 */
3430	idx -= (sc->temp - group->temp) * 11 / 100;
3431
3432	/* Decrease TX power for CCK rates (-5dB). */
3433	if (ridx >= WPI_RIDX_CCK1)
3434		idx += 10;
3435
3436	/* Make sure idx stays in a valid range. */
3437	if (idx < 0)
3438		return 0;
3439	if (idx > WPI_MAX_PWR_INDEX)
3440		return WPI_MAX_PWR_INDEX;
3441	return idx;
3442
3443#undef interpolate
3444#undef fdivround
3445}
3446
3447/*
3448 * Set STA mode power saving level (between 0 and 5).
3449 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3450 */
3451static int
3452wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3453{
3454	struct wpi_pmgt_cmd cmd;
3455	const struct wpi_pmgt *pmgt;
3456	uint32_t max, skip_dtim;
3457	uint32_t reg;
3458	int i;
3459
3460	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3461	    "%s: dtim=%d, level=%d, async=%d\n",
3462	    __func__, dtim, level, async);
3463
3464	/* Select which PS parameters to use. */
3465	if (dtim <= 10)
3466		pmgt = &wpi_pmgt[0][level];
3467	else
3468		pmgt = &wpi_pmgt[1][level];
3469
3470	memset(&cmd, 0, sizeof cmd);
3471	if (level != 0)	/* not CAM */
3472		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3473	/* Retrieve PCIe Active State Power Management (ASPM). */
3474	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3475	if (!(reg & 0x1))	/* L0s Entry disabled. */
3476		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3477
3478	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3479	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3480
3481	if (dtim == 0) {
3482		dtim = 1;
3483		skip_dtim = 0;
3484	} else
3485		skip_dtim = pmgt->skip_dtim;
3486
3487	if (skip_dtim != 0) {
3488		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3489		max = pmgt->intval[4];
3490		if (max == (uint32_t)-1)
3491			max = dtim * (skip_dtim + 1);
3492		else if (max > dtim)
3493			max = (max / dtim) * dtim;
3494	} else
3495		max = dtim;
3496
3497	for (i = 0; i < 5; i++)
3498		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3499
3500	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3501}
3502
3503static int
3504wpi_send_btcoex(struct wpi_softc *sc)
3505{
3506	struct wpi_bluetooth cmd;
3507
3508	memset(&cmd, 0, sizeof cmd);
3509	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3510	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3511	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3512	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3513	    __func__);
3514	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3515}
3516
3517static int
3518wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3519{
3520	int error;
3521
3522	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3523		struct wpi_assoc rxon_assoc;
3524
3525		rxon_assoc.flags = sc->rxon.flags;
3526		rxon_assoc.filter = sc->rxon.filter;
3527		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3528		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3529		rxon_assoc.reserved = 0;
3530
3531		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3532		    sizeof (struct wpi_assoc), async);
3533	} else {
3534		if (async)
3535			WPI_NT_LOCK(sc);
3536
3537		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3538		    sizeof (struct wpi_rxon), async);
3539
3540		wpi_clear_node_table(sc);
3541
3542		if (async)
3543			WPI_NT_UNLOCK(sc);
3544	}
3545	if (error != 0) {
3546		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3547		    error);
3548		return error;
3549	}
3550
3551	/* Configuration has changed, set Tx power accordingly. */
3552	if ((error = wpi_set_txpower(sc, async)) != 0) {
3553		device_printf(sc->sc_dev,
3554		    "%s: could not set TX power, error %d\n", __func__, error);
3555		return error;
3556	}
3557
3558	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3559		/* Add broadcast node. */
3560		error = wpi_add_broadcast_node(sc, async);
3561		if (error != 0) {
3562			device_printf(sc->sc_dev,
3563			    "could not add broadcast node, error %d\n", error);
3564			return error;
3565		}
3566	}
3567
3568	return 0;
3569}
3570
3571/**
3572 * Configure the card to listen to a particular channel, this transisions the
3573 * card in to being able to receive frames from remote devices.
3574 */
3575static int
3576wpi_config(struct wpi_softc *sc)
3577{
3578	struct ifnet *ifp = sc->sc_ifp;
3579	struct ieee80211com *ic = ifp->if_l2com;
3580	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3581	uint32_t flags;
3582	int error;
3583
3584	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3585
3586	/* Set power saving level to CAM during initialization. */
3587	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3588		device_printf(sc->sc_dev,
3589		    "%s: could not set power saving level\n", __func__);
3590		return error;
3591	}
3592
3593	/* Configure bluetooth coexistence. */
3594	if ((error = wpi_send_btcoex(sc)) != 0) {
3595		device_printf(sc->sc_dev,
3596		    "could not configure bluetooth coexistence\n");
3597		return error;
3598	}
3599
3600	/* Configure adapter. */
3601	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3602	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3603
3604	/* Set default channel. */
3605	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3606	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3607	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3608		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3609
3610	sc->rxon.filter = WPI_FILTER_MULTICAST;
3611	switch (ic->ic_opmode) {
3612	case IEEE80211_M_STA:
3613		sc->rxon.mode = WPI_MODE_STA;
3614		break;
3615	case IEEE80211_M_IBSS:
3616		sc->rxon.mode = WPI_MODE_IBSS;
3617		sc->rxon.filter |= WPI_FILTER_BEACON;
3618		break;
3619	/* XXX workaround for passive channels selection */
3620	case IEEE80211_M_AHDEMO:
3621	case IEEE80211_M_HOSTAP:
3622		sc->rxon.mode = WPI_MODE_HOSTAP;
3623		break;
3624	case IEEE80211_M_MONITOR:
3625		sc->rxon.mode = WPI_MODE_MONITOR;
3626		break;
3627	default:
3628		device_printf(sc->sc_dev, "unknown opmode %d\n",
3629		    ic->ic_opmode);
3630		return EINVAL;
3631	}
3632	sc->rxon.filter = htole32(sc->rxon.filter);
3633	wpi_set_promisc(sc);
3634	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3635	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3636
3637	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3638		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3639		    __func__);
3640		return error;
3641	}
3642
3643	/* Setup rate scalling. */
3644	if ((error = wpi_mrr_setup(sc)) != 0) {
3645		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3646		    error);
3647		return error;
3648	}
3649
3650	/* Disable beacon notifications (unused). */
3651	flags = WPI_STATISTICS_BEACON_DISABLE;
3652	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3653	if (error != 0) {
3654		device_printf(sc->sc_dev,
3655		    "could not disable beacon statistics, error %d\n", error);
3656		return error;
3657	}
3658
3659	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3660
3661	return 0;
3662}
3663
3664static uint16_t
3665wpi_get_active_dwell_time(struct wpi_softc *sc,
3666    struct ieee80211_channel *c, uint8_t n_probes)
3667{
3668	/* No channel? Default to 2GHz settings. */
3669	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3670		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3671		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3672	}
3673
3674	/* 5GHz dwell time. */
3675	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3676	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3677}
3678
3679/*
3680 * Limit the total dwell time to 85% of the beacon interval.
3681 *
3682 * Returns the dwell time in milliseconds.
3683 */
3684static uint16_t
3685wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3686{
3687	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3688	struct ieee80211vap *vap = NULL;
3689	int bintval = 0;
3690
3691	/* bintval is in TU (1.024mS) */
3692	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3693		vap = TAILQ_FIRST(&ic->ic_vaps);
3694		bintval = vap->iv_bss->ni_intval;
3695	}
3696
3697	/*
3698	 * If it's non-zero, we should calculate the minimum of
3699	 * it and the DWELL_BASE.
3700	 *
3701	 * XXX Yes, the math should take into account that bintval
3702	 * is 1.024mS, not 1mS..
3703	 */
3704	if (bintval > 0) {
3705		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3706		    bintval);
3707		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3708	}
3709
3710	/* No association context? Default. */
3711	return (WPI_PASSIVE_DWELL_BASE);
3712}
3713
3714static uint16_t
3715wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3716{
3717	uint16_t passive;
3718
3719	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3720		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3721	else
3722		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3723
3724	/* Clamp to the beacon interval if we're associated. */
3725	return (wpi_limit_dwell(sc, passive));
3726}
3727
3728/*
3729 * Send a scan request to the firmware.
3730 */
3731static int
3732wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3733{
3734	struct ifnet *ifp = sc->sc_ifp;
3735	struct ieee80211com *ic = ifp->if_l2com;
3736	struct ieee80211_scan_state *ss = ic->ic_scan;
3737	struct ieee80211vap *vap = ss->ss_vap;
3738	struct wpi_scan_hdr *hdr;
3739	struct wpi_cmd_data *tx;
3740	struct wpi_scan_essid *essids;
3741	struct wpi_scan_chan *chan;
3742	struct ieee80211_frame *wh;
3743	struct ieee80211_rateset *rs;
3744	uint16_t dwell_active, dwell_passive;
3745	uint8_t *buf, *frm;
3746	int buflen, error, i, nssid;
3747
3748	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3749
3750	/*
3751	 * We are absolutely not allowed to send a scan command when another
3752	 * scan command is pending.
3753	 */
3754	if (sc->sc_scan_timer) {
3755		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3756		    __func__);
3757
3758		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3759
3760		return (EAGAIN);
3761	}
3762
3763	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3764	if (buf == NULL) {
3765		device_printf(sc->sc_dev,
3766		    "%s: could not allocate buffer for scan command\n",
3767		    __func__);
3768		error = ENOMEM;
3769		goto fail;
3770	}
3771	hdr = (struct wpi_scan_hdr *)buf;
3772
3773	/*
3774	 * Move to the next channel if no packets are received within 10 msecs
3775	 * after sending the probe request.
3776	 */
3777	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3778	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3779	/*
3780	 * Max needs to be greater than active and passive and quiet!
3781	 * It's also in microseconds!
3782	 */
3783	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3784	hdr->pause_svc = htole32((4 << 24) |
3785	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3786	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3787
3788	tx = (struct wpi_cmd_data *)(hdr + 1);
3789	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3790	tx->id = WPI_ID_BROADCAST;
3791	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3792
3793	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3794		/* Send probe requests at 6Mbps. */
3795		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3796		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3797	} else {
3798		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3799		/* Send probe requests at 1Mbps. */
3800		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3801		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3802	}
3803
3804	essids = (struct wpi_scan_essid *)(tx + 1);
3805	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3806	for (i = 0; i < nssid; i++) {
3807		essids[i].id = IEEE80211_ELEMID_SSID;
3808		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3809		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3810#ifdef WPI_DEBUG
3811		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3812			printf("Scanning Essid: ");
3813			ieee80211_print_essid(essids[i].data, essids[i].len);
3814			printf("\n");
3815		}
3816#endif
3817	}
3818
3819	/*
3820	 * Build a probe request frame.  Most of the following code is a
3821	 * copy & paste of what is done in net80211.
3822	 */
3823	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3824	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3825		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3826	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3827	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3828	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3829	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3830	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3831	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3832
3833	frm = (uint8_t *)(wh + 1);
3834	frm = ieee80211_add_ssid(frm, NULL, 0);
3835	frm = ieee80211_add_rates(frm, rs);
3836	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3837		frm = ieee80211_add_xrates(frm, rs);
3838
3839	/* Set length of probe request. */
3840	tx->len = htole16(frm - (uint8_t *)wh);
3841
3842	/*
3843	 * Construct information about the channel that we
3844	 * want to scan. The firmware expects this to be directly
3845	 * after the scan probe request
3846	 */
3847	chan = (struct wpi_scan_chan *)frm;
3848	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3849	chan->flags = 0;
3850	if (nssid) {
3851		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3852		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3853	} else
3854		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3855
3856	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3857		chan->flags |= WPI_CHAN_ACTIVE;
3858
3859	/*
3860	 * Calculate the active/passive dwell times.
3861	 */
3862
3863	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3864	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3865
3866	/* Make sure they're valid. */
3867	if (dwell_passive <= dwell_active)
3868		dwell_passive = dwell_active + 1;
3869
3870	chan->active = htole16(dwell_active);
3871	chan->passive = htole16(dwell_passive);
3872
3873	chan->dsp_gain = 0x6e;  /* Default level */
3874
3875	if (IEEE80211_IS_CHAN_5GHZ(c))
3876		chan->rf_gain = 0x3b;
3877	else
3878		chan->rf_gain = 0x28;
3879
3880	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3881	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3882
3883	hdr->nchan++;
3884	chan++;
3885
3886	buflen = (uint8_t *)chan - buf;
3887	hdr->len = htole16(buflen);
3888
3889	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3890	    hdr->nchan);
3891	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3892	free(buf, M_DEVBUF);
3893
3894	if (error != 0)
3895		goto fail;
3896
3897	sc->sc_scan_timer = 5;
3898
3899	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3900
3901	return 0;
3902
3903fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3904
3905	return error;
3906}
3907
3908static int
3909wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3910{
3911	struct ieee80211com *ic = vap->iv_ic;
3912	struct ieee80211_node *ni = vap->iv_bss;
3913	int error;
3914
3915	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3916
3917	/* Update adapter configuration. */
3918	sc->rxon.associd = 0;
3919	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3920	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3921	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3922	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3923	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3924		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3925	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3926		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3927	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3928		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3929	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3930		sc->rxon.cck_mask  = 0;
3931		sc->rxon.ofdm_mask = 0x15;
3932	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3933		sc->rxon.cck_mask  = 0x03;
3934		sc->rxon.ofdm_mask = 0;
3935	} else {
3936		/* Assume 802.11b/g. */
3937		sc->rxon.cck_mask  = 0x0f;
3938		sc->rxon.ofdm_mask = 0x15;
3939	}
3940
3941	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3942	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3943	    sc->rxon.ofdm_mask);
3944
3945	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3946		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3947		    __func__);
3948	}
3949
3950	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3951
3952	return error;
3953}
3954
3955static int
3956wpi_config_beacon(struct wpi_vap *wvp)
3957{
3958	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
3959	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
3960	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3961	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3962	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
3963	struct ieee80211_tim_ie *tie;
3964	struct mbuf *m;
3965	uint8_t *ptr;
3966	int error;
3967
3968	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3969
3970	WPI_LOCK_ASSERT(sc);
3971
3972	cmd->len = htole16(bcn->m->m_pkthdr.len);
3973	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3974	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3975
3976	/* XXX seems to be unused */
3977	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
3978		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
3979		ptr = mtod(bcn->m, uint8_t *);
3980
3981		cmd->tim = htole16(bo->bo_tim - ptr);
3982		cmd->timsz = tie->tim_len;
3983	}
3984
3985	/* Necessary for recursion in ieee80211_beacon_update(). */
3986	m = bcn->m;
3987	bcn->m = m_dup(m, M_NOWAIT);
3988	if (bcn->m == NULL) {
3989		device_printf(sc->sc_dev,
3990		    "%s: could not copy beacon frame\n", __func__);
3991		error = ENOMEM;
3992		goto end;
3993	}
3994
3995	if ((error = wpi_cmd2(sc, bcn)) != 0) {
3996		device_printf(sc->sc_dev,
3997		    "%s: could not update beacon frame, error %d", __func__,
3998		    error);
3999	}
4000
4001	/* Restore mbuf. */
4002end:	bcn->m = m;
4003
4004	return error;
4005}
4006
4007static int
4008wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4009{
4010	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4011	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4012	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4013	struct mbuf *m;
4014	int error;
4015
4016	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4017
4018	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4019		return EINVAL;
4020
4021	m = ieee80211_beacon_alloc(ni, bo);
4022	if (m == NULL) {
4023		device_printf(sc->sc_dev,
4024		    "%s: could not allocate beacon frame\n", __func__);
4025		return ENOMEM;
4026	}
4027
4028	if (bcn->m != NULL)
4029		m_freem(bcn->m);
4030
4031	bcn->m = m;
4032
4033	error = wpi_config_beacon(wvp);
4034
4035	return error;
4036}
4037
4038static void
4039wpi_update_beacon(struct ieee80211vap *vap, int item)
4040{
4041	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4042	struct wpi_vap *wvp = WPI_VAP(vap);
4043	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4044	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4045	struct ieee80211_node *ni = vap->iv_bss;
4046	int mcast = 0;
4047
4048	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4049
4050	WPI_LOCK(sc);
4051	if (bcn->m == NULL) {
4052		bcn->m = ieee80211_beacon_alloc(ni, bo);
4053		if (bcn->m == NULL) {
4054			device_printf(sc->sc_dev,
4055			    "%s: could not allocate beacon frame\n", __func__);
4056			WPI_UNLOCK(sc);
4057
4058			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4059			    __func__);
4060
4061			return;
4062		}
4063	}
4064	WPI_UNLOCK(sc);
4065
4066	if (item == IEEE80211_BEACON_TIM)
4067		mcast = 1;	/* TODO */
4068
4069	setbit(bo->bo_flags, item);
4070	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4071
4072	WPI_LOCK(sc);
4073	wpi_config_beacon(wvp);
4074	WPI_UNLOCK(sc);
4075
4076	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4077}
4078
4079static void
4080wpi_newassoc(struct ieee80211_node *ni, int isnew)
4081{
4082	struct ieee80211vap *vap = ni->ni_vap;
4083	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4084	struct wpi_node *wn = WPI_NODE(ni);
4085	int error;
4086
4087	WPI_NT_LOCK(sc);
4088
4089	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4090
4091	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4092		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4093			device_printf(sc->sc_dev,
4094			    "%s: could not add IBSS node, error %d\n",
4095			    __func__, error);
4096		}
4097	}
4098	WPI_NT_UNLOCK(sc);
4099}
4100
4101static int
4102wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4103{
4104	struct ieee80211com *ic = vap->iv_ic;
4105	struct ieee80211_node *ni = vap->iv_bss;
4106	int error;
4107
4108	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4109
4110	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4111		/* Link LED blinks while monitoring. */
4112		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4113		return 0;
4114	}
4115
4116	/* XXX kernel panic workaround */
4117	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
4118		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4119		    __func__);
4120		return EINVAL;
4121	}
4122
4123	if ((error = wpi_set_timing(sc, ni)) != 0) {
4124		device_printf(sc->sc_dev,
4125		    "%s: could not set timing, error %d\n", __func__, error);
4126		return error;
4127	}
4128
4129	/* Update adapter configuration. */
4130	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4131	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4132	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4133	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4134	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4135		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4136	/* Short preamble and slot time are negotiated when associating. */
4137	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
4138	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4139		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4140	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4141		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4142	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4143		sc->rxon.cck_mask  = 0;
4144		sc->rxon.ofdm_mask = 0x15;
4145	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4146		sc->rxon.cck_mask  = 0x03;
4147		sc->rxon.ofdm_mask = 0;
4148	} else {
4149		/* Assume 802.11b/g. */
4150		sc->rxon.cck_mask  = 0x0f;
4151		sc->rxon.ofdm_mask = 0x15;
4152	}
4153	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4154
4155	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
4156
4157	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4158	    sc->rxon.chan, sc->rxon.flags);
4159
4160	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4161		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4162		    __func__);
4163		return error;
4164	}
4165
4166	if (vap->iv_opmode == IEEE80211_M_IBSS) {
4167		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4168			device_printf(sc->sc_dev,
4169			    "%s: could not setup beacon, error %d\n", __func__,
4170			    error);
4171			return error;
4172		}
4173	}
4174
4175	if (vap->iv_opmode == IEEE80211_M_STA) {
4176		/* Add BSS node. */
4177		WPI_NT_LOCK(sc);
4178		error = wpi_add_sta_node(sc, ni);
4179		WPI_NT_UNLOCK(sc);
4180		if (error != 0) {
4181			device_printf(sc->sc_dev,
4182			    "%s: could not add BSS node, error %d\n", __func__,
4183			    error);
4184			return error;
4185		}
4186	}
4187
4188	/* Link LED always on while associated. */
4189	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4190
4191	/* Start periodic calibration timer. */
4192	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4193
4194	/* Enable power-saving mode if requested by user. */
4195	if (vap->iv_flags & IEEE80211_F_PMGTON)
4196		(void)wpi_set_pslevel(sc, 0, 3, 1);
4197	else
4198		(void)wpi_set_pslevel(sc, 0, 0, 1);
4199
4200	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4201
4202	return 0;
4203}
4204
4205static int
4206wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
4207    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
4208{
4209	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4210
4211	if (!(&vap->iv_nw_keys[0] <= k &&
4212	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
4213		if (k->wk_flags & IEEE80211_KEY_GROUP) {
4214			/* should not happen */
4215			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
4216			    __func__);
4217			return 0;
4218		}
4219		*keyix = 0;	/* NB: use key index 0 for ucast key */
4220	} else {
4221		*keyix = *rxkeyix = k - vap->iv_nw_keys;
4222
4223		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
4224			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
4225	}
4226	return 1;
4227}
4228
4229static int
4230wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4231    const uint8_t mac[IEEE80211_ADDR_LEN])
4232{
4233	const struct ieee80211_cipher *cip = k->wk_cipher;
4234	struct ieee80211com *ic = vap->iv_ic;
4235	struct ieee80211_node *ni = vap->iv_bss;
4236	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4237	struct wpi_node *wn = WPI_NODE(ni);
4238	struct wpi_node_info node;
4239	uint16_t kflags;
4240	int error;
4241
4242	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4243
4244	switch (cip->ic_cipher) {
4245	case IEEE80211_CIPHER_AES_CCM:
4246		if (k->wk_flags & IEEE80211_KEY_GROUP)
4247			return 1;
4248
4249		kflags = WPI_KFLAG_CCMP;
4250		break;
4251	default:
4252		/* null_key_set() */
4253		return 1;
4254	}
4255
4256	if (wn->id == WPI_ID_UNDEFINED)
4257		return 0;
4258
4259	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4260	if (k->wk_flags & IEEE80211_KEY_GROUP)
4261		kflags |= WPI_KFLAG_MULTICAST;
4262
4263	memset(&node, 0, sizeof node);
4264	node.id = wn->id;
4265	node.control = WPI_NODE_UPDATE;
4266	node.flags = WPI_FLAG_KEY_SET;
4267	node.kflags = htole16(kflags);
4268	memcpy(node.key, k->wk_key, k->wk_keylen);
4269
4270	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4271	    node.id);
4272
4273	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4274	if (error != 0) {
4275		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4276		    error);
4277		return 0;
4278	}
4279
4280	return 1;
4281}
4282
4283static int
4284wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4285{
4286	const struct ieee80211_cipher *cip = k->wk_cipher;
4287	struct ieee80211com *ic = vap->iv_ic;
4288	struct ieee80211_node *ni = vap->iv_bss;
4289	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4290	struct wpi_node *wn = WPI_NODE(ni);
4291	struct wpi_node_info node;
4292
4293	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4294
4295	switch (cip->ic_cipher) {
4296	case IEEE80211_CIPHER_AES_CCM:
4297		break;
4298	default:
4299		/* null_key_delete() */
4300		return 1;
4301	}
4302
4303	if (vap->iv_state != IEEE80211_S_RUN ||
4304	    (k->wk_flags & IEEE80211_KEY_GROUP))
4305		return 1; /* Nothing to do. */
4306
4307	memset(&node, 0, sizeof node);
4308	node.id = wn->id;
4309	node.control = WPI_NODE_UPDATE;
4310	node.flags = WPI_FLAG_KEY_SET;
4311
4312	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4313	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4314
4315	return 1;
4316}
4317
4318/*
4319 * This function is called after the runtime firmware notifies us of its
4320 * readiness (called in a process context).
4321 */
4322static int
4323wpi_post_alive(struct wpi_softc *sc)
4324{
4325	int ntries, error;
4326
4327	/* Check (again) that the radio is not disabled. */
4328	if ((error = wpi_nic_lock(sc)) != 0)
4329		return error;
4330
4331	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4332
4333	/* NB: Runtime firmware must be up and running. */
4334	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4335 		device_printf(sc->sc_dev,
4336		    "RF switch: radio disabled (%s)\n", __func__);
4337		wpi_nic_unlock(sc);
4338		return EPERM;   /* :-) */
4339	}
4340	wpi_nic_unlock(sc);
4341
4342	/* Wait for thermal sensor to calibrate. */
4343	for (ntries = 0; ntries < 1000; ntries++) {
4344		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4345			break;
4346		DELAY(10);
4347	}
4348
4349	if (ntries == 1000) {
4350		device_printf(sc->sc_dev,
4351		    "timeout waiting for thermal sensor calibration\n");
4352		return ETIMEDOUT;
4353	}
4354
4355	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4356	return 0;
4357}
4358
4359/*
4360 * The firmware boot code is small and is intended to be copied directly into
4361 * the NIC internal memory (no DMA transfer).
4362 */
4363static int
4364wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4365{
4366	int error, ntries;
4367
4368	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4369
4370	size /= sizeof (uint32_t);
4371
4372	if ((error = wpi_nic_lock(sc)) != 0)
4373		return error;
4374
4375	/* Copy microcode image into NIC memory. */
4376	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4377	    (const uint32_t *)ucode, size);
4378
4379	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4380	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4381	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4382
4383	/* Start boot load now. */
4384	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4385
4386	/* Wait for transfer to complete. */
4387	for (ntries = 0; ntries < 1000; ntries++) {
4388		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4389		DPRINTF(sc, WPI_DEBUG_HW,
4390		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4391		    WPI_FH_TX_STATUS_IDLE(6),
4392		    status & WPI_FH_TX_STATUS_IDLE(6));
4393		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4394			DPRINTF(sc, WPI_DEBUG_HW,
4395			    "Status Match! - ntries = %d\n", ntries);
4396			break;
4397		}
4398		DELAY(10);
4399	}
4400	if (ntries == 1000) {
4401		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4402		    __func__);
4403		wpi_nic_unlock(sc);
4404		return ETIMEDOUT;
4405	}
4406
4407	/* Enable boot after power up. */
4408	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4409
4410	wpi_nic_unlock(sc);
4411	return 0;
4412}
4413
4414static int
4415wpi_load_firmware(struct wpi_softc *sc)
4416{
4417	struct wpi_fw_info *fw = &sc->fw;
4418	struct wpi_dma_info *dma = &sc->fw_dma;
4419	int error;
4420
4421	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4422
4423	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4424	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4425	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4426	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4427	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4428
4429	/* Tell adapter where to find initialization sections. */
4430	if ((error = wpi_nic_lock(sc)) != 0)
4431		return error;
4432	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4433	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4434	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4435	    dma->paddr + WPI_FW_DATA_MAXSZ);
4436	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4437	wpi_nic_unlock(sc);
4438
4439	/* Load firmware boot code. */
4440	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4441	if (error != 0) {
4442		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4443		    __func__);
4444		return error;
4445	}
4446
4447	/* Now press "execute". */
4448	WPI_WRITE(sc, WPI_RESET, 0);
4449
4450	/* Wait at most one second for first alive notification. */
4451	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4452		device_printf(sc->sc_dev,
4453		    "%s: timeout waiting for adapter to initialize, error %d\n",
4454		    __func__, error);
4455		return error;
4456	}
4457
4458	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4459	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4460	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4461	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4462	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4463
4464	/* Tell adapter where to find runtime sections. */
4465	if ((error = wpi_nic_lock(sc)) != 0)
4466		return error;
4467	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4468	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4469	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4470	    dma->paddr + WPI_FW_DATA_MAXSZ);
4471	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4472	    WPI_FW_UPDATED | fw->main.textsz);
4473	wpi_nic_unlock(sc);
4474
4475	return 0;
4476}
4477
4478static int
4479wpi_read_firmware(struct wpi_softc *sc)
4480{
4481	const struct firmware *fp;
4482	struct wpi_fw_info *fw = &sc->fw;
4483	const struct wpi_firmware_hdr *hdr;
4484	int error;
4485
4486	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4487
4488	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4489	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4490
4491	WPI_UNLOCK(sc);
4492	fp = firmware_get(WPI_FW_NAME);
4493	WPI_LOCK(sc);
4494
4495	if (fp == NULL) {
4496		device_printf(sc->sc_dev,
4497		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4498		return EINVAL;
4499	}
4500
4501	sc->fw_fp = fp;
4502
4503	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4504		device_printf(sc->sc_dev,
4505		    "firmware file too short: %zu bytes\n", fp->datasize);
4506		error = EINVAL;
4507		goto fail;
4508	}
4509
4510	fw->size = fp->datasize;
4511	fw->data = (const uint8_t *)fp->data;
4512
4513	/* Extract firmware header information. */
4514	hdr = (const struct wpi_firmware_hdr *)fw->data;
4515
4516	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4517	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4518
4519	fw->main.textsz = le32toh(hdr->rtextsz);
4520	fw->main.datasz = le32toh(hdr->rdatasz);
4521	fw->init.textsz = le32toh(hdr->itextsz);
4522	fw->init.datasz = le32toh(hdr->idatasz);
4523	fw->boot.textsz = le32toh(hdr->btextsz);
4524	fw->boot.datasz = 0;
4525
4526	/* Sanity-check firmware header. */
4527	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4528	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4529	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4530	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4531	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4532	    (fw->boot.textsz & 3) != 0) {
4533		device_printf(sc->sc_dev, "invalid firmware header\n");
4534		error = EINVAL;
4535		goto fail;
4536	}
4537
4538	/* Check that all firmware sections fit. */
4539	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4540	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4541		device_printf(sc->sc_dev,
4542		    "firmware file too short: %zu bytes\n", fw->size);
4543		error = EINVAL;
4544		goto fail;
4545	}
4546
4547	/* Get pointers to firmware sections. */
4548	fw->main.text = (const uint8_t *)(hdr + 1);
4549	fw->main.data = fw->main.text + fw->main.textsz;
4550	fw->init.text = fw->main.data + fw->main.datasz;
4551	fw->init.data = fw->init.text + fw->init.textsz;
4552	fw->boot.text = fw->init.data + fw->init.datasz;
4553
4554	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4555	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4556	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4557	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4558	    fw->main.textsz, fw->main.datasz,
4559	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4560
4561	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4562	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4563	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4564	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4565	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4566
4567	return 0;
4568
4569fail:	wpi_unload_firmware(sc);
4570	return error;
4571}
4572
4573/**
4574 * Free the referenced firmware image
4575 */
4576static void
4577wpi_unload_firmware(struct wpi_softc *sc)
4578{
4579	if (sc->fw_fp != NULL) {
4580		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4581		sc->fw_fp = NULL;
4582	}
4583}
4584
4585static int
4586wpi_clock_wait(struct wpi_softc *sc)
4587{
4588	int ntries;
4589
4590	/* Set "initialization complete" bit. */
4591	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4592
4593	/* Wait for clock stabilization. */
4594	for (ntries = 0; ntries < 2500; ntries++) {
4595		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4596			return 0;
4597		DELAY(100);
4598	}
4599	device_printf(sc->sc_dev,
4600	    "%s: timeout waiting for clock stabilization\n", __func__);
4601
4602	return ETIMEDOUT;
4603}
4604
4605static int
4606wpi_apm_init(struct wpi_softc *sc)
4607{
4608	uint32_t reg;
4609	int error;
4610
4611	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4612
4613	/* Disable L0s exit timer (NMI bug workaround). */
4614	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4615	/* Don't wait for ICH L0s (ICH bug workaround). */
4616	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4617
4618	/* Set FH wait threshold to max (HW bug under stress workaround). */
4619	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4620
4621	/* Retrieve PCIe Active State Power Management (ASPM). */
4622	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4623	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4624	if (reg & 0x02)	/* L1 Entry enabled. */
4625		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4626	else
4627		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4628
4629	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4630
4631	/* Wait for clock stabilization before accessing prph. */
4632	if ((error = wpi_clock_wait(sc)) != 0)
4633		return error;
4634
4635	if ((error = wpi_nic_lock(sc)) != 0)
4636		return error;
4637	/* Enable DMA and BSM (Bootstrap State Machine). */
4638	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4639	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4640	DELAY(20);
4641	/* Disable L1-Active. */
4642	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4643	/* ??? */
4644	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4645	wpi_nic_unlock(sc);
4646
4647	return 0;
4648}
4649
4650static void
4651wpi_apm_stop_master(struct wpi_softc *sc)
4652{
4653	int ntries;
4654
4655	/* Stop busmaster DMA activity. */
4656	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4657
4658	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4659	    WPI_GP_CNTRL_MAC_PS)
4660		return; /* Already asleep. */
4661
4662	for (ntries = 0; ntries < 100; ntries++) {
4663		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4664			return;
4665		DELAY(10);
4666	}
4667	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
4668	    __func__);
4669}
4670
4671static void
4672wpi_apm_stop(struct wpi_softc *sc)
4673{
4674	wpi_apm_stop_master(sc);
4675
4676	/* Reset the entire device. */
4677	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4678	DELAY(10);
4679	/* Clear "initialization complete" bit. */
4680	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4681}
4682
4683static void
4684wpi_nic_config(struct wpi_softc *sc)
4685{
4686	uint32_t rev;
4687
4688	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4689
4690	/* voodoo from the Linux "driver".. */
4691	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4692	if ((rev & 0xc0) == 0x40)
4693		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4694	else if (!(rev & 0x80))
4695		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4696
4697	if (sc->cap == 0x80)
4698		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4699
4700	if ((sc->rev & 0xf0) == 0xd0)
4701		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4702	else
4703		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4704
4705	if (sc->type > 1)
4706		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4707}
4708
4709static int
4710wpi_hw_init(struct wpi_softc *sc)
4711{
4712	int chnl, ntries, error;
4713
4714	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4715
4716	/* Clear pending interrupts. */
4717	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4718
4719	if ((error = wpi_apm_init(sc)) != 0) {
4720		device_printf(sc->sc_dev,
4721		    "%s: could not power ON adapter, error %d\n", __func__,
4722		    error);
4723		return error;
4724	}
4725
4726	/* Select VMAIN power source. */
4727	if ((error = wpi_nic_lock(sc)) != 0)
4728		return error;
4729	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4730	wpi_nic_unlock(sc);
4731	/* Spin until VMAIN gets selected. */
4732	for (ntries = 0; ntries < 5000; ntries++) {
4733		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4734			break;
4735		DELAY(10);
4736	}
4737	if (ntries == 5000) {
4738		device_printf(sc->sc_dev, "timeout selecting power source\n");
4739		return ETIMEDOUT;
4740	}
4741
4742	/* Perform adapter initialization. */
4743	wpi_nic_config(sc);
4744
4745	/* Initialize RX ring. */
4746	if ((error = wpi_nic_lock(sc)) != 0)
4747		return error;
4748	/* Set physical address of RX ring. */
4749	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4750	/* Set physical address of RX read pointer. */
4751	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4752	    offsetof(struct wpi_shared, next));
4753	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4754	/* Enable RX. */
4755	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4756	    WPI_FH_RX_CONFIG_DMA_ENA |
4757	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4758	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4759	    WPI_FH_RX_CONFIG_MAXFRAG |
4760	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4761	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4762	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4763	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4764	wpi_nic_unlock(sc);
4765	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4766
4767	/* Initialize TX rings. */
4768	if ((error = wpi_nic_lock(sc)) != 0)
4769		return error;
4770	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4771	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4772	/* Enable all 6 TX rings. */
4773	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4774	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4775	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4776	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4777	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4778	/* Set physical address of TX rings. */
4779	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4780	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4781
4782	/* Enable all DMA channels. */
4783	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4784		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4785		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4786		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4787	}
4788	wpi_nic_unlock(sc);
4789	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4790
4791	/* Clear "radio off" and "commands blocked" bits. */
4792	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4793	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4794
4795	/* Clear pending interrupts. */
4796	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4797	/* Enable interrupts. */
4798	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4799
4800	/* _Really_ make sure "radio off" bit is cleared! */
4801	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4802	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4803
4804	if ((error = wpi_load_firmware(sc)) != 0) {
4805		device_printf(sc->sc_dev,
4806		    "%s: could not load firmware, error %d\n", __func__,
4807		    error);
4808		return error;
4809	}
4810	/* Wait at most one second for firmware alive notification. */
4811	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4812		device_printf(sc->sc_dev,
4813		    "%s: timeout waiting for adapter to initialize, error %d\n",
4814		    __func__, error);
4815		return error;
4816	}
4817
4818	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4819
4820	/* Do post-firmware initialization. */
4821	return wpi_post_alive(sc);
4822}
4823
4824static void
4825wpi_hw_stop(struct wpi_softc *sc)
4826{
4827	int chnl, qid, ntries;
4828
4829	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4830
4831	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4832		wpi_nic_lock(sc);
4833
4834	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4835
4836	/* Disable interrupts. */
4837	WPI_WRITE(sc, WPI_INT_MASK, 0);
4838	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4839	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4840
4841	/* Make sure we no longer hold the NIC lock. */
4842	wpi_nic_unlock(sc);
4843
4844	if (wpi_nic_lock(sc) == 0) {
4845		/* Stop TX scheduler. */
4846		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4847		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4848
4849		/* Stop all DMA channels. */
4850		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4851			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4852			for (ntries = 0; ntries < 200; ntries++) {
4853				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4854				    WPI_FH_TX_STATUS_IDLE(chnl))
4855					break;
4856				DELAY(10);
4857			}
4858		}
4859		wpi_nic_unlock(sc);
4860	}
4861
4862	/* Stop RX ring. */
4863	wpi_reset_rx_ring(sc);
4864
4865	/* Reset all TX rings. */
4866	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4867		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4868
4869	if (wpi_nic_lock(sc) == 0) {
4870		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4871		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4872		wpi_nic_unlock(sc);
4873	}
4874	DELAY(5);
4875	/* Power OFF adapter. */
4876	wpi_apm_stop(sc);
4877}
4878
4879static void
4880wpi_radio_on(void *arg0, int pending)
4881{
4882	struct wpi_softc *sc = arg0;
4883	struct ifnet *ifp = sc->sc_ifp;
4884	struct ieee80211com *ic = ifp->if_l2com;
4885	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4886
4887	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4888
4889	if (vap != NULL) {
4890		wpi_init(sc);
4891		ieee80211_init(vap);
4892	}
4893
4894	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4895		WPI_LOCK(sc);
4896		callout_stop(&sc->watchdog_rfkill);
4897		WPI_UNLOCK(sc);
4898	}
4899}
4900
4901static void
4902wpi_radio_off(void *arg0, int pending)
4903{
4904	struct wpi_softc *sc = arg0;
4905	struct ifnet *ifp = sc->sc_ifp;
4906	struct ieee80211com *ic = ifp->if_l2com;
4907	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4908
4909	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4910
4911	wpi_stop(sc);
4912	if (vap != NULL)
4913		ieee80211_stop(vap);
4914
4915	WPI_LOCK(sc);
4916	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4917	WPI_UNLOCK(sc);
4918}
4919
4920static void
4921wpi_init_locked(struct wpi_softc *sc)
4922{
4923	struct ifnet *ifp = sc->sc_ifp;
4924	int error;
4925
4926	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4927
4928	WPI_LOCK_ASSERT(sc);
4929
4930	/* Check that the radio is not disabled by hardware switch. */
4931	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4932		device_printf(sc->sc_dev,
4933		    "RF switch: radio disabled (%s)\n", __func__);
4934		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4935		    sc);
4936		return;
4937	}
4938
4939	/* Read firmware images from the filesystem. */
4940	if ((error = wpi_read_firmware(sc)) != 0) {
4941		device_printf(sc->sc_dev,
4942		    "%s: could not read firmware, error %d\n", __func__,
4943		    error);
4944		goto fail;
4945	}
4946
4947	/* Initialize hardware and upload firmware. */
4948	error = wpi_hw_init(sc);
4949	wpi_unload_firmware(sc);
4950	if (error != 0) {
4951		device_printf(sc->sc_dev,
4952		    "%s: could not initialize hardware, error %d\n", __func__,
4953		    error);
4954		goto fail;
4955	}
4956
4957	/* Configure adapter now that it is ready. */
4958	sc->txq_active = 1;
4959	if ((error = wpi_config(sc)) != 0) {
4960		device_printf(sc->sc_dev,
4961		    "%s: could not configure device, error %d\n", __func__,
4962		    error);
4963		goto fail;
4964	}
4965
4966	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4967	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4968
4969	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4970
4971	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4972
4973	return;
4974
4975fail:	wpi_stop_locked(sc);
4976	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4977}
4978
4979static void
4980wpi_init(void *arg)
4981{
4982	struct wpi_softc *sc = arg;
4983	struct ifnet *ifp = sc->sc_ifp;
4984	struct ieee80211com *ic = ifp->if_l2com;
4985
4986	WPI_LOCK(sc);
4987	wpi_init_locked(sc);
4988	WPI_UNLOCK(sc);
4989
4990	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4991		ieee80211_start_all(ic);
4992}
4993
4994static void
4995wpi_stop_locked(struct wpi_softc *sc)
4996{
4997	struct ifnet *ifp = sc->sc_ifp;
4998
4999	WPI_LOCK_ASSERT(sc);
5000
5001	WPI_TXQ_LOCK(sc);
5002	sc->txq_active = 0;
5003	WPI_TXQ_UNLOCK(sc);
5004
5005	sc->sc_scan_timer = 0;
5006	sc->sc_tx_timer = 0;
5007	callout_stop(&sc->watchdog_to);
5008	callout_stop(&sc->calib_to);
5009	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5010
5011	/* Power OFF hardware. */
5012	wpi_hw_stop(sc);
5013}
5014
5015static void
5016wpi_stop(struct wpi_softc *sc)
5017{
5018	WPI_LOCK(sc);
5019	wpi_stop_locked(sc);
5020	WPI_UNLOCK(sc);
5021}
5022
5023/*
5024 * Callback from net80211 to start a scan.
5025 */
5026static void
5027wpi_scan_start(struct ieee80211com *ic)
5028{
5029	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5030
5031	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5032}
5033
5034/*
5035 * Callback from net80211 to terminate a scan.
5036 */
5037static void
5038wpi_scan_end(struct ieee80211com *ic)
5039{
5040	struct ifnet *ifp = ic->ic_ifp;
5041	struct wpi_softc *sc = ifp->if_softc;
5042	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5043
5044	if (vap->iv_state == IEEE80211_S_RUN)
5045		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5046}
5047
5048/**
5049 * Called by the net80211 framework to indicate to the driver
5050 * that the channel should be changed
5051 */
5052static void
5053wpi_set_channel(struct ieee80211com *ic)
5054{
5055	const struct ieee80211_channel *c = ic->ic_curchan;
5056	struct ifnet *ifp = ic->ic_ifp;
5057	struct wpi_softc *sc = ifp->if_softc;
5058	int error;
5059
5060	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5061
5062	WPI_LOCK(sc);
5063	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5064	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5065	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5066	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5067
5068	/*
5069	 * Only need to set the channel in Monitor mode. AP scanning and auth
5070	 * are already taken care of by their respective firmware commands.
5071	 */
5072	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5073		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5074		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5075			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5076			    WPI_RXON_24GHZ);
5077		} else {
5078			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5079			    WPI_RXON_24GHZ);
5080		}
5081		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
5082			device_printf(sc->sc_dev,
5083			    "%s: error %d settting channel\n", __func__,
5084			    error);
5085	}
5086	WPI_UNLOCK(sc);
5087}
5088
5089/**
5090 * Called by net80211 to indicate that we need to scan the current
5091 * channel. The channel is previously be set via the wpi_set_channel
5092 * callback.
5093 */
5094static void
5095wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5096{
5097	struct ieee80211vap *vap = ss->ss_vap;
5098	struct ieee80211com *ic = vap->iv_ic;
5099	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5100	int error;
5101
5102	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
5103		WPI_LOCK(sc);
5104		error = wpi_scan(sc, ic->ic_curchan);
5105		WPI_UNLOCK(sc);
5106		if (error != 0)
5107			ieee80211_cancel_scan(vap);
5108	} else {
5109		/* Send probe request when associated. */
5110		sc->sc_scan_curchan(ss, maxdwell);
5111	}
5112}
5113
5114/**
5115 * Called by the net80211 framework to indicate
5116 * the minimum dwell time has been met, terminate the scan.
5117 * We don't actually terminate the scan as the firmware will notify
5118 * us when it's finished and we have no way to interrupt it.
5119 */
5120static void
5121wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5122{
5123	/* NB: don't try to abort scan; wait for firmware to finish */
5124}
5125
5126static void
5127wpi_hw_reset(void *arg, int pending)
5128{
5129	struct wpi_softc *sc = arg;
5130	struct ifnet *ifp = sc->sc_ifp;
5131	struct ieee80211com *ic = ifp->if_l2com;
5132	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5133
5134	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5135
5136	wpi_stop(sc);
5137	if (vap != NULL)
5138		ieee80211_stop(vap);
5139	wpi_init(sc);
5140	if (vap != NULL)
5141		ieee80211_init(vap);
5142}
5143