if_wpi.c revision 280061
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280061 2015-03-15 20:21:30Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135		    const uint8_t [IEEE80211_ADDR_LEN],
136		    const uint8_t [IEEE80211_ADDR_LEN]);
137static void	wpi_vap_delete(struct ieee80211vap *);
138static int	wpi_detach(device_t);
139static int	wpi_shutdown(device_t);
140static int	wpi_suspend(device_t);
141static int	wpi_resume(device_t);
142static int	wpi_nic_lock(struct wpi_softc *);
143static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146		    void **, bus_size_t, bus_size_t);
147static void	wpi_dma_contig_free(struct wpi_dma_info *);
148static int	wpi_alloc_shared(struct wpi_softc *);
149static void	wpi_free_shared(struct wpi_softc *);
150static int	wpi_alloc_fwmem(struct wpi_softc *);
151static void	wpi_free_fwmem(struct wpi_softc *);
152static int	wpi_alloc_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    int);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static int	wpi_read_eeprom(struct wpi_softc *,
162		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167		    struct ieee80211_channel *);
168static int	wpi_setregdomain(struct ieee80211com *,
169		    struct ieee80211_regdomain *, int,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172static void	wpi_node_free(struct ieee80211_node *);
173static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176static void	wpi_calib_timeout(void *);
177static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178		    struct wpi_rx_data *);
179static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183static void	wpi_notif_intr(struct wpi_softc *);
184static void	wpi_wakeup_intr(struct wpi_softc *);
185static void	wpi_fatal_intr(struct wpi_softc *);
186static void	wpi_intr(void *);
187static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189		    struct ieee80211_node *);
190static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191		    struct ieee80211_node *,
192		    const struct ieee80211_bpf_params *);
193static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194		    const struct ieee80211_bpf_params *);
195static void	wpi_start(struct ifnet *);
196static void	wpi_start_locked(struct ifnet *);
197static void	wpi_watchdog_rfkill(void *);
198static void	wpi_watchdog(void *);
199static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201static int	wpi_mrr_setup(struct wpi_softc *);
202static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206static int	wpi_updateedca(struct ieee80211com *);
207static void	wpi_set_promisc(struct wpi_softc *);
208static void	wpi_update_promisc(struct ifnet *);
209static void	wpi_update_mcast(struct ifnet *);
210static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212static void	wpi_power_calibration(struct wpi_softc *);
213static int	wpi_set_txpower(struct wpi_softc *, int);
214static int	wpi_get_power_index(struct wpi_softc *,
215		    struct wpi_power_group *, struct ieee80211_channel *, int);
216static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217static int	wpi_send_btcoex(struct wpi_softc *);
218static int	wpi_send_rxon(struct wpi_softc *, int, int);
219static int	wpi_config(struct wpi_softc *);
220static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221		    struct ieee80211_channel *, uint8_t);
222static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224		    struct ieee80211_channel *);
225static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227static void	wpi_update_beacon(struct ieee80211vap *, int);
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231		    ieee80211_keyix *, ieee80211_keyix *);
232static int	wpi_key_set(struct ieee80211vap *,
233		    const struct ieee80211_key *,
234		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235static int	wpi_key_delete(struct ieee80211vap *,
236		    const struct ieee80211_key *);
237static int	wpi_post_alive(struct wpi_softc *);
238static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239static int	wpi_load_firmware(struct wpi_softc *);
240static int	wpi_read_firmware(struct wpi_softc *);
241static void	wpi_unload_firmware(struct wpi_softc *);
242static int	wpi_clock_wait(struct wpi_softc *);
243static int	wpi_apm_init(struct wpi_softc *);
244static void	wpi_apm_stop_master(struct wpi_softc *);
245static void	wpi_apm_stop(struct wpi_softc *);
246static void	wpi_nic_config(struct wpi_softc *);
247static int	wpi_hw_init(struct wpi_softc *);
248static void	wpi_hw_stop(struct wpi_softc *);
249static void	wpi_radio_on(void *, int);
250static void	wpi_radio_off(void *, int);
251static void	wpi_init_locked(struct wpi_softc *);
252static void	wpi_init(void *);
253static void	wpi_stop_locked(struct wpi_softc *);
254static void	wpi_stop(struct wpi_softc *);
255static void	wpi_scan_start(struct ieee80211com *);
256static void	wpi_scan_end(struct ieee80211com *);
257static void	wpi_set_channel(struct ieee80211com *);
258static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260static void	wpi_hw_reset(void *, int);
261
262static device_method_t wpi_methods[] = {
263	/* Device interface */
264	DEVMETHOD(device_probe,		wpi_probe),
265	DEVMETHOD(device_attach,	wpi_attach),
266	DEVMETHOD(device_detach,	wpi_detach),
267	DEVMETHOD(device_shutdown,	wpi_shutdown),
268	DEVMETHOD(device_suspend,	wpi_suspend),
269	DEVMETHOD(device_resume,	wpi_resume),
270
271	DEVMETHOD_END
272};
273
274static driver_t wpi_driver = {
275	"wpi",
276	wpi_methods,
277	sizeof (struct wpi_softc)
278};
279static devclass_t wpi_devclass;
280
281DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282
283MODULE_VERSION(wpi, 1);
284
285MODULE_DEPEND(wpi, pci,  1, 1, 1);
286MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288
289static int
290wpi_probe(device_t dev)
291{
292	const struct wpi_ident *ident;
293
294	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295		if (pci_get_vendor(dev) == ident->vendor &&
296		    pci_get_device(dev) == ident->device) {
297			device_set_desc(dev, ident->name);
298			return (BUS_PROBE_DEFAULT);
299		}
300	}
301	return ENXIO;
302}
303
304static int
305wpi_attach(device_t dev)
306{
307	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308	struct ieee80211com *ic;
309	struct ifnet *ifp;
310	int i, error, rid;
311#ifdef WPI_DEBUG
312	int supportsa = 1;
313	const struct wpi_ident *ident;
314#endif
315	uint8_t macaddr[IEEE80211_ADDR_LEN];
316
317	sc->sc_dev = dev;
318
319#ifdef WPI_DEBUG
320	error = resource_int_value(device_get_name(sc->sc_dev),
321	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
322	if (error != 0)
323		sc->sc_debug = 0;
324#else
325	sc->sc_debug = 0;
326#endif
327
328	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
329
330	/*
331	 * Get the offset of the PCI Express Capability Structure in PCI
332	 * Configuration Space.
333	 */
334	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
335	if (error != 0) {
336		device_printf(dev, "PCIe capability structure not found!\n");
337		return error;
338	}
339
340	/*
341	 * Some card's only support 802.11b/g not a, check to see if
342	 * this is one such card. A 0x0 in the subdevice table indicates
343	 * the entire subdevice range is to be ignored.
344	 */
345#ifdef WPI_DEBUG
346	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
347		if (ident->subdevice &&
348		    pci_get_subdevice(dev) == ident->subdevice) {
349		    supportsa = 0;
350		    break;
351		}
352	}
353#endif
354
355	/* Clear device-specific "PCI retry timeout" register (41h). */
356	pci_write_config(dev, 0x41, 0, 1);
357
358	/* Enable bus-mastering. */
359	pci_enable_busmaster(dev);
360
361	rid = PCIR_BAR(0);
362	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
363	    RF_ACTIVE);
364	if (sc->mem == NULL) {
365		device_printf(dev, "can't map mem space\n");
366		error = ENOMEM;
367		return error;
368	}
369	sc->sc_st = rman_get_bustag(sc->mem);
370	sc->sc_sh = rman_get_bushandle(sc->mem);
371
372	i = 1;
373	rid = 0;
374	if (pci_alloc_msi(dev, &i) == 0)
375		rid = 1;
376	/* Install interrupt handler. */
377	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
378	    (rid != 0 ? 0 : RF_SHAREABLE));
379	if (sc->irq == NULL) {
380		device_printf(dev, "can't map interrupt\n");
381		error = ENOMEM;
382		goto fail;
383	}
384
385	WPI_LOCK_INIT(sc);
386
387	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
388
389	/* Allocate DMA memory for firmware transfers. */
390	if ((error = wpi_alloc_fwmem(sc)) != 0) {
391		device_printf(dev,
392		    "could not allocate memory for firmware, error %d\n",
393		    error);
394		goto fail;
395	}
396
397	/* Allocate shared page. */
398	if ((error = wpi_alloc_shared(sc)) != 0) {
399		device_printf(dev, "could not allocate shared page\n");
400		goto fail;
401	}
402
403	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
404	for (i = 0; i < WPI_NTXQUEUES; i++) {
405		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
406			device_printf(dev,
407			    "could not allocate TX ring %d, error %d\n", i,
408			    error);
409			goto fail;
410		}
411	}
412
413	/* Allocate RX ring. */
414	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
415		device_printf(dev, "could not allocate RX ring, error %d\n",
416		    error);
417		goto fail;
418	}
419
420	/* Clear pending interrupts. */
421	WPI_WRITE(sc, WPI_INT, 0xffffffff);
422
423	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
424	if (ifp == NULL) {
425		device_printf(dev, "can not allocate ifnet structure\n");
426		goto fail;
427	}
428
429	ic = ifp->if_l2com;
430	ic->ic_ifp = ifp;
431	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
432	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
433
434	/* Set device capabilities. */
435	ic->ic_caps =
436		  IEEE80211_C_STA		/* station mode supported */
437		| IEEE80211_C_IBSS		/* IBSS mode supported */
438		| IEEE80211_C_MONITOR		/* monitor mode supported */
439		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
440		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
441		| IEEE80211_C_TXPMGT		/* tx power management */
442		| IEEE80211_C_SHSLOT		/* short slot time supported */
443		| IEEE80211_C_WPA		/* 802.11i */
444		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
445#if 0
446		| IEEE80211_C_HOSTAP		/* Host access point mode */
447#endif
448		| IEEE80211_C_WME		/* 802.11e */
449		| IEEE80211_C_PMGT		/* Station-side power mgmt */
450		;
451
452	ic->ic_cryptocaps =
453		  IEEE80211_CRYPTO_AES_CCM;
454
455	/*
456	 * Read in the eeprom and also setup the channels for
457	 * net80211. We don't set the rates as net80211 does this for us
458	 */
459	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
460		device_printf(dev, "could not read EEPROM, error %d\n",
461		    error);
462		goto fail;
463	}
464
465#ifdef WPI_DEBUG
466	if (bootverbose) {
467		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
468		    sc->domain);
469		device_printf(sc->sc_dev, "Hardware Type: %c\n",
470		    sc->type > 1 ? 'B': '?');
471		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
472		    ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
473		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
474		    supportsa ? "does" : "does not");
475
476		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
477		   check what sc->rev really represents - benjsc 20070615 */
478	}
479#endif
480
481	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
482	ifp->if_softc = sc;
483	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
484	ifp->if_init = wpi_init;
485	ifp->if_ioctl = wpi_ioctl;
486	ifp->if_start = wpi_start;
487	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
488	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
489	IFQ_SET_READY(&ifp->if_snd);
490
491	ieee80211_ifattach(ic, macaddr);
492	ic->ic_vap_create = wpi_vap_create;
493	ic->ic_vap_delete = wpi_vap_delete;
494	ic->ic_raw_xmit = wpi_raw_xmit;
495	ic->ic_node_alloc = wpi_node_alloc;
496	sc->sc_node_free = ic->ic_node_free;
497	ic->ic_node_free = wpi_node_free;
498	ic->ic_wme.wme_update = wpi_updateedca;
499	ic->ic_update_promisc = wpi_update_promisc;
500	ic->ic_update_mcast = wpi_update_mcast;
501	ic->ic_scan_start = wpi_scan_start;
502	ic->ic_scan_end = wpi_scan_end;
503	ic->ic_set_channel = wpi_set_channel;
504	sc->sc_scan_curchan = ic->ic_scan_curchan;
505	ic->ic_scan_curchan = wpi_scan_curchan;
506	ic->ic_scan_mindwell = wpi_scan_mindwell;
507	ic->ic_setregdomain = wpi_setregdomain;
508
509	wpi_radiotap_attach(sc);
510
511	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
512	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
513	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
514	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
515	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
516	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
517
518	wpi_sysctlattach(sc);
519
520	/*
521	 * Hook our interrupt after all initialization is complete.
522	 */
523	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
524	    NULL, wpi_intr, sc, &sc->sc_ih);
525	if (error != 0) {
526		device_printf(dev, "can't establish interrupt, error %d\n",
527		    error);
528		goto fail;
529	}
530
531	if (bootverbose)
532		ieee80211_announce(ic);
533
534#ifdef WPI_DEBUG
535	if (sc->sc_debug & WPI_DEBUG_HW)
536		ieee80211_announce_channels(ic);
537#endif
538
539	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
540	return 0;
541
542fail:	wpi_detach(dev);
543	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
544	return error;
545}
546
547/*
548 * Attach the interface to 802.11 radiotap.
549 */
550static void
551wpi_radiotap_attach(struct wpi_softc *sc)
552{
553	struct ifnet *ifp = sc->sc_ifp;
554	struct ieee80211com *ic = ifp->if_l2com;
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
556	ieee80211_radiotap_attach(ic,
557	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
558		WPI_TX_RADIOTAP_PRESENT,
559	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
560		WPI_RX_RADIOTAP_PRESENT);
561	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
562}
563
564static void
565wpi_sysctlattach(struct wpi_softc *sc)
566{
567#ifdef WPI_DEBUG
568	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
569	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
570
571	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
572	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
573		"control debugging printfs");
574#endif
575}
576
577static struct ieee80211vap *
578wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
579    enum ieee80211_opmode opmode, int flags,
580    const uint8_t bssid[IEEE80211_ADDR_LEN],
581    const uint8_t mac[IEEE80211_ADDR_LEN])
582{
583	struct wpi_vap *wvp;
584	struct wpi_buf *bcn;
585	struct ieee80211vap *vap;
586
587	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
588		return NULL;
589
590	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
591	    M_80211_VAP, M_NOWAIT | M_ZERO);
592	if (wvp == NULL)
593		return NULL;
594	vap = &wvp->vap;
595	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
596
597	bcn = &wvp->wv_bcbuf;
598	bcn->data = NULL;
599
600	/* Override with driver methods. */
601	wvp->newstate = vap->iv_newstate;
602	vap->iv_key_alloc = wpi_key_alloc;
603	vap->iv_key_set = wpi_key_set;
604	vap->iv_key_delete = wpi_key_delete;
605	vap->iv_newstate = wpi_newstate;
606	vap->iv_update_beacon = wpi_update_beacon;
607
608	ieee80211_ratectl_init(vap);
609	/* Complete setup. */
610	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
611	ic->ic_opmode = opmode;
612	return vap;
613}
614
615static void
616wpi_vap_delete(struct ieee80211vap *vap)
617{
618	struct wpi_vap *wvp = WPI_VAP(vap);
619	struct wpi_buf *bcn = &wvp->wv_bcbuf;
620
621	ieee80211_ratectl_deinit(vap);
622	ieee80211_vap_detach(vap);
623
624	if (bcn->data != NULL)
625		free(bcn->data, M_DEVBUF);
626	free(wvp, M_80211_VAP);
627}
628
629static int
630wpi_detach(device_t dev)
631{
632	struct wpi_softc *sc = device_get_softc(dev);
633	struct ifnet *ifp = sc->sc_ifp;
634	struct ieee80211com *ic;
635	int qid;
636
637	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
638
639	if (ifp != NULL) {
640		ic = ifp->if_l2com;
641
642		ieee80211_draintask(ic, &sc->sc_reinittask);
643		ieee80211_draintask(ic, &sc->sc_radiooff_task);
644		ieee80211_draintask(ic, &sc->sc_radioon_task);
645
646		wpi_stop(sc);
647
648		callout_drain(&sc->watchdog_to);
649		callout_drain(&sc->watchdog_rfkill);
650		callout_drain(&sc->calib_to);
651		ieee80211_ifdetach(ic);
652	}
653
654	/* Uninstall interrupt handler. */
655	if (sc->irq != NULL) {
656		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
657		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
658		    sc->irq);
659		pci_release_msi(dev);
660	}
661
662	if (sc->txq[0].data_dmat) {
663		/* Free DMA resources. */
664		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
665			wpi_free_tx_ring(sc, &sc->txq[qid]);
666
667		wpi_free_rx_ring(sc);
668		wpi_free_shared(sc);
669	}
670
671	if (sc->fw_dma.tag)
672		wpi_free_fwmem(sc);
673
674	if (sc->mem != NULL)
675		bus_release_resource(dev, SYS_RES_MEMORY,
676		    rman_get_rid(sc->mem), sc->mem);
677
678	if (ifp != NULL)
679		if_free(ifp);
680
681	delete_unrhdr(sc->sc_unr);
682
683	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
684	WPI_LOCK_DESTROY(sc);
685	return 0;
686}
687
688static int
689wpi_shutdown(device_t dev)
690{
691	struct wpi_softc *sc = device_get_softc(dev);
692
693	wpi_stop(sc);
694	return 0;
695}
696
697static int
698wpi_suspend(device_t dev)
699{
700	struct wpi_softc *sc = device_get_softc(dev);
701	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
702
703	ieee80211_suspend_all(ic);
704	return 0;
705}
706
707static int
708wpi_resume(device_t dev)
709{
710	struct wpi_softc *sc = device_get_softc(dev);
711	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
712
713	/* Clear device-specific "PCI retry timeout" register (41h). */
714	pci_write_config(dev, 0x41, 0, 1);
715
716	ieee80211_resume_all(ic);
717	return 0;
718}
719
720/*
721 * Grab exclusive access to NIC memory.
722 */
723static int
724wpi_nic_lock(struct wpi_softc *sc)
725{
726	int ntries;
727
728	/* Request exclusive access to NIC. */
729	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
730
731	/* Spin until we actually get the lock. */
732	for (ntries = 0; ntries < 1000; ntries++) {
733		if ((WPI_READ(sc, WPI_GP_CNTRL) &
734		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
735		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
736			return 0;
737		DELAY(10);
738	}
739
740	device_printf(sc->sc_dev, "could not lock memory\n");
741
742	return ETIMEDOUT;
743}
744
745/*
746 * Release lock on NIC memory.
747 */
748static __inline void
749wpi_nic_unlock(struct wpi_softc *sc)
750{
751	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
752}
753
754static __inline uint32_t
755wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
756{
757	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
758	WPI_BARRIER_READ_WRITE(sc);
759	return WPI_READ(sc, WPI_PRPH_RDATA);
760}
761
762static __inline void
763wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
764{
765	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
766	WPI_BARRIER_WRITE(sc);
767	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
768}
769
770static __inline void
771wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
772{
773	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
774}
775
776static __inline void
777wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
778{
779	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
780}
781
782static __inline void
783wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
784    const uint32_t *data, int count)
785{
786	for (; count > 0; count--, data++, addr += 4)
787		wpi_prph_write(sc, addr, *data);
788}
789
790static __inline uint32_t
791wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
792{
793	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
794	WPI_BARRIER_READ_WRITE(sc);
795	return WPI_READ(sc, WPI_MEM_RDATA);
796}
797
798static __inline void
799wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
800    int count)
801{
802	for (; count > 0; count--, addr += 4)
803		*data++ = wpi_mem_read(sc, addr);
804}
805
806static int
807wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
808{
809	uint8_t *out = data;
810	uint32_t val;
811	int error, ntries;
812
813	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
814
815	if ((error = wpi_nic_lock(sc)) != 0)
816		return error;
817
818	for (; count > 0; count -= 2, addr++) {
819		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
820		for (ntries = 0; ntries < 10; ntries++) {
821			val = WPI_READ(sc, WPI_EEPROM);
822			if (val & WPI_EEPROM_READ_VALID)
823				break;
824			DELAY(5);
825		}
826		if (ntries == 10) {
827			device_printf(sc->sc_dev,
828			    "timeout reading ROM at 0x%x\n", addr);
829			return ETIMEDOUT;
830		}
831		*out++= val >> 16;
832		if (count > 1)
833			*out ++= val >> 24;
834	}
835
836	wpi_nic_unlock(sc);
837
838	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
839
840	return 0;
841}
842
843static void
844wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
845{
846	if (error != 0)
847		return;
848	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
849	*(bus_addr_t *)arg = segs[0].ds_addr;
850}
851
852/*
853 * Allocates a contiguous block of dma memory of the requested size and
854 * alignment.
855 */
856static int
857wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
858    void **kvap, bus_size_t size, bus_size_t alignment)
859{
860	int error;
861
862	dma->tag = NULL;
863	dma->size = size;
864
865	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
866	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
867	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
868	if (error != 0)
869		goto fail;
870
871	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
872	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
873	if (error != 0)
874		goto fail;
875
876	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
877	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
878	if (error != 0)
879		goto fail;
880
881	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
882
883	if (kvap != NULL)
884		*kvap = dma->vaddr;
885
886	return 0;
887
888fail:	wpi_dma_contig_free(dma);
889	return error;
890}
891
892static void
893wpi_dma_contig_free(struct wpi_dma_info *dma)
894{
895	if (dma->vaddr != NULL) {
896		bus_dmamap_sync(dma->tag, dma->map,
897		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
898		bus_dmamap_unload(dma->tag, dma->map);
899		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
900		dma->vaddr = NULL;
901	}
902	if (dma->tag != NULL) {
903		bus_dma_tag_destroy(dma->tag);
904		dma->tag = NULL;
905	}
906}
907
908/*
909 * Allocate a shared page between host and NIC.
910 */
911static int
912wpi_alloc_shared(struct wpi_softc *sc)
913{
914	/* Shared buffer must be aligned on a 4KB boundary. */
915	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
916	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
917}
918
919static void
920wpi_free_shared(struct wpi_softc *sc)
921{
922	wpi_dma_contig_free(&sc->shared_dma);
923}
924
925/*
926 * Allocate DMA-safe memory for firmware transfer.
927 */
928static int
929wpi_alloc_fwmem(struct wpi_softc *sc)
930{
931	/* Must be aligned on a 16-byte boundary. */
932	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
933	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
934}
935
936static void
937wpi_free_fwmem(struct wpi_softc *sc)
938{
939	wpi_dma_contig_free(&sc->fw_dma);
940}
941
942static int
943wpi_alloc_rx_ring(struct wpi_softc *sc)
944{
945	struct wpi_rx_ring *ring = &sc->rxq;
946	bus_size_t size;
947	int i, error;
948
949	ring->cur = 0;
950	ring->update = 0;
951
952	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
953
954	/* Allocate RX descriptors (16KB aligned.) */
955	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
956	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
957	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
958	if (error != 0) {
959		device_printf(sc->sc_dev,
960		    "%s: could not allocate RX ring DMA memory, error %d\n",
961		    __func__, error);
962		goto fail;
963	}
964
965	/* Create RX buffer DMA tag. */
966	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
967	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
968	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
969	    &ring->data_dmat);
970	if (error != 0) {
971		device_printf(sc->sc_dev,
972		    "%s: could not create RX buf DMA tag, error %d\n",
973		    __func__, error);
974		goto fail;
975	}
976
977	/*
978	 * Allocate and map RX buffers.
979	 */
980	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
981		struct wpi_rx_data *data = &ring->data[i];
982		bus_addr_t paddr;
983
984		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
985		if (error != 0) {
986			device_printf(sc->sc_dev,
987			    "%s: could not create RX buf DMA map, error %d\n",
988			    __func__, error);
989			goto fail;
990		}
991
992		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
993		if (data->m == NULL) {
994			device_printf(sc->sc_dev,
995			    "%s: could not allocate RX mbuf\n", __func__);
996			error = ENOBUFS;
997			goto fail;
998		}
999
1000		error = bus_dmamap_load(ring->data_dmat, data->map,
1001		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1002		    &paddr, BUS_DMA_NOWAIT);
1003		if (error != 0 && error != EFBIG) {
1004			device_printf(sc->sc_dev,
1005			    "%s: can't map mbuf (error %d)\n", __func__,
1006			    error);
1007			goto fail;
1008		}
1009
1010		/* Set physical address of RX buffer. */
1011		ring->desc[i] = htole32(paddr);
1012	}
1013
1014	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1015	    BUS_DMASYNC_PREWRITE);
1016
1017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1018
1019	return 0;
1020
1021fail:	wpi_free_rx_ring(sc);
1022
1023	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1024
1025	return error;
1026}
1027
1028static void
1029wpi_update_rx_ring(struct wpi_softc *sc)
1030{
1031	struct wpi_rx_ring *ring = &sc->rxq;
1032
1033	if (ring->update != 0) {
1034		/* Wait for INT_WAKEUP event. */
1035		return;
1036	}
1037
1038	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1039		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1040		    __func__);
1041
1042		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1043		ring->update = 1;
1044	} else
1045		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1046}
1047
1048static void
1049wpi_reset_rx_ring(struct wpi_softc *sc)
1050{
1051	struct wpi_rx_ring *ring = &sc->rxq;
1052	int ntries;
1053
1054	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1055
1056	if (wpi_nic_lock(sc) == 0) {
1057		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1058		for (ntries = 0; ntries < 1000; ntries++) {
1059			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1060			    WPI_FH_RX_STATUS_IDLE)
1061				break;
1062			DELAY(10);
1063		}
1064#ifdef WPI_DEBUG
1065		if (ntries == 1000) {
1066			device_printf(sc->sc_dev,
1067			    "timeout resetting Rx ring\n");
1068		}
1069#endif
1070		wpi_nic_unlock(sc);
1071	}
1072
1073	ring->cur = 0;
1074	ring->update = 0;
1075}
1076
1077static void
1078wpi_free_rx_ring(struct wpi_softc *sc)
1079{
1080	struct wpi_rx_ring *ring = &sc->rxq;
1081	int i;
1082
1083	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1084
1085	wpi_dma_contig_free(&ring->desc_dma);
1086
1087	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1088		struct wpi_rx_data *data = &ring->data[i];
1089
1090		if (data->m != NULL) {
1091			bus_dmamap_sync(ring->data_dmat, data->map,
1092			    BUS_DMASYNC_POSTREAD);
1093			bus_dmamap_unload(ring->data_dmat, data->map);
1094			m_freem(data->m);
1095			data->m = NULL;
1096		}
1097		if (data->map != NULL)
1098			bus_dmamap_destroy(ring->data_dmat, data->map);
1099	}
1100	if (ring->data_dmat != NULL) {
1101		bus_dma_tag_destroy(ring->data_dmat);
1102		ring->data_dmat = NULL;
1103	}
1104}
1105
1106static int
1107wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1108{
1109	bus_addr_t paddr;
1110	bus_size_t size;
1111	int i, error;
1112
1113	ring->qid = qid;
1114	ring->queued = 0;
1115	ring->cur = 0;
1116	ring->update = 0;
1117
1118	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1119
1120	/* Allocate TX descriptors (16KB aligned.) */
1121	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1122	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1123	    size, WPI_RING_DMA_ALIGN);
1124	if (error != 0) {
1125		device_printf(sc->sc_dev,
1126		    "%s: could not allocate TX ring DMA memory, error %d\n",
1127		    __func__, error);
1128		goto fail;
1129	}
1130
1131	/* Update shared area with ring physical address. */
1132	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1133	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1134	    BUS_DMASYNC_PREWRITE);
1135
1136	/*
1137	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1138	 * to allocate commands space for other rings.
1139	 * XXX Do we really need to allocate descriptors for other rings?
1140	 */
1141	if (qid > 4)
1142		return 0;
1143
1144	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1145	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1146	    size, 4);
1147	if (error != 0) {
1148		device_printf(sc->sc_dev,
1149		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1150		    __func__, error);
1151		goto fail;
1152	}
1153
1154	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1155	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1156	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1157	    &ring->data_dmat);
1158	if (error != 0) {
1159		device_printf(sc->sc_dev,
1160		    "%s: could not create TX buf DMA tag, error %d\n",
1161		    __func__, error);
1162		goto fail;
1163	}
1164
1165	paddr = ring->cmd_dma.paddr;
1166	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1167		struct wpi_tx_data *data = &ring->data[i];
1168
1169		data->cmd_paddr = paddr;
1170		paddr += sizeof (struct wpi_tx_cmd);
1171
1172		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1173		if (error != 0) {
1174			device_printf(sc->sc_dev,
1175			    "%s: could not create TX buf DMA map, error %d\n",
1176			    __func__, error);
1177			goto fail;
1178		}
1179	}
1180
1181	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1182
1183	return 0;
1184
1185fail:	wpi_free_tx_ring(sc, ring);
1186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1187	return error;
1188}
1189
1190static void
1191wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1192{
1193	if (ring->update != 0) {
1194		/* Wait for INT_WAKEUP event. */
1195		return;
1196	}
1197
1198	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1199		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1200		    __func__, ring->qid);
1201
1202		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1203		ring->update = 1;
1204	} else
1205		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1206}
1207
1208static void
1209wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1210{
1211	int i;
1212
1213	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1214
1215	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1216		struct wpi_tx_data *data = &ring->data[i];
1217
1218		if (data->m != NULL) {
1219			bus_dmamap_sync(ring->data_dmat, data->map,
1220			    BUS_DMASYNC_POSTWRITE);
1221			bus_dmamap_unload(ring->data_dmat, data->map);
1222			m_freem(data->m);
1223			data->m = NULL;
1224		}
1225	}
1226	/* Clear TX descriptors. */
1227	memset(ring->desc, 0, ring->desc_dma.size);
1228	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1229	    BUS_DMASYNC_PREWRITE);
1230	sc->qfullmsk &= ~(1 << ring->qid);
1231	ring->queued = 0;
1232	ring->cur = 0;
1233	ring->update = 0;
1234}
1235
1236static void
1237wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1238{
1239	int i;
1240
1241	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1242
1243	wpi_dma_contig_free(&ring->desc_dma);
1244	wpi_dma_contig_free(&ring->cmd_dma);
1245
1246	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1247		struct wpi_tx_data *data = &ring->data[i];
1248
1249		if (data->m != NULL) {
1250			bus_dmamap_sync(ring->data_dmat, data->map,
1251			    BUS_DMASYNC_POSTWRITE);
1252			bus_dmamap_unload(ring->data_dmat, data->map);
1253			m_freem(data->m);
1254		}
1255		if (data->map != NULL)
1256			bus_dmamap_destroy(ring->data_dmat, data->map);
1257	}
1258	if (ring->data_dmat != NULL) {
1259		bus_dma_tag_destroy(ring->data_dmat);
1260		ring->data_dmat = NULL;
1261	}
1262}
1263
1264/*
1265 * Extract various information from EEPROM.
1266 */
1267static int
1268wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1269{
1270#define WPI_CHK(res) do {		\
1271	if ((error = res) != 0)		\
1272		goto fail;		\
1273} while (0)
1274	int error, i;
1275
1276	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1277
1278	/* Adapter has to be powered on for EEPROM access to work. */
1279	if ((error = wpi_apm_init(sc)) != 0) {
1280		device_printf(sc->sc_dev,
1281		    "%s: could not power ON adapter, error %d\n", __func__,
1282		    error);
1283		return error;
1284	}
1285
1286	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1287		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1288		error = EIO;
1289		goto fail;
1290	}
1291	/* Clear HW ownership of EEPROM. */
1292	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1293
1294	/* Read the hardware capabilities, revision and SKU type. */
1295	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1296	    sizeof(sc->cap)));
1297	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1298	    sizeof(sc->rev)));
1299	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1300	    sizeof(sc->type)));
1301
1302	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1303	    sc->type);
1304
1305	/* Read the regulatory domain (4 ASCII characters.) */
1306	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1307	    sizeof(sc->domain)));
1308
1309	/* Read MAC address. */
1310	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1311	    IEEE80211_ADDR_LEN));
1312
1313	/* Read the list of authorized channels. */
1314	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1315		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1316
1317	/* Read the list of TX power groups. */
1318	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1319		WPI_CHK(wpi_read_eeprom_group(sc, i));
1320
1321fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1322
1323	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1324	    __func__);
1325
1326	return error;
1327#undef WPI_CHK
1328}
1329
1330/*
1331 * Translate EEPROM flags to net80211.
1332 */
1333static uint32_t
1334wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1335{
1336	uint32_t nflags;
1337
1338	nflags = 0;
1339	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1340		nflags |= IEEE80211_CHAN_PASSIVE;
1341	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1342		nflags |= IEEE80211_CHAN_NOADHOC;
1343	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1344		nflags |= IEEE80211_CHAN_DFS;
1345		/* XXX apparently IBSS may still be marked */
1346		nflags |= IEEE80211_CHAN_NOADHOC;
1347	}
1348
1349	return nflags;
1350}
1351
1352static void
1353wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1354{
1355	struct ifnet *ifp = sc->sc_ifp;
1356	struct ieee80211com *ic = ifp->if_l2com;
1357	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1358	const struct wpi_chan_band *band = &wpi_bands[n];
1359	struct ieee80211_channel *c;
1360	uint8_t chan;
1361	int i, nflags;
1362
1363	for (i = 0; i < band->nchan; i++) {
1364		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1365			DPRINTF(sc, WPI_DEBUG_HW,
1366			    "Channel Not Valid: %d, band %d\n",
1367			     band->chan[i],n);
1368			continue;
1369		}
1370
1371		chan = band->chan[i];
1372		nflags = wpi_eeprom_channel_flags(&channels[i]);
1373
1374		c = &ic->ic_channels[ic->ic_nchans++];
1375		c->ic_ieee = chan;
1376		c->ic_maxregpower = channels[i].maxpwr;
1377		c->ic_maxpower = 2*c->ic_maxregpower;
1378
1379		if (n == 0) {	/* 2GHz band */
1380			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1381			/* G =>'s B is supported */
1382			c->ic_flags = IEEE80211_CHAN_B | nflags;
1383			c = &ic->ic_channels[ic->ic_nchans++];
1384			c[0] = c[-1];
1385			c->ic_flags = IEEE80211_CHAN_G | nflags;
1386		} else {	/* 5GHz band */
1387			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1388			c->ic_flags = IEEE80211_CHAN_A | nflags;
1389		}
1390
1391		/* Save maximum allowed TX power for this channel. */
1392		sc->maxpwr[chan] = channels[i].maxpwr;
1393
1394		DPRINTF(sc, WPI_DEBUG_EEPROM,
1395		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1396		    " offset %d\n", chan, c->ic_freq,
1397		    channels[i].flags, sc->maxpwr[chan],
1398		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1399	}
1400}
1401
1402/**
1403 * Read the eeprom to find out what channels are valid for the given
1404 * band and update net80211 with what we find.
1405 */
1406static int
1407wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1408{
1409	struct ifnet *ifp = sc->sc_ifp;
1410	struct ieee80211com *ic = ifp->if_l2com;
1411	const struct wpi_chan_band *band = &wpi_bands[n];
1412	int error;
1413
1414	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1415
1416	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1417	    band->nchan * sizeof (struct wpi_eeprom_chan));
1418	if (error != 0) {
1419		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1420		return error;
1421	}
1422
1423	wpi_read_eeprom_band(sc, n);
1424
1425	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1426
1427	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1428
1429	return 0;
1430}
1431
1432static struct wpi_eeprom_chan *
1433wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1434{
1435	int i, j;
1436
1437	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1438		for (i = 0; i < wpi_bands[j].nchan; i++)
1439			if (wpi_bands[j].chan[i] == c->ic_ieee)
1440				return &sc->eeprom_channels[j][i];
1441
1442	return NULL;
1443}
1444
1445/*
1446 * Enforce flags read from EEPROM.
1447 */
1448static int
1449wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1450    int nchan, struct ieee80211_channel chans[])
1451{
1452	struct ifnet *ifp = ic->ic_ifp;
1453	struct wpi_softc *sc = ifp->if_softc;
1454	int i;
1455
1456	for (i = 0; i < nchan; i++) {
1457		struct ieee80211_channel *c = &chans[i];
1458		struct wpi_eeprom_chan *channel;
1459
1460		channel = wpi_find_eeprom_channel(sc, c);
1461		if (channel == NULL) {
1462			if_printf(ic->ic_ifp,
1463			    "%s: invalid channel %u freq %u/0x%x\n",
1464			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1465			return EINVAL;
1466		}
1467		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1468	}
1469
1470	return 0;
1471}
1472
1473static int
1474wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1475{
1476	struct wpi_power_group *group = &sc->groups[n];
1477	struct wpi_eeprom_group rgroup;
1478	int i, error;
1479
1480	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1481
1482	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1483	    &rgroup, sizeof rgroup)) != 0) {
1484		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1485		return error;
1486	}
1487
1488	/* Save TX power group information. */
1489	group->chan   = rgroup.chan;
1490	group->maxpwr = rgroup.maxpwr;
1491	/* Retrieve temperature at which the samples were taken. */
1492	group->temp   = (int16_t)le16toh(rgroup.temp);
1493
1494	DPRINTF(sc, WPI_DEBUG_EEPROM,
1495	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1496	    group->maxpwr, group->temp);
1497
1498	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1499		group->samples[i].index = rgroup.samples[i].index;
1500		group->samples[i].power = rgroup.samples[i].power;
1501
1502		DPRINTF(sc, WPI_DEBUG_EEPROM,
1503		    "\tsample %d: index=%d power=%d\n", i,
1504		    group->samples[i].index, group->samples[i].power);
1505	}
1506
1507	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1508
1509	return 0;
1510}
1511
1512static struct ieee80211_node *
1513wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1514{
1515	struct wpi_node *wn;
1516
1517	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1518	    M_NOWAIT | M_ZERO);
1519
1520	if (wn == NULL)
1521		return NULL;
1522
1523	wn->id = WPI_ID_UNDEFINED;
1524
1525	return &wn->ni;
1526}
1527
1528static void
1529wpi_node_free(struct ieee80211_node *ni)
1530{
1531	struct ieee80211com *ic = ni->ni_ic;
1532	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1533	struct wpi_node *wn = (struct wpi_node *)ni;
1534
1535	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1536		free_unr(sc->sc_unr, wn->id);
1537
1538		WPI_LOCK(sc);
1539		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1540			wpi_del_node(sc, ni);
1541		WPI_UNLOCK(sc);
1542	}
1543
1544	sc->sc_node_free(ni);
1545}
1546
1547/**
1548 * Called by net80211 when ever there is a change to 80211 state machine
1549 */
1550static int
1551wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1552{
1553	struct wpi_vap *wvp = WPI_VAP(vap);
1554	struct ieee80211com *ic = vap->iv_ic;
1555	struct ifnet *ifp = ic->ic_ifp;
1556	struct wpi_softc *sc = ifp->if_softc;
1557	int error = 0;
1558
1559	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1560
1561	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1562		ieee80211_state_name[vap->iv_state],
1563		ieee80211_state_name[nstate]);
1564
1565	IEEE80211_UNLOCK(ic);
1566	WPI_LOCK(sc);
1567	switch (nstate) {
1568	case IEEE80211_S_SCAN:
1569		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1570		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1571		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1572			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1573			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1574				device_printf(sc->sc_dev,
1575				    "%s: could not send RXON\n", __func__);
1576			}
1577		}
1578		break;
1579
1580	case IEEE80211_S_ASSOC:
1581		if (vap->iv_state != IEEE80211_S_RUN)
1582			break;
1583		/* FALLTHROUGH */
1584	case IEEE80211_S_AUTH:
1585		/*
1586		 * The node must be registered in the firmware before auth.
1587		 * Also the associd must be cleared on RUN -> ASSOC
1588		 * transitions.
1589		 */
1590		if ((error = wpi_auth(sc, vap)) != 0) {
1591			device_printf(sc->sc_dev,
1592			    "%s: could not move to AUTH state, error %d\n",
1593			    __func__, error);
1594		}
1595		break;
1596
1597	case IEEE80211_S_RUN:
1598		/*
1599		 * RUN -> RUN transition; Just restart the timers.
1600		 */
1601		if (vap->iv_state == IEEE80211_S_RUN) {
1602			wpi_calib_timeout(sc);
1603			break;
1604		}
1605
1606		/*
1607		 * !RUN -> RUN requires setting the association id
1608		 * which is done with a firmware cmd.  We also defer
1609		 * starting the timers until that work is done.
1610		 */
1611		if ((error = wpi_run(sc, vap)) != 0) {
1612			device_printf(sc->sc_dev,
1613			    "%s: could not move to RUN state\n", __func__);
1614		}
1615		break;
1616
1617	default:
1618		break;
1619	}
1620	WPI_UNLOCK(sc);
1621	IEEE80211_LOCK(ic);
1622	if (error != 0) {
1623		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1624		return error;
1625	}
1626
1627	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1628
1629	return wvp->newstate(vap, nstate, arg);
1630}
1631
1632static void
1633wpi_calib_timeout(void *arg)
1634{
1635	struct wpi_softc *sc = arg;
1636	struct ifnet *ifp = sc->sc_ifp;
1637	struct ieee80211com *ic = ifp->if_l2com;
1638	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1639
1640	if (vap->iv_state != IEEE80211_S_RUN)
1641		return;
1642
1643	wpi_power_calibration(sc);
1644
1645	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1646}
1647
1648static __inline uint8_t
1649rate2plcp(const uint8_t rate)
1650{
1651	switch (rate) {
1652	case 12:	return 0xd;
1653	case 18:	return 0xf;
1654	case 24:	return 0x5;
1655	case 36:	return 0x7;
1656	case 48:	return 0x9;
1657	case 72:	return 0xb;
1658	case 96:	return 0x1;
1659	case 108:	return 0x3;
1660	case 2:		return 10;
1661	case 4:		return 20;
1662	case 11:	return 55;
1663	case 22:	return 110;
1664	default:	return 0;
1665	}
1666}
1667
1668static __inline uint8_t
1669plcp2rate(const uint8_t plcp)
1670{
1671	switch (plcp) {
1672	case 0xd:	return 12;
1673	case 0xf:	return 18;
1674	case 0x5:	return 24;
1675	case 0x7:	return 36;
1676	case 0x9:	return 48;
1677	case 0xb:	return 72;
1678	case 0x1:	return 96;
1679	case 0x3:	return 108;
1680	case 10:	return 2;
1681	case 20:	return 4;
1682	case 55:	return 11;
1683	case 110:	return 22;
1684	default:	return 0;
1685	}
1686}
1687
1688/* Quickly determine if a given rate is CCK or OFDM. */
1689#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1690
1691static void
1692wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1693    struct wpi_rx_data *data)
1694{
1695	struct ifnet *ifp = sc->sc_ifp;
1696	const struct ieee80211_cipher *cip = NULL;
1697	struct ieee80211com *ic = ifp->if_l2com;
1698	struct wpi_rx_ring *ring = &sc->rxq;
1699	struct wpi_rx_stat *stat;
1700	struct wpi_rx_head *head;
1701	struct wpi_rx_tail *tail;
1702	struct ieee80211_frame *wh;
1703	struct ieee80211_node *ni;
1704	struct mbuf *m, *m1;
1705	bus_addr_t paddr;
1706	uint32_t flags;
1707	uint16_t len;
1708	int error;
1709
1710	stat = (struct wpi_rx_stat *)(desc + 1);
1711
1712	if (stat->len > WPI_STAT_MAXLEN) {
1713		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1714		goto fail1;
1715	}
1716
1717	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1718	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1719	len = le16toh(head->len);
1720	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1721	flags = le32toh(tail->flags);
1722
1723	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1724	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1725	    le32toh(desc->len), len, (int8_t)stat->rssi,
1726	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1727
1728	/* Discard frames with a bad FCS early. */
1729	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1730		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1731		    __func__, flags);
1732		goto fail1;
1733	}
1734	/* Discard frames that are too short. */
1735	if (len < sizeof (*wh)) {
1736		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1737		    __func__, len);
1738		goto fail1;
1739	}
1740
1741	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1742	if (m1 == NULL) {
1743		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1744		    __func__);
1745		goto fail1;
1746	}
1747	bus_dmamap_unload(ring->data_dmat, data->map);
1748
1749	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1750	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1751	if (error != 0 && error != EFBIG) {
1752		device_printf(sc->sc_dev,
1753		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1754		m_freem(m1);
1755
1756		/* Try to reload the old mbuf. */
1757		error = bus_dmamap_load(ring->data_dmat, data->map,
1758		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1759		    &paddr, BUS_DMA_NOWAIT);
1760		if (error != 0 && error != EFBIG) {
1761			panic("%s: could not load old RX mbuf", __func__);
1762		}
1763		/* Physical address may have changed. */
1764		ring->desc[ring->cur] = htole32(paddr);
1765		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1766		    BUS_DMASYNC_PREWRITE);
1767		goto fail1;
1768	}
1769
1770	m = data->m;
1771	data->m = m1;
1772	/* Update RX descriptor. */
1773	ring->desc[ring->cur] = htole32(paddr);
1774	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1775	    BUS_DMASYNC_PREWRITE);
1776
1777	/* Finalize mbuf. */
1778	m->m_pkthdr.rcvif = ifp;
1779	m->m_data = (caddr_t)(head + 1);
1780	m->m_pkthdr.len = m->m_len = len;
1781
1782	/* Grab a reference to the source node. */
1783	wh = mtod(m, struct ieee80211_frame *);
1784	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1785
1786	if (ni != NULL)
1787		cip = ni->ni_ucastkey.wk_cipher;
1788	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1789	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1790	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1791		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1792			goto fail2;
1793
1794		/* Check whether decryption was successful or not. */
1795		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1796			DPRINTF(sc, WPI_DEBUG_RECV,
1797			    "CCMP decryption failed 0x%x\n", flags);
1798			goto fail2;
1799		}
1800		m->m_flags |= M_WEP;
1801	}
1802
1803	if (ieee80211_radiotap_active(ic)) {
1804		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1805
1806		tap->wr_flags = 0;
1807		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1808			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1809		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1810		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1811		tap->wr_tsft = tail->tstamp;
1812		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1813		tap->wr_rate = plcp2rate(head->plcp);
1814	}
1815
1816	WPI_UNLOCK(sc);
1817
1818	/* Send the frame to the 802.11 layer. */
1819	if (ni != NULL) {
1820		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1821		/* Node is no longer needed. */
1822		ieee80211_free_node(ni);
1823	} else
1824		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1825
1826	WPI_LOCK(sc);
1827
1828	return;
1829
1830fail2:	ieee80211_free_node(ni);
1831	m_freem(m);
1832
1833fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1834}
1835
1836static void
1837wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1838    struct wpi_rx_data *data)
1839{
1840	/* Ignore */
1841}
1842
1843static void
1844wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1845{
1846	struct ifnet *ifp = sc->sc_ifp;
1847	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1848	struct wpi_tx_data *data = &ring->data[desc->idx];
1849	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1850	struct mbuf *m;
1851	struct ieee80211_node *ni;
1852	struct ieee80211vap *vap;
1853	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1854	int status = le32toh(stat->status);
1855
1856	KASSERT(data->ni != NULL, ("no node"));
1857
1858	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1859
1860	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1861	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1862	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1863	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1864
1865	/* Unmap and free mbuf. */
1866	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1867	bus_dmamap_unload(ring->data_dmat, data->map);
1868	m = data->m, data->m = NULL;
1869	ni = data->ni, data->ni = NULL;
1870	vap = ni->ni_vap;
1871
1872	/*
1873	 * Update rate control statistics for the node.
1874	 */
1875	WPI_UNLOCK(sc);
1876	if ((status & 0xff) != 1) {
1877		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1878		ieee80211_ratectl_tx_complete(vap, ni,
1879		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1880	} else {
1881		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1882		ieee80211_ratectl_tx_complete(vap, ni,
1883		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1884	}
1885
1886	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1887	WPI_LOCK(sc);
1888
1889	sc->sc_tx_timer = 0;
1890	if (--ring->queued < WPI_TX_RING_LOMARK) {
1891		sc->qfullmsk &= ~(1 << ring->qid);
1892		if (sc->qfullmsk == 0 &&
1893		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1894			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1895			wpi_start_locked(ifp);
1896		}
1897	}
1898
1899	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1900}
1901
1902/*
1903 * Process a "command done" firmware notification.  This is where we wakeup
1904 * processes waiting for a synchronous command completion.
1905 */
1906static void
1907wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1908{
1909	struct wpi_tx_ring *ring = &sc->txq[4];
1910	struct wpi_tx_data *data;
1911
1912	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1913				   "type=%s len=%d\n", desc->qid, desc->idx,
1914				   desc->flags, wpi_cmd_str(desc->type),
1915				   le32toh(desc->len));
1916
1917	if ((desc->qid & 7) != 4)
1918		return;	/* Not a command ack. */
1919
1920	data = &ring->data[desc->idx];
1921
1922	/* If the command was mapped in an mbuf, free it. */
1923	if (data->m != NULL) {
1924		bus_dmamap_sync(ring->data_dmat, data->map,
1925		    BUS_DMASYNC_POSTWRITE);
1926		bus_dmamap_unload(ring->data_dmat, data->map);
1927		m_freem(data->m);
1928		data->m = NULL;
1929	}
1930
1931	sc->flags &= ~WPI_FLAG_BUSY;
1932	wakeup(&ring->cmd[desc->idx]);
1933}
1934
1935static void
1936wpi_notif_intr(struct wpi_softc *sc)
1937{
1938	struct ifnet *ifp = sc->sc_ifp;
1939	struct ieee80211com *ic = ifp->if_l2com;
1940	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1941	int hw;
1942
1943	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1944	    BUS_DMASYNC_POSTREAD);
1945
1946	hw = le32toh(sc->shared->next);
1947	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1948
1949	while (sc->rxq.cur != hw) {
1950		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1951
1952		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1953		struct wpi_rx_desc *desc;
1954
1955		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1956		    BUS_DMASYNC_POSTREAD);
1957		desc = mtod(data->m, struct wpi_rx_desc *);
1958
1959		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1960		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1961		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1962		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1963
1964		if (!(desc->qid & 0x80))	/* Reply to a command. */
1965			wpi_cmd_done(sc, desc);
1966
1967		switch (desc->type) {
1968		case WPI_RX_DONE:
1969			/* An 802.11 frame has been received. */
1970			wpi_rx_done(sc, desc, data);
1971
1972			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1973				/* wpi_stop() was called. */
1974				return;
1975			}
1976
1977			break;
1978
1979		case WPI_TX_DONE:
1980			/* An 802.11 frame has been transmitted. */
1981			wpi_tx_done(sc, desc);
1982			break;
1983
1984		case WPI_RX_STATISTICS:
1985		case WPI_BEACON_STATISTICS:
1986			wpi_rx_statistics(sc, desc, data);
1987			break;
1988
1989		case WPI_BEACON_MISSED:
1990		{
1991			struct wpi_beacon_missed *miss =
1992			    (struct wpi_beacon_missed *)(desc + 1);
1993			int misses;
1994
1995			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1996			    BUS_DMASYNC_POSTREAD);
1997			misses = le32toh(miss->consecutive);
1998
1999			DPRINTF(sc, WPI_DEBUG_STATE,
2000			    "%s: beacons missed %d/%d\n", __func__, misses,
2001			    le32toh(miss->total));
2002
2003			if (vap->iv_state == IEEE80211_S_RUN &&
2004			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2005				if (misses >=  vap->iv_bmissthreshold) {
2006					WPI_UNLOCK(sc);
2007					ieee80211_beacon_miss(ic);
2008					WPI_LOCK(sc);
2009				}
2010			}
2011			break;
2012		}
2013		case WPI_UC_READY:
2014		{
2015			struct wpi_ucode_info *uc =
2016			    (struct wpi_ucode_info *)(desc + 1);
2017
2018			/* The microcontroller is ready. */
2019			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2020			    BUS_DMASYNC_POSTREAD);
2021			DPRINTF(sc, WPI_DEBUG_RESET,
2022			    "microcode alive notification version=%d.%d "
2023			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2024			    uc->subtype, le32toh(uc->valid));
2025
2026			if (le32toh(uc->valid) != 1) {
2027				device_printf(sc->sc_dev,
2028				    "microcontroller initialization failed\n");
2029				wpi_stop_locked(sc);
2030			}
2031			/* Save the address of the error log in SRAM. */
2032			sc->errptr = le32toh(uc->errptr);
2033			break;
2034		}
2035		case WPI_STATE_CHANGED:
2036		{
2037			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2038			    BUS_DMASYNC_POSTREAD);
2039
2040			uint32_t *status = (uint32_t *)(desc + 1);
2041
2042			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2043			    le32toh(*status));
2044
2045			if (le32toh(*status) & 1) {
2046				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2047				return;
2048			}
2049			break;
2050		}
2051		case WPI_START_SCAN:
2052		{
2053			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2054			    BUS_DMASYNC_POSTREAD);
2055#ifdef WPI_DEBUG
2056			struct wpi_start_scan *scan =
2057			    (struct wpi_start_scan *)(desc + 1);
2058			DPRINTF(sc, WPI_DEBUG_SCAN,
2059			    "%s: scanning channel %d status %x\n",
2060			    __func__, scan->chan, le32toh(scan->status));
2061#endif
2062			break;
2063		}
2064		case WPI_STOP_SCAN:
2065		{
2066			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2067			    BUS_DMASYNC_POSTREAD);
2068#ifdef WPI_DEBUG
2069			struct wpi_stop_scan *scan =
2070			    (struct wpi_stop_scan *)(desc + 1);
2071			DPRINTF(sc, WPI_DEBUG_SCAN,
2072			    "scan finished nchan=%d status=%d chan=%d\n",
2073			    scan->nchan, scan->status, scan->chan);
2074#endif
2075			sc->sc_scan_timer = 0;
2076			WPI_UNLOCK(sc);
2077			ieee80211_scan_next(vap);
2078			WPI_LOCK(sc);
2079			break;
2080		}
2081		}
2082	}
2083
2084	/* Tell the firmware what we have processed. */
2085	wpi_update_rx_ring(sc);
2086}
2087
2088/*
2089 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2090 * from power-down sleep mode.
2091 */
2092static void
2093wpi_wakeup_intr(struct wpi_softc *sc)
2094{
2095	int qid;
2096
2097	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2098	    "%s: ucode wakeup from power-down sleep\n", __func__);
2099
2100	/* Wakeup RX and TX rings. */
2101	if (sc->rxq.update) {
2102		sc->rxq.update = 0;
2103		wpi_update_rx_ring(sc);
2104	}
2105	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2106		struct wpi_tx_ring *ring = &sc->txq[qid];
2107
2108		if (ring->update) {
2109			ring->update = 0;
2110			wpi_update_tx_ring(sc, ring);
2111		}
2112	}
2113
2114	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2115}
2116
2117/*
2118 * Dump the error log of the firmware when a firmware panic occurs.  Although
2119 * we can't debug the firmware because it is neither open source nor free, it
2120 * can help us to identify certain classes of problems.
2121 */
2122static void
2123wpi_fatal_intr(struct wpi_softc *sc)
2124{
2125	struct wpi_fw_dump dump;
2126	uint32_t i, offset, count;
2127	const uint32_t size_errmsg =
2128	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2129
2130	/* Check that the error log address is valid. */
2131	if (sc->errptr < WPI_FW_DATA_BASE ||
2132	    sc->errptr + sizeof (dump) >
2133	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2134		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2135		    sc->errptr);
2136		return;
2137	}
2138	if (wpi_nic_lock(sc) != 0) {
2139		printf("%s: could not read firmware error log\n", __func__);
2140		return;
2141	}
2142	/* Read number of entries in the log. */
2143	count = wpi_mem_read(sc, sc->errptr);
2144	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2145		printf("%s: invalid count field (count = %u)\n", __func__,
2146		    count);
2147		wpi_nic_unlock(sc);
2148		return;
2149	}
2150	/* Skip "count" field. */
2151	offset = sc->errptr + sizeof (uint32_t);
2152	printf("firmware error log (count = %u):\n", count);
2153	for (i = 0; i < count; i++) {
2154		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2155		    sizeof (dump) / sizeof (uint32_t));
2156
2157		printf("  error type = \"%s\" (0x%08X)\n",
2158		    (dump.desc < size_errmsg) ?
2159		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2160		    dump.desc);
2161		printf("  error data      = 0x%08X\n",
2162		    dump.data);
2163		printf("  branch link     = 0x%08X%08X\n",
2164		    dump.blink[0], dump.blink[1]);
2165		printf("  interrupt link  = 0x%08X%08X\n",
2166		    dump.ilink[0], dump.ilink[1]);
2167		printf("  time            = %u\n", dump.time);
2168
2169		offset += sizeof (dump);
2170	}
2171	wpi_nic_unlock(sc);
2172	/* Dump driver status (TX and RX rings) while we're here. */
2173	printf("driver status:\n");
2174	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2175		struct wpi_tx_ring *ring = &sc->txq[i];
2176		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2177		    i, ring->qid, ring->cur, ring->queued);
2178	}
2179	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2180}
2181
2182static void
2183wpi_intr(void *arg)
2184{
2185	struct wpi_softc *sc = arg;
2186	struct ifnet *ifp = sc->sc_ifp;
2187	uint32_t r1, r2;
2188
2189	WPI_LOCK(sc);
2190
2191	/* Disable interrupts. */
2192	WPI_WRITE(sc, WPI_INT_MASK, 0);
2193
2194	r1 = WPI_READ(sc, WPI_INT);
2195
2196	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2197		WPI_UNLOCK(sc);
2198		return;	/* Hardware gone! */
2199	}
2200
2201	r2 = WPI_READ(sc, WPI_FH_INT);
2202
2203	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2204	    r1, r2);
2205
2206	if (r1 == 0 && r2 == 0)
2207		goto done;	/* Interrupt not for us. */
2208
2209	/* Acknowledge interrupts. */
2210	WPI_WRITE(sc, WPI_INT, r1);
2211	WPI_WRITE(sc, WPI_FH_INT, r2);
2212
2213	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2214		struct ieee80211com *ic = ifp->if_l2com;
2215
2216		device_printf(sc->sc_dev, "fatal firmware error\n");
2217		wpi_fatal_intr(sc);
2218		DPRINTF(sc, WPI_DEBUG_HW,
2219		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2220		    "(Hardware Error)");
2221		ieee80211_runtask(ic, &sc->sc_reinittask);
2222		sc->flags &= ~WPI_FLAG_BUSY;
2223		WPI_UNLOCK(sc);
2224		return;
2225	}
2226
2227	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2228	    (r2 & WPI_FH_INT_RX))
2229		wpi_notif_intr(sc);
2230
2231	if (r1 & WPI_INT_ALIVE)
2232		wakeup(sc);	/* Firmware is alive. */
2233
2234	if (r1 & WPI_INT_WAKEUP)
2235		wpi_wakeup_intr(sc);
2236
2237done:
2238	/* Re-enable interrupts. */
2239	if (ifp->if_flags & IFF_UP)
2240		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2241
2242	WPI_UNLOCK(sc);
2243}
2244
2245static int
2246wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2247{
2248	struct ieee80211_frame *wh;
2249	struct wpi_tx_cmd *cmd;
2250	struct wpi_tx_data *data;
2251	struct wpi_tx_desc *desc;
2252	struct wpi_tx_ring *ring;
2253	struct mbuf *m1;
2254	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2255	int error, i, hdrlen, nsegs, totlen, pad;
2256
2257	WPI_LOCK_ASSERT(sc);
2258
2259	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2260
2261	wh = mtod(buf->m, struct ieee80211_frame *);
2262	hdrlen = ieee80211_anyhdrsize(wh);
2263	totlen = buf->m->m_pkthdr.len;
2264
2265	if (hdrlen & 3) {
2266		/* First segment length must be a multiple of 4. */
2267		pad = 4 - (hdrlen & 3);
2268	} else
2269		pad = 0;
2270
2271	ring = &sc->txq[buf->ac];
2272	desc = &ring->desc[ring->cur];
2273	data = &ring->data[ring->cur];
2274
2275	/* Prepare TX firmware command. */
2276	cmd = &ring->cmd[ring->cur];
2277	cmd->code = buf->code;
2278	cmd->flags = 0;
2279	cmd->qid = ring->qid;
2280	cmd->idx = ring->cur;
2281
2282	memcpy(cmd->data, buf->data, buf->size);
2283
2284	/* Save and trim IEEE802.11 header. */
2285	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2286	m_adj(buf->m, hdrlen);
2287
2288	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2289	    segs, &nsegs, BUS_DMA_NOWAIT);
2290	if (error != 0 && error != EFBIG) {
2291		device_printf(sc->sc_dev,
2292		    "%s: can't map mbuf (error %d)\n", __func__, error);
2293		m_freem(buf->m);
2294		return error;
2295	}
2296	if (error != 0) {
2297		/* Too many DMA segments, linearize mbuf. */
2298		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2299		if (m1 == NULL) {
2300			device_printf(sc->sc_dev,
2301			    "%s: could not defrag mbuf\n", __func__);
2302			m_freem(buf->m);
2303			return ENOBUFS;
2304		}
2305		buf->m = m1;
2306
2307		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2308		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2309		if (error != 0) {
2310			device_printf(sc->sc_dev,
2311			    "%s: can't map mbuf (error %d)\n", __func__, error);
2312			m_freem(buf->m);
2313			return error;
2314		}
2315	}
2316
2317	KASSERT(nsegs < WPI_MAX_SCATTER,
2318	    ("too many DMA segments, nsegs (%d) should be less than %d",
2319	     nsegs, WPI_MAX_SCATTER));
2320
2321	data->m = buf->m;
2322	data->ni = buf->ni;
2323
2324	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2325	    __func__, ring->qid, ring->cur, totlen, nsegs);
2326
2327	/* Fill TX descriptor. */
2328	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2329	/* First DMA segment is used by the TX command. */
2330	desc->segs[0].addr = htole32(data->cmd_paddr);
2331	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2332	/* Other DMA segments are for data payload. */
2333	seg = &segs[0];
2334	for (i = 1; i <= nsegs; i++) {
2335		desc->segs[i].addr = htole32(seg->ds_addr);
2336		desc->segs[i].len  = htole32(seg->ds_len);
2337		seg++;
2338	}
2339
2340	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2341	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2342	    BUS_DMASYNC_PREWRITE);
2343	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2344	    BUS_DMASYNC_PREWRITE);
2345
2346	/* Kick TX ring. */
2347	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2348	wpi_update_tx_ring(sc, ring);
2349
2350	/* Mark TX ring as full if we reach a certain threshold. */
2351	if (++ring->queued > WPI_TX_RING_HIMARK)
2352		sc->qfullmsk |= 1 << ring->qid;
2353
2354	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2355
2356	return 0;
2357}
2358
2359/*
2360 * Construct the data packet for a transmit buffer.
2361 */
2362static int
2363wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2364{
2365	const struct ieee80211_txparam *tp;
2366	struct ieee80211vap *vap = ni->ni_vap;
2367	struct ieee80211com *ic = ni->ni_ic;
2368	struct wpi_node *wn = (void *)ni;
2369	struct ieee80211_channel *chan;
2370	struct ieee80211_frame *wh;
2371	struct ieee80211_key *k = NULL;
2372	struct wpi_cmd_data tx;
2373	struct wpi_buf tx_data;
2374	uint32_t flags;
2375	uint16_t qos;
2376	uint8_t tid, type;
2377	int ac, error, rate, ismcast, totlen;
2378
2379	wh = mtod(m, struct ieee80211_frame *);
2380	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2381	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2382
2383	/* Select EDCA Access Category and TX ring for this frame. */
2384	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2385 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2386		tid = qos & IEEE80211_QOS_TID;
2387	} else {
2388		qos = 0;
2389		tid = 0;
2390	}
2391	ac = M_WME_GETAC(m);
2392
2393	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2394		ni->ni_chan : ic->ic_curchan;
2395	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2396
2397	/* Choose a TX rate index. */
2398	if (type == IEEE80211_FC0_TYPE_MGT)
2399		rate = tp->mgmtrate;
2400	else if (ismcast)
2401		rate = tp->mcastrate;
2402	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2403		rate = tp->ucastrate;
2404	else if (m->m_flags & M_EAPOL)
2405		rate = tp->mgmtrate;
2406	else {
2407		/* XXX pass pktlen */
2408		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2409		rate = ni->ni_txrate;
2410	}
2411
2412	/* Encrypt the frame if need be. */
2413	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2414		/* Retrieve key for TX. */
2415		k = ieee80211_crypto_encap(ni, m);
2416		if (k == NULL) {
2417			error = ENOBUFS;
2418			goto fail;
2419		}
2420		/* 802.11 header may have moved. */
2421		wh = mtod(m, struct ieee80211_frame *);
2422	}
2423	totlen = m->m_pkthdr.len;
2424
2425	if (ieee80211_radiotap_active_vap(vap)) {
2426		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2427
2428		tap->wt_flags = 0;
2429		tap->wt_rate = rate;
2430		if (k != NULL)
2431			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2432
2433		ieee80211_radiotap_tx(vap, m);
2434	}
2435
2436	flags = 0;
2437	if (!ismcast) {
2438		/* Unicast frame, check if an ACK is expected. */
2439		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2440		    IEEE80211_QOS_ACKPOLICY_NOACK)
2441			flags |= WPI_TX_NEED_ACK;
2442	}
2443
2444	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2445		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2446
2447	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2448	if (!ismcast) {
2449		/* NB: Group frames are sent using CCK in 802.11b/g. */
2450		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2451			flags |= WPI_TX_NEED_RTS;
2452		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2453		    WPI_RATE_IS_OFDM(rate)) {
2454			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2455				flags |= WPI_TX_NEED_CTS;
2456			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2457				flags |= WPI_TX_NEED_RTS;
2458		}
2459
2460		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2461			flags |= WPI_TX_FULL_TXOP;
2462	}
2463
2464	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2465	if (type == IEEE80211_FC0_TYPE_MGT) {
2466		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2467
2468		/* Tell HW to set timestamp in probe responses. */
2469		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2470			flags |= WPI_TX_INSERT_TSTAMP;
2471		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2472		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2473			tx.timeout = htole16(3);
2474		else
2475			tx.timeout = htole16(2);
2476	}
2477
2478	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2479		tx.id = WPI_ID_BROADCAST;
2480	else {
2481		if (wn->id == WPI_ID_UNDEFINED &&
2482		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2483		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2484			error = wpi_add_ibss_node(sc, ni);
2485			if (error != 0) {
2486				device_printf(sc->sc_dev,
2487				    "%s: could not add IBSS node, error %d\n",
2488				    __func__, error);
2489				goto fail;
2490			}
2491		}
2492
2493		if (wn->id == WPI_ID_UNDEFINED) {
2494			device_printf(sc->sc_dev,
2495			    "%s: undefined node id\n", __func__);
2496			error = EINVAL;
2497			goto fail;
2498		}
2499
2500		tx.id = wn->id;
2501	}
2502
2503	if (type != IEEE80211_FC0_TYPE_MGT)
2504		tx.data_ntries = tp->maxretry;
2505
2506	tx.len = htole16(totlen);
2507	tx.flags = htole32(flags);
2508	tx.plcp = rate2plcp(rate);
2509	tx.tid = tid;
2510	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2511	tx.ofdm_mask = 0xff;
2512	tx.cck_mask = 0x0f;
2513	tx.rts_ntries = 7;
2514
2515	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2516		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2517			tx.security = WPI_CIPHER_CCMP;
2518			memcpy(tx.key, k->wk_key, k->wk_keylen);
2519		}
2520	}
2521
2522	tx_data.data = &tx;
2523	tx_data.ni = ni;
2524	tx_data.m = m;
2525	tx_data.size = sizeof(tx);
2526	tx_data.code = WPI_CMD_TX_DATA;
2527	tx_data.ac = ac;
2528
2529	return wpi_cmd2(sc, &tx_data);
2530
2531fail:	m_freem(m);
2532	return error;
2533}
2534
2535static int
2536wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2537    const struct ieee80211_bpf_params *params)
2538{
2539	struct ieee80211vap *vap = ni->ni_vap;
2540	struct ieee80211_frame *wh;
2541	struct wpi_cmd_data tx;
2542	struct wpi_buf tx_data;
2543	uint32_t flags;
2544	uint8_t type;
2545	int ac, rate, totlen;
2546
2547	wh = mtod(m, struct ieee80211_frame *);
2548	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2549	totlen = m->m_pkthdr.len;
2550
2551	ac = params->ibp_pri & 3;
2552
2553	/* Choose a TX rate index. */
2554	rate = params->ibp_rate0;
2555
2556	flags = 0;
2557	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2558		flags |= WPI_TX_NEED_ACK;
2559	if (params->ibp_flags & IEEE80211_BPF_RTS)
2560		flags |= WPI_TX_NEED_RTS;
2561	if (params->ibp_flags & IEEE80211_BPF_CTS)
2562		flags |= WPI_TX_NEED_CTS;
2563	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2564		flags |= WPI_TX_FULL_TXOP;
2565
2566	if (ieee80211_radiotap_active_vap(vap)) {
2567		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2568
2569		tap->wt_flags = 0;
2570		tap->wt_rate = rate;
2571
2572		ieee80211_radiotap_tx(vap, m);
2573	}
2574
2575	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2576	if (type == IEEE80211_FC0_TYPE_MGT) {
2577		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2578
2579		/* Tell HW to set timestamp in probe responses. */
2580		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2581			flags |= WPI_TX_INSERT_TSTAMP;
2582		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2583		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2584			tx.timeout = htole16(3);
2585		else
2586			tx.timeout = htole16(2);
2587	}
2588
2589	tx.len = htole16(totlen);
2590	tx.flags = htole32(flags);
2591	tx.plcp = rate2plcp(rate);
2592	tx.id = WPI_ID_BROADCAST;
2593	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2594	tx.rts_ntries = params->ibp_try1;
2595	tx.data_ntries = params->ibp_try0;
2596
2597	tx_data.data = &tx;
2598	tx_data.ni = ni;
2599	tx_data.m = m;
2600	tx_data.size = sizeof(tx);
2601	tx_data.code = WPI_CMD_TX_DATA;
2602	tx_data.ac = ac;
2603
2604	return wpi_cmd2(sc, &tx_data);
2605}
2606
2607static int
2608wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2609    const struct ieee80211_bpf_params *params)
2610{
2611	struct ieee80211com *ic = ni->ni_ic;
2612	struct ifnet *ifp = ic->ic_ifp;
2613	struct wpi_softc *sc = ifp->if_softc;
2614	int error = 0;
2615
2616	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2617
2618	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2619		ieee80211_free_node(ni);
2620		m_freem(m);
2621		return ENETDOWN;
2622	}
2623
2624	WPI_LOCK(sc);
2625	if (params == NULL) {
2626		/*
2627		 * Legacy path; interpret frame contents to decide
2628		 * precisely how to send the frame.
2629		 */
2630		error = wpi_tx_data(sc, m, ni);
2631	} else {
2632		/*
2633		 * Caller supplied explicit parameters to use in
2634		 * sending the frame.
2635		 */
2636		error = wpi_tx_data_raw(sc, m, ni, params);
2637	}
2638	WPI_UNLOCK(sc);
2639
2640	if (error != 0) {
2641		/* NB: m is reclaimed on tx failure */
2642		ieee80211_free_node(ni);
2643		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2644
2645		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2646
2647		return error;
2648	}
2649
2650	sc->sc_tx_timer = 5;
2651
2652	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2653
2654	return 0;
2655}
2656
2657/**
2658 * Process data waiting to be sent on the IFNET output queue
2659 */
2660static void
2661wpi_start(struct ifnet *ifp)
2662{
2663	struct wpi_softc *sc = ifp->if_softc;
2664
2665	WPI_LOCK(sc);
2666	wpi_start_locked(ifp);
2667	WPI_UNLOCK(sc);
2668}
2669
2670static void
2671wpi_start_locked(struct ifnet *ifp)
2672{
2673	struct wpi_softc *sc = ifp->if_softc;
2674	struct ieee80211_node *ni;
2675	struct mbuf *m;
2676
2677	WPI_LOCK_ASSERT(sc);
2678
2679	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2680
2681	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2682	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2683		return;
2684
2685	for (;;) {
2686		if (sc->qfullmsk != 0) {
2687			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2688			break;
2689		}
2690		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2691		if (m == NULL)
2692			break;
2693		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2694		if (wpi_tx_data(sc, m, ni) != 0) {
2695			WPI_UNLOCK(sc);
2696			ieee80211_free_node(ni);
2697			WPI_LOCK(sc);
2698			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2699		} else
2700			sc->sc_tx_timer = 5;
2701	}
2702
2703	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2704}
2705
2706static void
2707wpi_watchdog_rfkill(void *arg)
2708{
2709	struct wpi_softc *sc = arg;
2710	struct ifnet *ifp = sc->sc_ifp;
2711	struct ieee80211com *ic = ifp->if_l2com;
2712
2713	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2714
2715	/* No need to lock firmware memory. */
2716	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2717		/* Radio kill switch is still off. */
2718		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2719		    sc);
2720	} else
2721		ieee80211_runtask(ic, &sc->sc_radioon_task);
2722}
2723
2724/**
2725 * Called every second, wpi_watchdog used by the watch dog timer
2726 * to check that the card is still alive
2727 */
2728static void
2729wpi_watchdog(void *arg)
2730{
2731	struct wpi_softc *sc = arg;
2732	struct ifnet *ifp = sc->sc_ifp;
2733	struct ieee80211com *ic = ifp->if_l2com;
2734
2735	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2736
2737	if (sc->sc_tx_timer > 0) {
2738		if (--sc->sc_tx_timer == 0) {
2739			if_printf(ifp, "device timeout\n");
2740			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2741			ieee80211_runtask(ic, &sc->sc_reinittask);
2742		}
2743	}
2744
2745	if (sc->sc_scan_timer > 0) {
2746		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2747		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2748			if_printf(ifp, "scan timeout\n");
2749			ieee80211_cancel_scan(vap);
2750			ieee80211_runtask(ic, &sc->sc_reinittask);
2751		}
2752	}
2753
2754	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2755		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2756}
2757
2758static int
2759wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2760{
2761	struct wpi_softc *sc = ifp->if_softc;
2762	struct ieee80211com *ic = ifp->if_l2com;
2763	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2764	struct ifreq *ifr = (struct ifreq *) data;
2765	int error = 0, startall = 0, stop = 0;
2766
2767	switch (cmd) {
2768	case SIOCGIFADDR:
2769		error = ether_ioctl(ifp, cmd, data);
2770		break;
2771	case SIOCSIFFLAGS:
2772		WPI_LOCK(sc);
2773		if (ifp->if_flags & IFF_UP) {
2774			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2775				wpi_init_locked(sc);
2776				if (WPI_READ(sc, WPI_GP_CNTRL) &
2777				    WPI_GP_CNTRL_RFKILL)
2778					startall = 1;
2779				else
2780					stop = 1;
2781			}
2782		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2783			wpi_stop_locked(sc);
2784		WPI_UNLOCK(sc);
2785		if (startall)
2786			ieee80211_start_all(ic);
2787		else if (vap != NULL && stop)
2788			ieee80211_stop(vap);
2789		break;
2790	case SIOCGIFMEDIA:
2791		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2792		break;
2793	default:
2794		error = EINVAL;
2795		break;
2796	}
2797	return error;
2798}
2799
2800/*
2801 * Send a command to the firmware.
2802 */
2803static int
2804wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2805    int async)
2806{
2807	struct wpi_tx_ring *ring = &sc->txq[4];
2808	struct wpi_tx_desc *desc;
2809	struct wpi_tx_data *data;
2810	struct wpi_tx_cmd *cmd;
2811	struct mbuf *m;
2812	bus_addr_t paddr;
2813	int totlen, error;
2814
2815	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2816
2817	if (async == 0)
2818		WPI_LOCK_ASSERT(sc);
2819
2820	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2821	    wpi_cmd_str(code), size, async);
2822
2823	if (sc->flags & WPI_FLAG_BUSY) {
2824		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2825		    __func__, code);
2826		return EAGAIN;
2827	}
2828	sc->flags |= WPI_FLAG_BUSY;
2829
2830	desc = &ring->desc[ring->cur];
2831	data = &ring->data[ring->cur];
2832	totlen = 4 + size;
2833
2834	if (size > sizeof cmd->data) {
2835		/* Command is too large to fit in a descriptor. */
2836		if (totlen > MCLBYTES)
2837			return EINVAL;
2838		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2839		if (m == NULL)
2840			return ENOMEM;
2841		cmd = mtod(m, struct wpi_tx_cmd *);
2842		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2843		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2844		if (error != 0) {
2845			m_freem(m);
2846			return error;
2847		}
2848		data->m = m;
2849	} else {
2850		cmd = &ring->cmd[ring->cur];
2851		paddr = data->cmd_paddr;
2852	}
2853
2854	cmd->code = code;
2855	cmd->flags = 0;
2856	cmd->qid = ring->qid;
2857	cmd->idx = ring->cur;
2858	memcpy(cmd->data, buf, size);
2859
2860	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2861	desc->segs[0].addr = htole32(paddr);
2862	desc->segs[0].len  = htole32(totlen);
2863
2864	if (size > sizeof cmd->data) {
2865		bus_dmamap_sync(ring->data_dmat, data->map,
2866		    BUS_DMASYNC_PREWRITE);
2867	} else {
2868		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2869		    BUS_DMASYNC_PREWRITE);
2870	}
2871	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2872	    BUS_DMASYNC_PREWRITE);
2873
2874	/* Kick command ring. */
2875	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2876	wpi_update_tx_ring(sc, ring);
2877
2878	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2879
2880	if (async) {
2881		sc->flags &= ~WPI_FLAG_BUSY;
2882		return 0;
2883	}
2884
2885	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2886}
2887
2888/*
2889 * Configure HW multi-rate retries.
2890 */
2891static int
2892wpi_mrr_setup(struct wpi_softc *sc)
2893{
2894	struct ifnet *ifp = sc->sc_ifp;
2895	struct ieee80211com *ic = ifp->if_l2com;
2896	struct wpi_mrr_setup mrr;
2897	int i, error;
2898
2899	/* CCK rates (not used with 802.11a). */
2900	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2901		mrr.rates[i].flags = 0;
2902		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2903		/* Fallback to the immediate lower CCK rate (if any.) */
2904		mrr.rates[i].next =
2905		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2906		/* Try one time at this rate before falling back to "next". */
2907		mrr.rates[i].ntries = 1;
2908	}
2909	/* OFDM rates (not used with 802.11b). */
2910	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2911		mrr.rates[i].flags = 0;
2912		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2913		/* Fallback to the immediate lower rate (if any.) */
2914		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2915		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2916		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2917			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2918		    i - 1;
2919		/* Try one time at this rate before falling back to "next". */
2920		mrr.rates[i].ntries = 1;
2921	}
2922	/* Setup MRR for control frames. */
2923	mrr.which = htole32(WPI_MRR_CTL);
2924	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2925	if (error != 0) {
2926		device_printf(sc->sc_dev,
2927		    "could not setup MRR for control frames\n");
2928		return error;
2929	}
2930	/* Setup MRR for data frames. */
2931	mrr.which = htole32(WPI_MRR_DATA);
2932	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2933	if (error != 0) {
2934		device_printf(sc->sc_dev,
2935		    "could not setup MRR for data frames\n");
2936		return error;
2937	}
2938	return 0;
2939}
2940
2941static int
2942wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2943{
2944	struct ieee80211com *ic = ni->ni_ic;
2945	struct wpi_node *wn = (void *)ni;
2946	struct wpi_node_info node;
2947
2948	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2949
2950	if (wn->id == WPI_ID_UNDEFINED)
2951		return EINVAL;
2952
2953	memset(&node, 0, sizeof node);
2954	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2955	node.id = wn->id;
2956	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2957	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2958	node.action = htole32(WPI_ACTION_SET_RATE);
2959	node.antenna = WPI_ANTENNA_BOTH;
2960
2961	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2962}
2963
2964/*
2965 * Broadcast node is used to send group-addressed and management frames.
2966 */
2967static int
2968wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2969{
2970	struct ifnet *ifp = sc->sc_ifp;
2971	struct ieee80211com *ic = ifp->if_l2com;
2972	struct wpi_node_info node;
2973
2974	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2975
2976	memset(&node, 0, sizeof node);
2977	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2978	node.id = WPI_ID_BROADCAST;
2979	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2980	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2981	node.action = htole32(WPI_ACTION_SET_RATE);
2982	node.antenna = WPI_ANTENNA_BOTH;
2983
2984	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2985}
2986
2987static int
2988wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2989{
2990	struct wpi_node *wn = (void *)ni;
2991
2992	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2993
2994	if (wn->id != WPI_ID_UNDEFINED)
2995		return EINVAL;
2996
2997	wn->id = alloc_unrl(sc->sc_unr);
2998
2999	if (wn->id == (uint8_t)-1)
3000		return ENOBUFS;
3001
3002	return wpi_add_node(sc, ni);
3003}
3004
3005static void
3006wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3007{
3008	struct wpi_node *wn = (void *)ni;
3009	struct wpi_cmd_del_node node;
3010	int error;
3011
3012	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3013
3014	if (wn->id == WPI_ID_UNDEFINED) {
3015		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
3016		    __func__);
3017		return;
3018	}
3019
3020	memset(&node, 0, sizeof node);
3021	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3022	node.count = 1;
3023
3024	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3025	if (error != 0) {
3026		device_printf(sc->sc_dev,
3027		    "%s: could not delete node %u, error %d\n", __func__,
3028		    wn->id, error);
3029	}
3030}
3031
3032static int
3033wpi_updateedca(struct ieee80211com *ic)
3034{
3035#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3036	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3037	struct wpi_edca_params cmd;
3038	int aci, error;
3039
3040	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3041
3042	memset(&cmd, 0, sizeof cmd);
3043	cmd.flags = htole32(WPI_EDCA_UPDATE);
3044	for (aci = 0; aci < WME_NUM_AC; aci++) {
3045		const struct wmeParams *ac =
3046		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3047		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3048		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3049		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3050		cmd.ac[aci].txoplimit =
3051		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3052
3053		DPRINTF(sc, WPI_DEBUG_EDCA,
3054		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3055		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3056		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3057		    cmd.ac[aci].txoplimit);
3058	}
3059	IEEE80211_UNLOCK(ic);
3060	WPI_LOCK(sc);
3061	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3062	WPI_UNLOCK(sc);
3063	IEEE80211_LOCK(ic);
3064
3065	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3066
3067	return error;
3068#undef WPI_EXP2
3069}
3070
3071static void
3072wpi_set_promisc(struct wpi_softc *sc)
3073{
3074	struct ifnet *ifp = sc->sc_ifp;
3075	uint32_t promisc_filter;
3076
3077	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3078
3079	if (ifp->if_flags & IFF_PROMISC)
3080		sc->rxon.filter |= htole32(promisc_filter);
3081	else
3082		sc->rxon.filter &= ~htole32(promisc_filter);
3083}
3084
3085static void
3086wpi_update_promisc(struct ifnet *ifp)
3087{
3088	struct wpi_softc *sc = ifp->if_softc;
3089
3090	wpi_set_promisc(sc);
3091
3092	WPI_LOCK(sc);
3093	if (wpi_send_rxon(sc, 1, 1) != 0) {
3094		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3095		    __func__);
3096	}
3097	WPI_UNLOCK(sc);
3098}
3099
3100static void
3101wpi_update_mcast(struct ifnet *ifp)
3102{
3103	/* Ignore */
3104}
3105
3106static void
3107wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3108{
3109	struct wpi_cmd_led led;
3110
3111	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3112
3113	led.which = which;
3114	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3115	led.off = off;
3116	led.on = on;
3117	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3118}
3119
3120static int
3121wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3122{
3123	struct wpi_cmd_timing cmd;
3124	uint64_t val, mod;
3125
3126	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3127
3128	memset(&cmd, 0, sizeof cmd);
3129	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3130	cmd.bintval = htole16(ni->ni_intval);
3131	cmd.lintval = htole16(10);
3132
3133	/* Compute remaining time until next beacon. */
3134	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3135	mod = le64toh(cmd.tstamp) % val;
3136	cmd.binitval = htole32((uint32_t)(val - mod));
3137
3138	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3139	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3140
3141	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3142}
3143
3144/*
3145 * This function is called periodically (every 60 seconds) to adjust output
3146 * power to temperature changes.
3147 */
3148static void
3149wpi_power_calibration(struct wpi_softc *sc)
3150{
3151	int temp;
3152
3153	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3154
3155	/* Update sensor data. */
3156	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3157	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3158
3159	/* Sanity-check read value. */
3160	if (temp < -260 || temp > 25) {
3161		/* This can't be correct, ignore. */
3162		DPRINTF(sc, WPI_DEBUG_TEMP,
3163		    "out-of-range temperature reported: %d\n", temp);
3164		return;
3165	}
3166
3167	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3168
3169	/* Adjust Tx power if need be. */
3170	if (abs(temp - sc->temp) <= 6)
3171		return;
3172
3173	sc->temp = temp;
3174
3175	if (wpi_set_txpower(sc, 1) != 0) {
3176		/* just warn, too bad for the automatic calibration... */
3177		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3178	}
3179}
3180
3181/*
3182 * Set TX power for current channel.
3183 */
3184static int
3185wpi_set_txpower(struct wpi_softc *sc, int async)
3186{
3187	struct ifnet *ifp = sc->sc_ifp;
3188	struct ieee80211com *ic = ifp->if_l2com;
3189	struct ieee80211_channel *ch;
3190	struct wpi_power_group *group;
3191	struct wpi_cmd_txpower cmd;
3192	uint8_t chan;
3193	int idx, i;
3194
3195	/* Retrieve current channel from last RXON. */
3196	chan = sc->rxon.chan;
3197	ch = &ic->ic_channels[chan];
3198
3199	/* Find the TX power group to which this channel belongs. */
3200	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3201		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3202			if (chan <= group->chan)
3203				break;
3204	} else
3205		group = &sc->groups[0];
3206
3207	memset(&cmd, 0, sizeof cmd);
3208	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3209	cmd.chan = htole16(chan);
3210
3211	/* Set TX power for all OFDM and CCK rates. */
3212	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3213		/* Retrieve TX power for this channel/rate. */
3214		idx = wpi_get_power_index(sc, group, ch, i);
3215
3216		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3217
3218		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3219			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3220			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3221		} else {
3222			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3223			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3224		}
3225		DPRINTF(sc, WPI_DEBUG_TEMP,
3226		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3227	}
3228
3229	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3230}
3231
3232/*
3233 * Determine Tx power index for a given channel/rate combination.
3234 * This takes into account the regulatory information from EEPROM and the
3235 * current temperature.
3236 */
3237static int
3238wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3239    struct ieee80211_channel *c, int ridx)
3240{
3241/* Fixed-point arithmetic division using a n-bit fractional part. */
3242#define fdivround(a, b, n)	\
3243	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3244
3245/* Linear interpolation. */
3246#define interpolate(x, x1, y1, x2, y2, n)	\
3247	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3248
3249	struct ifnet *ifp = sc->sc_ifp;
3250	struct ieee80211com *ic = ifp->if_l2com;
3251	struct wpi_power_sample *sample;
3252	int pwr, idx;
3253	u_int chan;
3254
3255	/* Get channel number. */
3256	chan = ieee80211_chan2ieee(ic, c);
3257
3258	/* Default TX power is group maximum TX power minus 3dB. */
3259	pwr = group->maxpwr / 2;
3260
3261	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3262	switch (ridx) {
3263	case WPI_RIDX_OFDM36:
3264		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3265		break;
3266	case WPI_RIDX_OFDM48:
3267		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3268		break;
3269	case WPI_RIDX_OFDM54:
3270		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3271		break;
3272	}
3273
3274	/* Never exceed the channel maximum allowed TX power. */
3275	pwr = min(pwr, sc->maxpwr[chan]);
3276
3277	/* Retrieve TX power index into gain tables from samples. */
3278	for (sample = group->samples; sample < &group->samples[3]; sample++)
3279		if (pwr > sample[1].power)
3280			break;
3281	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3282	idx = interpolate(pwr, sample[0].power, sample[0].index,
3283	    sample[1].power, sample[1].index, 19);
3284
3285	/*-
3286	 * Adjust power index based on current temperature:
3287	 * - if cooler than factory-calibrated: decrease output power
3288	 * - if warmer than factory-calibrated: increase output power
3289	 */
3290	idx -= (sc->temp - group->temp) * 11 / 100;
3291
3292	/* Decrease TX power for CCK rates (-5dB). */
3293	if (ridx >= WPI_RIDX_CCK1)
3294		idx += 10;
3295
3296	/* Make sure idx stays in a valid range. */
3297	if (idx < 0)
3298		return 0;
3299	if (idx > WPI_MAX_PWR_INDEX)
3300		return WPI_MAX_PWR_INDEX;
3301	return idx;
3302
3303#undef interpolate
3304#undef fdivround
3305}
3306
3307/*
3308 * Set STA mode power saving level (between 0 and 5).
3309 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3310 */
3311static int
3312wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3313{
3314	struct wpi_pmgt_cmd cmd;
3315	const struct wpi_pmgt *pmgt;
3316	uint32_t max, skip_dtim;
3317	uint32_t reg;
3318	int i;
3319
3320	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3321	    "%s: dtim=%d, level=%d, async=%d\n",
3322	    __func__, dtim, level, async);
3323
3324	/* Select which PS parameters to use. */
3325	if (dtim <= 10)
3326		pmgt = &wpi_pmgt[0][level];
3327	else
3328		pmgt = &wpi_pmgt[1][level];
3329
3330	memset(&cmd, 0, sizeof cmd);
3331	if (level != 0)	/* not CAM */
3332		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3333	/* Retrieve PCIe Active State Power Management (ASPM). */
3334	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3335	if (!(reg & 0x1))	/* L0s Entry disabled. */
3336		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3337
3338	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3339	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3340
3341	if (dtim == 0) {
3342		dtim = 1;
3343		skip_dtim = 0;
3344	} else
3345		skip_dtim = pmgt->skip_dtim;
3346
3347	if (skip_dtim != 0) {
3348		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3349		max = pmgt->intval[4];
3350		if (max == (uint32_t)-1)
3351			max = dtim * (skip_dtim + 1);
3352		else if (max > dtim)
3353			max = (max / dtim) * dtim;
3354	} else
3355		max = dtim;
3356
3357	for (i = 0; i < 5; i++)
3358		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3359
3360	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3361}
3362
3363static int
3364wpi_send_btcoex(struct wpi_softc *sc)
3365{
3366	struct wpi_bluetooth cmd;
3367
3368	memset(&cmd, 0, sizeof cmd);
3369	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3370	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3371	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3372	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3373	    __func__);
3374	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3375}
3376
3377static int
3378wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3379{
3380	int error;
3381
3382	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3383		struct wpi_assoc rxon_assoc;
3384
3385		rxon_assoc.flags = sc->rxon.flags;
3386		rxon_assoc.filter = sc->rxon.filter;
3387		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3388		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3389		rxon_assoc.reserved = 0;
3390
3391		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3392		    sizeof (struct wpi_assoc), async);
3393	} else {
3394		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3395		    sizeof (struct wpi_rxon), async);
3396	}
3397	if (error != 0) {
3398		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3399		    error);
3400		return error;
3401	}
3402
3403	/* Configuration has changed, set Tx power accordingly. */
3404	if ((error = wpi_set_txpower(sc, async)) != 0) {
3405		device_printf(sc->sc_dev,
3406		    "%s: could not set TX power, error %d\n", __func__, error);
3407		return error;
3408	}
3409
3410	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3411		/* Add broadcast node. */
3412		error = wpi_add_broadcast_node(sc, async);
3413		if (error != 0) {
3414			device_printf(sc->sc_dev,
3415			    "could not add broadcast node, error %d\n", error);
3416			return error;
3417		}
3418	}
3419
3420	return 0;
3421}
3422
3423/**
3424 * Configure the card to listen to a particular channel, this transisions the
3425 * card in to being able to receive frames from remote devices.
3426 */
3427static int
3428wpi_config(struct wpi_softc *sc)
3429{
3430	struct ifnet *ifp = sc->sc_ifp;
3431	struct ieee80211com *ic = ifp->if_l2com;
3432	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3433	uint32_t flags;
3434	int error;
3435
3436	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3437
3438	/* Set power saving level to CAM during initialization. */
3439	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3440		device_printf(sc->sc_dev,
3441		    "%s: could not set power saving level\n", __func__);
3442		return error;
3443	}
3444
3445	/* Configure bluetooth coexistence. */
3446	if ((error = wpi_send_btcoex(sc)) != 0) {
3447		device_printf(sc->sc_dev,
3448		    "could not configure bluetooth coexistence\n");
3449		return error;
3450	}
3451
3452	/* Configure adapter. */
3453	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3454	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3455
3456	/* Set default channel. */
3457	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3458	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3459	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3460		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3461
3462	sc->rxon.filter = WPI_FILTER_MULTICAST;
3463	switch (ic->ic_opmode) {
3464	case IEEE80211_M_STA:
3465		sc->rxon.mode = WPI_MODE_STA;
3466		break;
3467	case IEEE80211_M_IBSS:
3468		sc->rxon.mode = WPI_MODE_IBSS;
3469		sc->rxon.filter |= WPI_FILTER_BEACON;
3470		break;
3471	/* XXX workaround for passive channels selection */
3472	case IEEE80211_M_AHDEMO:
3473	case IEEE80211_M_HOSTAP:
3474		sc->rxon.mode = WPI_MODE_HOSTAP;
3475		break;
3476	case IEEE80211_M_MONITOR:
3477		sc->rxon.mode = WPI_MODE_MONITOR;
3478		break;
3479	default:
3480		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3481		return EINVAL;
3482	}
3483	sc->rxon.filter = htole32(sc->rxon.filter);
3484	wpi_set_promisc(sc);
3485	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3486	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3487
3488	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3489		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3490		    __func__);
3491		return error;
3492	}
3493
3494	/* Setup rate scalling. */
3495	if ((error = wpi_mrr_setup(sc)) != 0) {
3496		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3497		    error);
3498		return error;
3499	}
3500
3501	/* Disable beacon notifications (unused). */
3502	flags = WPI_STATISTICS_BEACON_DISABLE;
3503	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3504	if (error != 0) {
3505		device_printf(sc->sc_dev,
3506		    "could not disable beacon statistics, error %d\n", error);
3507		return error;
3508	}
3509
3510	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3511
3512	return 0;
3513}
3514
3515static uint16_t
3516wpi_get_active_dwell_time(struct wpi_softc *sc,
3517    struct ieee80211_channel *c, uint8_t n_probes)
3518{
3519	/* No channel? Default to 2GHz settings. */
3520	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3521		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3522		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3523	}
3524
3525	/* 5GHz dwell time. */
3526	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3527	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3528}
3529
3530/*
3531 * Limit the total dwell time to 85% of the beacon interval.
3532 *
3533 * Returns the dwell time in milliseconds.
3534 */
3535static uint16_t
3536wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3537{
3538	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3539	struct ieee80211vap *vap = NULL;
3540	int bintval = 0;
3541
3542	/* bintval is in TU (1.024mS) */
3543	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3544		vap = TAILQ_FIRST(&ic->ic_vaps);
3545		bintval = vap->iv_bss->ni_intval;
3546	}
3547
3548	/*
3549	 * If it's non-zero, we should calculate the minimum of
3550	 * it and the DWELL_BASE.
3551	 *
3552	 * XXX Yes, the math should take into account that bintval
3553	 * is 1.024mS, not 1mS..
3554	 */
3555	if (bintval > 0) {
3556		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3557		    bintval);
3558		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3559	}
3560
3561	/* No association context? Default. */
3562	return (WPI_PASSIVE_DWELL_BASE);
3563}
3564
3565static uint16_t
3566wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3567{
3568	uint16_t passive;
3569
3570	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3571		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3572	else
3573		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3574
3575	/* Clamp to the beacon interval if we're associated. */
3576	return (wpi_limit_dwell(sc, passive));
3577}
3578
3579/*
3580 * Send a scan request to the firmware.
3581 */
3582static int
3583wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3584{
3585	struct ifnet *ifp = sc->sc_ifp;
3586	struct ieee80211com *ic = ifp->if_l2com;
3587	struct ieee80211_scan_state *ss = ic->ic_scan;
3588	struct ieee80211vap *vap = ss->ss_vap;
3589	struct wpi_scan_hdr *hdr;
3590	struct wpi_cmd_data *tx;
3591	struct wpi_scan_essid *essids;
3592	struct wpi_scan_chan *chan;
3593	struct ieee80211_frame *wh;
3594	struct ieee80211_rateset *rs;
3595	uint16_t dwell_active, dwell_passive;
3596	uint8_t *buf, *frm;
3597	int buflen, error, i, nssid;
3598
3599	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3600
3601	/*
3602	 * We are absolutely not allowed to send a scan command when another
3603	 * scan command is pending.
3604	 */
3605	if (sc->sc_scan_timer) {
3606		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3607		    __func__);
3608
3609		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3610
3611		return (EAGAIN);
3612	}
3613
3614	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3615	if (buf == NULL) {
3616		device_printf(sc->sc_dev,
3617		    "%s: could not allocate buffer for scan command\n",
3618		    __func__);
3619		error = ENOMEM;
3620		goto fail;
3621	}
3622	hdr = (struct wpi_scan_hdr *)buf;
3623
3624	/*
3625	 * Move to the next channel if no packets are received within 10 msecs
3626	 * after sending the probe request.
3627	 */
3628	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3629	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3630	/*
3631	 * Max needs to be greater than active and passive and quiet!
3632	 * It's also in microseconds!
3633	 */
3634	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3635	hdr->pause_svc = htole32((4 << 24) |
3636	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3637	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3638
3639	tx = (struct wpi_cmd_data *)(hdr + 1);
3640	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3641	tx->id = WPI_ID_BROADCAST;
3642	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3643
3644	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3645		/* Send probe requests at 6Mbps. */
3646		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3647		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3648	} else {
3649		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3650		/* Send probe requests at 1Mbps. */
3651		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3652		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3653	}
3654
3655	essids = (struct wpi_scan_essid *)(tx + 1);
3656	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3657	for (i = 0; i < nssid; i++) {
3658		essids[i].id = IEEE80211_ELEMID_SSID;
3659		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3660		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3661#ifdef WPI_DEBUG
3662		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3663			printf("Scanning Essid: ");
3664			ieee80211_print_essid(essids[i].data, essids[i].len);
3665			printf("\n");
3666		}
3667#endif
3668	}
3669
3670	/*
3671	 * Build a probe request frame.  Most of the following code is a
3672	 * copy & paste of what is done in net80211.
3673	 */
3674	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3675	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3676		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3677	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3678	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3679	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3680	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3681	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3682	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3683
3684	frm = (uint8_t *)(wh + 1);
3685	frm = ieee80211_add_ssid(frm, NULL, 0);
3686	frm = ieee80211_add_rates(frm, rs);
3687	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3688		frm = ieee80211_add_xrates(frm, rs);
3689
3690	/* Set length of probe request. */
3691	tx->len = htole16(frm - (uint8_t *)wh);
3692
3693	/*
3694	 * Construct information about the channel that we
3695	 * want to scan. The firmware expects this to be directly
3696	 * after the scan probe request
3697	 */
3698	chan = (struct wpi_scan_chan *)frm;
3699	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3700	chan->flags = 0;
3701	if (nssid) {
3702		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3703		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3704	} else
3705		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3706
3707	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3708		chan->flags |= WPI_CHAN_ACTIVE;
3709
3710	/*
3711	 * Calculate the active/passive dwell times.
3712	 */
3713
3714	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3715	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3716
3717	/* Make sure they're valid. */
3718	if (dwell_passive <= dwell_active)
3719		dwell_passive = dwell_active + 1;
3720
3721	chan->active = htole16(dwell_active);
3722	chan->passive = htole16(dwell_passive);
3723
3724	chan->dsp_gain = 0x6e;  /* Default level */
3725
3726	if (IEEE80211_IS_CHAN_5GHZ(c))
3727		chan->rf_gain = 0x3b;
3728	else
3729		chan->rf_gain = 0x28;
3730
3731	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3732	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3733
3734	hdr->nchan++;
3735	chan++;
3736
3737	buflen = (uint8_t *)chan - buf;
3738	hdr->len = htole16(buflen);
3739
3740	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3741	    hdr->nchan);
3742	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3743	free(buf, M_DEVBUF);
3744
3745	if (error != 0)
3746		goto fail;
3747
3748	sc->sc_scan_timer = 5;
3749
3750	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3751
3752	return 0;
3753
3754fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3755
3756	return error;
3757}
3758
3759static int
3760wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3761{
3762	struct ieee80211com *ic = vap->iv_ic;
3763	struct ieee80211_node *ni = vap->iv_bss;
3764	int error;
3765
3766	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3767
3768	/* Update adapter configuration. */
3769	sc->rxon.associd = 0;
3770	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3771	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3772	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3773	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3774	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3775		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3776	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3777		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3778	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3779		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3780	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3781		sc->rxon.cck_mask  = 0;
3782		sc->rxon.ofdm_mask = 0x15;
3783	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3784		sc->rxon.cck_mask  = 0x03;
3785		sc->rxon.ofdm_mask = 0;
3786	} else {
3787		/* Assume 802.11b/g. */
3788		sc->rxon.cck_mask  = 0x0f;
3789		sc->rxon.ofdm_mask = 0x15;
3790	}
3791
3792	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3793	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3794	    sc->rxon.ofdm_mask);
3795
3796	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3797		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3798		    __func__);
3799	}
3800
3801	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3802
3803	return error;
3804}
3805
3806static int
3807wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3808{
3809	struct ifnet *ifp = sc->sc_ifp;
3810	struct ieee80211com *ic = ifp->if_l2com;
3811	struct ieee80211vap *vap = ni->ni_vap;
3812	struct wpi_vap *wvp = WPI_VAP(vap);
3813	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3814	struct ieee80211_beacon_offsets bo;
3815	struct wpi_cmd_beacon *cmd;
3816	struct mbuf *m;
3817	int totlen;
3818
3819	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3820
3821	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3822		return EINVAL;
3823
3824	m = ieee80211_beacon_alloc(ni, &bo);
3825	if (m == NULL) {
3826		device_printf(sc->sc_dev,
3827		    "%s: could not allocate beacon frame\n", __func__);
3828		return ENOMEM;
3829	}
3830	totlen = m->m_pkthdr.len;
3831
3832	if (bcn->data == NULL) {
3833		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3834		    M_NOWAIT | M_ZERO);
3835
3836		if (cmd == NULL) {
3837			device_printf(sc->sc_dev,
3838			    "could not allocate buffer for beacon command\n");
3839			m_freem(m);
3840			return ENOMEM;
3841		}
3842
3843		cmd->id = WPI_ID_BROADCAST;
3844		cmd->ofdm_mask = 0xff;
3845		cmd->cck_mask = 0x0f;
3846		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3847		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3848
3849		bcn->data = cmd;
3850		bcn->ni = NULL;
3851		bcn->code = WPI_CMD_SET_BEACON;
3852		bcn->ac = 4;
3853		bcn->size = sizeof(struct wpi_cmd_beacon);
3854	} else
3855		cmd = bcn->data;
3856
3857	cmd->len = htole16(totlen);
3858	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3859	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3860
3861	/* NB: m will be freed in wpi_cmd_done() */
3862	bcn->m = m;
3863
3864	return wpi_cmd2(sc, bcn);
3865}
3866
3867static void
3868wpi_update_beacon(struct ieee80211vap *vap, int item)
3869{
3870	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3871	struct ieee80211_node *ni = vap->iv_bss;
3872	int error;
3873
3874	WPI_LOCK(sc);
3875	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3876		device_printf(sc->sc_dev,
3877		    "%s: could not update beacon frame, error %d", __func__,
3878		    error);
3879	}
3880	WPI_UNLOCK(sc);
3881}
3882
3883static int
3884wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3885{
3886	struct ieee80211com *ic = vap->iv_ic;
3887	struct ieee80211_node *ni = vap->iv_bss;
3888	int error;
3889
3890	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3891
3892	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3893		/* Link LED blinks while monitoring. */
3894		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3895		return 0;
3896	}
3897
3898	/* XXX kernel panic workaround */
3899	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3900		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3901		    __func__);
3902		return EINVAL;
3903	}
3904
3905	if ((error = wpi_set_timing(sc, ni)) != 0) {
3906		device_printf(sc->sc_dev,
3907		    "%s: could not set timing, error %d\n", __func__, error);
3908		return error;
3909	}
3910
3911	/* Update adapter configuration. */
3912	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3913	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3914	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3915	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3916	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3917		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3918	/* Short preamble and slot time are negotiated when associating. */
3919	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3920	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3921		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3922	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3923		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3924	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3925		sc->rxon.cck_mask  = 0;
3926		sc->rxon.ofdm_mask = 0x15;
3927	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3928		sc->rxon.cck_mask  = 0x03;
3929		sc->rxon.ofdm_mask = 0;
3930	} else {
3931		/* Assume 802.11b/g. */
3932		sc->rxon.cck_mask  = 0x0f;
3933		sc->rxon.ofdm_mask = 0x15;
3934	}
3935	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3936
3937	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3938
3939	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3940	    sc->rxon.chan, sc->rxon.flags);
3941
3942	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3943		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3944		    __func__);
3945		return error;
3946	}
3947
3948	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3949		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3950			device_printf(sc->sc_dev,
3951			    "%s: could not setup beacon, error %d\n", __func__,
3952			    error);
3953			return error;
3954		}
3955	}
3956
3957	if (vap->iv_opmode == IEEE80211_M_STA) {
3958		/* Add BSS node. */
3959		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3960		if ((error = wpi_add_node(sc, ni)) != 0) {
3961			device_printf(sc->sc_dev,
3962			    "%s: could not add BSS node, error %d\n", __func__,
3963			    error);
3964			return error;
3965		}
3966	}
3967
3968	/* Link LED always on while associated. */
3969	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3970
3971	/* Start periodic calibration timer. */
3972	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3973
3974	/* Enable power-saving mode if requested by user. */
3975	if (vap->iv_flags & IEEE80211_F_PMGTON)
3976		(void)wpi_set_pslevel(sc, 0, 3, 1);
3977	else
3978		(void)wpi_set_pslevel(sc, 0, 0, 1);
3979
3980	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3981
3982	return 0;
3983}
3984
3985static int
3986wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3987    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3988{
3989	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3990
3991	if (!(&vap->iv_nw_keys[0] <= k &&
3992	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3993		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3994			/* should not happen */
3995			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3996			    __func__);
3997			return 0;
3998		}
3999		*keyix = 0;	/* NB: use key index 0 for ucast key */
4000	} else {
4001		*keyix = *rxkeyix = k - vap->iv_nw_keys;
4002
4003		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
4004			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
4005	}
4006	return 1;
4007}
4008
4009static int
4010wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4011    const uint8_t mac[IEEE80211_ADDR_LEN])
4012{
4013	const struct ieee80211_cipher *cip = k->wk_cipher;
4014	struct ieee80211com *ic = vap->iv_ic;
4015	struct ieee80211_node *ni = vap->iv_bss;
4016	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4017	struct wpi_node *wn = (void *)ni;
4018	struct wpi_node_info node;
4019	uint16_t kflags;
4020	int error;
4021
4022	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4023
4024	switch (cip->ic_cipher) {
4025	case IEEE80211_CIPHER_AES_CCM:
4026		if (k->wk_flags & IEEE80211_KEY_GROUP)
4027			return 1;
4028
4029		kflags = WPI_KFLAG_CCMP;
4030		break;
4031	default:
4032		/* null_key_set() */
4033		return 1;
4034	}
4035
4036	if (wn->id == WPI_ID_UNDEFINED)
4037		return 0;
4038
4039	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4040	if (k->wk_flags & IEEE80211_KEY_GROUP)
4041		kflags |= WPI_KFLAG_MULTICAST;
4042
4043	memset(&node, 0, sizeof node);
4044	node.id = wn->id;
4045	node.control = WPI_NODE_UPDATE;
4046	node.flags = WPI_FLAG_KEY_SET;
4047	node.kflags = htole16(kflags);
4048	memcpy(node.key, k->wk_key, k->wk_keylen);
4049
4050	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4051	    node.id);
4052
4053	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4054	if (error != 0) {
4055		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4056		    error);
4057		return 0;
4058	}
4059
4060	return 1;
4061}
4062
4063static int
4064wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4065{
4066	const struct ieee80211_cipher *cip = k->wk_cipher;
4067	struct ieee80211com *ic = vap->iv_ic;
4068	struct ieee80211_node *ni = vap->iv_bss;
4069	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4070	struct wpi_node *wn = (void *)ni;
4071	struct wpi_node_info node;
4072
4073	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4074
4075	switch (cip->ic_cipher) {
4076	case IEEE80211_CIPHER_AES_CCM:
4077		break;
4078	default:
4079		/* null_key_delete() */
4080		return 1;
4081	}
4082
4083	if (vap->iv_state != IEEE80211_S_RUN ||
4084	    (k->wk_flags & IEEE80211_KEY_GROUP))
4085		return 1; /* Nothing to do. */
4086
4087	memset(&node, 0, sizeof node);
4088	node.id = wn->id;
4089	node.control = WPI_NODE_UPDATE;
4090	node.flags = WPI_FLAG_KEY_SET;
4091
4092	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4093	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4094
4095	return 1;
4096}
4097
4098/*
4099 * This function is called after the runtime firmware notifies us of its
4100 * readiness (called in a process context).
4101 */
4102static int
4103wpi_post_alive(struct wpi_softc *sc)
4104{
4105	int ntries, error;
4106
4107	/* Check (again) that the radio is not disabled. */
4108	if ((error = wpi_nic_lock(sc)) != 0)
4109		return error;
4110
4111	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4112
4113	/* NB: Runtime firmware must be up and running. */
4114	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4115 		device_printf(sc->sc_dev,
4116		    "RF switch: radio disabled (%s)\n", __func__);
4117		wpi_nic_unlock(sc);
4118		return EPERM;   /* :-) */
4119	}
4120	wpi_nic_unlock(sc);
4121
4122	/* Wait for thermal sensor to calibrate. */
4123	for (ntries = 0; ntries < 1000; ntries++) {
4124		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4125			break;
4126		DELAY(10);
4127	}
4128
4129	if (ntries == 1000) {
4130		device_printf(sc->sc_dev,
4131		    "timeout waiting for thermal sensor calibration\n");
4132		return ETIMEDOUT;
4133	}
4134
4135	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4136	return 0;
4137}
4138
4139/*
4140 * The firmware boot code is small and is intended to be copied directly into
4141 * the NIC internal memory (no DMA transfer).
4142 */
4143static int
4144wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4145{
4146	int error, ntries;
4147
4148	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4149
4150	size /= sizeof (uint32_t);
4151
4152	if ((error = wpi_nic_lock(sc)) != 0)
4153		return error;
4154
4155	/* Copy microcode image into NIC memory. */
4156	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4157	    (const uint32_t *)ucode, size);
4158
4159	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4160	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4161	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4162
4163	/* Start boot load now. */
4164	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4165
4166	/* Wait for transfer to complete. */
4167	for (ntries = 0; ntries < 1000; ntries++) {
4168		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4169		DPRINTF(sc, WPI_DEBUG_HW,
4170		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4171		    WPI_FH_TX_STATUS_IDLE(6),
4172		    status & WPI_FH_TX_STATUS_IDLE(6));
4173		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4174			DPRINTF(sc, WPI_DEBUG_HW,
4175			    "Status Match! - ntries = %d\n", ntries);
4176			break;
4177		}
4178		DELAY(10);
4179	}
4180	if (ntries == 1000) {
4181		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4182		    __func__);
4183		wpi_nic_unlock(sc);
4184		return ETIMEDOUT;
4185	}
4186
4187	/* Enable boot after power up. */
4188	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4189
4190	wpi_nic_unlock(sc);
4191	return 0;
4192}
4193
4194static int
4195wpi_load_firmware(struct wpi_softc *sc)
4196{
4197	struct wpi_fw_info *fw = &sc->fw;
4198	struct wpi_dma_info *dma = &sc->fw_dma;
4199	int error;
4200
4201	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4202
4203	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4204	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4205	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4206	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4207	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4208
4209	/* Tell adapter where to find initialization sections. */
4210	if ((error = wpi_nic_lock(sc)) != 0)
4211		return error;
4212	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4213	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4214	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4215	    dma->paddr + WPI_FW_DATA_MAXSZ);
4216	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4217	wpi_nic_unlock(sc);
4218
4219	/* Load firmware boot code. */
4220	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4221	if (error != 0) {
4222		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4223		    __func__);
4224		return error;
4225	}
4226
4227	/* Now press "execute". */
4228	WPI_WRITE(sc, WPI_RESET, 0);
4229
4230	/* Wait at most one second for first alive notification. */
4231	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4232		device_printf(sc->sc_dev,
4233		    "%s: timeout waiting for adapter to initialize, error %d\n",
4234		    __func__, error);
4235		return error;
4236	}
4237
4238	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4239	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4240	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4241	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4242	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4243
4244	/* Tell adapter where to find runtime sections. */
4245	if ((error = wpi_nic_lock(sc)) != 0)
4246		return error;
4247	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4248	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4249	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4250	    dma->paddr + WPI_FW_DATA_MAXSZ);
4251	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4252	    WPI_FW_UPDATED | fw->main.textsz);
4253	wpi_nic_unlock(sc);
4254
4255	return 0;
4256}
4257
4258static int
4259wpi_read_firmware(struct wpi_softc *sc)
4260{
4261	const struct firmware *fp;
4262	struct wpi_fw_info *fw = &sc->fw;
4263	const struct wpi_firmware_hdr *hdr;
4264	int error;
4265
4266	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4267
4268	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4269	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4270
4271	WPI_UNLOCK(sc);
4272	fp = firmware_get(WPI_FW_NAME);
4273	WPI_LOCK(sc);
4274
4275	if (fp == NULL) {
4276		device_printf(sc->sc_dev,
4277		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4278		return EINVAL;
4279	}
4280
4281	sc->fw_fp = fp;
4282
4283	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4284		device_printf(sc->sc_dev,
4285		    "firmware file too short: %zu bytes\n", fp->datasize);
4286		error = EINVAL;
4287		goto fail;
4288	}
4289
4290	fw->size = fp->datasize;
4291	fw->data = (const uint8_t *)fp->data;
4292
4293	/* Extract firmware header information. */
4294	hdr = (const struct wpi_firmware_hdr *)fw->data;
4295
4296	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4297	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4298
4299	fw->main.textsz = le32toh(hdr->rtextsz);
4300	fw->main.datasz = le32toh(hdr->rdatasz);
4301	fw->init.textsz = le32toh(hdr->itextsz);
4302	fw->init.datasz = le32toh(hdr->idatasz);
4303	fw->boot.textsz = le32toh(hdr->btextsz);
4304	fw->boot.datasz = 0;
4305
4306	/* Sanity-check firmware header. */
4307	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4308	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4309	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4310	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4311	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4312	    (fw->boot.textsz & 3) != 0) {
4313		device_printf(sc->sc_dev, "invalid firmware header\n");
4314		error = EINVAL;
4315		goto fail;
4316	}
4317
4318	/* Check that all firmware sections fit. */
4319	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4320	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4321		device_printf(sc->sc_dev,
4322		    "firmware file too short: %zu bytes\n", fw->size);
4323		error = EINVAL;
4324		goto fail;
4325	}
4326
4327	/* Get pointers to firmware sections. */
4328	fw->main.text = (const uint8_t *)(hdr + 1);
4329	fw->main.data = fw->main.text + fw->main.textsz;
4330	fw->init.text = fw->main.data + fw->main.datasz;
4331	fw->init.data = fw->init.text + fw->init.textsz;
4332	fw->boot.text = fw->init.data + fw->init.datasz;
4333
4334	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4335	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4336	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4337	    hdr->major, hdr->minor, le32toh(hdr->driver),
4338	    fw->main.textsz, fw->main.datasz,
4339	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4340
4341	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4342	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4343	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4344	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4345	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4346
4347	return 0;
4348
4349fail:	wpi_unload_firmware(sc);
4350	return error;
4351}
4352
4353/**
4354 * Free the referenced firmware image
4355 */
4356static void
4357wpi_unload_firmware(struct wpi_softc *sc)
4358{
4359	if (sc->fw_fp != NULL) {
4360		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4361		sc->fw_fp = NULL;
4362	}
4363}
4364
4365static int
4366wpi_clock_wait(struct wpi_softc *sc)
4367{
4368	int ntries;
4369
4370	/* Set "initialization complete" bit. */
4371	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4372
4373	/* Wait for clock stabilization. */
4374	for (ntries = 0; ntries < 2500; ntries++) {
4375		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4376			return 0;
4377		DELAY(100);
4378	}
4379	device_printf(sc->sc_dev,
4380	    "%s: timeout waiting for clock stabilization\n", __func__);
4381
4382	return ETIMEDOUT;
4383}
4384
4385static int
4386wpi_apm_init(struct wpi_softc *sc)
4387{
4388	uint32_t reg;
4389	int error;
4390
4391	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4392
4393	/* Disable L0s exit timer (NMI bug workaround). */
4394	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4395	/* Don't wait for ICH L0s (ICH bug workaround). */
4396	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4397
4398	/* Set FH wait threshold to max (HW bug under stress workaround). */
4399	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4400
4401	/* Retrieve PCIe Active State Power Management (ASPM). */
4402	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4403	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4404	if (reg & 0x02)	/* L1 Entry enabled. */
4405		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4406	else
4407		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4408
4409	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4410
4411	/* Wait for clock stabilization before accessing prph. */
4412	if ((error = wpi_clock_wait(sc)) != 0)
4413		return error;
4414
4415	if ((error = wpi_nic_lock(sc)) != 0)
4416		return error;
4417	/* Enable DMA and BSM (Bootstrap State Machine). */
4418	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4419	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4420	DELAY(20);
4421	/* Disable L1-Active. */
4422	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4423	/* ??? */
4424	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4425	wpi_nic_unlock(sc);
4426
4427	return 0;
4428}
4429
4430static void
4431wpi_apm_stop_master(struct wpi_softc *sc)
4432{
4433	int ntries;
4434
4435	/* Stop busmaster DMA activity. */
4436	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4437
4438	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4439	    WPI_GP_CNTRL_MAC_PS)
4440		return; /* Already asleep. */
4441
4442	for (ntries = 0; ntries < 100; ntries++) {
4443		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4444			return;
4445		DELAY(10);
4446	}
4447	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4448}
4449
4450static void
4451wpi_apm_stop(struct wpi_softc *sc)
4452{
4453	wpi_apm_stop_master(sc);
4454
4455	/* Reset the entire device. */
4456	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4457	DELAY(10);
4458	/* Clear "initialization complete" bit. */
4459	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4460}
4461
4462static void
4463wpi_nic_config(struct wpi_softc *sc)
4464{
4465	uint32_t rev;
4466
4467	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4468
4469	/* voodoo from the Linux "driver".. */
4470	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4471	if ((rev & 0xc0) == 0x40)
4472		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4473	else if (!(rev & 0x80))
4474		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4475
4476	if (sc->cap == 0x80)
4477		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4478
4479	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4480		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4481	else
4482		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4483
4484	if (sc->type > 1)
4485		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4486}
4487
4488static int
4489wpi_hw_init(struct wpi_softc *sc)
4490{
4491	int chnl, ntries, error;
4492
4493	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4494
4495	/* Clear pending interrupts. */
4496	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4497
4498	if ((error = wpi_apm_init(sc)) != 0) {
4499		device_printf(sc->sc_dev,
4500		    "%s: could not power ON adapter, error %d\n", __func__,
4501		    error);
4502		return error;
4503	}
4504
4505	/* Select VMAIN power source. */
4506	if ((error = wpi_nic_lock(sc)) != 0)
4507		return error;
4508	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4509	wpi_nic_unlock(sc);
4510	/* Spin until VMAIN gets selected. */
4511	for (ntries = 0; ntries < 5000; ntries++) {
4512		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4513			break;
4514		DELAY(10);
4515	}
4516	if (ntries == 5000) {
4517		device_printf(sc->sc_dev, "timeout selecting power source\n");
4518		return ETIMEDOUT;
4519	}
4520
4521	/* Perform adapter initialization. */
4522	wpi_nic_config(sc);
4523
4524	/* Initialize RX ring. */
4525	if ((error = wpi_nic_lock(sc)) != 0)
4526		return error;
4527	/* Set physical address of RX ring. */
4528	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4529	/* Set physical address of RX read pointer. */
4530	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4531	    offsetof(struct wpi_shared, next));
4532	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4533	/* Enable RX. */
4534	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4535	    WPI_FH_RX_CONFIG_DMA_ENA |
4536	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4537	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4538	    WPI_FH_RX_CONFIG_MAXFRAG |
4539	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4540	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4541	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4542	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4543	wpi_nic_unlock(sc);
4544	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4545
4546	/* Initialize TX rings. */
4547	if ((error = wpi_nic_lock(sc)) != 0)
4548		return error;
4549	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4550	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4551	/* Enable all 6 TX rings. */
4552	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4553	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4554	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4555	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4556	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4557	/* Set physical address of TX rings. */
4558	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4559	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4560
4561	/* Enable all DMA channels. */
4562	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4563		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4564		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4565		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4566	}
4567	wpi_nic_unlock(sc);
4568	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4569
4570	/* Clear "radio off" and "commands blocked" bits. */
4571	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4572	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4573
4574	/* Clear pending interrupts. */
4575	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4576	/* Enable interrupts. */
4577	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4578
4579	/* _Really_ make sure "radio off" bit is cleared! */
4580	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4581	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4582
4583	if ((error = wpi_load_firmware(sc)) != 0) {
4584		device_printf(sc->sc_dev,
4585		    "%s: could not load firmware, error %d\n", __func__,
4586		    error);
4587		return error;
4588	}
4589	/* Wait at most one second for firmware alive notification. */
4590	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4591		device_printf(sc->sc_dev,
4592		    "%s: timeout waiting for adapter to initialize, error %d\n",
4593		    __func__, error);
4594		return error;
4595	}
4596
4597	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4598
4599	/* Do post-firmware initialization. */
4600	return wpi_post_alive(sc);
4601}
4602
4603static void
4604wpi_hw_stop(struct wpi_softc *sc)
4605{
4606	int chnl, qid, ntries;
4607
4608	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4609
4610	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4611		wpi_nic_lock(sc);
4612
4613	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4614
4615	/* Disable interrupts. */
4616	WPI_WRITE(sc, WPI_INT_MASK, 0);
4617	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4618	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4619
4620	/* Make sure we no longer hold the NIC lock. */
4621	wpi_nic_unlock(sc);
4622
4623	if (wpi_nic_lock(sc) == 0) {
4624		/* Stop TX scheduler. */
4625		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4626		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4627
4628		/* Stop all DMA channels. */
4629		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4630			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4631			for (ntries = 0; ntries < 200; ntries++) {
4632				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4633				    WPI_FH_TX_STATUS_IDLE(chnl))
4634					break;
4635				DELAY(10);
4636			}
4637		}
4638		wpi_nic_unlock(sc);
4639	}
4640
4641	/* Stop RX ring. */
4642	wpi_reset_rx_ring(sc);
4643
4644	/* Reset all TX rings. */
4645	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4646		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4647
4648	if (wpi_nic_lock(sc) == 0) {
4649		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4650		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4651		wpi_nic_unlock(sc);
4652	}
4653	DELAY(5);
4654	/* Power OFF adapter. */
4655	wpi_apm_stop(sc);
4656}
4657
4658static void
4659wpi_radio_on(void *arg0, int pending)
4660{
4661	struct wpi_softc *sc = arg0;
4662	struct ifnet *ifp = sc->sc_ifp;
4663	struct ieee80211com *ic = ifp->if_l2com;
4664	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4665
4666	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4667
4668	if (vap != NULL) {
4669		wpi_init(sc);
4670		ieee80211_init(vap);
4671	}
4672
4673	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4674		WPI_LOCK(sc);
4675		callout_stop(&sc->watchdog_rfkill);
4676		WPI_UNLOCK(sc);
4677	}
4678}
4679
4680static void
4681wpi_radio_off(void *arg0, int pending)
4682{
4683	struct wpi_softc *sc = arg0;
4684	struct ifnet *ifp = sc->sc_ifp;
4685	struct ieee80211com *ic = ifp->if_l2com;
4686	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4687
4688	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4689
4690	wpi_stop(sc);
4691	if (vap != NULL)
4692		ieee80211_stop(vap);
4693
4694	WPI_LOCK(sc);
4695	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4696	WPI_UNLOCK(sc);
4697}
4698
4699static void
4700wpi_init_locked(struct wpi_softc *sc)
4701{
4702	struct ifnet *ifp = sc->sc_ifp;
4703	int error;
4704
4705	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4706
4707	WPI_LOCK_ASSERT(sc);
4708
4709	/* Check that the radio is not disabled by hardware switch. */
4710	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4711		device_printf(sc->sc_dev,
4712		    "RF switch: radio disabled (%s)\n", __func__);
4713		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4714		    sc);
4715		return;
4716	}
4717
4718	/* Read firmware images from the filesystem. */
4719	if ((error = wpi_read_firmware(sc)) != 0) {
4720		device_printf(sc->sc_dev,
4721		    "%s: could not read firmware, error %d\n", __func__,
4722		    error);
4723		goto fail;
4724	}
4725
4726	/* Initialize hardware and upload firmware. */
4727	error = wpi_hw_init(sc);
4728	wpi_unload_firmware(sc);
4729	if (error != 0) {
4730		device_printf(sc->sc_dev,
4731		    "%s: could not initialize hardware, error %d\n", __func__,
4732		    error);
4733		goto fail;
4734	}
4735
4736	/* Configure adapter now that it is ready. */
4737	if ((error = wpi_config(sc)) != 0) {
4738		device_printf(sc->sc_dev,
4739		    "%s: could not configure device, error %d\n", __func__,
4740		    error);
4741		goto fail;
4742	}
4743
4744	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4745	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4746
4747	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4748
4749	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4750
4751	return;
4752
4753fail:	wpi_stop_locked(sc);
4754	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4755}
4756
4757static void
4758wpi_init(void *arg)
4759{
4760	struct wpi_softc *sc = arg;
4761	struct ifnet *ifp = sc->sc_ifp;
4762	struct ieee80211com *ic = ifp->if_l2com;
4763
4764	WPI_LOCK(sc);
4765	wpi_init_locked(sc);
4766	WPI_UNLOCK(sc);
4767
4768	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4769		ieee80211_start_all(ic);
4770}
4771
4772static void
4773wpi_stop_locked(struct wpi_softc *sc)
4774{
4775	struct ifnet *ifp = sc->sc_ifp;
4776
4777	WPI_LOCK_ASSERT(sc);
4778
4779	sc->sc_scan_timer = 0;
4780	sc->sc_tx_timer = 0;
4781	callout_stop(&sc->watchdog_to);
4782	callout_stop(&sc->calib_to);
4783	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4784
4785	/* Power OFF hardware. */
4786	wpi_hw_stop(sc);
4787}
4788
4789static void
4790wpi_stop(struct wpi_softc *sc)
4791{
4792	WPI_LOCK(sc);
4793	wpi_stop_locked(sc);
4794	WPI_UNLOCK(sc);
4795}
4796
4797/*
4798 * Callback from net80211 to start a scan.
4799 */
4800static void
4801wpi_scan_start(struct ieee80211com *ic)
4802{
4803	struct ifnet *ifp = ic->ic_ifp;
4804	struct wpi_softc *sc = ifp->if_softc;
4805
4806	WPI_LOCK(sc);
4807	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4808	WPI_UNLOCK(sc);
4809}
4810
4811/*
4812 * Callback from net80211 to terminate a scan.
4813 */
4814static void
4815wpi_scan_end(struct ieee80211com *ic)
4816{
4817	struct ifnet *ifp = ic->ic_ifp;
4818	struct wpi_softc *sc = ifp->if_softc;
4819	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4820
4821	if (vap->iv_state == IEEE80211_S_RUN) {
4822		WPI_LOCK(sc);
4823		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4824		WPI_UNLOCK(sc);
4825	}
4826}
4827
4828/**
4829 * Called by the net80211 framework to indicate to the driver
4830 * that the channel should be changed
4831 */
4832static void
4833wpi_set_channel(struct ieee80211com *ic)
4834{
4835	const struct ieee80211_channel *c = ic->ic_curchan;
4836	struct ifnet *ifp = ic->ic_ifp;
4837	struct wpi_softc *sc = ifp->if_softc;
4838	int error;
4839
4840	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4841
4842	WPI_LOCK(sc);
4843	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4844	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4845	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4846	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4847
4848	/*
4849	 * Only need to set the channel in Monitor mode. AP scanning and auth
4850	 * are already taken care of by their respective firmware commands.
4851	 */
4852	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4853		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4854		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4855			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4856			    WPI_RXON_24GHZ);
4857		} else {
4858			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4859			    WPI_RXON_24GHZ);
4860		}
4861		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4862			device_printf(sc->sc_dev,
4863			    "%s: error %d settting channel\n", __func__,
4864			    error);
4865	}
4866	WPI_UNLOCK(sc);
4867}
4868
4869/**
4870 * Called by net80211 to indicate that we need to scan the current
4871 * channel. The channel is previously be set via the wpi_set_channel
4872 * callback.
4873 */
4874static void
4875wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4876{
4877	struct ieee80211vap *vap = ss->ss_vap;
4878	struct ieee80211com *ic = vap->iv_ic;
4879	struct ifnet *ifp = ic->ic_ifp;
4880	struct wpi_softc *sc = ifp->if_softc;
4881	int error;
4882
4883	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4884		WPI_LOCK(sc);
4885		error = wpi_scan(sc, ic->ic_curchan);
4886		WPI_UNLOCK(sc);
4887		if (error != 0)
4888			ieee80211_cancel_scan(vap);
4889	} else {
4890		/* Send probe request when associated. */
4891		sc->sc_scan_curchan(ss, maxdwell);
4892	}
4893}
4894
4895/**
4896 * Called by the net80211 framework to indicate
4897 * the minimum dwell time has been met, terminate the scan.
4898 * We don't actually terminate the scan as the firmware will notify
4899 * us when it's finished and we have no way to interrupt it.
4900 */
4901static void
4902wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4903{
4904	/* NB: don't try to abort scan; wait for firmware to finish */
4905}
4906
4907static void
4908wpi_hw_reset(void *arg, int pending)
4909{
4910	struct wpi_softc *sc = arg;
4911	struct ifnet *ifp = sc->sc_ifp;
4912	struct ieee80211com *ic = ifp->if_l2com;
4913	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4914
4915	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4916
4917	wpi_stop(sc);
4918	if (vap != NULL)
4919		ieee80211_stop(vap);
4920	wpi_init(sc);
4921	if (vap != NULL)
4922		ieee80211_init(vap);
4923}
4924