if_wpi.c revision 280076
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280076 2015-03-15 20:43:58Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135		    const uint8_t [IEEE80211_ADDR_LEN],
136		    const uint8_t [IEEE80211_ADDR_LEN]);
137static void	wpi_vap_delete(struct ieee80211vap *);
138static int	wpi_detach(device_t);
139static int	wpi_shutdown(device_t);
140static int	wpi_suspend(device_t);
141static int	wpi_resume(device_t);
142static int	wpi_nic_lock(struct wpi_softc *);
143static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146		    void **, bus_size_t, bus_size_t);
147static void	wpi_dma_contig_free(struct wpi_dma_info *);
148static int	wpi_alloc_shared(struct wpi_softc *);
149static void	wpi_free_shared(struct wpi_softc *);
150static int	wpi_alloc_fwmem(struct wpi_softc *);
151static void	wpi_free_fwmem(struct wpi_softc *);
152static int	wpi_alloc_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    int);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static int	wpi_read_eeprom(struct wpi_softc *,
162		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167		    struct ieee80211_channel *);
168static int	wpi_setregdomain(struct ieee80211com *,
169		    struct ieee80211_regdomain *, int,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
173static void	wpi_node_free(struct ieee80211_node *);
174static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
175		    const uint8_t mac[IEEE80211_ADDR_LEN]);
176static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
177static void	wpi_calib_timeout(void *);
178static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
179		    struct wpi_rx_data *);
180static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
181		    struct wpi_rx_data *);
182static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
183static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
184static void	wpi_notif_intr(struct wpi_softc *);
185static void	wpi_wakeup_intr(struct wpi_softc *);
186static void	wpi_fatal_intr(struct wpi_softc *);
187static void	wpi_intr(void *);
188static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
189static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
190		    struct ieee80211_node *);
191static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
192		    struct ieee80211_node *,
193		    const struct ieee80211_bpf_params *);
194static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
195		    const struct ieee80211_bpf_params *);
196static void	wpi_start(struct ifnet *);
197static void	wpi_start_locked(struct ifnet *);
198static void	wpi_watchdog_rfkill(void *);
199static void	wpi_watchdog(void *);
200static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
201static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
202static int	wpi_mrr_setup(struct wpi_softc *);
203static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
204static int	wpi_add_broadcast_node(struct wpi_softc *, int);
205static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
206static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
207static int	wpi_updateedca(struct ieee80211com *);
208static void	wpi_set_promisc(struct wpi_softc *);
209static void	wpi_update_promisc(struct ifnet *);
210static void	wpi_update_mcast(struct ifnet *);
211static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
212static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
213static void	wpi_power_calibration(struct wpi_softc *);
214static int	wpi_set_txpower(struct wpi_softc *, int);
215static int	wpi_get_power_index(struct wpi_softc *,
216		    struct wpi_power_group *, struct ieee80211_channel *, int);
217static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
218static int	wpi_send_btcoex(struct wpi_softc *);
219static int	wpi_send_rxon(struct wpi_softc *, int, int);
220static int	wpi_config(struct wpi_softc *);
221static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
222		    struct ieee80211_channel *, uint8_t);
223static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
224static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
225		    struct ieee80211_channel *);
226static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
227static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228static void	wpi_update_beacon(struct ieee80211vap *, int);
229static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
230static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
231static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
232		    ieee80211_keyix *, ieee80211_keyix *);
233static int	wpi_key_set(struct ieee80211vap *,
234		    const struct ieee80211_key *,
235		    const uint8_t mac[IEEE80211_ADDR_LEN]);
236static int	wpi_key_delete(struct ieee80211vap *,
237		    const struct ieee80211_key *);
238static int	wpi_post_alive(struct wpi_softc *);
239static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
240static int	wpi_load_firmware(struct wpi_softc *);
241static int	wpi_read_firmware(struct wpi_softc *);
242static void	wpi_unload_firmware(struct wpi_softc *);
243static int	wpi_clock_wait(struct wpi_softc *);
244static int	wpi_apm_init(struct wpi_softc *);
245static void	wpi_apm_stop_master(struct wpi_softc *);
246static void	wpi_apm_stop(struct wpi_softc *);
247static void	wpi_nic_config(struct wpi_softc *);
248static int	wpi_hw_init(struct wpi_softc *);
249static void	wpi_hw_stop(struct wpi_softc *);
250static void	wpi_radio_on(void *, int);
251static void	wpi_radio_off(void *, int);
252static void	wpi_init_locked(struct wpi_softc *);
253static void	wpi_init(void *);
254static void	wpi_stop_locked(struct wpi_softc *);
255static void	wpi_stop(struct wpi_softc *);
256static void	wpi_scan_start(struct ieee80211com *);
257static void	wpi_scan_end(struct ieee80211com *);
258static void	wpi_set_channel(struct ieee80211com *);
259static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
260static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
261static void	wpi_hw_reset(void *, int);
262
263static device_method_t wpi_methods[] = {
264	/* Device interface */
265	DEVMETHOD(device_probe,		wpi_probe),
266	DEVMETHOD(device_attach,	wpi_attach),
267	DEVMETHOD(device_detach,	wpi_detach),
268	DEVMETHOD(device_shutdown,	wpi_shutdown),
269	DEVMETHOD(device_suspend,	wpi_suspend),
270	DEVMETHOD(device_resume,	wpi_resume),
271
272	DEVMETHOD_END
273};
274
275static driver_t wpi_driver = {
276	"wpi",
277	wpi_methods,
278	sizeof (struct wpi_softc)
279};
280static devclass_t wpi_devclass;
281
282DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
283
284MODULE_VERSION(wpi, 1);
285
286MODULE_DEPEND(wpi, pci,  1, 1, 1);
287MODULE_DEPEND(wpi, wlan, 1, 1, 1);
288MODULE_DEPEND(wpi, firmware, 1, 1, 1);
289
290static int
291wpi_probe(device_t dev)
292{
293	const struct wpi_ident *ident;
294
295	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296		if (pci_get_vendor(dev) == ident->vendor &&
297		    pci_get_device(dev) == ident->device) {
298			device_set_desc(dev, ident->name);
299			return (BUS_PROBE_DEFAULT);
300		}
301	}
302	return ENXIO;
303}
304
305static int
306wpi_attach(device_t dev)
307{
308	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
309	struct ieee80211com *ic;
310	struct ifnet *ifp;
311	int i, error, rid;
312#ifdef WPI_DEBUG
313	int supportsa = 1;
314	const struct wpi_ident *ident;
315#endif
316	uint8_t macaddr[IEEE80211_ADDR_LEN];
317
318	sc->sc_dev = dev;
319
320#ifdef WPI_DEBUG
321	error = resource_int_value(device_get_name(sc->sc_dev),
322	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
323	if (error != 0)
324		sc->sc_debug = 0;
325#else
326	sc->sc_debug = 0;
327#endif
328
329	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
330
331	/*
332	 * Get the offset of the PCI Express Capability Structure in PCI
333	 * Configuration Space.
334	 */
335	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
336	if (error != 0) {
337		device_printf(dev, "PCIe capability structure not found!\n");
338		return error;
339	}
340
341	/*
342	 * Some card's only support 802.11b/g not a, check to see if
343	 * this is one such card. A 0x0 in the subdevice table indicates
344	 * the entire subdevice range is to be ignored.
345	 */
346#ifdef WPI_DEBUG
347	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
348		if (ident->subdevice &&
349		    pci_get_subdevice(dev) == ident->subdevice) {
350		    supportsa = 0;
351		    break;
352		}
353	}
354#endif
355
356	/* Clear device-specific "PCI retry timeout" register (41h). */
357	pci_write_config(dev, 0x41, 0, 1);
358
359	/* Enable bus-mastering. */
360	pci_enable_busmaster(dev);
361
362	rid = PCIR_BAR(0);
363	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
364	    RF_ACTIVE);
365	if (sc->mem == NULL) {
366		device_printf(dev, "can't map mem space\n");
367		error = ENOMEM;
368		return error;
369	}
370	sc->sc_st = rman_get_bustag(sc->mem);
371	sc->sc_sh = rman_get_bushandle(sc->mem);
372
373	i = 1;
374	rid = 0;
375	if (pci_alloc_msi(dev, &i) == 0)
376		rid = 1;
377	/* Install interrupt handler. */
378	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
379	    (rid != 0 ? 0 : RF_SHAREABLE));
380	if (sc->irq == NULL) {
381		device_printf(dev, "can't map interrupt\n");
382		error = ENOMEM;
383		goto fail;
384	}
385
386	WPI_LOCK_INIT(sc);
387	WPI_TXQ_LOCK_INIT(sc);
388
389	/* Allocate DMA memory for firmware transfers. */
390	if ((error = wpi_alloc_fwmem(sc)) != 0) {
391		device_printf(dev,
392		    "could not allocate memory for firmware, error %d\n",
393		    error);
394		goto fail;
395	}
396
397	/* Allocate shared page. */
398	if ((error = wpi_alloc_shared(sc)) != 0) {
399		device_printf(dev, "could not allocate shared page\n");
400		goto fail;
401	}
402
403	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
404	for (i = 0; i < WPI_NTXQUEUES; i++) {
405		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
406			device_printf(dev,
407			    "could not allocate TX ring %d, error %d\n", i,
408			    error);
409			goto fail;
410		}
411	}
412
413	/* Allocate RX ring. */
414	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
415		device_printf(dev, "could not allocate RX ring, error %d\n",
416		    error);
417		goto fail;
418	}
419
420	/* Clear pending interrupts. */
421	WPI_WRITE(sc, WPI_INT, 0xffffffff);
422
423	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
424	if (ifp == NULL) {
425		device_printf(dev, "can not allocate ifnet structure\n");
426		goto fail;
427	}
428
429	ic = ifp->if_l2com;
430	ic->ic_ifp = ifp;
431	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
432	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
433
434	/* Set device capabilities. */
435	ic->ic_caps =
436		  IEEE80211_C_STA		/* station mode supported */
437		| IEEE80211_C_IBSS		/* IBSS mode supported */
438		| IEEE80211_C_MONITOR		/* monitor mode supported */
439		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
440		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
441		| IEEE80211_C_TXPMGT		/* tx power management */
442		| IEEE80211_C_SHSLOT		/* short slot time supported */
443		| IEEE80211_C_WPA		/* 802.11i */
444		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
445#if 0
446		| IEEE80211_C_HOSTAP		/* Host access point mode */
447#endif
448		| IEEE80211_C_WME		/* 802.11e */
449		| IEEE80211_C_PMGT		/* Station-side power mgmt */
450		;
451
452	ic->ic_cryptocaps =
453		  IEEE80211_CRYPTO_AES_CCM;
454
455	/*
456	 * Read in the eeprom and also setup the channels for
457	 * net80211. We don't set the rates as net80211 does this for us
458	 */
459	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
460		device_printf(dev, "could not read EEPROM, error %d\n",
461		    error);
462		goto fail;
463	}
464
465#ifdef WPI_DEBUG
466	if (bootverbose) {
467		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
468		    sc->domain);
469		device_printf(sc->sc_dev, "Hardware Type: %c\n",
470		    sc->type > 1 ? 'B': '?');
471		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
472		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
473		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
474		    supportsa ? "does" : "does not");
475
476		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
477		   check what sc->rev really represents - benjsc 20070615 */
478	}
479#endif
480
481	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
482	ifp->if_softc = sc;
483	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
484	ifp->if_init = wpi_init;
485	ifp->if_ioctl = wpi_ioctl;
486	ifp->if_start = wpi_start;
487	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
488	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
489	IFQ_SET_READY(&ifp->if_snd);
490
491	ieee80211_ifattach(ic, macaddr);
492	ic->ic_vap_create = wpi_vap_create;
493	ic->ic_vap_delete = wpi_vap_delete;
494	ic->ic_raw_xmit = wpi_raw_xmit;
495	ic->ic_node_alloc = wpi_node_alloc;
496	sc->sc_node_free = ic->ic_node_free;
497	ic->ic_node_free = wpi_node_free;
498	ic->ic_wme.wme_update = wpi_updateedca;
499	ic->ic_update_promisc = wpi_update_promisc;
500	ic->ic_update_mcast = wpi_update_mcast;
501	ic->ic_scan_start = wpi_scan_start;
502	ic->ic_scan_end = wpi_scan_end;
503	ic->ic_set_channel = wpi_set_channel;
504	sc->sc_scan_curchan = ic->ic_scan_curchan;
505	ic->ic_scan_curchan = wpi_scan_curchan;
506	ic->ic_scan_mindwell = wpi_scan_mindwell;
507	ic->ic_setregdomain = wpi_setregdomain;
508
509	wpi_radiotap_attach(sc);
510
511	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
512	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
513	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
514	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
515	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
516	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
517
518	wpi_sysctlattach(sc);
519
520	/*
521	 * Hook our interrupt after all initialization is complete.
522	 */
523	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
524	    NULL, wpi_intr, sc, &sc->sc_ih);
525	if (error != 0) {
526		device_printf(dev, "can't establish interrupt, error %d\n",
527		    error);
528		goto fail;
529	}
530
531	if (bootverbose)
532		ieee80211_announce(ic);
533
534#ifdef WPI_DEBUG
535	if (sc->sc_debug & WPI_DEBUG_HW)
536		ieee80211_announce_channels(ic);
537#endif
538
539	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
540	return 0;
541
542fail:	wpi_detach(dev);
543	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
544	return error;
545}
546
547/*
548 * Attach the interface to 802.11 radiotap.
549 */
550static void
551wpi_radiotap_attach(struct wpi_softc *sc)
552{
553	struct ifnet *ifp = sc->sc_ifp;
554	struct ieee80211com *ic = ifp->if_l2com;
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
556	ieee80211_radiotap_attach(ic,
557	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
558		WPI_TX_RADIOTAP_PRESENT,
559	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
560		WPI_RX_RADIOTAP_PRESENT);
561	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
562}
563
564static void
565wpi_sysctlattach(struct wpi_softc *sc)
566{
567#ifdef WPI_DEBUG
568	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
569	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
570
571	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
572	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
573		"control debugging printfs");
574#endif
575}
576
577static struct ieee80211vap *
578wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
579    enum ieee80211_opmode opmode, int flags,
580    const uint8_t bssid[IEEE80211_ADDR_LEN],
581    const uint8_t mac[IEEE80211_ADDR_LEN])
582{
583	struct wpi_vap *wvp;
584	struct wpi_buf *bcn;
585	struct ieee80211vap *vap;
586
587	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
588		return NULL;
589
590	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
591	    M_80211_VAP, M_NOWAIT | M_ZERO);
592	if (wvp == NULL)
593		return NULL;
594	vap = &wvp->vap;
595	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
596
597	bcn = &wvp->wv_bcbuf;
598	bcn->data = NULL;
599
600	/* Override with driver methods. */
601	wvp->newstate = vap->iv_newstate;
602	vap->iv_key_alloc = wpi_key_alloc;
603	vap->iv_key_set = wpi_key_set;
604	vap->iv_key_delete = wpi_key_delete;
605	vap->iv_newstate = wpi_newstate;
606	vap->iv_update_beacon = wpi_update_beacon;
607
608	ieee80211_ratectl_init(vap);
609	/* Complete setup. */
610	ieee80211_vap_attach(vap, ieee80211_media_change,
611	    ieee80211_media_status);
612	ic->ic_opmode = opmode;
613	return vap;
614}
615
616static void
617wpi_vap_delete(struct ieee80211vap *vap)
618{
619	struct wpi_vap *wvp = WPI_VAP(vap);
620	struct wpi_buf *bcn = &wvp->wv_bcbuf;
621
622	ieee80211_ratectl_deinit(vap);
623	ieee80211_vap_detach(vap);
624
625	if (bcn->data != NULL)
626		free(bcn->data, M_DEVBUF);
627	free(wvp, M_80211_VAP);
628}
629
630static int
631wpi_detach(device_t dev)
632{
633	struct wpi_softc *sc = device_get_softc(dev);
634	struct ifnet *ifp = sc->sc_ifp;
635	struct ieee80211com *ic;
636	int qid;
637
638	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
639
640	if (ifp != NULL) {
641		ic = ifp->if_l2com;
642
643		ieee80211_draintask(ic, &sc->sc_reinittask);
644		ieee80211_draintask(ic, &sc->sc_radiooff_task);
645		ieee80211_draintask(ic, &sc->sc_radioon_task);
646
647		wpi_stop(sc);
648
649		callout_drain(&sc->watchdog_to);
650		callout_drain(&sc->watchdog_rfkill);
651		callout_drain(&sc->calib_to);
652		ieee80211_ifdetach(ic);
653	}
654
655	/* Uninstall interrupt handler. */
656	if (sc->irq != NULL) {
657		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
658		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
659		    sc->irq);
660		pci_release_msi(dev);
661	}
662
663	if (sc->txq[0].data_dmat) {
664		/* Free DMA resources. */
665		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
666			wpi_free_tx_ring(sc, &sc->txq[qid]);
667
668		wpi_free_rx_ring(sc);
669		wpi_free_shared(sc);
670	}
671
672	if (sc->fw_dma.tag)
673		wpi_free_fwmem(sc);
674
675	if (sc->mem != NULL)
676		bus_release_resource(dev, SYS_RES_MEMORY,
677		    rman_get_rid(sc->mem), sc->mem);
678
679	if (ifp != NULL)
680		if_free(ifp);
681
682	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
683	WPI_TXQ_LOCK_DESTROY(sc);
684	WPI_LOCK_DESTROY(sc);
685	return 0;
686}
687
688static int
689wpi_shutdown(device_t dev)
690{
691	struct wpi_softc *sc = device_get_softc(dev);
692
693	wpi_stop(sc);
694	return 0;
695}
696
697static int
698wpi_suspend(device_t dev)
699{
700	struct wpi_softc *sc = device_get_softc(dev);
701	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
702
703	ieee80211_suspend_all(ic);
704	return 0;
705}
706
707static int
708wpi_resume(device_t dev)
709{
710	struct wpi_softc *sc = device_get_softc(dev);
711	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
712
713	/* Clear device-specific "PCI retry timeout" register (41h). */
714	pci_write_config(dev, 0x41, 0, 1);
715
716	ieee80211_resume_all(ic);
717	return 0;
718}
719
720/*
721 * Grab exclusive access to NIC memory.
722 */
723static int
724wpi_nic_lock(struct wpi_softc *sc)
725{
726	int ntries;
727
728	/* Request exclusive access to NIC. */
729	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
730
731	/* Spin until we actually get the lock. */
732	for (ntries = 0; ntries < 1000; ntries++) {
733		if ((WPI_READ(sc, WPI_GP_CNTRL) &
734		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
735		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
736			return 0;
737		DELAY(10);
738	}
739
740	device_printf(sc->sc_dev, "could not lock memory\n");
741
742	return ETIMEDOUT;
743}
744
745/*
746 * Release lock on NIC memory.
747 */
748static __inline void
749wpi_nic_unlock(struct wpi_softc *sc)
750{
751	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
752}
753
754static __inline uint32_t
755wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
756{
757	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
758	WPI_BARRIER_READ_WRITE(sc);
759	return WPI_READ(sc, WPI_PRPH_RDATA);
760}
761
762static __inline void
763wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
764{
765	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
766	WPI_BARRIER_WRITE(sc);
767	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
768}
769
770static __inline void
771wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
772{
773	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
774}
775
776static __inline void
777wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
778{
779	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
780}
781
782static __inline void
783wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
784    const uint32_t *data, int count)
785{
786	for (; count > 0; count--, data++, addr += 4)
787		wpi_prph_write(sc, addr, *data);
788}
789
790static __inline uint32_t
791wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
792{
793	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
794	WPI_BARRIER_READ_WRITE(sc);
795	return WPI_READ(sc, WPI_MEM_RDATA);
796}
797
798static __inline void
799wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
800    int count)
801{
802	for (; count > 0; count--, addr += 4)
803		*data++ = wpi_mem_read(sc, addr);
804}
805
806static int
807wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
808{
809	uint8_t *out = data;
810	uint32_t val;
811	int error, ntries;
812
813	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
814
815	if ((error = wpi_nic_lock(sc)) != 0)
816		return error;
817
818	for (; count > 0; count -= 2, addr++) {
819		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
820		for (ntries = 0; ntries < 10; ntries++) {
821			val = WPI_READ(sc, WPI_EEPROM);
822			if (val & WPI_EEPROM_READ_VALID)
823				break;
824			DELAY(5);
825		}
826		if (ntries == 10) {
827			device_printf(sc->sc_dev,
828			    "timeout reading ROM at 0x%x\n", addr);
829			return ETIMEDOUT;
830		}
831		*out++= val >> 16;
832		if (count > 1)
833			*out ++= val >> 24;
834	}
835
836	wpi_nic_unlock(sc);
837
838	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
839
840	return 0;
841}
842
843static void
844wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
845{
846	if (error != 0)
847		return;
848	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
849	*(bus_addr_t *)arg = segs[0].ds_addr;
850}
851
852/*
853 * Allocates a contiguous block of dma memory of the requested size and
854 * alignment.
855 */
856static int
857wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
858    void **kvap, bus_size_t size, bus_size_t alignment)
859{
860	int error;
861
862	dma->tag = NULL;
863	dma->size = size;
864
865	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
866	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
867	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
868	if (error != 0)
869		goto fail;
870
871	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
872	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
873	if (error != 0)
874		goto fail;
875
876	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
877	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
878	if (error != 0)
879		goto fail;
880
881	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
882
883	if (kvap != NULL)
884		*kvap = dma->vaddr;
885
886	return 0;
887
888fail:	wpi_dma_contig_free(dma);
889	return error;
890}
891
892static void
893wpi_dma_contig_free(struct wpi_dma_info *dma)
894{
895	if (dma->vaddr != NULL) {
896		bus_dmamap_sync(dma->tag, dma->map,
897		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
898		bus_dmamap_unload(dma->tag, dma->map);
899		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
900		dma->vaddr = NULL;
901	}
902	if (dma->tag != NULL) {
903		bus_dma_tag_destroy(dma->tag);
904		dma->tag = NULL;
905	}
906}
907
908/*
909 * Allocate a shared page between host and NIC.
910 */
911static int
912wpi_alloc_shared(struct wpi_softc *sc)
913{
914	/* Shared buffer must be aligned on a 4KB boundary. */
915	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
916	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
917}
918
919static void
920wpi_free_shared(struct wpi_softc *sc)
921{
922	wpi_dma_contig_free(&sc->shared_dma);
923}
924
925/*
926 * Allocate DMA-safe memory for firmware transfer.
927 */
928static int
929wpi_alloc_fwmem(struct wpi_softc *sc)
930{
931	/* Must be aligned on a 16-byte boundary. */
932	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
933	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
934}
935
936static void
937wpi_free_fwmem(struct wpi_softc *sc)
938{
939	wpi_dma_contig_free(&sc->fw_dma);
940}
941
942static int
943wpi_alloc_rx_ring(struct wpi_softc *sc)
944{
945	struct wpi_rx_ring *ring = &sc->rxq;
946	bus_size_t size;
947	int i, error;
948
949	ring->cur = 0;
950	ring->update = 0;
951
952	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
953
954	/* Allocate RX descriptors (16KB aligned.) */
955	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
956	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
957	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
958	if (error != 0) {
959		device_printf(sc->sc_dev,
960		    "%s: could not allocate RX ring DMA memory, error %d\n",
961		    __func__, error);
962		goto fail;
963	}
964
965	/* Create RX buffer DMA tag. */
966	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
967	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
968	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
969	    &ring->data_dmat);
970	if (error != 0) {
971		device_printf(sc->sc_dev,
972		    "%s: could not create RX buf DMA tag, error %d\n",
973		    __func__, error);
974		goto fail;
975	}
976
977	/*
978	 * Allocate and map RX buffers.
979	 */
980	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
981		struct wpi_rx_data *data = &ring->data[i];
982		bus_addr_t paddr;
983
984		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
985		if (error != 0) {
986			device_printf(sc->sc_dev,
987			    "%s: could not create RX buf DMA map, error %d\n",
988			    __func__, error);
989			goto fail;
990		}
991
992		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
993		if (data->m == NULL) {
994			device_printf(sc->sc_dev,
995			    "%s: could not allocate RX mbuf\n", __func__);
996			error = ENOBUFS;
997			goto fail;
998		}
999
1000		error = bus_dmamap_load(ring->data_dmat, data->map,
1001		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1002		    &paddr, BUS_DMA_NOWAIT);
1003		if (error != 0 && error != EFBIG) {
1004			device_printf(sc->sc_dev,
1005			    "%s: can't map mbuf (error %d)\n", __func__,
1006			    error);
1007			goto fail;
1008		}
1009
1010		/* Set physical address of RX buffer. */
1011		ring->desc[i] = htole32(paddr);
1012	}
1013
1014	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1015	    BUS_DMASYNC_PREWRITE);
1016
1017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1018
1019	return 0;
1020
1021fail:	wpi_free_rx_ring(sc);
1022
1023	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1024
1025	return error;
1026}
1027
1028static void
1029wpi_update_rx_ring(struct wpi_softc *sc)
1030{
1031	struct wpi_rx_ring *ring = &sc->rxq;
1032
1033	if (ring->update != 0) {
1034		/* Wait for INT_WAKEUP event. */
1035		return;
1036	}
1037
1038	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1039		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1040		    __func__);
1041
1042		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1043		ring->update = 1;
1044	} else
1045		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1046}
1047
1048static void
1049wpi_reset_rx_ring(struct wpi_softc *sc)
1050{
1051	struct wpi_rx_ring *ring = &sc->rxq;
1052	int ntries;
1053
1054	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1055
1056	if (wpi_nic_lock(sc) == 0) {
1057		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1058		for (ntries = 0; ntries < 1000; ntries++) {
1059			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1060			    WPI_FH_RX_STATUS_IDLE)
1061				break;
1062			DELAY(10);
1063		}
1064#ifdef WPI_DEBUG
1065		if (ntries == 1000) {
1066			device_printf(sc->sc_dev,
1067			    "timeout resetting Rx ring\n");
1068		}
1069#endif
1070		wpi_nic_unlock(sc);
1071	}
1072
1073	ring->cur = 0;
1074	ring->update = 0;
1075}
1076
1077static void
1078wpi_free_rx_ring(struct wpi_softc *sc)
1079{
1080	struct wpi_rx_ring *ring = &sc->rxq;
1081	int i;
1082
1083	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1084
1085	wpi_dma_contig_free(&ring->desc_dma);
1086
1087	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1088		struct wpi_rx_data *data = &ring->data[i];
1089
1090		if (data->m != NULL) {
1091			bus_dmamap_sync(ring->data_dmat, data->map,
1092			    BUS_DMASYNC_POSTREAD);
1093			bus_dmamap_unload(ring->data_dmat, data->map);
1094			m_freem(data->m);
1095			data->m = NULL;
1096		}
1097		if (data->map != NULL)
1098			bus_dmamap_destroy(ring->data_dmat, data->map);
1099	}
1100	if (ring->data_dmat != NULL) {
1101		bus_dma_tag_destroy(ring->data_dmat);
1102		ring->data_dmat = NULL;
1103	}
1104}
1105
1106static int
1107wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1108{
1109	bus_addr_t paddr;
1110	bus_size_t size;
1111	int i, error;
1112
1113	ring->qid = qid;
1114	ring->queued = 0;
1115	ring->cur = 0;
1116	ring->update = 0;
1117
1118	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1119
1120	/* Allocate TX descriptors (16KB aligned.) */
1121	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1122	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1123	    size, WPI_RING_DMA_ALIGN);
1124	if (error != 0) {
1125		device_printf(sc->sc_dev,
1126		    "%s: could not allocate TX ring DMA memory, error %d\n",
1127		    __func__, error);
1128		goto fail;
1129	}
1130
1131	/* Update shared area with ring physical address. */
1132	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1133	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1134	    BUS_DMASYNC_PREWRITE);
1135
1136	/*
1137	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1138	 * to allocate commands space for other rings.
1139	 * XXX Do we really need to allocate descriptors for other rings?
1140	 */
1141	if (qid > WPI_CMD_QUEUE_NUM)
1142		return 0;
1143
1144	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1145	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1146	    size, 4);
1147	if (error != 0) {
1148		device_printf(sc->sc_dev,
1149		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1150		    __func__, error);
1151		goto fail;
1152	}
1153
1154	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1155	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1156	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1157	    &ring->data_dmat);
1158	if (error != 0) {
1159		device_printf(sc->sc_dev,
1160		    "%s: could not create TX buf DMA tag, error %d\n",
1161		    __func__, error);
1162		goto fail;
1163	}
1164
1165	paddr = ring->cmd_dma.paddr;
1166	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1167		struct wpi_tx_data *data = &ring->data[i];
1168
1169		data->cmd_paddr = paddr;
1170		paddr += sizeof (struct wpi_tx_cmd);
1171
1172		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1173		if (error != 0) {
1174			device_printf(sc->sc_dev,
1175			    "%s: could not create TX buf DMA map, error %d\n",
1176			    __func__, error);
1177			goto fail;
1178		}
1179	}
1180
1181	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1182
1183	return 0;
1184
1185fail:	wpi_free_tx_ring(sc, ring);
1186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1187	return error;
1188}
1189
1190static void
1191wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1192{
1193	if (ring->update != 0) {
1194		/* Wait for INT_WAKEUP event. */
1195		return;
1196	}
1197
1198	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1199		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1200		    __func__, ring->qid);
1201
1202		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1203		ring->update = 1;
1204	} else
1205		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1206}
1207
1208static void
1209wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1210{
1211	int i;
1212
1213	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1214
1215	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1216		struct wpi_tx_data *data = &ring->data[i];
1217
1218		if (data->m != NULL) {
1219			bus_dmamap_sync(ring->data_dmat, data->map,
1220			    BUS_DMASYNC_POSTWRITE);
1221			bus_dmamap_unload(ring->data_dmat, data->map);
1222			m_freem(data->m);
1223			data->m = NULL;
1224		}
1225	}
1226	/* Clear TX descriptors. */
1227	memset(ring->desc, 0, ring->desc_dma.size);
1228	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1229	    BUS_DMASYNC_PREWRITE);
1230	sc->qfullmsk &= ~(1 << ring->qid);
1231	ring->queued = 0;
1232	ring->cur = 0;
1233	ring->update = 0;
1234}
1235
1236static void
1237wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1238{
1239	int i;
1240
1241	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1242
1243	wpi_dma_contig_free(&ring->desc_dma);
1244	wpi_dma_contig_free(&ring->cmd_dma);
1245
1246	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1247		struct wpi_tx_data *data = &ring->data[i];
1248
1249		if (data->m != NULL) {
1250			bus_dmamap_sync(ring->data_dmat, data->map,
1251			    BUS_DMASYNC_POSTWRITE);
1252			bus_dmamap_unload(ring->data_dmat, data->map);
1253			m_freem(data->m);
1254		}
1255		if (data->map != NULL)
1256			bus_dmamap_destroy(ring->data_dmat, data->map);
1257	}
1258	if (ring->data_dmat != NULL) {
1259		bus_dma_tag_destroy(ring->data_dmat);
1260		ring->data_dmat = NULL;
1261	}
1262}
1263
1264/*
1265 * Extract various information from EEPROM.
1266 */
1267static int
1268wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1269{
1270#define WPI_CHK(res) do {		\
1271	if ((error = res) != 0)		\
1272		goto fail;		\
1273} while (0)
1274	int error, i;
1275
1276	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1277
1278	/* Adapter has to be powered on for EEPROM access to work. */
1279	if ((error = wpi_apm_init(sc)) != 0) {
1280		device_printf(sc->sc_dev,
1281		    "%s: could not power ON adapter, error %d\n", __func__,
1282		    error);
1283		return error;
1284	}
1285
1286	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1287		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1288		error = EIO;
1289		goto fail;
1290	}
1291	/* Clear HW ownership of EEPROM. */
1292	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1293
1294	/* Read the hardware capabilities, revision and SKU type. */
1295	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1296	    sizeof(sc->cap)));
1297	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1298	    sizeof(sc->rev)));
1299	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1300	    sizeof(sc->type)));
1301
1302	sc->rev = le16toh(sc->rev);
1303	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1304	    sc->rev, sc->type);
1305
1306	/* Read the regulatory domain (4 ASCII characters.) */
1307	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1308	    sizeof(sc->domain)));
1309
1310	/* Read MAC address. */
1311	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1312	    IEEE80211_ADDR_LEN));
1313
1314	/* Read the list of authorized channels. */
1315	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1316		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1317
1318	/* Read the list of TX power groups. */
1319	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1320		WPI_CHK(wpi_read_eeprom_group(sc, i));
1321
1322fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1323
1324	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1325	    __func__);
1326
1327	return error;
1328#undef WPI_CHK
1329}
1330
1331/*
1332 * Translate EEPROM flags to net80211.
1333 */
1334static uint32_t
1335wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1336{
1337	uint32_t nflags;
1338
1339	nflags = 0;
1340	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1341		nflags |= IEEE80211_CHAN_PASSIVE;
1342	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1343		nflags |= IEEE80211_CHAN_NOADHOC;
1344	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1345		nflags |= IEEE80211_CHAN_DFS;
1346		/* XXX apparently IBSS may still be marked */
1347		nflags |= IEEE80211_CHAN_NOADHOC;
1348	}
1349
1350	return nflags;
1351}
1352
1353static void
1354wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1355{
1356	struct ifnet *ifp = sc->sc_ifp;
1357	struct ieee80211com *ic = ifp->if_l2com;
1358	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1359	const struct wpi_chan_band *band = &wpi_bands[n];
1360	struct ieee80211_channel *c;
1361	uint8_t chan;
1362	int i, nflags;
1363
1364	for (i = 0; i < band->nchan; i++) {
1365		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1366			DPRINTF(sc, WPI_DEBUG_HW,
1367			    "Channel Not Valid: %d, band %d\n",
1368			     band->chan[i],n);
1369			continue;
1370		}
1371
1372		chan = band->chan[i];
1373		nflags = wpi_eeprom_channel_flags(&channels[i]);
1374
1375		c = &ic->ic_channels[ic->ic_nchans++];
1376		c->ic_ieee = chan;
1377		c->ic_maxregpower = channels[i].maxpwr;
1378		c->ic_maxpower = 2*c->ic_maxregpower;
1379
1380		if (n == 0) {	/* 2GHz band */
1381			c->ic_freq = ieee80211_ieee2mhz(chan,
1382			    IEEE80211_CHAN_G);
1383
1384			/* G =>'s B is supported */
1385			c->ic_flags = IEEE80211_CHAN_B | nflags;
1386			c = &ic->ic_channels[ic->ic_nchans++];
1387			c[0] = c[-1];
1388			c->ic_flags = IEEE80211_CHAN_G | nflags;
1389		} else {	/* 5GHz band */
1390			c->ic_freq = ieee80211_ieee2mhz(chan,
1391			    IEEE80211_CHAN_A);
1392
1393			c->ic_flags = IEEE80211_CHAN_A | nflags;
1394		}
1395
1396		/* Save maximum allowed TX power for this channel. */
1397		sc->maxpwr[chan] = channels[i].maxpwr;
1398
1399		DPRINTF(sc, WPI_DEBUG_EEPROM,
1400		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1401		    " offset %d\n", chan, c->ic_freq,
1402		    channels[i].flags, sc->maxpwr[chan],
1403		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1404	}
1405}
1406
1407/**
1408 * Read the eeprom to find out what channels are valid for the given
1409 * band and update net80211 with what we find.
1410 */
1411static int
1412wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1413{
1414	struct ifnet *ifp = sc->sc_ifp;
1415	struct ieee80211com *ic = ifp->if_l2com;
1416	const struct wpi_chan_band *band = &wpi_bands[n];
1417	int error;
1418
1419	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1420
1421	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1422	    band->nchan * sizeof (struct wpi_eeprom_chan));
1423	if (error != 0) {
1424		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1425		return error;
1426	}
1427
1428	wpi_read_eeprom_band(sc, n);
1429
1430	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1431
1432	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1433
1434	return 0;
1435}
1436
1437static struct wpi_eeprom_chan *
1438wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1439{
1440	int i, j;
1441
1442	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1443		for (i = 0; i < wpi_bands[j].nchan; i++)
1444			if (wpi_bands[j].chan[i] == c->ic_ieee)
1445				return &sc->eeprom_channels[j][i];
1446
1447	return NULL;
1448}
1449
1450/*
1451 * Enforce flags read from EEPROM.
1452 */
1453static int
1454wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1455    int nchan, struct ieee80211_channel chans[])
1456{
1457	struct ifnet *ifp = ic->ic_ifp;
1458	struct wpi_softc *sc = ifp->if_softc;
1459	int i;
1460
1461	for (i = 0; i < nchan; i++) {
1462		struct ieee80211_channel *c = &chans[i];
1463		struct wpi_eeprom_chan *channel;
1464
1465		channel = wpi_find_eeprom_channel(sc, c);
1466		if (channel == NULL) {
1467			if_printf(ic->ic_ifp,
1468			    "%s: invalid channel %u freq %u/0x%x\n",
1469			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1470			return EINVAL;
1471		}
1472		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1473	}
1474
1475	return 0;
1476}
1477
1478static int
1479wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1480{
1481	struct wpi_power_group *group = &sc->groups[n];
1482	struct wpi_eeprom_group rgroup;
1483	int i, error;
1484
1485	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1486
1487	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1488	    &rgroup, sizeof rgroup)) != 0) {
1489		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1490		return error;
1491	}
1492
1493	/* Save TX power group information. */
1494	group->chan   = rgroup.chan;
1495	group->maxpwr = rgroup.maxpwr;
1496	/* Retrieve temperature at which the samples were taken. */
1497	group->temp   = (int16_t)le16toh(rgroup.temp);
1498
1499	DPRINTF(sc, WPI_DEBUG_EEPROM,
1500	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1501	    group->maxpwr, group->temp);
1502
1503	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1504		group->samples[i].index = rgroup.samples[i].index;
1505		group->samples[i].power = rgroup.samples[i].power;
1506
1507		DPRINTF(sc, WPI_DEBUG_EEPROM,
1508		    "\tsample %d: index=%d power=%d\n", i,
1509		    group->samples[i].index, group->samples[i].power);
1510	}
1511
1512	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1513
1514	return 0;
1515}
1516
1517static int
1518wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1519{
1520	int newid = WPI_ID_IBSS_MIN;
1521
1522	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1523		if ((sc->nodesmsk & (1 << newid)) == 0) {
1524			sc->nodesmsk |= 1 << newid;
1525			return newid;
1526		}
1527	}
1528
1529	return WPI_ID_UNDEFINED;
1530}
1531
1532static __inline int
1533wpi_add_node_entry_sta(struct wpi_softc *sc)
1534{
1535	sc->nodesmsk |= 1 << WPI_ID_BSS;
1536
1537	return WPI_ID_BSS;
1538}
1539
1540static __inline int
1541wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1542{
1543	if (id == WPI_ID_UNDEFINED)
1544		return 0;
1545
1546	return (sc->nodesmsk >> id) & 1;
1547}
1548
1549static __inline void
1550wpi_clear_node_table(struct wpi_softc *sc)
1551{
1552	sc->nodesmsk = 0;
1553}
1554
1555static __inline void
1556wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1557{
1558	sc->nodesmsk &= ~(1 << id);
1559}
1560
1561static struct ieee80211_node *
1562wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1563{
1564	struct wpi_node *wn;
1565
1566	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1567	    M_NOWAIT | M_ZERO);
1568
1569	if (wn == NULL)
1570		return NULL;
1571
1572	wn->id = WPI_ID_UNDEFINED;
1573
1574	return &wn->ni;
1575}
1576
1577static void
1578wpi_node_free(struct ieee80211_node *ni)
1579{
1580	struct ieee80211com *ic = ni->ni_ic;
1581	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1582	struct wpi_node *wn = WPI_NODE(ni);
1583
1584	if (wn->id != WPI_ID_UNDEFINED) {
1585		WPI_LOCK(sc);
1586		if (wpi_check_node_entry(sc, wn->id)) {
1587			wpi_del_node_entry(sc, wn->id);
1588			wpi_del_node(sc, ni);
1589		}
1590		WPI_UNLOCK(sc);
1591	}
1592
1593	sc->sc_node_free(ni);
1594}
1595
1596/**
1597 * Called by net80211 when ever there is a change to 80211 state machine
1598 */
1599static int
1600wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1601{
1602	struct wpi_vap *wvp = WPI_VAP(vap);
1603	struct ieee80211com *ic = vap->iv_ic;
1604	struct ifnet *ifp = ic->ic_ifp;
1605	struct wpi_softc *sc = ifp->if_softc;
1606	int error = 0;
1607
1608	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1609
1610	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1611		ieee80211_state_name[vap->iv_state],
1612		ieee80211_state_name[nstate]);
1613
1614	IEEE80211_UNLOCK(ic);
1615	WPI_LOCK(sc);
1616	switch (nstate) {
1617	case IEEE80211_S_SCAN:
1618		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1619		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1620		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1621			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1622			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1623				device_printf(sc->sc_dev,
1624				    "%s: could not send RXON\n", __func__);
1625			}
1626		}
1627		break;
1628
1629	case IEEE80211_S_ASSOC:
1630		if (vap->iv_state != IEEE80211_S_RUN)
1631			break;
1632		/* FALLTHROUGH */
1633	case IEEE80211_S_AUTH:
1634		/*
1635		 * The node must be registered in the firmware before auth.
1636		 * Also the associd must be cleared on RUN -> ASSOC
1637		 * transitions.
1638		 */
1639		if ((error = wpi_auth(sc, vap)) != 0) {
1640			device_printf(sc->sc_dev,
1641			    "%s: could not move to AUTH state, error %d\n",
1642			    __func__, error);
1643		}
1644		break;
1645
1646	case IEEE80211_S_RUN:
1647		/*
1648		 * RUN -> RUN transition; Just restart the timers.
1649		 */
1650		if (vap->iv_state == IEEE80211_S_RUN) {
1651			wpi_calib_timeout(sc);
1652			break;
1653		}
1654
1655		/*
1656		 * !RUN -> RUN requires setting the association id
1657		 * which is done with a firmware cmd.  We also defer
1658		 * starting the timers until that work is done.
1659		 */
1660		if ((error = wpi_run(sc, vap)) != 0) {
1661			device_printf(sc->sc_dev,
1662			    "%s: could not move to RUN state\n", __func__);
1663		}
1664		break;
1665
1666	default:
1667		break;
1668	}
1669	WPI_UNLOCK(sc);
1670	IEEE80211_LOCK(ic);
1671	if (error != 0) {
1672		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1673		return error;
1674	}
1675
1676	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1677
1678	return wvp->newstate(vap, nstate, arg);
1679}
1680
1681static void
1682wpi_calib_timeout(void *arg)
1683{
1684	struct wpi_softc *sc = arg;
1685	struct ifnet *ifp = sc->sc_ifp;
1686	struct ieee80211com *ic = ifp->if_l2com;
1687	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1688
1689	if (vap->iv_state != IEEE80211_S_RUN)
1690		return;
1691
1692	wpi_power_calibration(sc);
1693
1694	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1695}
1696
1697static __inline uint8_t
1698rate2plcp(const uint8_t rate)
1699{
1700	switch (rate) {
1701	case 12:	return 0xd;
1702	case 18:	return 0xf;
1703	case 24:	return 0x5;
1704	case 36:	return 0x7;
1705	case 48:	return 0x9;
1706	case 72:	return 0xb;
1707	case 96:	return 0x1;
1708	case 108:	return 0x3;
1709	case 2:		return 10;
1710	case 4:		return 20;
1711	case 11:	return 55;
1712	case 22:	return 110;
1713	default:	return 0;
1714	}
1715}
1716
1717static __inline uint8_t
1718plcp2rate(const uint8_t plcp)
1719{
1720	switch (plcp) {
1721	case 0xd:	return 12;
1722	case 0xf:	return 18;
1723	case 0x5:	return 24;
1724	case 0x7:	return 36;
1725	case 0x9:	return 48;
1726	case 0xb:	return 72;
1727	case 0x1:	return 96;
1728	case 0x3:	return 108;
1729	case 10:	return 2;
1730	case 20:	return 4;
1731	case 55:	return 11;
1732	case 110:	return 22;
1733	default:	return 0;
1734	}
1735}
1736
1737/* Quickly determine if a given rate is CCK or OFDM. */
1738#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1739
1740static void
1741wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1742    struct wpi_rx_data *data)
1743{
1744	struct ifnet *ifp = sc->sc_ifp;
1745	const struct ieee80211_cipher *cip = NULL;
1746	struct ieee80211com *ic = ifp->if_l2com;
1747	struct wpi_rx_ring *ring = &sc->rxq;
1748	struct wpi_rx_stat *stat;
1749	struct wpi_rx_head *head;
1750	struct wpi_rx_tail *tail;
1751	struct ieee80211_frame *wh;
1752	struct ieee80211_node *ni;
1753	struct mbuf *m, *m1;
1754	bus_addr_t paddr;
1755	uint32_t flags;
1756	uint16_t len;
1757	int error;
1758
1759	stat = (struct wpi_rx_stat *)(desc + 1);
1760
1761	if (stat->len > WPI_STAT_MAXLEN) {
1762		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1763		goto fail1;
1764	}
1765
1766	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1767	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1768	len = le16toh(head->len);
1769	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1770	flags = le32toh(tail->flags);
1771
1772	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1773	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1774	    le32toh(desc->len), len, (int8_t)stat->rssi,
1775	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1776
1777	/* Discard frames with a bad FCS early. */
1778	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1779		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1780		    __func__, flags);
1781		goto fail1;
1782	}
1783	/* Discard frames that are too short. */
1784	if (len < sizeof (*wh)) {
1785		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1786		    __func__, len);
1787		goto fail1;
1788	}
1789
1790	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1791	if (m1 == NULL) {
1792		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1793		    __func__);
1794		goto fail1;
1795	}
1796	bus_dmamap_unload(ring->data_dmat, data->map);
1797
1798	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1799	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1800	if (error != 0 && error != EFBIG) {
1801		device_printf(sc->sc_dev,
1802		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1803		m_freem(m1);
1804
1805		/* Try to reload the old mbuf. */
1806		error = bus_dmamap_load(ring->data_dmat, data->map,
1807		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1808		    &paddr, BUS_DMA_NOWAIT);
1809		if (error != 0 && error != EFBIG) {
1810			panic("%s: could not load old RX mbuf", __func__);
1811		}
1812		/* Physical address may have changed. */
1813		ring->desc[ring->cur] = htole32(paddr);
1814		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1815		    BUS_DMASYNC_PREWRITE);
1816		goto fail1;
1817	}
1818
1819	m = data->m;
1820	data->m = m1;
1821	/* Update RX descriptor. */
1822	ring->desc[ring->cur] = htole32(paddr);
1823	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1824	    BUS_DMASYNC_PREWRITE);
1825
1826	/* Finalize mbuf. */
1827	m->m_pkthdr.rcvif = ifp;
1828	m->m_data = (caddr_t)(head + 1);
1829	m->m_pkthdr.len = m->m_len = len;
1830
1831	/* Grab a reference to the source node. */
1832	wh = mtod(m, struct ieee80211_frame *);
1833	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1834
1835	if (ni != NULL)
1836		cip = ni->ni_ucastkey.wk_cipher;
1837	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1838	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1839	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1840		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1841			goto fail2;
1842
1843		/* Check whether decryption was successful or not. */
1844		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1845			DPRINTF(sc, WPI_DEBUG_RECV,
1846			    "CCMP decryption failed 0x%x\n", flags);
1847			goto fail2;
1848		}
1849		m->m_flags |= M_WEP;
1850	}
1851
1852	if (ieee80211_radiotap_active(ic)) {
1853		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1854
1855		tap->wr_flags = 0;
1856		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1857			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1858		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1859		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1860		tap->wr_tsft = tail->tstamp;
1861		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1862		tap->wr_rate = plcp2rate(head->plcp);
1863	}
1864
1865	WPI_UNLOCK(sc);
1866
1867	/* Send the frame to the 802.11 layer. */
1868	if (ni != NULL) {
1869		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1870		/* Node is no longer needed. */
1871		ieee80211_free_node(ni);
1872	} else
1873		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1874
1875	WPI_LOCK(sc);
1876
1877	return;
1878
1879fail2:	ieee80211_free_node(ni);
1880	m_freem(m);
1881
1882fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1883}
1884
1885static void
1886wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1887    struct wpi_rx_data *data)
1888{
1889	/* Ignore */
1890}
1891
1892static void
1893wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1894{
1895	struct ifnet *ifp = sc->sc_ifp;
1896	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1897	struct wpi_tx_data *data = &ring->data[desc->idx];
1898	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1899	struct mbuf *m;
1900	struct ieee80211_node *ni;
1901	struct ieee80211vap *vap;
1902	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1903	int status = le32toh(stat->status);
1904
1905	KASSERT(data->ni != NULL, ("no node"));
1906
1907	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1908
1909	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1910	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1911	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1912	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1913
1914	/* Unmap and free mbuf. */
1915	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1916	bus_dmamap_unload(ring->data_dmat, data->map);
1917	m = data->m, data->m = NULL;
1918	ni = data->ni, data->ni = NULL;
1919	vap = ni->ni_vap;
1920
1921	/*
1922	 * Update rate control statistics for the node.
1923	 */
1924	WPI_UNLOCK(sc);
1925	if ((status & 0xff) != 1) {
1926		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1927		ieee80211_ratectl_tx_complete(vap, ni,
1928		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1929	} else {
1930		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1931		ieee80211_ratectl_tx_complete(vap, ni,
1932		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1933	}
1934
1935	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1936	WPI_LOCK(sc);
1937
1938	sc->sc_tx_timer = 0;
1939	if (--ring->queued < WPI_TX_RING_LOMARK) {
1940		sc->qfullmsk &= ~(1 << ring->qid);
1941		if (sc->qfullmsk == 0 &&
1942		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1943			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1944			wpi_start_locked(ifp);
1945		}
1946	}
1947
1948	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1949}
1950
1951/*
1952 * Process a "command done" firmware notification.  This is where we wakeup
1953 * processes waiting for a synchronous command completion.
1954 */
1955static void
1956wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1957{
1958	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
1959	struct wpi_tx_data *data;
1960
1961	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1962				   "type=%s len=%d\n", desc->qid, desc->idx,
1963				   desc->flags, wpi_cmd_str(desc->type),
1964				   le32toh(desc->len));
1965
1966	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
1967		return;	/* Not a command ack. */
1968
1969	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
1970
1971	data = &ring->data[desc->idx];
1972
1973	/* If the command was mapped in an mbuf, free it. */
1974	if (data->m != NULL) {
1975		bus_dmamap_sync(ring->data_dmat, data->map,
1976		    BUS_DMASYNC_POSTWRITE);
1977		bus_dmamap_unload(ring->data_dmat, data->map);
1978		m_freem(data->m);
1979		data->m = NULL;
1980	}
1981
1982	wakeup(&ring->cmd[desc->idx]);
1983}
1984
1985static void
1986wpi_notif_intr(struct wpi_softc *sc)
1987{
1988	struct ifnet *ifp = sc->sc_ifp;
1989	struct ieee80211com *ic = ifp->if_l2com;
1990	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1991	int hw;
1992
1993	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1994	    BUS_DMASYNC_POSTREAD);
1995
1996	hw = le32toh(sc->shared->next);
1997	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1998
1999	while (sc->rxq.cur != hw) {
2000		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2001
2002		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2003		struct wpi_rx_desc *desc;
2004
2005		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2006		    BUS_DMASYNC_POSTREAD);
2007		desc = mtod(data->m, struct wpi_rx_desc *);
2008
2009		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2010		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2011		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2012		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2013
2014		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2015			/* Reply to a command. */
2016			wpi_cmd_done(sc, desc);
2017		}
2018
2019		switch (desc->type) {
2020		case WPI_RX_DONE:
2021			/* An 802.11 frame has been received. */
2022			wpi_rx_done(sc, desc, data);
2023
2024			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2025				/* wpi_stop() was called. */
2026				return;
2027			}
2028
2029			break;
2030
2031		case WPI_TX_DONE:
2032			/* An 802.11 frame has been transmitted. */
2033			wpi_tx_done(sc, desc);
2034			break;
2035
2036		case WPI_RX_STATISTICS:
2037		case WPI_BEACON_STATISTICS:
2038			wpi_rx_statistics(sc, desc, data);
2039			break;
2040
2041		case WPI_BEACON_MISSED:
2042		{
2043			struct wpi_beacon_missed *miss =
2044			    (struct wpi_beacon_missed *)(desc + 1);
2045			int misses;
2046
2047			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2048			    BUS_DMASYNC_POSTREAD);
2049			misses = le32toh(miss->consecutive);
2050
2051			DPRINTF(sc, WPI_DEBUG_STATE,
2052			    "%s: beacons missed %d/%d\n", __func__, misses,
2053			    le32toh(miss->total));
2054
2055			if (vap->iv_state == IEEE80211_S_RUN &&
2056			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2057				if (misses >=  vap->iv_bmissthreshold) {
2058					WPI_UNLOCK(sc);
2059					ieee80211_beacon_miss(ic);
2060					WPI_LOCK(sc);
2061				}
2062			}
2063			break;
2064		}
2065		case WPI_UC_READY:
2066		{
2067			struct wpi_ucode_info *uc =
2068			    (struct wpi_ucode_info *)(desc + 1);
2069
2070			/* The microcontroller is ready. */
2071			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2072			    BUS_DMASYNC_POSTREAD);
2073			DPRINTF(sc, WPI_DEBUG_RESET,
2074			    "microcode alive notification version=%d.%d "
2075			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2076			    uc->subtype, le32toh(uc->valid));
2077
2078			if (le32toh(uc->valid) != 1) {
2079				device_printf(sc->sc_dev,
2080				    "microcontroller initialization failed\n");
2081				wpi_stop_locked(sc);
2082			}
2083			/* Save the address of the error log in SRAM. */
2084			sc->errptr = le32toh(uc->errptr);
2085			break;
2086		}
2087		case WPI_STATE_CHANGED:
2088		{
2089			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2090			    BUS_DMASYNC_POSTREAD);
2091
2092			uint32_t *status = (uint32_t *)(desc + 1);
2093
2094			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2095			    le32toh(*status));
2096
2097			if (le32toh(*status) & 1) {
2098				wpi_clear_node_table(sc);
2099				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2100				return;
2101			}
2102			break;
2103		}
2104		case WPI_START_SCAN:
2105		{
2106			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2107			    BUS_DMASYNC_POSTREAD);
2108#ifdef WPI_DEBUG
2109			struct wpi_start_scan *scan =
2110			    (struct wpi_start_scan *)(desc + 1);
2111			DPRINTF(sc, WPI_DEBUG_SCAN,
2112			    "%s: scanning channel %d status %x\n",
2113			    __func__, scan->chan, le32toh(scan->status));
2114#endif
2115			break;
2116		}
2117		case WPI_STOP_SCAN:
2118		{
2119			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2120			    BUS_DMASYNC_POSTREAD);
2121#ifdef WPI_DEBUG
2122			struct wpi_stop_scan *scan =
2123			    (struct wpi_stop_scan *)(desc + 1);
2124			DPRINTF(sc, WPI_DEBUG_SCAN,
2125			    "scan finished nchan=%d status=%d chan=%d\n",
2126			    scan->nchan, scan->status, scan->chan);
2127#endif
2128			sc->sc_scan_timer = 0;
2129			WPI_UNLOCK(sc);
2130			ieee80211_scan_next(vap);
2131			WPI_LOCK(sc);
2132			break;
2133		}
2134		}
2135	}
2136
2137	/* Tell the firmware what we have processed. */
2138	wpi_update_rx_ring(sc);
2139}
2140
2141/*
2142 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2143 * from power-down sleep mode.
2144 */
2145static void
2146wpi_wakeup_intr(struct wpi_softc *sc)
2147{
2148	int qid;
2149
2150	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2151	    "%s: ucode wakeup from power-down sleep\n", __func__);
2152
2153	/* Wakeup RX and TX rings. */
2154	if (sc->rxq.update) {
2155		sc->rxq.update = 0;
2156		wpi_update_rx_ring(sc);
2157	}
2158	WPI_TXQ_LOCK(sc);
2159	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2160		struct wpi_tx_ring *ring = &sc->txq[qid];
2161
2162		if (ring->update) {
2163			ring->update = 0;
2164			wpi_update_tx_ring(sc, ring);
2165		}
2166	}
2167	WPI_TXQ_UNLOCK(sc);
2168
2169	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2170}
2171
2172/*
2173 * Dump the error log of the firmware when a firmware panic occurs.  Although
2174 * we can't debug the firmware because it is neither open source nor free, it
2175 * can help us to identify certain classes of problems.
2176 */
2177static void
2178wpi_fatal_intr(struct wpi_softc *sc)
2179{
2180	struct wpi_fw_dump dump;
2181	uint32_t i, offset, count;
2182	const uint32_t size_errmsg =
2183	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2184
2185	/* Check that the error log address is valid. */
2186	if (sc->errptr < WPI_FW_DATA_BASE ||
2187	    sc->errptr + sizeof (dump) >
2188	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2189		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2190		    sc->errptr);
2191		return;
2192	}
2193	if (wpi_nic_lock(sc) != 0) {
2194		printf("%s: could not read firmware error log\n", __func__);
2195		return;
2196	}
2197	/* Read number of entries in the log. */
2198	count = wpi_mem_read(sc, sc->errptr);
2199	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2200		printf("%s: invalid count field (count = %u)\n", __func__,
2201		    count);
2202		wpi_nic_unlock(sc);
2203		return;
2204	}
2205	/* Skip "count" field. */
2206	offset = sc->errptr + sizeof (uint32_t);
2207	printf("firmware error log (count = %u):\n", count);
2208	for (i = 0; i < count; i++) {
2209		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2210		    sizeof (dump) / sizeof (uint32_t));
2211
2212		printf("  error type = \"%s\" (0x%08X)\n",
2213		    (dump.desc < size_errmsg) ?
2214		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2215		    dump.desc);
2216		printf("  error data      = 0x%08X\n",
2217		    dump.data);
2218		printf("  branch link     = 0x%08X%08X\n",
2219		    dump.blink[0], dump.blink[1]);
2220		printf("  interrupt link  = 0x%08X%08X\n",
2221		    dump.ilink[0], dump.ilink[1]);
2222		printf("  time            = %u\n", dump.time);
2223
2224		offset += sizeof (dump);
2225	}
2226	wpi_nic_unlock(sc);
2227	/* Dump driver status (TX and RX rings) while we're here. */
2228	printf("driver status:\n");
2229	WPI_TXQ_LOCK(sc);
2230	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2231		struct wpi_tx_ring *ring = &sc->txq[i];
2232		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2233		    i, ring->qid, ring->cur, ring->queued);
2234	}
2235	WPI_TXQ_UNLOCK(sc);
2236	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2237}
2238
2239static void
2240wpi_intr(void *arg)
2241{
2242	struct wpi_softc *sc = arg;
2243	struct ifnet *ifp = sc->sc_ifp;
2244	uint32_t r1, r2;
2245
2246	WPI_LOCK(sc);
2247
2248	/* Disable interrupts. */
2249	WPI_WRITE(sc, WPI_INT_MASK, 0);
2250
2251	r1 = WPI_READ(sc, WPI_INT);
2252
2253	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2254		goto end;	/* Hardware gone! */
2255
2256	r2 = WPI_READ(sc, WPI_FH_INT);
2257
2258	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2259	    r1, r2);
2260
2261	if (r1 == 0 && r2 == 0)
2262		goto done;	/* Interrupt not for us. */
2263
2264	/* Acknowledge interrupts. */
2265	WPI_WRITE(sc, WPI_INT, r1);
2266	WPI_WRITE(sc, WPI_FH_INT, r2);
2267
2268	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2269		struct ieee80211com *ic = ifp->if_l2com;
2270
2271		device_printf(sc->sc_dev, "fatal firmware error\n");
2272		wpi_fatal_intr(sc);
2273		DPRINTF(sc, WPI_DEBUG_HW,
2274		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2275		    "(Hardware Error)");
2276		ieee80211_runtask(ic, &sc->sc_reinittask);
2277		goto end;
2278	}
2279
2280	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2281	    (r2 & WPI_FH_INT_RX))
2282		wpi_notif_intr(sc);
2283
2284	if (r1 & WPI_INT_ALIVE)
2285		wakeup(sc);	/* Firmware is alive. */
2286
2287	if (r1 & WPI_INT_WAKEUP)
2288		wpi_wakeup_intr(sc);
2289
2290done:
2291	/* Re-enable interrupts. */
2292	if (ifp->if_flags & IFF_UP)
2293		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2294
2295end:	WPI_UNLOCK(sc);
2296}
2297
2298static int
2299wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2300{
2301	struct ieee80211_frame *wh;
2302	struct wpi_tx_cmd *cmd;
2303	struct wpi_tx_data *data;
2304	struct wpi_tx_desc *desc;
2305	struct wpi_tx_ring *ring;
2306	struct mbuf *m1;
2307	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2308	int error, i, hdrlen, nsegs, totlen, pad;
2309
2310	WPI_LOCK_ASSERT(sc);
2311
2312	WPI_TXQ_LOCK(sc);
2313
2314	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2315
2316	if (sc->txq_active == 0) {
2317		/* wpi_stop() was called */
2318		error = ENETDOWN;
2319		goto fail;
2320	}
2321
2322	wh = mtod(buf->m, struct ieee80211_frame *);
2323	hdrlen = ieee80211_anyhdrsize(wh);
2324	totlen = buf->m->m_pkthdr.len;
2325
2326	if (hdrlen & 3) {
2327		/* First segment length must be a multiple of 4. */
2328		pad = 4 - (hdrlen & 3);
2329	} else
2330		pad = 0;
2331
2332	ring = &sc->txq[buf->ac];
2333	desc = &ring->desc[ring->cur];
2334	data = &ring->data[ring->cur];
2335
2336	/* Prepare TX firmware command. */
2337	cmd = &ring->cmd[ring->cur];
2338	cmd->code = buf->code;
2339	cmd->flags = 0;
2340	cmd->qid = ring->qid;
2341	cmd->idx = ring->cur;
2342
2343	memcpy(cmd->data, buf->data, buf->size);
2344
2345	/* Save and trim IEEE802.11 header. */
2346	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2347	m_adj(buf->m, hdrlen);
2348
2349	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2350	    segs, &nsegs, BUS_DMA_NOWAIT);
2351	if (error != 0 && error != EFBIG) {
2352		device_printf(sc->sc_dev,
2353		    "%s: can't map mbuf (error %d)\n", __func__, error);
2354		goto fail;
2355	}
2356	if (error != 0) {
2357		/* Too many DMA segments, linearize mbuf. */
2358		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2359		if (m1 == NULL) {
2360			device_printf(sc->sc_dev,
2361			    "%s: could not defrag mbuf\n", __func__);
2362			error = ENOBUFS;
2363			goto fail;
2364		}
2365		buf->m = m1;
2366
2367		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2368		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2369		if (error != 0) {
2370			device_printf(sc->sc_dev,
2371			    "%s: can't map mbuf (error %d)\n", __func__,
2372			    error);
2373			goto fail;
2374		}
2375	}
2376
2377	KASSERT(nsegs < WPI_MAX_SCATTER,
2378	    ("too many DMA segments, nsegs (%d) should be less than %d",
2379	     nsegs, WPI_MAX_SCATTER));
2380
2381	data->m = buf->m;
2382	data->ni = buf->ni;
2383
2384	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2385	    __func__, ring->qid, ring->cur, totlen, nsegs);
2386
2387	/* Fill TX descriptor. */
2388	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2389	/* First DMA segment is used by the TX command. */
2390	desc->segs[0].addr = htole32(data->cmd_paddr);
2391	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2392	/* Other DMA segments are for data payload. */
2393	seg = &segs[0];
2394	for (i = 1; i <= nsegs; i++) {
2395		desc->segs[i].addr = htole32(seg->ds_addr);
2396		desc->segs[i].len  = htole32(seg->ds_len);
2397		seg++;
2398	}
2399
2400	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2401	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2402	    BUS_DMASYNC_PREWRITE);
2403	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2404	    BUS_DMASYNC_PREWRITE);
2405
2406	/* Kick TX ring. */
2407	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2408	wpi_update_tx_ring(sc, ring);
2409
2410	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2411		/* Mark TX ring as full if we reach a certain threshold. */
2412		if (++ring->queued > WPI_TX_RING_HIMARK)
2413			sc->qfullmsk |= 1 << ring->qid;
2414
2415		sc->sc_tx_timer = 5;
2416	}
2417
2418	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2419
2420	WPI_TXQ_UNLOCK(sc);
2421
2422	return 0;
2423
2424fail:	m_freem(buf->m);
2425
2426	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2427
2428	WPI_TXQ_UNLOCK(sc);
2429
2430	return error;
2431}
2432
2433/*
2434 * Construct the data packet for a transmit buffer.
2435 */
2436static int
2437wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2438{
2439	const struct ieee80211_txparam *tp;
2440	struct ieee80211vap *vap = ni->ni_vap;
2441	struct ieee80211com *ic = ni->ni_ic;
2442	struct wpi_node *wn = WPI_NODE(ni);
2443	struct ieee80211_channel *chan;
2444	struct ieee80211_frame *wh;
2445	struct ieee80211_key *k = NULL;
2446	struct wpi_cmd_data tx;
2447	struct wpi_buf tx_data;
2448	uint32_t flags;
2449	uint16_t qos;
2450	uint8_t tid, type;
2451	int ac, error, swcrypt, rate, ismcast, totlen;
2452
2453	wh = mtod(m, struct ieee80211_frame *);
2454	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2455	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2456
2457	/* Select EDCA Access Category and TX ring for this frame. */
2458	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2459 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2460		tid = qos & IEEE80211_QOS_TID;
2461	} else {
2462		qos = 0;
2463		tid = 0;
2464	}
2465	ac = M_WME_GETAC(m);
2466
2467	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2468		ni->ni_chan : ic->ic_curchan;
2469	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2470
2471	/* Choose a TX rate index. */
2472	if (type == IEEE80211_FC0_TYPE_MGT)
2473		rate = tp->mgmtrate;
2474	else if (ismcast)
2475		rate = tp->mcastrate;
2476	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2477		rate = tp->ucastrate;
2478	else if (m->m_flags & M_EAPOL)
2479		rate = tp->mgmtrate;
2480	else {
2481		/* XXX pass pktlen */
2482		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2483		rate = ni->ni_txrate;
2484	}
2485
2486	/* Encrypt the frame if need be. */
2487	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2488		/* Retrieve key for TX. */
2489		k = ieee80211_crypto_encap(ni, m);
2490		if (k == NULL) {
2491			error = ENOBUFS;
2492			goto fail;
2493		}
2494		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2495
2496		/* 802.11 header may have moved. */
2497		wh = mtod(m, struct ieee80211_frame *);
2498	}
2499	totlen = m->m_pkthdr.len;
2500
2501	if (ieee80211_radiotap_active_vap(vap)) {
2502		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2503
2504		tap->wt_flags = 0;
2505		tap->wt_rate = rate;
2506		if (k != NULL)
2507			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2508
2509		ieee80211_radiotap_tx(vap, m);
2510	}
2511
2512	flags = 0;
2513	if (!ismcast) {
2514		/* Unicast frame, check if an ACK is expected. */
2515		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2516		    IEEE80211_QOS_ACKPOLICY_NOACK)
2517			flags |= WPI_TX_NEED_ACK;
2518	}
2519
2520	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2521		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2522
2523	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2524	if (!ismcast) {
2525		/* NB: Group frames are sent using CCK in 802.11b/g. */
2526		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2527			flags |= WPI_TX_NEED_RTS;
2528		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2529		    WPI_RATE_IS_OFDM(rate)) {
2530			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2531				flags |= WPI_TX_NEED_CTS;
2532			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2533				flags |= WPI_TX_NEED_RTS;
2534		}
2535
2536		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2537			flags |= WPI_TX_FULL_TXOP;
2538	}
2539
2540	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2541	if (type == IEEE80211_FC0_TYPE_MGT) {
2542		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2543
2544		/* Tell HW to set timestamp in probe responses. */
2545		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2546			flags |= WPI_TX_INSERT_TSTAMP;
2547		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2548		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2549			tx.timeout = htole16(3);
2550		else
2551			tx.timeout = htole16(2);
2552	}
2553
2554	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2555		tx.id = WPI_ID_BROADCAST;
2556	else {
2557		if (wn->id == WPI_ID_UNDEFINED &&
2558		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2559		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2560			error = wpi_add_ibss_node(sc, ni);
2561			if (error != 0) {
2562				device_printf(sc->sc_dev,
2563				    "%s: could not add IBSS node, error %d\n",
2564				    __func__, error);
2565				goto fail;
2566			}
2567		}
2568
2569		if (wn->id == WPI_ID_UNDEFINED) {
2570			device_printf(sc->sc_dev,
2571			    "%s: undefined node id\n", __func__);
2572			error = EINVAL;
2573			goto fail;
2574		}
2575
2576		tx.id = wn->id;
2577	}
2578
2579	if (type != IEEE80211_FC0_TYPE_MGT)
2580		tx.data_ntries = tp->maxretry;
2581
2582	if (k != NULL && !swcrypt) {
2583		switch (k->wk_cipher->ic_cipher) {
2584		case IEEE80211_CIPHER_AES_CCM:
2585			tx.security = WPI_CIPHER_CCMP;
2586			break;
2587
2588		default:
2589			break;
2590		}
2591
2592		memcpy(tx.key, k->wk_key, k->wk_keylen);
2593	}
2594
2595	tx.len = htole16(totlen);
2596	tx.flags = htole32(flags);
2597	tx.plcp = rate2plcp(rate);
2598	tx.tid = tid;
2599	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2600	tx.ofdm_mask = 0xff;
2601	tx.cck_mask = 0x0f;
2602	tx.rts_ntries = 7;
2603
2604	tx_data.data = &tx;
2605	tx_data.ni = ni;
2606	tx_data.m = m;
2607	tx_data.size = sizeof(tx);
2608	tx_data.code = WPI_CMD_TX_DATA;
2609	tx_data.ac = ac;
2610
2611	return wpi_cmd2(sc, &tx_data);
2612
2613fail:	m_freem(m);
2614	return error;
2615}
2616
2617static int
2618wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2619    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2620{
2621	struct ieee80211vap *vap = ni->ni_vap;
2622	struct ieee80211_frame *wh;
2623	struct wpi_cmd_data tx;
2624	struct wpi_buf tx_data;
2625	uint32_t flags;
2626	uint8_t type;
2627	int ac, rate, totlen;
2628
2629	wh = mtod(m, struct ieee80211_frame *);
2630	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2631	totlen = m->m_pkthdr.len;
2632
2633	ac = params->ibp_pri & 3;
2634
2635	/* Choose a TX rate index. */
2636	rate = params->ibp_rate0;
2637
2638	flags = 0;
2639	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2640		flags |= WPI_TX_NEED_ACK;
2641	if (params->ibp_flags & IEEE80211_BPF_RTS)
2642		flags |= WPI_TX_NEED_RTS;
2643	if (params->ibp_flags & IEEE80211_BPF_CTS)
2644		flags |= WPI_TX_NEED_CTS;
2645	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2646		flags |= WPI_TX_FULL_TXOP;
2647
2648	if (ieee80211_radiotap_active_vap(vap)) {
2649		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2650
2651		tap->wt_flags = 0;
2652		tap->wt_rate = rate;
2653
2654		ieee80211_radiotap_tx(vap, m);
2655	}
2656
2657	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2658	if (type == IEEE80211_FC0_TYPE_MGT) {
2659		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2660
2661		/* Tell HW to set timestamp in probe responses. */
2662		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2663			flags |= WPI_TX_INSERT_TSTAMP;
2664		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2665		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2666			tx.timeout = htole16(3);
2667		else
2668			tx.timeout = htole16(2);
2669	}
2670
2671	tx.len = htole16(totlen);
2672	tx.flags = htole32(flags);
2673	tx.plcp = rate2plcp(rate);
2674	tx.id = WPI_ID_BROADCAST;
2675	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2676	tx.rts_ntries = params->ibp_try1;
2677	tx.data_ntries = params->ibp_try0;
2678
2679	tx_data.data = &tx;
2680	tx_data.ni = ni;
2681	tx_data.m = m;
2682	tx_data.size = sizeof(tx);
2683	tx_data.code = WPI_CMD_TX_DATA;
2684	tx_data.ac = ac;
2685
2686	return wpi_cmd2(sc, &tx_data);
2687}
2688
2689static int
2690wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2691    const struct ieee80211_bpf_params *params)
2692{
2693	struct ieee80211com *ic = ni->ni_ic;
2694	struct ifnet *ifp = ic->ic_ifp;
2695	struct wpi_softc *sc = ifp->if_softc;
2696	int error = 0;
2697
2698	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2699
2700	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2701		ieee80211_free_node(ni);
2702		m_freem(m);
2703		return ENETDOWN;
2704	}
2705
2706	WPI_LOCK(sc);
2707	if (params == NULL) {
2708		/*
2709		 * Legacy path; interpret frame contents to decide
2710		 * precisely how to send the frame.
2711		 */
2712		error = wpi_tx_data(sc, m, ni);
2713	} else {
2714		/*
2715		 * Caller supplied explicit parameters to use in
2716		 * sending the frame.
2717		 */
2718		error = wpi_tx_data_raw(sc, m, ni, params);
2719	}
2720	WPI_UNLOCK(sc);
2721
2722	if (error != 0) {
2723		/* NB: m is reclaimed on tx failure */
2724		ieee80211_free_node(ni);
2725		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2726
2727		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2728
2729		return error;
2730	}
2731
2732	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2733
2734	return 0;
2735}
2736
2737/**
2738 * Process data waiting to be sent on the IFNET output queue
2739 */
2740static void
2741wpi_start(struct ifnet *ifp)
2742{
2743	struct wpi_softc *sc = ifp->if_softc;
2744
2745	WPI_LOCK(sc);
2746	wpi_start_locked(ifp);
2747	WPI_UNLOCK(sc);
2748}
2749
2750static void
2751wpi_start_locked(struct ifnet *ifp)
2752{
2753	struct wpi_softc *sc = ifp->if_softc;
2754	struct ieee80211_node *ni;
2755	struct mbuf *m;
2756
2757	WPI_LOCK_ASSERT(sc);
2758
2759	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2760
2761	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2762	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2763		return;
2764
2765	for (;;) {
2766		if (sc->qfullmsk != 0) {
2767			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2768			break;
2769		}
2770		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2771		if (m == NULL)
2772			break;
2773		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2774		if (wpi_tx_data(sc, m, ni) != 0) {
2775			WPI_UNLOCK(sc);
2776			ieee80211_free_node(ni);
2777			WPI_LOCK(sc);
2778			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2779		}
2780	}
2781
2782	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2783}
2784
2785static void
2786wpi_watchdog_rfkill(void *arg)
2787{
2788	struct wpi_softc *sc = arg;
2789	struct ifnet *ifp = sc->sc_ifp;
2790	struct ieee80211com *ic = ifp->if_l2com;
2791
2792	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2793
2794	/* No need to lock firmware memory. */
2795	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2796		/* Radio kill switch is still off. */
2797		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2798		    sc);
2799	} else
2800		ieee80211_runtask(ic, &sc->sc_radioon_task);
2801}
2802
2803/**
2804 * Called every second, wpi_watchdog used by the watch dog timer
2805 * to check that the card is still alive
2806 */
2807static void
2808wpi_watchdog(void *arg)
2809{
2810	struct wpi_softc *sc = arg;
2811	struct ifnet *ifp = sc->sc_ifp;
2812	struct ieee80211com *ic = ifp->if_l2com;
2813
2814	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2815
2816	if (sc->sc_tx_timer > 0) {
2817		if (--sc->sc_tx_timer == 0) {
2818			if_printf(ifp, "device timeout\n");
2819			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2820			ieee80211_runtask(ic, &sc->sc_reinittask);
2821		}
2822	}
2823
2824	if (sc->sc_scan_timer > 0) {
2825		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2826		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2827			if_printf(ifp, "scan timeout\n");
2828			ieee80211_cancel_scan(vap);
2829			ieee80211_runtask(ic, &sc->sc_reinittask);
2830		}
2831	}
2832
2833	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2834		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2835}
2836
2837static int
2838wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2839{
2840	struct wpi_softc *sc = ifp->if_softc;
2841	struct ieee80211com *ic = ifp->if_l2com;
2842	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2843	struct ifreq *ifr = (struct ifreq *) data;
2844	int error = 0, startall = 0, stop = 0;
2845
2846	switch (cmd) {
2847	case SIOCGIFADDR:
2848		error = ether_ioctl(ifp, cmd, data);
2849		break;
2850	case SIOCSIFFLAGS:
2851		WPI_LOCK(sc);
2852		if (ifp->if_flags & IFF_UP) {
2853			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2854				wpi_init_locked(sc);
2855				if (WPI_READ(sc, WPI_GP_CNTRL) &
2856				    WPI_GP_CNTRL_RFKILL)
2857					startall = 1;
2858				else
2859					stop = 1;
2860			}
2861		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2862			wpi_stop_locked(sc);
2863		WPI_UNLOCK(sc);
2864		if (startall)
2865			ieee80211_start_all(ic);
2866		else if (vap != NULL && stop)
2867			ieee80211_stop(vap);
2868		break;
2869	case SIOCGIFMEDIA:
2870		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2871		break;
2872	default:
2873		error = EINVAL;
2874		break;
2875	}
2876	return error;
2877}
2878
2879/*
2880 * Send a command to the firmware.
2881 */
2882static int
2883wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2884    int async)
2885{
2886	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2887	struct wpi_tx_desc *desc;
2888	struct wpi_tx_data *data;
2889	struct wpi_tx_cmd *cmd;
2890	struct mbuf *m;
2891	bus_addr_t paddr;
2892	int totlen, error;
2893
2894	WPI_TXQ_LOCK(sc);
2895
2896	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2897
2898	if (sc->txq_active == 0) {
2899		/* wpi_stop() was called */
2900		error = 0;
2901		goto fail;
2902	}
2903
2904	if (async == 0)
2905		WPI_LOCK_ASSERT(sc);
2906
2907	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2908	    wpi_cmd_str(code), size, async);
2909
2910	desc = &ring->desc[ring->cur];
2911	data = &ring->data[ring->cur];
2912	totlen = 4 + size;
2913
2914	if (size > sizeof cmd->data) {
2915		/* Command is too large to fit in a descriptor. */
2916		if (totlen > MCLBYTES) {
2917			error = EINVAL;
2918			goto fail;
2919		}
2920		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2921		if (m == NULL) {
2922			error = ENOMEM;
2923			goto fail;
2924		}
2925		cmd = mtod(m, struct wpi_tx_cmd *);
2926		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2927		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2928		if (error != 0) {
2929			m_freem(m);
2930			goto fail;
2931		}
2932		data->m = m;
2933	} else {
2934		cmd = &ring->cmd[ring->cur];
2935		paddr = data->cmd_paddr;
2936	}
2937
2938	cmd->code = code;
2939	cmd->flags = 0;
2940	cmd->qid = ring->qid;
2941	cmd->idx = ring->cur;
2942	memcpy(cmd->data, buf, size);
2943
2944	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2945	desc->segs[0].addr = htole32(paddr);
2946	desc->segs[0].len  = htole32(totlen);
2947
2948	if (size > sizeof cmd->data) {
2949		bus_dmamap_sync(ring->data_dmat, data->map,
2950		    BUS_DMASYNC_PREWRITE);
2951	} else {
2952		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2953		    BUS_DMASYNC_PREWRITE);
2954	}
2955	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2956	    BUS_DMASYNC_PREWRITE);
2957
2958	/* Kick command ring. */
2959	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2960	wpi_update_tx_ring(sc, ring);
2961
2962	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2963
2964	WPI_TXQ_UNLOCK(sc);
2965
2966	if (async)
2967		return 0;
2968
2969	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2970
2971fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2972
2973	WPI_TXQ_UNLOCK(sc);
2974
2975	return error;
2976}
2977
2978/*
2979 * Configure HW multi-rate retries.
2980 */
2981static int
2982wpi_mrr_setup(struct wpi_softc *sc)
2983{
2984	struct ifnet *ifp = sc->sc_ifp;
2985	struct ieee80211com *ic = ifp->if_l2com;
2986	struct wpi_mrr_setup mrr;
2987	int i, error;
2988
2989	/* CCK rates (not used with 802.11a). */
2990	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2991		mrr.rates[i].flags = 0;
2992		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2993		/* Fallback to the immediate lower CCK rate (if any.) */
2994		mrr.rates[i].next =
2995		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2996		/* Try one time at this rate before falling back to "next". */
2997		mrr.rates[i].ntries = 1;
2998	}
2999	/* OFDM rates (not used with 802.11b). */
3000	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3001		mrr.rates[i].flags = 0;
3002		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3003		/* Fallback to the immediate lower rate (if any.) */
3004		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3005		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3006		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3007			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3008		    i - 1;
3009		/* Try one time at this rate before falling back to "next". */
3010		mrr.rates[i].ntries = 1;
3011	}
3012	/* Setup MRR for control frames. */
3013	mrr.which = htole32(WPI_MRR_CTL);
3014	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3015	if (error != 0) {
3016		device_printf(sc->sc_dev,
3017		    "could not setup MRR for control frames\n");
3018		return error;
3019	}
3020	/* Setup MRR for data frames. */
3021	mrr.which = htole32(WPI_MRR_DATA);
3022	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3023	if (error != 0) {
3024		device_printf(sc->sc_dev,
3025		    "could not setup MRR for data frames\n");
3026		return error;
3027	}
3028	return 0;
3029}
3030
3031static int
3032wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3033{
3034	struct ieee80211com *ic = ni->ni_ic;
3035	struct wpi_node *wn = WPI_NODE(ni);
3036	struct wpi_node_info node;
3037
3038	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3039
3040	if (wn->id == WPI_ID_UNDEFINED)
3041		return EINVAL;
3042
3043	memset(&node, 0, sizeof node);
3044	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3045	node.id = wn->id;
3046	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3047	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3048	node.action = htole32(WPI_ACTION_SET_RATE);
3049	node.antenna = WPI_ANTENNA_BOTH;
3050
3051	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3052}
3053
3054/*
3055 * Broadcast node is used to send group-addressed and management frames.
3056 */
3057static int
3058wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3059{
3060	struct ifnet *ifp = sc->sc_ifp;
3061	struct ieee80211com *ic = ifp->if_l2com;
3062	struct wpi_node_info node;
3063
3064	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3065
3066	memset(&node, 0, sizeof node);
3067	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3068	node.id = WPI_ID_BROADCAST;
3069	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3070	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3071	node.action = htole32(WPI_ACTION_SET_RATE);
3072	node.antenna = WPI_ANTENNA_BOTH;
3073
3074	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3075}
3076
3077static int
3078wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3079{
3080	struct wpi_node *wn = WPI_NODE(ni);
3081	int error;
3082
3083	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3084
3085	wn->id = wpi_add_node_entry_sta(sc);
3086
3087	if ((error = wpi_add_node(sc, ni)) != 0) {
3088		wpi_del_node_entry(sc, wn->id);
3089		wn->id = WPI_ID_UNDEFINED;
3090		return error;
3091	}
3092
3093	return 0;
3094}
3095
3096static int
3097wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3098{
3099	struct wpi_node *wn = WPI_NODE(ni);
3100	int error;
3101
3102	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3103
3104	if (wn->id != WPI_ID_UNDEFINED)
3105		return EINVAL;
3106
3107	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3108		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3109		return ENOMEM;
3110	}
3111
3112	if ((error = wpi_add_node(sc, ni)) != 0) {
3113		wpi_del_node_entry(sc, wn->id);
3114		wn->id = WPI_ID_UNDEFINED;
3115		return error;
3116	}
3117
3118	return 0;
3119}
3120
3121static void
3122wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3123{
3124	struct wpi_node *wn = WPI_NODE(ni);
3125	struct wpi_cmd_del_node node;
3126	int error;
3127
3128	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3129
3130	if (wn->id == WPI_ID_UNDEFINED) {
3131		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
3132		    __func__);
3133		return;
3134	}
3135
3136	memset(&node, 0, sizeof node);
3137	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3138	node.count = 1;
3139
3140	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3141	if (error != 0) {
3142		device_printf(sc->sc_dev,
3143		    "%s: could not delete node %u, error %d\n", __func__,
3144		    wn->id, error);
3145	}
3146}
3147
3148static int
3149wpi_updateedca(struct ieee80211com *ic)
3150{
3151#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3152	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3153	struct wpi_edca_params cmd;
3154	int aci, error;
3155
3156	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3157
3158	memset(&cmd, 0, sizeof cmd);
3159	cmd.flags = htole32(WPI_EDCA_UPDATE);
3160	for (aci = 0; aci < WME_NUM_AC; aci++) {
3161		const struct wmeParams *ac =
3162		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3163		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3164		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3165		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3166		cmd.ac[aci].txoplimit =
3167		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3168
3169		DPRINTF(sc, WPI_DEBUG_EDCA,
3170		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3171		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3172		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3173		    cmd.ac[aci].txoplimit);
3174	}
3175	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3176
3177	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3178
3179	return error;
3180#undef WPI_EXP2
3181}
3182
3183static void
3184wpi_set_promisc(struct wpi_softc *sc)
3185{
3186	struct ifnet *ifp = sc->sc_ifp;
3187	uint32_t promisc_filter;
3188
3189	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3190
3191	if (ifp->if_flags & IFF_PROMISC)
3192		sc->rxon.filter |= htole32(promisc_filter);
3193	else
3194		sc->rxon.filter &= ~htole32(promisc_filter);
3195}
3196
3197static void
3198wpi_update_promisc(struct ifnet *ifp)
3199{
3200	struct wpi_softc *sc = ifp->if_softc;
3201
3202	WPI_LOCK(sc);
3203	wpi_set_promisc(sc);
3204
3205	if (wpi_send_rxon(sc, 1, 1) != 0) {
3206		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3207		    __func__);
3208	}
3209	WPI_UNLOCK(sc);
3210}
3211
3212static void
3213wpi_update_mcast(struct ifnet *ifp)
3214{
3215	/* Ignore */
3216}
3217
3218static void
3219wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3220{
3221	struct wpi_cmd_led led;
3222
3223	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3224
3225	led.which = which;
3226	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3227	led.off = off;
3228	led.on = on;
3229	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3230}
3231
3232static int
3233wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3234{
3235	struct wpi_cmd_timing cmd;
3236	uint64_t val, mod;
3237
3238	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3239
3240	memset(&cmd, 0, sizeof cmd);
3241	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3242	cmd.bintval = htole16(ni->ni_intval);
3243	cmd.lintval = htole16(10);
3244
3245	/* Compute remaining time until next beacon. */
3246	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3247	mod = le64toh(cmd.tstamp) % val;
3248	cmd.binitval = htole32((uint32_t)(val - mod));
3249
3250	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3251	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3252
3253	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3254}
3255
3256/*
3257 * This function is called periodically (every 60 seconds) to adjust output
3258 * power to temperature changes.
3259 */
3260static void
3261wpi_power_calibration(struct wpi_softc *sc)
3262{
3263	int temp;
3264
3265	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3266
3267	/* Update sensor data. */
3268	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3269	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3270
3271	/* Sanity-check read value. */
3272	if (temp < -260 || temp > 25) {
3273		/* This can't be correct, ignore. */
3274		DPRINTF(sc, WPI_DEBUG_TEMP,
3275		    "out-of-range temperature reported: %d\n", temp);
3276		return;
3277	}
3278
3279	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3280
3281	/* Adjust Tx power if need be. */
3282	if (abs(temp - sc->temp) <= 6)
3283		return;
3284
3285	sc->temp = temp;
3286
3287	if (wpi_set_txpower(sc, 1) != 0) {
3288		/* just warn, too bad for the automatic calibration... */
3289		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3290	}
3291}
3292
3293/*
3294 * Set TX power for current channel.
3295 */
3296static int
3297wpi_set_txpower(struct wpi_softc *sc, int async)
3298{
3299	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3300	struct ieee80211_channel *ch;
3301	struct wpi_power_group *group;
3302	struct wpi_cmd_txpower cmd;
3303	uint8_t chan;
3304	int idx, i;
3305
3306	/* Retrieve current channel from last RXON. */
3307	chan = sc->rxon.chan;
3308	ch = &ic->ic_channels[chan];
3309
3310	/* Find the TX power group to which this channel belongs. */
3311	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3312		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3313			if (chan <= group->chan)
3314				break;
3315	} else
3316		group = &sc->groups[0];
3317
3318	memset(&cmd, 0, sizeof cmd);
3319	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3320	cmd.chan = htole16(chan);
3321
3322	/* Set TX power for all OFDM and CCK rates. */
3323	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3324		/* Retrieve TX power for this channel/rate. */
3325		idx = wpi_get_power_index(sc, group, ch, i);
3326
3327		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3328
3329		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3330			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3331			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3332		} else {
3333			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3334			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3335		}
3336		DPRINTF(sc, WPI_DEBUG_TEMP,
3337		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3338	}
3339
3340	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3341}
3342
3343/*
3344 * Determine Tx power index for a given channel/rate combination.
3345 * This takes into account the regulatory information from EEPROM and the
3346 * current temperature.
3347 */
3348static int
3349wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3350    struct ieee80211_channel *c, int ridx)
3351{
3352/* Fixed-point arithmetic division using a n-bit fractional part. */
3353#define fdivround(a, b, n)	\
3354	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3355
3356/* Linear interpolation. */
3357#define interpolate(x, x1, y1, x2, y2, n)	\
3358	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3359
3360	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3361	struct wpi_power_sample *sample;
3362	int pwr, idx;
3363	u_int chan;
3364
3365	/* Get channel number. */
3366	chan = ieee80211_chan2ieee(ic, c);
3367
3368	/* Default TX power is group maximum TX power minus 3dB. */
3369	pwr = group->maxpwr / 2;
3370
3371	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3372	switch (ridx) {
3373	case WPI_RIDX_OFDM36:
3374		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3375		break;
3376	case WPI_RIDX_OFDM48:
3377		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3378		break;
3379	case WPI_RIDX_OFDM54:
3380		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3381		break;
3382	}
3383
3384	/* Never exceed the channel maximum allowed TX power. */
3385	pwr = min(pwr, sc->maxpwr[chan]);
3386
3387	/* Retrieve TX power index into gain tables from samples. */
3388	for (sample = group->samples; sample < &group->samples[3]; sample++)
3389		if (pwr > sample[1].power)
3390			break;
3391	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3392	idx = interpolate(pwr, sample[0].power, sample[0].index,
3393	    sample[1].power, sample[1].index, 19);
3394
3395	/*-
3396	 * Adjust power index based on current temperature:
3397	 * - if cooler than factory-calibrated: decrease output power
3398	 * - if warmer than factory-calibrated: increase output power
3399	 */
3400	idx -= (sc->temp - group->temp) * 11 / 100;
3401
3402	/* Decrease TX power for CCK rates (-5dB). */
3403	if (ridx >= WPI_RIDX_CCK1)
3404		idx += 10;
3405
3406	/* Make sure idx stays in a valid range. */
3407	if (idx < 0)
3408		return 0;
3409	if (idx > WPI_MAX_PWR_INDEX)
3410		return WPI_MAX_PWR_INDEX;
3411	return idx;
3412
3413#undef interpolate
3414#undef fdivround
3415}
3416
3417/*
3418 * Set STA mode power saving level (between 0 and 5).
3419 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3420 */
3421static int
3422wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3423{
3424	struct wpi_pmgt_cmd cmd;
3425	const struct wpi_pmgt *pmgt;
3426	uint32_t max, skip_dtim;
3427	uint32_t reg;
3428	int i;
3429
3430	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3431	    "%s: dtim=%d, level=%d, async=%d\n",
3432	    __func__, dtim, level, async);
3433
3434	/* Select which PS parameters to use. */
3435	if (dtim <= 10)
3436		pmgt = &wpi_pmgt[0][level];
3437	else
3438		pmgt = &wpi_pmgt[1][level];
3439
3440	memset(&cmd, 0, sizeof cmd);
3441	if (level != 0)	/* not CAM */
3442		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3443	/* Retrieve PCIe Active State Power Management (ASPM). */
3444	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3445	if (!(reg & 0x1))	/* L0s Entry disabled. */
3446		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3447
3448	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3449	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3450
3451	if (dtim == 0) {
3452		dtim = 1;
3453		skip_dtim = 0;
3454	} else
3455		skip_dtim = pmgt->skip_dtim;
3456
3457	if (skip_dtim != 0) {
3458		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3459		max = pmgt->intval[4];
3460		if (max == (uint32_t)-1)
3461			max = dtim * (skip_dtim + 1);
3462		else if (max > dtim)
3463			max = (max / dtim) * dtim;
3464	} else
3465		max = dtim;
3466
3467	for (i = 0; i < 5; i++)
3468		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3469
3470	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3471}
3472
3473static int
3474wpi_send_btcoex(struct wpi_softc *sc)
3475{
3476	struct wpi_bluetooth cmd;
3477
3478	memset(&cmd, 0, sizeof cmd);
3479	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3480	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3481	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3482	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3483	    __func__);
3484	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3485}
3486
3487static int
3488wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3489{
3490	int error;
3491
3492	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3493		struct wpi_assoc rxon_assoc;
3494
3495		rxon_assoc.flags = sc->rxon.flags;
3496		rxon_assoc.filter = sc->rxon.filter;
3497		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3498		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3499		rxon_assoc.reserved = 0;
3500
3501		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3502		    sizeof (struct wpi_assoc), async);
3503	} else {
3504		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3505		    sizeof (struct wpi_rxon), async);
3506
3507		wpi_clear_node_table(sc);
3508	}
3509	if (error != 0) {
3510		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3511		    error);
3512		return error;
3513	}
3514
3515	/* Configuration has changed, set Tx power accordingly. */
3516	if ((error = wpi_set_txpower(sc, async)) != 0) {
3517		device_printf(sc->sc_dev,
3518		    "%s: could not set TX power, error %d\n", __func__, error);
3519		return error;
3520	}
3521
3522	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3523		/* Add broadcast node. */
3524		error = wpi_add_broadcast_node(sc, async);
3525		if (error != 0) {
3526			device_printf(sc->sc_dev,
3527			    "could not add broadcast node, error %d\n", error);
3528			return error;
3529		}
3530	}
3531
3532	return 0;
3533}
3534
3535/**
3536 * Configure the card to listen to a particular channel, this transisions the
3537 * card in to being able to receive frames from remote devices.
3538 */
3539static int
3540wpi_config(struct wpi_softc *sc)
3541{
3542	struct ifnet *ifp = sc->sc_ifp;
3543	struct ieee80211com *ic = ifp->if_l2com;
3544	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3545	uint32_t flags;
3546	int error;
3547
3548	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3549
3550	/* Set power saving level to CAM during initialization. */
3551	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3552		device_printf(sc->sc_dev,
3553		    "%s: could not set power saving level\n", __func__);
3554		return error;
3555	}
3556
3557	/* Configure bluetooth coexistence. */
3558	if ((error = wpi_send_btcoex(sc)) != 0) {
3559		device_printf(sc->sc_dev,
3560		    "could not configure bluetooth coexistence\n");
3561		return error;
3562	}
3563
3564	/* Configure adapter. */
3565	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3566	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3567
3568	/* Set default channel. */
3569	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3570	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3571	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3572		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3573
3574	sc->rxon.filter = WPI_FILTER_MULTICAST;
3575	switch (ic->ic_opmode) {
3576	case IEEE80211_M_STA:
3577		sc->rxon.mode = WPI_MODE_STA;
3578		break;
3579	case IEEE80211_M_IBSS:
3580		sc->rxon.mode = WPI_MODE_IBSS;
3581		sc->rxon.filter |= WPI_FILTER_BEACON;
3582		break;
3583	/* XXX workaround for passive channels selection */
3584	case IEEE80211_M_AHDEMO:
3585	case IEEE80211_M_HOSTAP:
3586		sc->rxon.mode = WPI_MODE_HOSTAP;
3587		break;
3588	case IEEE80211_M_MONITOR:
3589		sc->rxon.mode = WPI_MODE_MONITOR;
3590		break;
3591	default:
3592		device_printf(sc->sc_dev, "unknown opmode %d\n",
3593		    ic->ic_opmode);
3594		return EINVAL;
3595	}
3596	sc->rxon.filter = htole32(sc->rxon.filter);
3597	wpi_set_promisc(sc);
3598	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3599	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3600
3601	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3602		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3603		    __func__);
3604		return error;
3605	}
3606
3607	/* Setup rate scalling. */
3608	if ((error = wpi_mrr_setup(sc)) != 0) {
3609		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3610		    error);
3611		return error;
3612	}
3613
3614	/* Disable beacon notifications (unused). */
3615	flags = WPI_STATISTICS_BEACON_DISABLE;
3616	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3617	if (error != 0) {
3618		device_printf(sc->sc_dev,
3619		    "could not disable beacon statistics, error %d\n", error);
3620		return error;
3621	}
3622
3623	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3624
3625	return 0;
3626}
3627
3628static uint16_t
3629wpi_get_active_dwell_time(struct wpi_softc *sc,
3630    struct ieee80211_channel *c, uint8_t n_probes)
3631{
3632	/* No channel? Default to 2GHz settings. */
3633	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3634		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3635		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3636	}
3637
3638	/* 5GHz dwell time. */
3639	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3640	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3641}
3642
3643/*
3644 * Limit the total dwell time to 85% of the beacon interval.
3645 *
3646 * Returns the dwell time in milliseconds.
3647 */
3648static uint16_t
3649wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3650{
3651	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3652	struct ieee80211vap *vap = NULL;
3653	int bintval = 0;
3654
3655	/* bintval is in TU (1.024mS) */
3656	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3657		vap = TAILQ_FIRST(&ic->ic_vaps);
3658		bintval = vap->iv_bss->ni_intval;
3659	}
3660
3661	/*
3662	 * If it's non-zero, we should calculate the minimum of
3663	 * it and the DWELL_BASE.
3664	 *
3665	 * XXX Yes, the math should take into account that bintval
3666	 * is 1.024mS, not 1mS..
3667	 */
3668	if (bintval > 0) {
3669		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3670		    bintval);
3671		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3672	}
3673
3674	/* No association context? Default. */
3675	return (WPI_PASSIVE_DWELL_BASE);
3676}
3677
3678static uint16_t
3679wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3680{
3681	uint16_t passive;
3682
3683	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3684		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3685	else
3686		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3687
3688	/* Clamp to the beacon interval if we're associated. */
3689	return (wpi_limit_dwell(sc, passive));
3690}
3691
3692/*
3693 * Send a scan request to the firmware.
3694 */
3695static int
3696wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3697{
3698	struct ifnet *ifp = sc->sc_ifp;
3699	struct ieee80211com *ic = ifp->if_l2com;
3700	struct ieee80211_scan_state *ss = ic->ic_scan;
3701	struct ieee80211vap *vap = ss->ss_vap;
3702	struct wpi_scan_hdr *hdr;
3703	struct wpi_cmd_data *tx;
3704	struct wpi_scan_essid *essids;
3705	struct wpi_scan_chan *chan;
3706	struct ieee80211_frame *wh;
3707	struct ieee80211_rateset *rs;
3708	uint16_t dwell_active, dwell_passive;
3709	uint8_t *buf, *frm;
3710	int buflen, error, i, nssid;
3711
3712	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3713
3714	/*
3715	 * We are absolutely not allowed to send a scan command when another
3716	 * scan command is pending.
3717	 */
3718	if (sc->sc_scan_timer) {
3719		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3720		    __func__);
3721
3722		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3723
3724		return (EAGAIN);
3725	}
3726
3727	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3728	if (buf == NULL) {
3729		device_printf(sc->sc_dev,
3730		    "%s: could not allocate buffer for scan command\n",
3731		    __func__);
3732		error = ENOMEM;
3733		goto fail;
3734	}
3735	hdr = (struct wpi_scan_hdr *)buf;
3736
3737	/*
3738	 * Move to the next channel if no packets are received within 10 msecs
3739	 * after sending the probe request.
3740	 */
3741	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3742	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3743	/*
3744	 * Max needs to be greater than active and passive and quiet!
3745	 * It's also in microseconds!
3746	 */
3747	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3748	hdr->pause_svc = htole32((4 << 24) |
3749	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3750	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3751
3752	tx = (struct wpi_cmd_data *)(hdr + 1);
3753	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3754	tx->id = WPI_ID_BROADCAST;
3755	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3756
3757	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3758		/* Send probe requests at 6Mbps. */
3759		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3760		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3761	} else {
3762		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3763		/* Send probe requests at 1Mbps. */
3764		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3765		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3766	}
3767
3768	essids = (struct wpi_scan_essid *)(tx + 1);
3769	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3770	for (i = 0; i < nssid; i++) {
3771		essids[i].id = IEEE80211_ELEMID_SSID;
3772		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3773		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3774#ifdef WPI_DEBUG
3775		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3776			printf("Scanning Essid: ");
3777			ieee80211_print_essid(essids[i].data, essids[i].len);
3778			printf("\n");
3779		}
3780#endif
3781	}
3782
3783	/*
3784	 * Build a probe request frame.  Most of the following code is a
3785	 * copy & paste of what is done in net80211.
3786	 */
3787	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3788	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3789		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3790	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3791	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3792	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3793	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3794	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3795	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3796
3797	frm = (uint8_t *)(wh + 1);
3798	frm = ieee80211_add_ssid(frm, NULL, 0);
3799	frm = ieee80211_add_rates(frm, rs);
3800	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3801		frm = ieee80211_add_xrates(frm, rs);
3802
3803	/* Set length of probe request. */
3804	tx->len = htole16(frm - (uint8_t *)wh);
3805
3806	/*
3807	 * Construct information about the channel that we
3808	 * want to scan. The firmware expects this to be directly
3809	 * after the scan probe request
3810	 */
3811	chan = (struct wpi_scan_chan *)frm;
3812	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3813	chan->flags = 0;
3814	if (nssid) {
3815		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3816		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3817	} else
3818		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3819
3820	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3821		chan->flags |= WPI_CHAN_ACTIVE;
3822
3823	/*
3824	 * Calculate the active/passive dwell times.
3825	 */
3826
3827	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3828	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3829
3830	/* Make sure they're valid. */
3831	if (dwell_passive <= dwell_active)
3832		dwell_passive = dwell_active + 1;
3833
3834	chan->active = htole16(dwell_active);
3835	chan->passive = htole16(dwell_passive);
3836
3837	chan->dsp_gain = 0x6e;  /* Default level */
3838
3839	if (IEEE80211_IS_CHAN_5GHZ(c))
3840		chan->rf_gain = 0x3b;
3841	else
3842		chan->rf_gain = 0x28;
3843
3844	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3845	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3846
3847	hdr->nchan++;
3848	chan++;
3849
3850	buflen = (uint8_t *)chan - buf;
3851	hdr->len = htole16(buflen);
3852
3853	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3854	    hdr->nchan);
3855	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3856	free(buf, M_DEVBUF);
3857
3858	if (error != 0)
3859		goto fail;
3860
3861	sc->sc_scan_timer = 5;
3862
3863	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3864
3865	return 0;
3866
3867fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3868
3869	return error;
3870}
3871
3872static int
3873wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3874{
3875	struct ieee80211com *ic = vap->iv_ic;
3876	struct ieee80211_node *ni = vap->iv_bss;
3877	int error;
3878
3879	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3880
3881	/* Update adapter configuration. */
3882	sc->rxon.associd = 0;
3883	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3884	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3885	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3886	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3887	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3888		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3889	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3890		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3891	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3892		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3893	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3894		sc->rxon.cck_mask  = 0;
3895		sc->rxon.ofdm_mask = 0x15;
3896	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3897		sc->rxon.cck_mask  = 0x03;
3898		sc->rxon.ofdm_mask = 0;
3899	} else {
3900		/* Assume 802.11b/g. */
3901		sc->rxon.cck_mask  = 0x0f;
3902		sc->rxon.ofdm_mask = 0x15;
3903	}
3904
3905	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3906	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3907	    sc->rxon.ofdm_mask);
3908
3909	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3910		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3911		    __func__);
3912	}
3913
3914	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3915
3916	return error;
3917}
3918
3919static int
3920wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3921{
3922	struct ifnet *ifp = sc->sc_ifp;
3923	struct ieee80211com *ic = ifp->if_l2com;
3924	struct ieee80211vap *vap = ni->ni_vap;
3925	struct wpi_vap *wvp = WPI_VAP(vap);
3926	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3927	struct ieee80211_beacon_offsets bo;
3928	struct wpi_cmd_beacon *cmd;
3929	struct mbuf *m;
3930	int totlen;
3931
3932	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3933
3934	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3935		return EINVAL;
3936
3937	m = ieee80211_beacon_alloc(ni, &bo);
3938	if (m == NULL) {
3939		device_printf(sc->sc_dev,
3940		    "%s: could not allocate beacon frame\n", __func__);
3941		return ENOMEM;
3942	}
3943	totlen = m->m_pkthdr.len;
3944
3945	if (bcn->data == NULL) {
3946		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3947		    M_NOWAIT | M_ZERO);
3948
3949		if (cmd == NULL) {
3950			device_printf(sc->sc_dev,
3951			    "could not allocate buffer for beacon command\n");
3952			m_freem(m);
3953			return ENOMEM;
3954		}
3955
3956		cmd->id = WPI_ID_BROADCAST;
3957		cmd->ofdm_mask = 0xff;
3958		cmd->cck_mask = 0x0f;
3959		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3960		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3961
3962		bcn->data = cmd;
3963		bcn->ni = NULL;
3964		bcn->code = WPI_CMD_SET_BEACON;
3965		bcn->ac = 4;
3966		bcn->size = sizeof(struct wpi_cmd_beacon);
3967	} else
3968		cmd = bcn->data;
3969
3970	cmd->len = htole16(totlen);
3971	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3972	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3973
3974	/* NB: m will be freed in wpi_cmd_done() */
3975	bcn->m = m;
3976
3977	return wpi_cmd2(sc, bcn);
3978}
3979
3980static void
3981wpi_update_beacon(struct ieee80211vap *vap, int item)
3982{
3983	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3984	struct ieee80211_node *ni = vap->iv_bss;
3985	int error;
3986
3987	WPI_LOCK(sc);
3988	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3989		device_printf(sc->sc_dev,
3990		    "%s: could not update beacon frame, error %d", __func__,
3991		    error);
3992	}
3993	WPI_UNLOCK(sc);
3994}
3995
3996static int
3997wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3998{
3999	struct ieee80211com *ic = vap->iv_ic;
4000	struct ieee80211_node *ni = vap->iv_bss;
4001	int error;
4002
4003	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4004
4005	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4006		/* Link LED blinks while monitoring. */
4007		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4008		return 0;
4009	}
4010
4011	/* XXX kernel panic workaround */
4012	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
4013		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4014		    __func__);
4015		return EINVAL;
4016	}
4017
4018	if ((error = wpi_set_timing(sc, ni)) != 0) {
4019		device_printf(sc->sc_dev,
4020		    "%s: could not set timing, error %d\n", __func__, error);
4021		return error;
4022	}
4023
4024	/* Update adapter configuration. */
4025	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4026	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4027	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4028	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4029	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4030		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4031	/* Short preamble and slot time are negotiated when associating. */
4032	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
4033	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4034		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4035	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4036		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4037	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4038		sc->rxon.cck_mask  = 0;
4039		sc->rxon.ofdm_mask = 0x15;
4040	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4041		sc->rxon.cck_mask  = 0x03;
4042		sc->rxon.ofdm_mask = 0;
4043	} else {
4044		/* Assume 802.11b/g. */
4045		sc->rxon.cck_mask  = 0x0f;
4046		sc->rxon.ofdm_mask = 0x15;
4047	}
4048	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4049
4050	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
4051
4052	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4053	    sc->rxon.chan, sc->rxon.flags);
4054
4055	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4056		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4057		    __func__);
4058		return error;
4059	}
4060
4061	if (vap->iv_opmode == IEEE80211_M_IBSS) {
4062		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4063			device_printf(sc->sc_dev,
4064			    "%s: could not setup beacon, error %d\n", __func__,
4065			    error);
4066			return error;
4067		}
4068	}
4069
4070	if (vap->iv_opmode == IEEE80211_M_STA) {
4071		/* Add BSS node. */
4072		error = wpi_add_sta_node(sc, ni);
4073		if (error != 0) {
4074			device_printf(sc->sc_dev,
4075			    "%s: could not add BSS node, error %d\n", __func__,
4076			    error);
4077			return error;
4078		}
4079	}
4080
4081	/* Link LED always on while associated. */
4082	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4083
4084	/* Start periodic calibration timer. */
4085	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4086
4087	/* Enable power-saving mode if requested by user. */
4088	if (vap->iv_flags & IEEE80211_F_PMGTON)
4089		(void)wpi_set_pslevel(sc, 0, 3, 1);
4090	else
4091		(void)wpi_set_pslevel(sc, 0, 0, 1);
4092
4093	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4094
4095	return 0;
4096}
4097
4098static int
4099wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
4100    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
4101{
4102	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4103
4104	if (!(&vap->iv_nw_keys[0] <= k &&
4105	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
4106		if (k->wk_flags & IEEE80211_KEY_GROUP) {
4107			/* should not happen */
4108			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
4109			    __func__);
4110			return 0;
4111		}
4112		*keyix = 0;	/* NB: use key index 0 for ucast key */
4113	} else {
4114		*keyix = *rxkeyix = k - vap->iv_nw_keys;
4115
4116		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
4117			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
4118	}
4119	return 1;
4120}
4121
4122static int
4123wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4124    const uint8_t mac[IEEE80211_ADDR_LEN])
4125{
4126	const struct ieee80211_cipher *cip = k->wk_cipher;
4127	struct ieee80211com *ic = vap->iv_ic;
4128	struct ieee80211_node *ni = vap->iv_bss;
4129	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4130	struct wpi_node *wn = WPI_NODE(ni);
4131	struct wpi_node_info node;
4132	uint16_t kflags;
4133	int error;
4134
4135	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4136
4137	switch (cip->ic_cipher) {
4138	case IEEE80211_CIPHER_AES_CCM:
4139		if (k->wk_flags & IEEE80211_KEY_GROUP)
4140			return 1;
4141
4142		kflags = WPI_KFLAG_CCMP;
4143		break;
4144	default:
4145		/* null_key_set() */
4146		return 1;
4147	}
4148
4149	if (wn->id == WPI_ID_UNDEFINED)
4150		return 0;
4151
4152	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4153	if (k->wk_flags & IEEE80211_KEY_GROUP)
4154		kflags |= WPI_KFLAG_MULTICAST;
4155
4156	memset(&node, 0, sizeof node);
4157	node.id = wn->id;
4158	node.control = WPI_NODE_UPDATE;
4159	node.flags = WPI_FLAG_KEY_SET;
4160	node.kflags = htole16(kflags);
4161	memcpy(node.key, k->wk_key, k->wk_keylen);
4162
4163	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4164	    node.id);
4165
4166	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4167	if (error != 0) {
4168		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4169		    error);
4170		return 0;
4171	}
4172
4173	return 1;
4174}
4175
4176static int
4177wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4178{
4179	const struct ieee80211_cipher *cip = k->wk_cipher;
4180	struct ieee80211com *ic = vap->iv_ic;
4181	struct ieee80211_node *ni = vap->iv_bss;
4182	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4183	struct wpi_node *wn = WPI_NODE(ni);
4184	struct wpi_node_info node;
4185
4186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4187
4188	switch (cip->ic_cipher) {
4189	case IEEE80211_CIPHER_AES_CCM:
4190		break;
4191	default:
4192		/* null_key_delete() */
4193		return 1;
4194	}
4195
4196	if (vap->iv_state != IEEE80211_S_RUN ||
4197	    (k->wk_flags & IEEE80211_KEY_GROUP))
4198		return 1; /* Nothing to do. */
4199
4200	memset(&node, 0, sizeof node);
4201	node.id = wn->id;
4202	node.control = WPI_NODE_UPDATE;
4203	node.flags = WPI_FLAG_KEY_SET;
4204
4205	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4206	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4207
4208	return 1;
4209}
4210
4211/*
4212 * This function is called after the runtime firmware notifies us of its
4213 * readiness (called in a process context).
4214 */
4215static int
4216wpi_post_alive(struct wpi_softc *sc)
4217{
4218	int ntries, error;
4219
4220	/* Check (again) that the radio is not disabled. */
4221	if ((error = wpi_nic_lock(sc)) != 0)
4222		return error;
4223
4224	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4225
4226	/* NB: Runtime firmware must be up and running. */
4227	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4228 		device_printf(sc->sc_dev,
4229		    "RF switch: radio disabled (%s)\n", __func__);
4230		wpi_nic_unlock(sc);
4231		return EPERM;   /* :-) */
4232	}
4233	wpi_nic_unlock(sc);
4234
4235	/* Wait for thermal sensor to calibrate. */
4236	for (ntries = 0; ntries < 1000; ntries++) {
4237		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4238			break;
4239		DELAY(10);
4240	}
4241
4242	if (ntries == 1000) {
4243		device_printf(sc->sc_dev,
4244		    "timeout waiting for thermal sensor calibration\n");
4245		return ETIMEDOUT;
4246	}
4247
4248	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4249	return 0;
4250}
4251
4252/*
4253 * The firmware boot code is small and is intended to be copied directly into
4254 * the NIC internal memory (no DMA transfer).
4255 */
4256static int
4257wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4258{
4259	int error, ntries;
4260
4261	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4262
4263	size /= sizeof (uint32_t);
4264
4265	if ((error = wpi_nic_lock(sc)) != 0)
4266		return error;
4267
4268	/* Copy microcode image into NIC memory. */
4269	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4270	    (const uint32_t *)ucode, size);
4271
4272	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4273	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4274	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4275
4276	/* Start boot load now. */
4277	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4278
4279	/* Wait for transfer to complete. */
4280	for (ntries = 0; ntries < 1000; ntries++) {
4281		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4282		DPRINTF(sc, WPI_DEBUG_HW,
4283		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4284		    WPI_FH_TX_STATUS_IDLE(6),
4285		    status & WPI_FH_TX_STATUS_IDLE(6));
4286		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4287			DPRINTF(sc, WPI_DEBUG_HW,
4288			    "Status Match! - ntries = %d\n", ntries);
4289			break;
4290		}
4291		DELAY(10);
4292	}
4293	if (ntries == 1000) {
4294		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4295		    __func__);
4296		wpi_nic_unlock(sc);
4297		return ETIMEDOUT;
4298	}
4299
4300	/* Enable boot after power up. */
4301	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4302
4303	wpi_nic_unlock(sc);
4304	return 0;
4305}
4306
4307static int
4308wpi_load_firmware(struct wpi_softc *sc)
4309{
4310	struct wpi_fw_info *fw = &sc->fw;
4311	struct wpi_dma_info *dma = &sc->fw_dma;
4312	int error;
4313
4314	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4315
4316	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4317	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4318	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4319	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4320	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4321
4322	/* Tell adapter where to find initialization sections. */
4323	if ((error = wpi_nic_lock(sc)) != 0)
4324		return error;
4325	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4326	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4327	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4328	    dma->paddr + WPI_FW_DATA_MAXSZ);
4329	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4330	wpi_nic_unlock(sc);
4331
4332	/* Load firmware boot code. */
4333	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4334	if (error != 0) {
4335		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4336		    __func__);
4337		return error;
4338	}
4339
4340	/* Now press "execute". */
4341	WPI_WRITE(sc, WPI_RESET, 0);
4342
4343	/* Wait at most one second for first alive notification. */
4344	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4345		device_printf(sc->sc_dev,
4346		    "%s: timeout waiting for adapter to initialize, error %d\n",
4347		    __func__, error);
4348		return error;
4349	}
4350
4351	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4352	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4353	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4354	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4355	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4356
4357	/* Tell adapter where to find runtime sections. */
4358	if ((error = wpi_nic_lock(sc)) != 0)
4359		return error;
4360	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4361	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4362	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4363	    dma->paddr + WPI_FW_DATA_MAXSZ);
4364	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4365	    WPI_FW_UPDATED | fw->main.textsz);
4366	wpi_nic_unlock(sc);
4367
4368	return 0;
4369}
4370
4371static int
4372wpi_read_firmware(struct wpi_softc *sc)
4373{
4374	const struct firmware *fp;
4375	struct wpi_fw_info *fw = &sc->fw;
4376	const struct wpi_firmware_hdr *hdr;
4377	int error;
4378
4379	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4380
4381	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4382	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4383
4384	WPI_UNLOCK(sc);
4385	fp = firmware_get(WPI_FW_NAME);
4386	WPI_LOCK(sc);
4387
4388	if (fp == NULL) {
4389		device_printf(sc->sc_dev,
4390		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4391		return EINVAL;
4392	}
4393
4394	sc->fw_fp = fp;
4395
4396	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4397		device_printf(sc->sc_dev,
4398		    "firmware file too short: %zu bytes\n", fp->datasize);
4399		error = EINVAL;
4400		goto fail;
4401	}
4402
4403	fw->size = fp->datasize;
4404	fw->data = (const uint8_t *)fp->data;
4405
4406	/* Extract firmware header information. */
4407	hdr = (const struct wpi_firmware_hdr *)fw->data;
4408
4409	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4410	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4411
4412	fw->main.textsz = le32toh(hdr->rtextsz);
4413	fw->main.datasz = le32toh(hdr->rdatasz);
4414	fw->init.textsz = le32toh(hdr->itextsz);
4415	fw->init.datasz = le32toh(hdr->idatasz);
4416	fw->boot.textsz = le32toh(hdr->btextsz);
4417	fw->boot.datasz = 0;
4418
4419	/* Sanity-check firmware header. */
4420	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4421	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4422	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4423	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4424	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4425	    (fw->boot.textsz & 3) != 0) {
4426		device_printf(sc->sc_dev, "invalid firmware header\n");
4427		error = EINVAL;
4428		goto fail;
4429	}
4430
4431	/* Check that all firmware sections fit. */
4432	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4433	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4434		device_printf(sc->sc_dev,
4435		    "firmware file too short: %zu bytes\n", fw->size);
4436		error = EINVAL;
4437		goto fail;
4438	}
4439
4440	/* Get pointers to firmware sections. */
4441	fw->main.text = (const uint8_t *)(hdr + 1);
4442	fw->main.data = fw->main.text + fw->main.textsz;
4443	fw->init.text = fw->main.data + fw->main.datasz;
4444	fw->init.data = fw->init.text + fw->init.textsz;
4445	fw->boot.text = fw->init.data + fw->init.datasz;
4446
4447	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4448	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4449	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4450	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4451	    fw->main.textsz, fw->main.datasz,
4452	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4453
4454	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4455	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4456	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4457	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4458	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4459
4460	return 0;
4461
4462fail:	wpi_unload_firmware(sc);
4463	return error;
4464}
4465
4466/**
4467 * Free the referenced firmware image
4468 */
4469static void
4470wpi_unload_firmware(struct wpi_softc *sc)
4471{
4472	if (sc->fw_fp != NULL) {
4473		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4474		sc->fw_fp = NULL;
4475	}
4476}
4477
4478static int
4479wpi_clock_wait(struct wpi_softc *sc)
4480{
4481	int ntries;
4482
4483	/* Set "initialization complete" bit. */
4484	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4485
4486	/* Wait for clock stabilization. */
4487	for (ntries = 0; ntries < 2500; ntries++) {
4488		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4489			return 0;
4490		DELAY(100);
4491	}
4492	device_printf(sc->sc_dev,
4493	    "%s: timeout waiting for clock stabilization\n", __func__);
4494
4495	return ETIMEDOUT;
4496}
4497
4498static int
4499wpi_apm_init(struct wpi_softc *sc)
4500{
4501	uint32_t reg;
4502	int error;
4503
4504	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4505
4506	/* Disable L0s exit timer (NMI bug workaround). */
4507	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4508	/* Don't wait for ICH L0s (ICH bug workaround). */
4509	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4510
4511	/* Set FH wait threshold to max (HW bug under stress workaround). */
4512	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4513
4514	/* Retrieve PCIe Active State Power Management (ASPM). */
4515	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4516	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4517	if (reg & 0x02)	/* L1 Entry enabled. */
4518		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4519	else
4520		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4521
4522	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4523
4524	/* Wait for clock stabilization before accessing prph. */
4525	if ((error = wpi_clock_wait(sc)) != 0)
4526		return error;
4527
4528	if ((error = wpi_nic_lock(sc)) != 0)
4529		return error;
4530	/* Enable DMA and BSM (Bootstrap State Machine). */
4531	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4532	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4533	DELAY(20);
4534	/* Disable L1-Active. */
4535	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4536	/* ??? */
4537	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4538	wpi_nic_unlock(sc);
4539
4540	return 0;
4541}
4542
4543static void
4544wpi_apm_stop_master(struct wpi_softc *sc)
4545{
4546	int ntries;
4547
4548	/* Stop busmaster DMA activity. */
4549	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4550
4551	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4552	    WPI_GP_CNTRL_MAC_PS)
4553		return; /* Already asleep. */
4554
4555	for (ntries = 0; ntries < 100; ntries++) {
4556		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4557			return;
4558		DELAY(10);
4559	}
4560	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
4561	    __func__);
4562}
4563
4564static void
4565wpi_apm_stop(struct wpi_softc *sc)
4566{
4567	wpi_apm_stop_master(sc);
4568
4569	/* Reset the entire device. */
4570	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4571	DELAY(10);
4572	/* Clear "initialization complete" bit. */
4573	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4574}
4575
4576static void
4577wpi_nic_config(struct wpi_softc *sc)
4578{
4579	uint32_t rev;
4580
4581	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4582
4583	/* voodoo from the Linux "driver".. */
4584	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4585	if ((rev & 0xc0) == 0x40)
4586		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4587	else if (!(rev & 0x80))
4588		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4589
4590	if (sc->cap == 0x80)
4591		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4592
4593	if ((sc->rev & 0xf0) == 0xd0)
4594		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4595	else
4596		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4597
4598	if (sc->type > 1)
4599		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4600}
4601
4602static int
4603wpi_hw_init(struct wpi_softc *sc)
4604{
4605	int chnl, ntries, error;
4606
4607	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4608
4609	/* Clear pending interrupts. */
4610	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4611
4612	if ((error = wpi_apm_init(sc)) != 0) {
4613		device_printf(sc->sc_dev,
4614		    "%s: could not power ON adapter, error %d\n", __func__,
4615		    error);
4616		return error;
4617	}
4618
4619	/* Select VMAIN power source. */
4620	if ((error = wpi_nic_lock(sc)) != 0)
4621		return error;
4622	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4623	wpi_nic_unlock(sc);
4624	/* Spin until VMAIN gets selected. */
4625	for (ntries = 0; ntries < 5000; ntries++) {
4626		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4627			break;
4628		DELAY(10);
4629	}
4630	if (ntries == 5000) {
4631		device_printf(sc->sc_dev, "timeout selecting power source\n");
4632		return ETIMEDOUT;
4633	}
4634
4635	/* Perform adapter initialization. */
4636	wpi_nic_config(sc);
4637
4638	/* Initialize RX ring. */
4639	if ((error = wpi_nic_lock(sc)) != 0)
4640		return error;
4641	/* Set physical address of RX ring. */
4642	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4643	/* Set physical address of RX read pointer. */
4644	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4645	    offsetof(struct wpi_shared, next));
4646	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4647	/* Enable RX. */
4648	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4649	    WPI_FH_RX_CONFIG_DMA_ENA |
4650	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4651	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4652	    WPI_FH_RX_CONFIG_MAXFRAG |
4653	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4654	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4655	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4656	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4657	wpi_nic_unlock(sc);
4658	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4659
4660	/* Initialize TX rings. */
4661	if ((error = wpi_nic_lock(sc)) != 0)
4662		return error;
4663	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4664	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4665	/* Enable all 6 TX rings. */
4666	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4667	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4668	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4669	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4670	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4671	/* Set physical address of TX rings. */
4672	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4673	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4674
4675	/* Enable all DMA channels. */
4676	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4677		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4678		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4679		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4680	}
4681	wpi_nic_unlock(sc);
4682	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4683
4684	/* Clear "radio off" and "commands blocked" bits. */
4685	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4686	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4687
4688	/* Clear pending interrupts. */
4689	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4690	/* Enable interrupts. */
4691	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4692
4693	/* _Really_ make sure "radio off" bit is cleared! */
4694	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4695	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4696
4697	if ((error = wpi_load_firmware(sc)) != 0) {
4698		device_printf(sc->sc_dev,
4699		    "%s: could not load firmware, error %d\n", __func__,
4700		    error);
4701		return error;
4702	}
4703	/* Wait at most one second for firmware alive notification. */
4704	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4705		device_printf(sc->sc_dev,
4706		    "%s: timeout waiting for adapter to initialize, error %d\n",
4707		    __func__, error);
4708		return error;
4709	}
4710
4711	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4712
4713	/* Do post-firmware initialization. */
4714	return wpi_post_alive(sc);
4715}
4716
4717static void
4718wpi_hw_stop(struct wpi_softc *sc)
4719{
4720	int chnl, qid, ntries;
4721
4722	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4723
4724	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4725		wpi_nic_lock(sc);
4726
4727	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4728
4729	/* Disable interrupts. */
4730	WPI_WRITE(sc, WPI_INT_MASK, 0);
4731	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4732	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4733
4734	/* Make sure we no longer hold the NIC lock. */
4735	wpi_nic_unlock(sc);
4736
4737	if (wpi_nic_lock(sc) == 0) {
4738		/* Stop TX scheduler. */
4739		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4740		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4741
4742		/* Stop all DMA channels. */
4743		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4744			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4745			for (ntries = 0; ntries < 200; ntries++) {
4746				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4747				    WPI_FH_TX_STATUS_IDLE(chnl))
4748					break;
4749				DELAY(10);
4750			}
4751		}
4752		wpi_nic_unlock(sc);
4753	}
4754
4755	/* Stop RX ring. */
4756	wpi_reset_rx_ring(sc);
4757
4758	/* Reset all TX rings. */
4759	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4760		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4761
4762	if (wpi_nic_lock(sc) == 0) {
4763		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4764		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4765		wpi_nic_unlock(sc);
4766	}
4767	DELAY(5);
4768	/* Power OFF adapter. */
4769	wpi_apm_stop(sc);
4770}
4771
4772static void
4773wpi_radio_on(void *arg0, int pending)
4774{
4775	struct wpi_softc *sc = arg0;
4776	struct ifnet *ifp = sc->sc_ifp;
4777	struct ieee80211com *ic = ifp->if_l2com;
4778	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4779
4780	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4781
4782	if (vap != NULL) {
4783		wpi_init(sc);
4784		ieee80211_init(vap);
4785	}
4786
4787	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4788		WPI_LOCK(sc);
4789		callout_stop(&sc->watchdog_rfkill);
4790		WPI_UNLOCK(sc);
4791	}
4792}
4793
4794static void
4795wpi_radio_off(void *arg0, int pending)
4796{
4797	struct wpi_softc *sc = arg0;
4798	struct ifnet *ifp = sc->sc_ifp;
4799	struct ieee80211com *ic = ifp->if_l2com;
4800	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4801
4802	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4803
4804	wpi_stop(sc);
4805	if (vap != NULL)
4806		ieee80211_stop(vap);
4807
4808	WPI_LOCK(sc);
4809	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4810	WPI_UNLOCK(sc);
4811}
4812
4813static void
4814wpi_init_locked(struct wpi_softc *sc)
4815{
4816	struct ifnet *ifp = sc->sc_ifp;
4817	int error;
4818
4819	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4820
4821	WPI_LOCK_ASSERT(sc);
4822
4823	/* Check that the radio is not disabled by hardware switch. */
4824	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4825		device_printf(sc->sc_dev,
4826		    "RF switch: radio disabled (%s)\n", __func__);
4827		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4828		    sc);
4829		return;
4830	}
4831
4832	/* Read firmware images from the filesystem. */
4833	if ((error = wpi_read_firmware(sc)) != 0) {
4834		device_printf(sc->sc_dev,
4835		    "%s: could not read firmware, error %d\n", __func__,
4836		    error);
4837		goto fail;
4838	}
4839
4840	/* Initialize hardware and upload firmware. */
4841	error = wpi_hw_init(sc);
4842	wpi_unload_firmware(sc);
4843	if (error != 0) {
4844		device_printf(sc->sc_dev,
4845		    "%s: could not initialize hardware, error %d\n", __func__,
4846		    error);
4847		goto fail;
4848	}
4849
4850	/* Configure adapter now that it is ready. */
4851	sc->txq_active = 1;
4852	if ((error = wpi_config(sc)) != 0) {
4853		device_printf(sc->sc_dev,
4854		    "%s: could not configure device, error %d\n", __func__,
4855		    error);
4856		goto fail;
4857	}
4858
4859	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4860	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4861
4862	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4863
4864	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4865
4866	return;
4867
4868fail:	wpi_stop_locked(sc);
4869	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4870}
4871
4872static void
4873wpi_init(void *arg)
4874{
4875	struct wpi_softc *sc = arg;
4876	struct ifnet *ifp = sc->sc_ifp;
4877	struct ieee80211com *ic = ifp->if_l2com;
4878
4879	WPI_LOCK(sc);
4880	wpi_init_locked(sc);
4881	WPI_UNLOCK(sc);
4882
4883	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4884		ieee80211_start_all(ic);
4885}
4886
4887static void
4888wpi_stop_locked(struct wpi_softc *sc)
4889{
4890	struct ifnet *ifp = sc->sc_ifp;
4891
4892	WPI_LOCK_ASSERT(sc);
4893
4894	WPI_TXQ_LOCK(sc);
4895	sc->txq_active = 0;
4896	WPI_TXQ_UNLOCK(sc);
4897
4898	sc->sc_scan_timer = 0;
4899	sc->sc_tx_timer = 0;
4900	callout_stop(&sc->watchdog_to);
4901	callout_stop(&sc->calib_to);
4902	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4903
4904	/* Power OFF hardware. */
4905	wpi_hw_stop(sc);
4906}
4907
4908static void
4909wpi_stop(struct wpi_softc *sc)
4910{
4911	WPI_LOCK(sc);
4912	wpi_stop_locked(sc);
4913	WPI_UNLOCK(sc);
4914}
4915
4916/*
4917 * Callback from net80211 to start a scan.
4918 */
4919static void
4920wpi_scan_start(struct ieee80211com *ic)
4921{
4922	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4923
4924	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4925}
4926
4927/*
4928 * Callback from net80211 to terminate a scan.
4929 */
4930static void
4931wpi_scan_end(struct ieee80211com *ic)
4932{
4933	struct ifnet *ifp = ic->ic_ifp;
4934	struct wpi_softc *sc = ifp->if_softc;
4935	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4936
4937	if (vap->iv_state == IEEE80211_S_RUN)
4938		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4939}
4940
4941/**
4942 * Called by the net80211 framework to indicate to the driver
4943 * that the channel should be changed
4944 */
4945static void
4946wpi_set_channel(struct ieee80211com *ic)
4947{
4948	const struct ieee80211_channel *c = ic->ic_curchan;
4949	struct ifnet *ifp = ic->ic_ifp;
4950	struct wpi_softc *sc = ifp->if_softc;
4951	int error;
4952
4953	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4954
4955	WPI_LOCK(sc);
4956	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4957	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4958	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4959	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4960
4961	/*
4962	 * Only need to set the channel in Monitor mode. AP scanning and auth
4963	 * are already taken care of by their respective firmware commands.
4964	 */
4965	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4966		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4967		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4968			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4969			    WPI_RXON_24GHZ);
4970		} else {
4971			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4972			    WPI_RXON_24GHZ);
4973		}
4974		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4975			device_printf(sc->sc_dev,
4976			    "%s: error %d settting channel\n", __func__,
4977			    error);
4978	}
4979	WPI_UNLOCK(sc);
4980}
4981
4982/**
4983 * Called by net80211 to indicate that we need to scan the current
4984 * channel. The channel is previously be set via the wpi_set_channel
4985 * callback.
4986 */
4987static void
4988wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4989{
4990	struct ieee80211vap *vap = ss->ss_vap;
4991	struct ieee80211com *ic = vap->iv_ic;
4992	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4993	int error;
4994
4995	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4996		WPI_LOCK(sc);
4997		error = wpi_scan(sc, ic->ic_curchan);
4998		WPI_UNLOCK(sc);
4999		if (error != 0)
5000			ieee80211_cancel_scan(vap);
5001	} else {
5002		/* Send probe request when associated. */
5003		sc->sc_scan_curchan(ss, maxdwell);
5004	}
5005}
5006
5007/**
5008 * Called by the net80211 framework to indicate
5009 * the minimum dwell time has been met, terminate the scan.
5010 * We don't actually terminate the scan as the firmware will notify
5011 * us when it's finished and we have no way to interrupt it.
5012 */
5013static void
5014wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5015{
5016	/* NB: don't try to abort scan; wait for firmware to finish */
5017}
5018
5019static void
5020wpi_hw_reset(void *arg, int pending)
5021{
5022	struct wpi_softc *sc = arg;
5023	struct ifnet *ifp = sc->sc_ifp;
5024	struct ieee80211com *ic = ifp->if_l2com;
5025	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5026
5027	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5028
5029	wpi_stop(sc);
5030	if (vap != NULL)
5031		ieee80211_stop(vap);
5032	wpi_init(sc);
5033	if (vap != NULL)
5034		ieee80211_init(vap);
5035}
5036