if_wpi.c revision 280056
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280056 2015-03-15 20:17:25Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135		    const uint8_t [IEEE80211_ADDR_LEN],
136		    const uint8_t [IEEE80211_ADDR_LEN]);
137static void	wpi_vap_delete(struct ieee80211vap *);
138static int	wpi_detach(device_t);
139static int	wpi_shutdown(device_t);
140static int	wpi_suspend(device_t);
141static int	wpi_resume(device_t);
142static int	wpi_nic_lock(struct wpi_softc *);
143static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146		    void **, bus_size_t, bus_size_t);
147static void	wpi_dma_contig_free(struct wpi_dma_info *);
148static int	wpi_alloc_shared(struct wpi_softc *);
149static void	wpi_free_shared(struct wpi_softc *);
150static int	wpi_alloc_fwmem(struct wpi_softc *);
151static void	wpi_free_fwmem(struct wpi_softc *);
152static int	wpi_alloc_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    int);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static int	wpi_read_eeprom(struct wpi_softc *,
162		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167		    struct ieee80211_channel *);
168static int	wpi_setregdomain(struct ieee80211com *,
169		    struct ieee80211_regdomain *, int,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172static void	wpi_node_free(struct ieee80211_node *);
173static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176static void	wpi_calib_timeout(void *);
177static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178		    struct wpi_rx_data *);
179static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183static void	wpi_notif_intr(struct wpi_softc *);
184static void	wpi_wakeup_intr(struct wpi_softc *);
185static void	wpi_fatal_intr(struct wpi_softc *);
186static void	wpi_intr(void *);
187static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189		    struct ieee80211_node *);
190static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191		    struct ieee80211_node *,
192		    const struct ieee80211_bpf_params *);
193static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194		    const struct ieee80211_bpf_params *);
195static void	wpi_start(struct ifnet *);
196static void	wpi_start_locked(struct ifnet *);
197static void	wpi_watchdog_rfkill(void *);
198static void	wpi_watchdog(void *);
199static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201static int	wpi_mrr_setup(struct wpi_softc *);
202static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206static int	wpi_updateedca(struct ieee80211com *);
207static void	wpi_set_promisc(struct wpi_softc *);
208static void	wpi_update_promisc(struct ifnet *);
209static void	wpi_update_mcast(struct ifnet *);
210static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212static void	wpi_power_calibration(struct wpi_softc *);
213static int	wpi_set_txpower(struct wpi_softc *, int);
214static int	wpi_get_power_index(struct wpi_softc *,
215		    struct wpi_power_group *, struct ieee80211_channel *, int);
216static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217static int	wpi_send_btcoex(struct wpi_softc *);
218static int	wpi_send_rxon(struct wpi_softc *, int, int);
219static int	wpi_config(struct wpi_softc *);
220static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221		    struct ieee80211_channel *, uint8_t);
222static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224		    struct ieee80211_channel *);
225static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227static void	wpi_update_beacon(struct ieee80211vap *, int);
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231		    ieee80211_keyix *, ieee80211_keyix *);
232static int	wpi_key_set(struct ieee80211vap *,
233		    const struct ieee80211_key *,
234		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235static int	wpi_key_delete(struct ieee80211vap *,
236		    const struct ieee80211_key *);
237static int	wpi_post_alive(struct wpi_softc *);
238static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239static int	wpi_load_firmware(struct wpi_softc *);
240static int	wpi_read_firmware(struct wpi_softc *);
241static void	wpi_unload_firmware(struct wpi_softc *);
242static int	wpi_clock_wait(struct wpi_softc *);
243static int	wpi_apm_init(struct wpi_softc *);
244static void	wpi_apm_stop_master(struct wpi_softc *);
245static void	wpi_apm_stop(struct wpi_softc *);
246static void	wpi_nic_config(struct wpi_softc *);
247static int	wpi_hw_init(struct wpi_softc *);
248static void	wpi_hw_stop(struct wpi_softc *);
249static void	wpi_radio_on(void *, int);
250static void	wpi_radio_off(void *, int);
251static void	wpi_init_locked(struct wpi_softc *);
252static void	wpi_init(void *);
253static void	wpi_stop_locked(struct wpi_softc *);
254static void	wpi_stop(struct wpi_softc *);
255static void	wpi_scan_start(struct ieee80211com *);
256static void	wpi_scan_end(struct ieee80211com *);
257static void	wpi_set_channel(struct ieee80211com *);
258static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260static void	wpi_hw_reset(void *, int);
261
262static device_method_t wpi_methods[] = {
263	/* Device interface */
264	DEVMETHOD(device_probe,		wpi_probe),
265	DEVMETHOD(device_attach,	wpi_attach),
266	DEVMETHOD(device_detach,	wpi_detach),
267	DEVMETHOD(device_shutdown,	wpi_shutdown),
268	DEVMETHOD(device_suspend,	wpi_suspend),
269	DEVMETHOD(device_resume,	wpi_resume),
270
271	DEVMETHOD_END
272};
273
274static driver_t wpi_driver = {
275	"wpi",
276	wpi_methods,
277	sizeof (struct wpi_softc)
278};
279static devclass_t wpi_devclass;
280
281DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282
283MODULE_VERSION(wpi, 1);
284
285MODULE_DEPEND(wpi, pci,  1, 1, 1);
286MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288
289static int
290wpi_probe(device_t dev)
291{
292	const struct wpi_ident *ident;
293
294	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295		if (pci_get_vendor(dev) == ident->vendor &&
296		    pci_get_device(dev) == ident->device) {
297			device_set_desc(dev, ident->name);
298			return (BUS_PROBE_DEFAULT);
299		}
300	}
301	return ENXIO;
302}
303
304static int
305wpi_attach(device_t dev)
306{
307	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308	struct ieee80211com *ic;
309	struct ifnet *ifp;
310	int i, error, rid, supportsa = 1;
311	const struct wpi_ident *ident;
312	uint8_t macaddr[IEEE80211_ADDR_LEN];
313
314	sc->sc_dev = dev;
315
316#ifdef	WPI_DEBUG
317	error = resource_int_value(device_get_name(sc->sc_dev),
318	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
319	if (error != 0)
320		sc->sc_debug = 0;
321#else
322	sc->sc_debug = 0;
323#endif
324
325	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
326
327	/*
328	 * Get the offset of the PCI Express Capability Structure in PCI
329	 * Configuration Space.
330	 */
331	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
332	if (error != 0) {
333		device_printf(dev, "PCIe capability structure not found!\n");
334		return error;
335	}
336
337	/*
338	 * Some card's only support 802.11b/g not a, check to see if
339	 * this is one such card. A 0x0 in the subdevice table indicates
340	 * the entire subdevice range is to be ignored.
341	 */
342	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
343		if (ident->subdevice &&
344		    pci_get_subdevice(dev) == ident->subdevice) {
345		    supportsa = 0;
346		    break;
347		}
348	}
349
350	/* Clear device-specific "PCI retry timeout" register (41h). */
351	pci_write_config(dev, 0x41, 0, 1);
352
353	/* Enable bus-mastering. */
354	pci_enable_busmaster(dev);
355
356	rid = PCIR_BAR(0);
357	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
358	    RF_ACTIVE);
359	if (sc->mem == NULL) {
360		device_printf(dev, "can't map mem space\n");
361		error = ENOMEM;
362		return error;
363	}
364	sc->sc_st = rman_get_bustag(sc->mem);
365	sc->sc_sh = rman_get_bushandle(sc->mem);
366
367	i = 1;
368	rid = 0;
369	if (pci_alloc_msi(dev, &i) == 0)
370		rid = 1;
371	/* Install interrupt handler. */
372	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
373	    (rid != 0 ? 0 : RF_SHAREABLE));
374	if (sc->irq == NULL) {
375		device_printf(dev, "can't map interrupt\n");
376		error = ENOMEM;
377		goto fail;
378	}
379
380	WPI_LOCK_INIT(sc);
381
382	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
383
384	/* Allocate DMA memory for firmware transfers. */
385	if ((error = wpi_alloc_fwmem(sc)) != 0) {
386		device_printf(dev,
387		    "could not allocate memory for firmware, error %d\n",
388		    error);
389		goto fail;
390	}
391
392	/* Allocate shared page. */
393	if ((error = wpi_alloc_shared(sc)) != 0) {
394		device_printf(dev, "could not allocate shared page\n");
395		goto fail;
396	}
397
398	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
399	for (i = 0; i < WPI_NTXQUEUES; i++) {
400		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
401			device_printf(dev,
402			    "could not allocate TX ring %d, error %d\n", i,
403			    error);
404			goto fail;
405		}
406	}
407
408	/* Allocate RX ring. */
409	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
410		device_printf(dev, "could not allocate RX ring, error %d\n",
411		    error);
412		goto fail;
413	}
414
415	/* Clear pending interrupts. */
416	WPI_WRITE(sc, WPI_INT, 0xffffffff);
417
418	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419	if (ifp == NULL) {
420		device_printf(dev, "can not allocate ifnet structure\n");
421		goto fail;
422	}
423
424	ic = ifp->if_l2com;
425	ic->ic_ifp = ifp;
426	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
427	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
428
429	/* Set device capabilities. */
430	ic->ic_caps =
431		  IEEE80211_C_STA		/* station mode supported */
432		| IEEE80211_C_IBSS		/* IBSS mode supported */
433		| IEEE80211_C_MONITOR		/* monitor mode supported */
434		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
435		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
436		| IEEE80211_C_TXPMGT		/* tx power management */
437		| IEEE80211_C_SHSLOT		/* short slot time supported */
438		| IEEE80211_C_WPA		/* 802.11i */
439		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
440#if 0
441		| IEEE80211_C_HOSTAP		/* Host access point mode */
442#endif
443		| IEEE80211_C_WME		/* 802.11e */
444		| IEEE80211_C_PMGT		/* Station-side power mgmt */
445		;
446
447	ic->ic_cryptocaps =
448		  IEEE80211_CRYPTO_AES_CCM;
449
450	/*
451	 * Read in the eeprom and also setup the channels for
452	 * net80211. We don't set the rates as net80211 does this for us
453	 */
454	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
455		device_printf(dev, "could not read EEPROM, error %d\n",
456		    error);
457		goto fail;
458        }
459
460#ifdef	WPI_DEBUG
461	if (bootverbose) {
462	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
463	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
464			  sc->type > 1 ? 'B': '?');
465	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
466			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
467	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
468			  supportsa ? "does" : "does not");
469
470	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
471	       what sc->rev really represents - benjsc 20070615 */
472	}
473#endif
474
475	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
476	ifp->if_softc = sc;
477	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
478	ifp->if_init = wpi_init;
479	ifp->if_ioctl = wpi_ioctl;
480	ifp->if_start = wpi_start;
481	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
482	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
483	IFQ_SET_READY(&ifp->if_snd);
484
485	ieee80211_ifattach(ic, macaddr);
486	ic->ic_vap_create = wpi_vap_create;
487	ic->ic_vap_delete = wpi_vap_delete;
488	ic->ic_raw_xmit = wpi_raw_xmit;
489	ic->ic_node_alloc = wpi_node_alloc;
490	sc->sc_node_free = ic->ic_node_free;
491	ic->ic_node_free = wpi_node_free;
492	ic->ic_wme.wme_update = wpi_updateedca;
493	ic->ic_update_promisc = wpi_update_promisc;
494	ic->ic_update_mcast = wpi_update_mcast;
495	ic->ic_scan_start = wpi_scan_start;
496	ic->ic_scan_end = wpi_scan_end;
497	ic->ic_set_channel = wpi_set_channel;
498	sc->sc_scan_curchan = ic->ic_scan_curchan;
499	ic->ic_scan_curchan = wpi_scan_curchan;
500	ic->ic_scan_mindwell = wpi_scan_mindwell;
501	ic->ic_setregdomain = wpi_setregdomain;
502
503	wpi_radiotap_attach(sc);
504
505	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
506	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
507	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
508	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
509	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
510	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
511
512	wpi_sysctlattach(sc);
513
514	/*
515	 * Hook our interrupt after all initialization is complete.
516	 */
517	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
518	    NULL, wpi_intr, sc, &sc->sc_ih);
519	if (error != 0) {
520		device_printf(dev, "can't establish interrupt, error %d\n",
521		    error);
522		goto fail;
523	}
524
525	if (bootverbose)
526		ieee80211_announce(ic);
527
528#ifdef WPI_DEBUG
529	if (sc->sc_debug & WPI_DEBUG_HW)
530		ieee80211_announce_channels(ic);
531#endif
532
533	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
534	return 0;
535
536fail:	wpi_detach(dev);
537	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
538	return error;
539}
540
541/*
542 * Attach the interface to 802.11 radiotap.
543 */
544static void
545wpi_radiotap_attach(struct wpi_softc *sc)
546{
547	struct ifnet *ifp = sc->sc_ifp;
548	struct ieee80211com *ic = ifp->if_l2com;
549	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
550	ieee80211_radiotap_attach(ic,
551	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
552		WPI_TX_RADIOTAP_PRESENT,
553	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
554		WPI_RX_RADIOTAP_PRESENT);
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
556}
557
558static void
559wpi_sysctlattach(struct wpi_softc *sc)
560{
561#ifdef  WPI_DEBUG
562	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
563	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
564
565	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
566	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
567		"control debugging printfs");
568#endif
569}
570
571static struct ieee80211vap *
572wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
573    enum ieee80211_opmode opmode, int flags,
574    const uint8_t bssid[IEEE80211_ADDR_LEN],
575    const uint8_t mac[IEEE80211_ADDR_LEN])
576{
577	struct wpi_vap *wvp;
578	struct wpi_buf *bcn;
579	struct ieee80211vap *vap;
580
581	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
582		return NULL;
583
584	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
585	    M_80211_VAP, M_NOWAIT | M_ZERO);
586	if (wvp == NULL)
587		return NULL;
588	vap = &wvp->vap;
589	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
590
591	bcn = &wvp->wv_bcbuf;
592	bcn->data = NULL;
593
594	/* Override with driver methods. */
595	wvp->newstate = vap->iv_newstate;
596	vap->iv_key_alloc = wpi_key_alloc;
597	vap->iv_key_set = wpi_key_set;
598	vap->iv_key_delete = wpi_key_delete;
599	vap->iv_newstate = wpi_newstate;
600	vap->iv_update_beacon = wpi_update_beacon;
601
602	ieee80211_ratectl_init(vap);
603	/* Complete setup. */
604	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
605	ic->ic_opmode = opmode;
606	return vap;
607}
608
609static void
610wpi_vap_delete(struct ieee80211vap *vap)
611{
612	struct wpi_vap *wvp = WPI_VAP(vap);
613	struct wpi_buf *bcn = &wvp->wv_bcbuf;
614
615	ieee80211_ratectl_deinit(vap);
616	ieee80211_vap_detach(vap);
617
618	if (bcn->data != NULL)
619		free(bcn->data, M_DEVBUF);
620	free(wvp, M_80211_VAP);
621}
622
623static int
624wpi_detach(device_t dev)
625{
626	struct wpi_softc *sc = device_get_softc(dev);
627	struct ifnet *ifp = sc->sc_ifp;
628	struct ieee80211com *ic;
629	int qid;
630
631	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
632
633	if (ifp != NULL) {
634		ic = ifp->if_l2com;
635
636		ieee80211_draintask(ic, &sc->sc_reinittask);
637		ieee80211_draintask(ic, &sc->sc_radiooff_task);
638		ieee80211_draintask(ic, &sc->sc_radioon_task);
639
640		wpi_stop(sc);
641
642		callout_drain(&sc->watchdog_to);
643		callout_drain(&sc->watchdog_rfkill);
644		callout_drain(&sc->calib_to);
645		ieee80211_ifdetach(ic);
646	}
647
648	/* Uninstall interrupt handler. */
649	if (sc->irq != NULL) {
650		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
651		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
652		    sc->irq);
653		pci_release_msi(dev);
654	}
655
656	if (sc->txq[0].data_dmat) {
657		/* Free DMA resources. */
658		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
659			wpi_free_tx_ring(sc, &sc->txq[qid]);
660
661		wpi_free_rx_ring(sc);
662		wpi_free_shared(sc);
663	}
664
665	if (sc->fw_dma.tag)
666		wpi_free_fwmem(sc);
667
668	if (sc->mem != NULL)
669		bus_release_resource(dev, SYS_RES_MEMORY,
670		    rman_get_rid(sc->mem), sc->mem);
671
672	if (ifp != NULL)
673		if_free(ifp);
674
675	delete_unrhdr(sc->sc_unr);
676
677	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
678	WPI_LOCK_DESTROY(sc);
679	return 0;
680}
681
682static int
683wpi_shutdown(device_t dev)
684{
685	struct wpi_softc *sc = device_get_softc(dev);
686
687	wpi_stop(sc);
688	return 0;
689}
690
691static int
692wpi_suspend(device_t dev)
693{
694	struct wpi_softc *sc = device_get_softc(dev);
695	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
696
697	ieee80211_suspend_all(ic);
698	return 0;
699}
700
701static int
702wpi_resume(device_t dev)
703{
704	struct wpi_softc *sc = device_get_softc(dev);
705	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
706
707	/* Clear device-specific "PCI retry timeout" register (41h). */
708	pci_write_config(dev, 0x41, 0, 1);
709
710	ieee80211_resume_all(ic);
711	return 0;
712}
713
714/*
715 * Grab exclusive access to NIC memory.
716 */
717static int
718wpi_nic_lock(struct wpi_softc *sc)
719{
720	int ntries;
721
722	/* Request exclusive access to NIC. */
723	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
724
725	/* Spin until we actually get the lock. */
726	for (ntries = 0; ntries < 1000; ntries++) {
727		if ((WPI_READ(sc, WPI_GP_CNTRL) &
728		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
729		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
730			return 0;
731		DELAY(10);
732	}
733
734	device_printf(sc->sc_dev, "could not lock memory\n");
735
736	return ETIMEDOUT;
737}
738
739/*
740 * Release lock on NIC memory.
741 */
742static __inline void
743wpi_nic_unlock(struct wpi_softc *sc)
744{
745	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
746}
747
748static __inline uint32_t
749wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
750{
751	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
752	WPI_BARRIER_READ_WRITE(sc);
753	return WPI_READ(sc, WPI_PRPH_RDATA);
754}
755
756static __inline void
757wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
758{
759	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
760	WPI_BARRIER_WRITE(sc);
761	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
762}
763
764static __inline void
765wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
766{
767	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
768}
769
770static __inline void
771wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
772{
773	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
774}
775
776static __inline void
777wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
778    const uint32_t *data, int count)
779{
780	for (; count > 0; count--, data++, addr += 4)
781		wpi_prph_write(sc, addr, *data);
782}
783
784static __inline uint32_t
785wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
786{
787	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
788	WPI_BARRIER_READ_WRITE(sc);
789	return WPI_READ(sc, WPI_MEM_RDATA);
790}
791
792static __inline void
793wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
794    int count)
795{
796	for (; count > 0; count--, addr += 4)
797		*data++ = wpi_mem_read(sc, addr);
798}
799
800static int
801wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
802{
803	uint8_t *out = data;
804	uint32_t val;
805	int error, ntries;
806
807	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
808
809	if ((error = wpi_nic_lock(sc)) != 0)
810		return error;
811
812	for (; count > 0; count -= 2, addr++) {
813		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
814		for (ntries = 0; ntries < 10; ntries++) {
815			val = WPI_READ(sc, WPI_EEPROM);
816			if (val & WPI_EEPROM_READ_VALID)
817				break;
818			DELAY(5);
819		}
820		if (ntries == 10) {
821			device_printf(sc->sc_dev,
822			    "timeout reading ROM at 0x%x\n", addr);
823			return ETIMEDOUT;
824		}
825		*out++= val >> 16;
826		if (count > 1)
827			*out ++= val >> 24;
828	}
829
830	wpi_nic_unlock(sc);
831
832	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
833
834	return 0;
835}
836
837static void
838wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
839{
840	if (error != 0)
841		return;
842	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
843	*(bus_addr_t *)arg = segs[0].ds_addr;
844}
845
846/*
847 * Allocates a contiguous block of dma memory of the requested size and
848 * alignment.
849 */
850static int
851wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
852    void **kvap, bus_size_t size, bus_size_t alignment)
853{
854	int error;
855
856	dma->tag = NULL;
857	dma->size = size;
858
859	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
860	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
861	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
862	if (error != 0)
863		goto fail;
864
865	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
866	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
867	if (error != 0)
868		goto fail;
869
870	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
871	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
872	if (error != 0)
873		goto fail;
874
875	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
876
877	if (kvap != NULL)
878		*kvap = dma->vaddr;
879
880	return 0;
881
882fail:	wpi_dma_contig_free(dma);
883	return error;
884}
885
886static void
887wpi_dma_contig_free(struct wpi_dma_info *dma)
888{
889	if (dma->vaddr != NULL) {
890		bus_dmamap_sync(dma->tag, dma->map,
891		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
892		bus_dmamap_unload(dma->tag, dma->map);
893		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
894		dma->vaddr = NULL;
895	}
896	if (dma->tag != NULL) {
897		bus_dma_tag_destroy(dma->tag);
898		dma->tag = NULL;
899	}
900}
901
902/*
903 * Allocate a shared page between host and NIC.
904 */
905static int
906wpi_alloc_shared(struct wpi_softc *sc)
907{
908	/* Shared buffer must be aligned on a 4KB boundary. */
909	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
910	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
911}
912
913static void
914wpi_free_shared(struct wpi_softc *sc)
915{
916	wpi_dma_contig_free(&sc->shared_dma);
917}
918
919/*
920 * Allocate DMA-safe memory for firmware transfer.
921 */
922static int
923wpi_alloc_fwmem(struct wpi_softc *sc)
924{
925	/* Must be aligned on a 16-byte boundary. */
926	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
927	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
928}
929
930static void
931wpi_free_fwmem(struct wpi_softc *sc)
932{
933	wpi_dma_contig_free(&sc->fw_dma);
934}
935
936static int
937wpi_alloc_rx_ring(struct wpi_softc *sc)
938{
939	struct wpi_rx_ring *ring = &sc->rxq;
940	bus_size_t size;
941	int i, error;
942
943	ring->cur = 0;
944	ring->update = 0;
945
946	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
947
948	/* Allocate RX descriptors (16KB aligned.) */
949	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
950	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
951	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
952	if (error != 0) {
953		device_printf(sc->sc_dev,
954		    "%s: could not allocate RX ring DMA memory, error %d\n",
955		    __func__, error);
956		goto fail;
957	}
958
959	/* Create RX buffer DMA tag. */
960        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
961	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
962	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
963	    &ring->data_dmat);
964        if (error != 0) {
965                device_printf(sc->sc_dev,
966		    "%s: could not create RX buf DMA tag, error %d\n",
967		    __func__, error);
968                goto fail;
969        }
970
971	/*
972	 * Allocate and map RX buffers.
973	 */
974	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
975		struct wpi_rx_data *data = &ring->data[i];
976		bus_addr_t paddr;
977
978		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
979		if (error != 0) {
980			device_printf(sc->sc_dev,
981			    "%s: could not create RX buf DMA map, error %d\n",
982			    __func__, error);
983			goto fail;
984		}
985
986		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
987		if (data->m == NULL) {
988			device_printf(sc->sc_dev,
989			    "%s: could not allocate RX mbuf\n", __func__);
990			error = ENOBUFS;
991			goto fail;
992		}
993
994		error = bus_dmamap_load(ring->data_dmat, data->map,
995		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
996		    &paddr, BUS_DMA_NOWAIT);
997		if (error != 0 && error != EFBIG) {
998			device_printf(sc->sc_dev,
999			    "%s: can't map mbuf (error %d)\n", __func__,
1000			    error);
1001			goto fail;
1002		}
1003
1004		/* Set physical address of RX buffer. */
1005		ring->desc[i] = htole32(paddr);
1006	}
1007
1008	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1009	    BUS_DMASYNC_PREWRITE);
1010
1011	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1012
1013	return 0;
1014
1015fail:	wpi_free_rx_ring(sc);
1016
1017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1018
1019	return error;
1020}
1021
1022static void
1023wpi_update_rx_ring(struct wpi_softc *sc)
1024{
1025	struct wpi_rx_ring *ring = &sc->rxq;
1026
1027	if (ring->update != 0) {
1028		/* Wait for INT_WAKEUP event. */
1029		return;
1030	}
1031
1032	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1033		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1034		    __func__);
1035
1036		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1037		ring->update = 1;
1038	} else
1039		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1040}
1041
1042static void
1043wpi_reset_rx_ring(struct wpi_softc *sc)
1044{
1045	struct wpi_rx_ring *ring = &sc->rxq;
1046	int ntries;
1047
1048	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1049
1050	if (wpi_nic_lock(sc) == 0) {
1051		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1052		for (ntries = 0; ntries < 1000; ntries++) {
1053			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1054			    WPI_FH_RX_STATUS_IDLE)
1055				break;
1056			DELAY(10);
1057		}
1058#ifdef WPI_DEBUG
1059		if (ntries == 1000) {
1060			device_printf(sc->sc_dev,
1061			    "timeout resetting Rx ring\n");
1062		}
1063#endif
1064		wpi_nic_unlock(sc);
1065	}
1066
1067	ring->cur = 0;
1068	ring->update = 0;
1069}
1070
1071static void
1072wpi_free_rx_ring(struct wpi_softc *sc)
1073{
1074	struct wpi_rx_ring *ring = &sc->rxq;
1075	int i;
1076
1077	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1078
1079	wpi_dma_contig_free(&ring->desc_dma);
1080
1081	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1082		struct wpi_rx_data *data = &ring->data[i];
1083
1084		if (data->m != NULL) {
1085			bus_dmamap_sync(ring->data_dmat, data->map,
1086			    BUS_DMASYNC_POSTREAD);
1087			bus_dmamap_unload(ring->data_dmat, data->map);
1088			m_freem(data->m);
1089			data->m = NULL;
1090		}
1091		if (data->map != NULL)
1092			bus_dmamap_destroy(ring->data_dmat, data->map);
1093	}
1094	if (ring->data_dmat != NULL) {
1095		bus_dma_tag_destroy(ring->data_dmat);
1096		ring->data_dmat = NULL;
1097	}
1098}
1099
1100static int
1101wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1102{
1103	bus_addr_t paddr;
1104	bus_size_t size;
1105	int i, error;
1106
1107	ring->qid = qid;
1108	ring->queued = 0;
1109	ring->cur = 0;
1110	ring->update = 0;
1111
1112	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1113
1114	/* Allocate TX descriptors (16KB aligned.) */
1115	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1116	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1117	    size, WPI_RING_DMA_ALIGN);
1118	if (error != 0) {
1119		device_printf(sc->sc_dev,
1120		    "%s: could not allocate TX ring DMA memory, error %d\n",
1121		    __func__, error);
1122		goto fail;
1123	}
1124
1125	/* Update shared area with ring physical address. */
1126	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1127	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1128	    BUS_DMASYNC_PREWRITE);
1129
1130	/*
1131	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1132	 * to allocate commands space for other rings.
1133	 * XXX Do we really need to allocate descriptors for other rings?
1134	 */
1135	if (qid > 4)
1136		return 0;
1137
1138	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1139	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1140	    size, 4);
1141	if (error != 0) {
1142		device_printf(sc->sc_dev,
1143		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1144		    __func__, error);
1145		goto fail;
1146	}
1147
1148	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1149	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1150	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1151	    &ring->data_dmat);
1152	if (error != 0) {
1153		device_printf(sc->sc_dev,
1154		    "%s: could not create TX buf DMA tag, error %d\n",
1155		    __func__, error);
1156		goto fail;
1157	}
1158
1159	paddr = ring->cmd_dma.paddr;
1160	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1161		struct wpi_tx_data *data = &ring->data[i];
1162
1163		data->cmd_paddr = paddr;
1164		paddr += sizeof (struct wpi_tx_cmd);
1165
1166		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1167		if (error != 0) {
1168			device_printf(sc->sc_dev,
1169			    "%s: could not create TX buf DMA map, error %d\n",
1170			    __func__, error);
1171			goto fail;
1172		}
1173	}
1174
1175	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1176
1177	return 0;
1178
1179fail:	wpi_free_tx_ring(sc, ring);
1180	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1181	return error;
1182}
1183
1184static void
1185wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1186{
1187	if (ring->update != 0) {
1188		/* Wait for INT_WAKEUP event. */
1189		return;
1190	}
1191
1192	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1193		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1194		    __func__, ring->qid);
1195
1196		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1197		ring->update = 1;
1198	} else
1199		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1200}
1201
1202static void
1203wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1204{
1205	int i;
1206
1207	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1208
1209	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1210		struct wpi_tx_data *data = &ring->data[i];
1211
1212		if (data->m != NULL) {
1213			bus_dmamap_sync(ring->data_dmat, data->map,
1214			    BUS_DMASYNC_POSTWRITE);
1215			bus_dmamap_unload(ring->data_dmat, data->map);
1216			m_freem(data->m);
1217			data->m = NULL;
1218		}
1219	}
1220	/* Clear TX descriptors. */
1221	memset(ring->desc, 0, ring->desc_dma.size);
1222	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1223	    BUS_DMASYNC_PREWRITE);
1224	sc->qfullmsk &= ~(1 << ring->qid);
1225	ring->queued = 0;
1226	ring->cur = 0;
1227	ring->update = 0;
1228}
1229
1230static void
1231wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1232{
1233	int i;
1234
1235	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1236
1237	wpi_dma_contig_free(&ring->desc_dma);
1238	wpi_dma_contig_free(&ring->cmd_dma);
1239
1240	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1241		struct wpi_tx_data *data = &ring->data[i];
1242
1243		if (data->m != NULL) {
1244			bus_dmamap_sync(ring->data_dmat, data->map,
1245			    BUS_DMASYNC_POSTWRITE);
1246			bus_dmamap_unload(ring->data_dmat, data->map);
1247			m_freem(data->m);
1248		}
1249		if (data->map != NULL)
1250			bus_dmamap_destroy(ring->data_dmat, data->map);
1251	}
1252	if (ring->data_dmat != NULL) {
1253		bus_dma_tag_destroy(ring->data_dmat);
1254		ring->data_dmat = NULL;
1255	}
1256}
1257
1258/*
1259 * Extract various information from EEPROM.
1260 */
1261static int
1262wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1263{
1264#define WPI_CHK(res) do {		\
1265	if ((error = res) != 0)		\
1266		goto fail;		\
1267} while (0)
1268	int error, i;
1269
1270	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1271
1272	/* Adapter has to be powered on for EEPROM access to work. */
1273	if ((error = wpi_apm_init(sc)) != 0) {
1274		device_printf(sc->sc_dev,
1275		    "%s: could not power ON adapter, error %d\n", __func__,
1276		    error);
1277		return error;
1278	}
1279
1280	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1281		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1282		error = EIO;
1283		goto fail;
1284	}
1285	/* Clear HW ownership of EEPROM. */
1286	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1287
1288	/* Read the hardware capabilities, revision and SKU type. */
1289	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1290	    sizeof(sc->cap)));
1291	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1292	    sizeof(sc->rev)));
1293	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1294	    sizeof(sc->type)));
1295
1296	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1297	    sc->type);
1298
1299	/* Read the regulatory domain (4 ASCII characters.) */
1300	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1301	    sizeof(sc->domain)));
1302
1303	/* Read MAC address. */
1304	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1305	    IEEE80211_ADDR_LEN));
1306
1307	/* Read the list of authorized channels. */
1308	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1309		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1310
1311	/* Read the list of TX power groups. */
1312	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1313		WPI_CHK(wpi_read_eeprom_group(sc, i));
1314
1315fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1316
1317	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1318	    __func__);
1319
1320	return error;
1321#undef WPI_CHK
1322}
1323
1324/*
1325 * Translate EEPROM flags to net80211.
1326 */
1327static uint32_t
1328wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1329{
1330	uint32_t nflags;
1331
1332	nflags = 0;
1333	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1334		nflags |= IEEE80211_CHAN_PASSIVE;
1335	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1336		nflags |= IEEE80211_CHAN_NOADHOC;
1337	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1338		nflags |= IEEE80211_CHAN_DFS;
1339		/* XXX apparently IBSS may still be marked */
1340		nflags |= IEEE80211_CHAN_NOADHOC;
1341	}
1342
1343	return nflags;
1344}
1345
1346static void
1347wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1348{
1349	struct ifnet *ifp = sc->sc_ifp;
1350	struct ieee80211com *ic = ifp->if_l2com;
1351	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1352	const struct wpi_chan_band *band = &wpi_bands[n];
1353	struct ieee80211_channel *c;
1354	uint8_t chan;
1355	int i, nflags;
1356
1357	for (i = 0; i < band->nchan; i++) {
1358		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1359			DPRINTF(sc, WPI_DEBUG_HW,
1360			    "Channel Not Valid: %d, band %d\n",
1361			     band->chan[i],n);
1362			continue;
1363		}
1364
1365		chan = band->chan[i];
1366		nflags = wpi_eeprom_channel_flags(&channels[i]);
1367
1368		c = &ic->ic_channels[ic->ic_nchans++];
1369		c->ic_ieee = chan;
1370		c->ic_maxregpower = channels[i].maxpwr;
1371		c->ic_maxpower = 2*c->ic_maxregpower;
1372
1373		if (n == 0) {	/* 2GHz band */
1374			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1375			/* G =>'s B is supported */
1376			c->ic_flags = IEEE80211_CHAN_B | nflags;
1377			c = &ic->ic_channels[ic->ic_nchans++];
1378			c[0] = c[-1];
1379			c->ic_flags = IEEE80211_CHAN_G | nflags;
1380		} else {	/* 5GHz band */
1381			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1382			c->ic_flags = IEEE80211_CHAN_A | nflags;
1383		}
1384
1385		/* Save maximum allowed TX power for this channel. */
1386		sc->maxpwr[chan] = channels[i].maxpwr;
1387
1388		DPRINTF(sc, WPI_DEBUG_EEPROM,
1389		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1390		    " offset %d\n", chan, c->ic_freq,
1391		    channels[i].flags, sc->maxpwr[chan],
1392		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1393	}
1394}
1395
1396/**
1397 * Read the eeprom to find out what channels are valid for the given
1398 * band and update net80211 with what we find.
1399 */
1400static int
1401wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1402{
1403	struct ifnet *ifp = sc->sc_ifp;
1404	struct ieee80211com *ic = ifp->if_l2com;
1405	const struct wpi_chan_band *band = &wpi_bands[n];
1406	int error;
1407
1408	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1409
1410	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1411	    band->nchan * sizeof (struct wpi_eeprom_chan));
1412	if (error != 0) {
1413		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1414		return error;
1415	}
1416
1417	wpi_read_eeprom_band(sc, n);
1418
1419	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1420
1421	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1422
1423	return 0;
1424}
1425
1426static struct wpi_eeprom_chan *
1427wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1428{
1429	int i, j;
1430
1431	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1432		for (i = 0; i < wpi_bands[j].nchan; i++)
1433			if (wpi_bands[j].chan[i] == c->ic_ieee)
1434				return &sc->eeprom_channels[j][i];
1435
1436	return NULL;
1437}
1438
1439/*
1440 * Enforce flags read from EEPROM.
1441 */
1442static int
1443wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1444    int nchan, struct ieee80211_channel chans[])
1445{
1446	struct ifnet *ifp = ic->ic_ifp;
1447	struct wpi_softc *sc = ifp->if_softc;
1448	int i;
1449
1450	for (i = 0; i < nchan; i++) {
1451		struct ieee80211_channel *c = &chans[i];
1452		struct wpi_eeprom_chan *channel;
1453
1454		channel = wpi_find_eeprom_channel(sc, c);
1455		if (channel == NULL) {
1456			if_printf(ic->ic_ifp,
1457			    "%s: invalid channel %u freq %u/0x%x\n",
1458			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1459			return EINVAL;
1460		}
1461		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1462	}
1463
1464	return 0;
1465}
1466
1467static int
1468wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1469{
1470	struct wpi_power_group *group = &sc->groups[n];
1471	struct wpi_eeprom_group rgroup;
1472	int i, error;
1473
1474	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1475
1476	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1477	    &rgroup, sizeof rgroup)) != 0) {
1478		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1479		return error;
1480	}
1481
1482	/* Save TX power group information. */
1483	group->chan   = rgroup.chan;
1484	group->maxpwr = rgroup.maxpwr;
1485	/* Retrieve temperature at which the samples were taken. */
1486	group->temp   = (int16_t)le16toh(rgroup.temp);
1487
1488	DPRINTF(sc, WPI_DEBUG_EEPROM,
1489	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1490	    group->maxpwr, group->temp);
1491
1492	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1493		group->samples[i].index = rgroup.samples[i].index;
1494		group->samples[i].power = rgroup.samples[i].power;
1495
1496		DPRINTF(sc, WPI_DEBUG_EEPROM,
1497		    "\tsample %d: index=%d power=%d\n", i,
1498		    group->samples[i].index, group->samples[i].power);
1499	}
1500
1501	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1502
1503	return 0;
1504}
1505
1506static struct ieee80211_node *
1507wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1508{
1509	struct wpi_node *wn;
1510
1511	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1512	    M_NOWAIT | M_ZERO);
1513
1514	if (wn == NULL)
1515		return NULL;
1516
1517	wn->id = WPI_ID_UNDEFINED;
1518
1519	return &wn->ni;
1520}
1521
1522static void
1523wpi_node_free(struct ieee80211_node *ni)
1524{
1525	struct ieee80211com *ic = ni->ni_ic;
1526	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1527	struct wpi_node *wn = (struct wpi_node *)ni;
1528
1529	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1530		free_unr(sc->sc_unr, wn->id);
1531
1532		WPI_LOCK(sc);
1533		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1534			wpi_del_node(sc, ni);
1535		WPI_UNLOCK(sc);
1536	}
1537
1538	sc->sc_node_free(ni);
1539}
1540
1541/**
1542 * Called by net80211 when ever there is a change to 80211 state machine
1543 */
1544static int
1545wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1546{
1547	struct wpi_vap *wvp = WPI_VAP(vap);
1548	struct ieee80211com *ic = vap->iv_ic;
1549	struct ifnet *ifp = ic->ic_ifp;
1550	struct wpi_softc *sc = ifp->if_softc;
1551	int error = 0;
1552
1553	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1554
1555	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1556		ieee80211_state_name[vap->iv_state],
1557		ieee80211_state_name[nstate]);
1558
1559	IEEE80211_UNLOCK(ic);
1560	WPI_LOCK(sc);
1561	switch (nstate) {
1562	case IEEE80211_S_SCAN:
1563		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1564		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1565		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1566			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1567			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1568				device_printf(sc->sc_dev,
1569				    "%s: could not send RXON\n", __func__);
1570			}
1571		}
1572		break;
1573
1574	case IEEE80211_S_ASSOC:
1575		if (vap->iv_state != IEEE80211_S_RUN)
1576			break;
1577		/* FALLTHROUGH */
1578	case IEEE80211_S_AUTH:
1579		/*
1580		 * The node must be registered in the firmware before auth.
1581		 * Also the associd must be cleared on RUN -> ASSOC
1582		 * transitions.
1583		 */
1584		if ((error = wpi_auth(sc, vap)) != 0) {
1585			device_printf(sc->sc_dev,
1586			    "%s: could not move to AUTH state, error %d\n",
1587			    __func__, error);
1588		}
1589		break;
1590
1591	case IEEE80211_S_RUN:
1592		/*
1593		 * RUN -> RUN transition; Just restart the timers.
1594		 */
1595		if (vap->iv_state == IEEE80211_S_RUN) {
1596			wpi_calib_timeout(sc);
1597			break;
1598		}
1599
1600		/*
1601		 * !RUN -> RUN requires setting the association id
1602		 * which is done with a firmware cmd.  We also defer
1603		 * starting the timers until that work is done.
1604		 */
1605		if ((error = wpi_run(sc, vap)) != 0) {
1606			device_printf(sc->sc_dev,
1607			    "%s: could not move to RUN state\n", __func__);
1608		}
1609		break;
1610
1611	default:
1612		break;
1613	}
1614	WPI_UNLOCK(sc);
1615	IEEE80211_LOCK(ic);
1616	if (error != 0) {
1617		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1618		return error;
1619	}
1620
1621	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1622
1623	return wvp->newstate(vap, nstate, arg);
1624}
1625
1626static void
1627wpi_calib_timeout(void *arg)
1628{
1629	struct wpi_softc *sc = arg;
1630	struct ifnet *ifp = sc->sc_ifp;
1631	struct ieee80211com *ic = ifp->if_l2com;
1632	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1633
1634	if (vap->iv_state != IEEE80211_S_RUN)
1635		return;
1636
1637	wpi_power_calibration(sc);
1638
1639	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1640}
1641
1642static __inline uint8_t
1643rate2plcp(const uint8_t rate)
1644{
1645	switch (rate) {
1646	case 12:	return 0xd;
1647	case 18:	return 0xf;
1648	case 24:	return 0x5;
1649	case 36:	return 0x7;
1650	case 48:	return 0x9;
1651	case 72:	return 0xb;
1652	case 96:	return 0x1;
1653	case 108:	return 0x3;
1654	case 2:		return 10;
1655	case 4:		return 20;
1656	case 11:	return 55;
1657	case 22:	return 110;
1658	default:	return 0;
1659	}
1660}
1661
1662static __inline uint8_t
1663plcp2rate(const uint8_t plcp)
1664{
1665	switch (plcp) {
1666	case 0xd:	return 12;
1667	case 0xf:	return 18;
1668	case 0x5:	return 24;
1669	case 0x7:	return 36;
1670	case 0x9:	return 48;
1671	case 0xb:	return 72;
1672	case 0x1:	return 96;
1673	case 0x3:	return 108;
1674	case 10:	return 2;
1675	case 20:	return 4;
1676	case 55:	return 11;
1677	case 110:	return 22;
1678	default:	return 0;
1679	}
1680}
1681
1682/* Quickly determine if a given rate is CCK or OFDM. */
1683#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1684
1685static void
1686wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1687    struct wpi_rx_data *data)
1688{
1689	struct ifnet *ifp = sc->sc_ifp;
1690	const struct ieee80211_cipher *cip = NULL;
1691	struct ieee80211com *ic = ifp->if_l2com;
1692	struct wpi_rx_ring *ring = &sc->rxq;
1693	struct wpi_rx_stat *stat;
1694	struct wpi_rx_head *head;
1695	struct wpi_rx_tail *tail;
1696	struct ieee80211_frame *wh;
1697	struct ieee80211_node *ni;
1698	struct mbuf *m, *m1;
1699	bus_addr_t paddr;
1700	uint32_t flags;
1701	uint16_t len;
1702	int error;
1703
1704	stat = (struct wpi_rx_stat *)(desc + 1);
1705
1706	if (stat->len > WPI_STAT_MAXLEN) {
1707		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1708		goto fail1;
1709	}
1710
1711	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1712	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1713	len = le16toh(head->len);
1714	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1715	flags = le32toh(tail->flags);
1716
1717	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1718	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1719	    le32toh(desc->len), len, (int8_t)stat->rssi,
1720	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1721
1722	/* Discard frames with a bad FCS early. */
1723	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1724		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1725		    __func__, flags);
1726		goto fail1;
1727	}
1728	/* Discard frames that are too short. */
1729	if (len < sizeof (*wh)) {
1730		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1731		    __func__, len);
1732		goto fail1;
1733	}
1734
1735	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1736	if (m1 == NULL) {
1737		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1738		    __func__);
1739		goto fail1;
1740	}
1741	bus_dmamap_unload(ring->data_dmat, data->map);
1742
1743	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1744	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1745	if (error != 0 && error != EFBIG) {
1746		device_printf(sc->sc_dev,
1747		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1748		m_freem(m1);
1749
1750		/* Try to reload the old mbuf. */
1751		error = bus_dmamap_load(ring->data_dmat, data->map,
1752		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1753		    &paddr, BUS_DMA_NOWAIT);
1754		if (error != 0 && error != EFBIG) {
1755			panic("%s: could not load old RX mbuf", __func__);
1756		}
1757		/* Physical address may have changed. */
1758		ring->desc[ring->cur] = htole32(paddr);
1759		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1760		    BUS_DMASYNC_PREWRITE);
1761		goto fail1;
1762	}
1763
1764	m = data->m;
1765	data->m = m1;
1766	/* Update RX descriptor. */
1767	ring->desc[ring->cur] = htole32(paddr);
1768	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1769	    BUS_DMASYNC_PREWRITE);
1770
1771	/* Finalize mbuf. */
1772	m->m_pkthdr.rcvif = ifp;
1773	m->m_data = (caddr_t)(head + 1);
1774	m->m_pkthdr.len = m->m_len = len;
1775
1776	/* Grab a reference to the source node. */
1777	wh = mtod(m, struct ieee80211_frame *);
1778	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1779
1780	if (ni != NULL)
1781		cip = ni->ni_ucastkey.wk_cipher;
1782	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1783	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1784	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1785		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1786			goto fail2;
1787
1788		/* Check whether decryption was successful or not. */
1789		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1790			DPRINTF(sc, WPI_DEBUG_RECV,
1791			    "CCMP decryption failed 0x%x\n", flags);
1792			goto fail2;
1793		}
1794		m->m_flags |= M_WEP;
1795	}
1796
1797	if (ieee80211_radiotap_active(ic)) {
1798		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1799
1800		tap->wr_flags = 0;
1801		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1802			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1803		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1804		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1805		tap->wr_tsft = tail->tstamp;
1806		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1807		tap->wr_rate = plcp2rate(head->plcp);
1808	}
1809
1810	WPI_UNLOCK(sc);
1811
1812	/* Send the frame to the 802.11 layer. */
1813	if (ni != NULL) {
1814		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1815		/* Node is no longer needed. */
1816		ieee80211_free_node(ni);
1817	} else
1818		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1819
1820	WPI_LOCK(sc);
1821
1822	return;
1823
1824fail2:	ieee80211_free_node(ni);
1825	m_freem(m);
1826
1827fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1828}
1829
1830static void
1831wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1832    struct wpi_rx_data *data)
1833{
1834	/* Ignore */
1835}
1836
1837static void
1838wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1839{
1840	struct ifnet *ifp = sc->sc_ifp;
1841	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1842	struct wpi_tx_data *data = &ring->data[desc->idx];
1843	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1844	struct mbuf *m;
1845	struct ieee80211_node *ni;
1846	struct ieee80211vap *vap;
1847	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1848	int status = le32toh(stat->status);
1849
1850	KASSERT(data->ni != NULL, ("no node"));
1851
1852	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1853
1854	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1855	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1856	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1857	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1858
1859	/* Unmap and free mbuf. */
1860	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1861	bus_dmamap_unload(ring->data_dmat, data->map);
1862	m = data->m, data->m = NULL;
1863	ni = data->ni, data->ni = NULL;
1864	vap = ni->ni_vap;
1865
1866	/*
1867	 * Update rate control statistics for the node.
1868	 */
1869	WPI_UNLOCK(sc);
1870	if ((status & 0xff) != 1) {
1871		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1872		ieee80211_ratectl_tx_complete(vap, ni,
1873		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1874	} else {
1875		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1876		ieee80211_ratectl_tx_complete(vap, ni,
1877		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1878	}
1879
1880	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1881	WPI_LOCK(sc);
1882
1883	sc->sc_tx_timer = 0;
1884	if (--ring->queued < WPI_TX_RING_LOMARK) {
1885		sc->qfullmsk &= ~(1 << ring->qid);
1886		if (sc->qfullmsk == 0 &&
1887		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1888			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1889			wpi_start_locked(ifp);
1890		}
1891	}
1892
1893	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1894}
1895
1896/*
1897 * Process a "command done" firmware notification.  This is where we wakeup
1898 * processes waiting for a synchronous command completion.
1899 */
1900static void
1901wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1902{
1903	struct wpi_tx_ring *ring = &sc->txq[4];
1904	struct wpi_tx_data *data;
1905
1906	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1907				   "type=%s len=%d\n", desc->qid, desc->idx,
1908				   desc->flags, wpi_cmd_str(desc->type),
1909				   le32toh(desc->len));
1910
1911	if ((desc->qid & 7) != 4)
1912		return;	/* Not a command ack. */
1913
1914	data = &ring->data[desc->idx];
1915
1916	/* If the command was mapped in an mbuf, free it. */
1917	if (data->m != NULL) {
1918		bus_dmamap_sync(ring->data_dmat, data->map,
1919		    BUS_DMASYNC_POSTWRITE);
1920		bus_dmamap_unload(ring->data_dmat, data->map);
1921		m_freem(data->m);
1922		data->m = NULL;
1923	}
1924
1925	sc->flags &= ~WPI_FLAG_BUSY;
1926	wakeup(&ring->cmd[desc->idx]);
1927}
1928
1929static void
1930wpi_notif_intr(struct wpi_softc *sc)
1931{
1932	struct ifnet *ifp = sc->sc_ifp;
1933	struct ieee80211com *ic = ifp->if_l2com;
1934	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1935	int hw;
1936
1937	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1938	    BUS_DMASYNC_POSTREAD);
1939
1940	hw = le32toh(sc->shared->next);
1941	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1942
1943	while (sc->rxq.cur != hw) {
1944		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1945
1946		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1947		struct wpi_rx_desc *desc;
1948
1949		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1950		    BUS_DMASYNC_POSTREAD);
1951		desc = mtod(data->m, struct wpi_rx_desc *);
1952
1953		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1954		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1955		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1956		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1957
1958		if (!(desc->qid & 0x80))	/* Reply to a command. */
1959			wpi_cmd_done(sc, desc);
1960
1961		switch (desc->type) {
1962		case WPI_RX_DONE:
1963			/* An 802.11 frame has been received. */
1964			wpi_rx_done(sc, desc, data);
1965
1966			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1967				/* wpi_stop() was called. */
1968				return;
1969			}
1970
1971			break;
1972
1973		case WPI_TX_DONE:
1974			/* An 802.11 frame has been transmitted. */
1975			wpi_tx_done(sc, desc);
1976			break;
1977
1978		case WPI_RX_STATISTICS:
1979		case WPI_BEACON_STATISTICS:
1980			wpi_rx_statistics(sc, desc, data);
1981			break;
1982
1983		case WPI_BEACON_MISSED:
1984		{
1985			struct wpi_beacon_missed *miss =
1986			    (struct wpi_beacon_missed *)(desc + 1);
1987			int misses;
1988
1989			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1990			    BUS_DMASYNC_POSTREAD);
1991			misses = le32toh(miss->consecutive);
1992
1993			DPRINTF(sc, WPI_DEBUG_STATE,
1994			    "%s: beacons missed %d/%d\n", __func__, misses,
1995			    le32toh(miss->total));
1996
1997			if (vap->iv_state == IEEE80211_S_RUN &&
1998			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1999				if (misses >=  vap->iv_bmissthreshold) {
2000					WPI_UNLOCK(sc);
2001					ieee80211_beacon_miss(ic);
2002					WPI_LOCK(sc);
2003				}
2004			}
2005			break;
2006		}
2007		case WPI_UC_READY:
2008		{
2009			struct wpi_ucode_info *uc =
2010			    (struct wpi_ucode_info *)(desc + 1);
2011
2012			/* The microcontroller is ready. */
2013			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2014			    BUS_DMASYNC_POSTREAD);
2015			DPRINTF(sc, WPI_DEBUG_RESET,
2016			    "microcode alive notification version=%d.%d "
2017			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2018			    uc->subtype, le32toh(uc->valid));
2019
2020			if (le32toh(uc->valid) != 1) {
2021				device_printf(sc->sc_dev,
2022				    "microcontroller initialization failed\n");
2023				wpi_stop_locked(sc);
2024			}
2025			/* Save the address of the error log in SRAM. */
2026			sc->errptr = le32toh(uc->errptr);
2027			break;
2028		}
2029		case WPI_STATE_CHANGED:
2030		{
2031                        bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2032                            BUS_DMASYNC_POSTREAD);
2033
2034			uint32_t *status = (uint32_t *)(desc + 1);
2035
2036			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2037			    le32toh(*status));
2038
2039			if (le32toh(*status) & 1) {
2040				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2041				return;
2042			}
2043			break;
2044		}
2045		case WPI_START_SCAN:
2046		{
2047			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2048			    BUS_DMASYNC_POSTREAD);
2049#ifdef WPI_DEBUG
2050			struct wpi_start_scan *scan =
2051			    (struct wpi_start_scan *)(desc + 1);
2052			DPRINTF(sc, WPI_DEBUG_SCAN,
2053			    "%s: scanning channel %d status %x\n",
2054			    __func__, scan->chan, le32toh(scan->status));
2055#endif
2056			break;
2057		}
2058		case WPI_STOP_SCAN:
2059		{
2060			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2061			    BUS_DMASYNC_POSTREAD);
2062#ifdef WPI_DEBUG
2063			struct wpi_stop_scan *scan =
2064			    (struct wpi_stop_scan *)(desc + 1);
2065			DPRINTF(sc, WPI_DEBUG_SCAN,
2066			    "scan finished nchan=%d status=%d chan=%d\n",
2067			    scan->nchan, scan->status, scan->chan);
2068#endif
2069			sc->sc_scan_timer = 0;
2070			WPI_UNLOCK(sc);
2071			ieee80211_scan_next(vap);
2072			WPI_LOCK(sc);
2073			break;
2074		}
2075		}
2076	}
2077
2078	/* Tell the firmware what we have processed. */
2079	wpi_update_rx_ring(sc);
2080}
2081
2082/*
2083 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2084 * from power-down sleep mode.
2085 */
2086static void
2087wpi_wakeup_intr(struct wpi_softc *sc)
2088{
2089	int qid;
2090
2091	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2092	    "%s: ucode wakeup from power-down sleep\n", __func__);
2093
2094	/* Wakeup RX and TX rings. */
2095	if (sc->rxq.update) {
2096		sc->rxq.update = 0;
2097		wpi_update_rx_ring(sc);
2098	}
2099	for (qid = 0; qid < WPI_NTXQUEUES; qid++) {
2100		struct wpi_tx_ring *ring = &sc->txq[qid];
2101
2102		if (ring->update) {
2103			ring->update = 0;
2104			wpi_update_tx_ring(sc, ring);
2105		}
2106	}
2107
2108	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2109}
2110
2111/*
2112 * Dump the error log of the firmware when a firmware panic occurs.  Although
2113 * we can't debug the firmware because it is neither open source nor free, it
2114 * can help us to identify certain classes of problems.
2115 */
2116static void
2117wpi_fatal_intr(struct wpi_softc *sc)
2118{
2119	struct wpi_fw_dump dump;
2120	uint32_t i, offset, count;
2121	const uint32_t size_errmsg =
2122	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2123
2124	/* Check that the error log address is valid. */
2125	if (sc->errptr < WPI_FW_DATA_BASE ||
2126	    sc->errptr + sizeof (dump) >
2127	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2128		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2129		    sc->errptr);
2130                return;
2131        }
2132	if (wpi_nic_lock(sc) != 0) {
2133		printf("%s: could not read firmware error log\n", __func__);
2134                return;
2135        }
2136	/* Read number of entries in the log. */
2137	count = wpi_mem_read(sc, sc->errptr);
2138	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2139		printf("%s: invalid count field (count = %u)\n", __func__,
2140		    count);
2141		wpi_nic_unlock(sc);
2142		return;
2143	}
2144	/* Skip "count" field. */
2145	offset = sc->errptr + sizeof (uint32_t);
2146	printf("firmware error log (count = %u):\n", count);
2147	for (i = 0; i < count; i++) {
2148		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2149		    sizeof (dump) / sizeof (uint32_t));
2150
2151		printf("  error type = \"%s\" (0x%08X)\n",
2152		    (dump.desc < size_errmsg) ?
2153		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2154		    dump.desc);
2155		printf("  error data      = 0x%08X\n",
2156		    dump.data);
2157		printf("  branch link     = 0x%08X%08X\n",
2158		    dump.blink[0], dump.blink[1]);
2159		printf("  interrupt link  = 0x%08X%08X\n",
2160		    dump.ilink[0], dump.ilink[1]);
2161		printf("  time            = %u\n", dump.time);
2162
2163		offset += sizeof (dump);
2164	}
2165	wpi_nic_unlock(sc);
2166	/* Dump driver status (TX and RX rings) while we're here. */
2167	printf("driver status:\n");
2168	for (i = 0; i < WPI_NTXQUEUES; i++) {
2169		struct wpi_tx_ring *ring = &sc->txq[i];
2170		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2171		    i, ring->qid, ring->cur, ring->queued);
2172	}
2173	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2174}
2175
2176static void
2177wpi_intr(void *arg)
2178{
2179	struct wpi_softc *sc = arg;
2180	struct ifnet *ifp = sc->sc_ifp;
2181	uint32_t r1, r2;
2182
2183	WPI_LOCK(sc);
2184
2185	/* Disable interrupts. */
2186	WPI_WRITE(sc, WPI_INT_MASK, 0);
2187
2188	r1 = WPI_READ(sc, WPI_INT);
2189
2190	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2191		WPI_UNLOCK(sc);
2192		return;	/* Hardware gone! */
2193	}
2194
2195	r2 = WPI_READ(sc, WPI_FH_INT);
2196
2197	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2198	    r1, r2);
2199
2200	if (r1 == 0 && r2 == 0)
2201		goto done;	/* Interrupt not for us. */
2202
2203	/* Acknowledge interrupts. */
2204	WPI_WRITE(sc, WPI_INT, r1);
2205	WPI_WRITE(sc, WPI_FH_INT, r2);
2206
2207	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2208		struct ieee80211com *ic = ifp->if_l2com;
2209
2210		device_printf(sc->sc_dev, "fatal firmware error\n");
2211		wpi_fatal_intr(sc);
2212		DPRINTF(sc, WPI_DEBUG_HW,
2213		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2214		    "(Hardware Error)");
2215		ieee80211_runtask(ic, &sc->sc_reinittask);
2216		sc->flags &= ~WPI_FLAG_BUSY;
2217		WPI_UNLOCK(sc);
2218		return;
2219	}
2220
2221	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2222	    (r2 & WPI_FH_INT_RX))
2223		wpi_notif_intr(sc);
2224
2225	if (r1 & WPI_INT_ALIVE)
2226		wakeup(sc);	/* Firmware is alive. */
2227
2228	if (r1 & WPI_INT_WAKEUP)
2229		wpi_wakeup_intr(sc);
2230
2231done:
2232	/* Re-enable interrupts. */
2233	if (ifp->if_flags & IFF_UP)
2234		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2235
2236	WPI_UNLOCK(sc);
2237}
2238
2239static int
2240wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2241{
2242	struct ieee80211_frame *wh;
2243	struct wpi_tx_cmd *cmd;
2244	struct wpi_tx_data *data;
2245	struct wpi_tx_desc *desc;
2246	struct wpi_tx_ring *ring;
2247	struct mbuf *m1;
2248	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2249	int error, i, hdrlen, nsegs, totlen, pad;
2250
2251	WPI_LOCK_ASSERT(sc);
2252
2253	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2254
2255	wh = mtod(buf->m, struct ieee80211_frame *);
2256	hdrlen = ieee80211_anyhdrsize(wh);
2257	totlen = buf->m->m_pkthdr.len;
2258
2259	if (hdrlen & 3) {
2260		/* First segment length must be a multiple of 4. */
2261		pad = 4 - (hdrlen & 3);
2262	} else
2263		pad = 0;
2264
2265	ring = &sc->txq[buf->ac];
2266	desc = &ring->desc[ring->cur];
2267	data = &ring->data[ring->cur];
2268
2269	/* Prepare TX firmware command. */
2270	cmd = &ring->cmd[ring->cur];
2271	cmd->code = buf->code;
2272	cmd->flags = 0;
2273	cmd->qid = ring->qid;
2274	cmd->idx = ring->cur;
2275
2276	memcpy(cmd->data, buf->data, buf->size);
2277
2278	/* Save and trim IEEE802.11 header. */
2279	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2280	m_adj(buf->m, hdrlen);
2281
2282	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2283	    segs, &nsegs, BUS_DMA_NOWAIT);
2284	if (error != 0 && error != EFBIG) {
2285		device_printf(sc->sc_dev,
2286		    "%s: can't map mbuf (error %d)\n", __func__, error);
2287		m_freem(buf->m);
2288		return error;
2289	}
2290	if (error != 0) {
2291		/* Too many DMA segments, linearize mbuf. */
2292		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2293		if (m1 == NULL) {
2294			device_printf(sc->sc_dev,
2295			    "%s: could not defrag mbuf\n", __func__);
2296			m_freem(buf->m);
2297			return ENOBUFS;
2298		}
2299		buf->m = m1;
2300
2301		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2302		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2303		if (error != 0) {
2304			device_printf(sc->sc_dev,
2305			    "%s: can't map mbuf (error %d)\n", __func__, error);
2306			m_freem(buf->m);
2307			return error;
2308		}
2309	}
2310
2311	KASSERT(nsegs < WPI_MAX_SCATTER,
2312	    ("too many DMA segments, nsegs (%d) should be less than %d",
2313	     nsegs, WPI_MAX_SCATTER));
2314
2315	data->m = buf->m;
2316	data->ni = buf->ni;
2317
2318	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2319	    __func__, ring->qid, ring->cur, totlen, nsegs);
2320
2321	/* Fill TX descriptor. */
2322	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2323	/* First DMA segment is used by the TX command. */
2324	desc->segs[0].addr = htole32(data->cmd_paddr);
2325	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2326	/* Other DMA segments are for data payload. */
2327	seg = &segs[0];
2328	for (i = 1; i <= nsegs; i++) {
2329		desc->segs[i].addr = htole32(seg->ds_addr);
2330		desc->segs[i].len  = htole32(seg->ds_len);
2331		seg++;
2332	}
2333
2334	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2335	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2336	    BUS_DMASYNC_PREWRITE);
2337	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2338	    BUS_DMASYNC_PREWRITE);
2339
2340	/* Kick TX ring. */
2341	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2342	wpi_update_tx_ring(sc, ring);
2343
2344	/* Mark TX ring as full if we reach a certain threshold. */
2345	if (++ring->queued > WPI_TX_RING_HIMARK)
2346		sc->qfullmsk |= 1 << ring->qid;
2347
2348	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2349
2350	return 0;
2351}
2352
2353/*
2354 * Construct the data packet for a transmit buffer.
2355 */
2356static int
2357wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2358{
2359	const struct ieee80211_txparam *tp;
2360	struct ieee80211vap *vap = ni->ni_vap;
2361	struct ieee80211com *ic = ni->ni_ic;
2362	struct wpi_node *wn = (void *)ni;
2363	struct ieee80211_channel *chan;
2364	struct ieee80211_frame *wh;
2365	struct ieee80211_key *k = NULL;
2366	struct wpi_cmd_data tx;
2367	struct wpi_buf tx_data;
2368	uint32_t flags;
2369	uint16_t qos;
2370	uint8_t tid, type;
2371	int ac, error, rate, ismcast, totlen;
2372
2373	wh = mtod(m, struct ieee80211_frame *);
2374	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2375	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2376
2377	/* Select EDCA Access Category and TX ring for this frame. */
2378	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2379 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2380		tid = qos & IEEE80211_QOS_TID;
2381	} else {
2382		qos = 0;
2383		tid = 0;
2384        }
2385	ac = M_WME_GETAC(m);
2386
2387	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2388		ni->ni_chan : ic->ic_curchan;
2389	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2390
2391	/* Choose a TX rate index. */
2392	if (type == IEEE80211_FC0_TYPE_MGT)
2393		rate = tp->mgmtrate;
2394	else if (ismcast)
2395		rate = tp->mcastrate;
2396	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2397		rate = tp->ucastrate;
2398	else if (m->m_flags & M_EAPOL)
2399		rate = tp->mgmtrate;
2400	else {
2401		/* XXX pass pktlen */
2402		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2403		rate = ni->ni_txrate;
2404	}
2405
2406	/* Encrypt the frame if need be. */
2407	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2408		/* Retrieve key for TX. */
2409		k = ieee80211_crypto_encap(ni, m);
2410		if (k == NULL) {
2411			error = ENOBUFS;
2412			goto fail;
2413		}
2414		/* 802.11 header may have moved. */
2415		wh = mtod(m, struct ieee80211_frame *);
2416	}
2417	totlen = m->m_pkthdr.len;
2418
2419	if (ieee80211_radiotap_active_vap(vap)) {
2420		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2421
2422		tap->wt_flags = 0;
2423		tap->wt_rate = rate;
2424		if (k != NULL)
2425			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2426
2427		ieee80211_radiotap_tx(vap, m);
2428	}
2429
2430	flags = 0;
2431	if (!ismcast) {
2432		/* Unicast frame, check if an ACK is expected. */
2433		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2434		    IEEE80211_QOS_ACKPOLICY_NOACK)
2435			flags |= WPI_TX_NEED_ACK;
2436	}
2437
2438	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2439		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2440
2441	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2442	if (!ismcast) {
2443		/* NB: Group frames are sent using CCK in 802.11b/g. */
2444		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2445			flags |= WPI_TX_NEED_RTS;
2446		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2447		    WPI_RATE_IS_OFDM(rate)) {
2448			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2449				flags |= WPI_TX_NEED_CTS;
2450			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2451				flags |= WPI_TX_NEED_RTS;
2452		}
2453
2454		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2455			flags |= WPI_TX_FULL_TXOP;
2456	}
2457
2458	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2459	if (type == IEEE80211_FC0_TYPE_MGT) {
2460		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2461
2462		/* Tell HW to set timestamp in probe responses. */
2463		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2464			flags |= WPI_TX_INSERT_TSTAMP;
2465		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2466		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2467			tx.timeout = htole16(3);
2468		else
2469			tx.timeout = htole16(2);
2470	}
2471
2472	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2473		tx.id = WPI_ID_BROADCAST;
2474	else {
2475		if (wn->id == WPI_ID_UNDEFINED &&
2476		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2477		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2478			error = wpi_add_ibss_node(sc, ni);
2479			if (error != 0) {
2480				device_printf(sc->sc_dev,
2481				    "%s: could not add IBSS node, error %d\n",
2482				    __func__, error);
2483				goto fail;
2484			}
2485		}
2486
2487		if (wn->id == WPI_ID_UNDEFINED) {
2488			device_printf(sc->sc_dev,
2489			    "%s: undefined node id\n", __func__);
2490			error = EINVAL;
2491			goto fail;
2492		}
2493
2494		tx.id = wn->id;
2495	}
2496
2497	if (type != IEEE80211_FC0_TYPE_MGT)
2498		tx.data_ntries = tp->maxretry;
2499
2500	tx.len = htole16(totlen);
2501	tx.flags = htole32(flags);
2502	tx.plcp = rate2plcp(rate);
2503	tx.tid = tid;
2504	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2505	tx.ofdm_mask = 0xff;
2506	tx.cck_mask = 0x0f;
2507	tx.rts_ntries = 7;
2508
2509	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2510		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2511			tx.security = WPI_CIPHER_CCMP;
2512			memcpy(tx.key, k->wk_key, k->wk_keylen);
2513		}
2514	}
2515
2516	tx_data.data = &tx;
2517	tx_data.ni = ni;
2518	tx_data.m = m;
2519	tx_data.size = sizeof(tx);
2520	tx_data.code = WPI_CMD_TX_DATA;
2521	tx_data.ac = ac;
2522
2523	return wpi_cmd2(sc, &tx_data);
2524
2525fail:	m_freem(m);
2526	return error;
2527}
2528
2529static int
2530wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2531    const struct ieee80211_bpf_params *params)
2532{
2533	struct ieee80211vap *vap = ni->ni_vap;
2534	struct ieee80211_frame *wh;
2535	struct wpi_cmd_data tx;
2536	struct wpi_buf tx_data;
2537	uint32_t flags;
2538	uint8_t type;
2539	int ac, rate, totlen;
2540
2541	wh = mtod(m, struct ieee80211_frame *);
2542	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2543	totlen = m->m_pkthdr.len;
2544
2545	ac = params->ibp_pri & 3;
2546
2547	/* Choose a TX rate index. */
2548	rate = params->ibp_rate0;
2549
2550	flags = 0;
2551	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2552		flags |= WPI_TX_NEED_ACK;
2553	if (params->ibp_flags & IEEE80211_BPF_RTS)
2554		flags |= WPI_TX_NEED_RTS;
2555	if (params->ibp_flags & IEEE80211_BPF_CTS)
2556		flags |= WPI_TX_NEED_CTS;
2557	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2558		flags |= WPI_TX_FULL_TXOP;
2559
2560	if (ieee80211_radiotap_active_vap(vap)) {
2561		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2562
2563		tap->wt_flags = 0;
2564		tap->wt_rate = rate;
2565
2566		ieee80211_radiotap_tx(vap, m);
2567	}
2568
2569	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2570	if (type == IEEE80211_FC0_TYPE_MGT) {
2571		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2572
2573		/* Tell HW to set timestamp in probe responses. */
2574		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2575			flags |= WPI_TX_INSERT_TSTAMP;
2576		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2577		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2578			tx.timeout = htole16(3);
2579		else
2580			tx.timeout = htole16(2);
2581	}
2582
2583	tx.len = htole16(totlen);
2584	tx.flags = htole32(flags);
2585	tx.plcp = rate2plcp(rate);
2586	tx.id = WPI_ID_BROADCAST;
2587	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2588	tx.rts_ntries = params->ibp_try1;
2589	tx.data_ntries = params->ibp_try0;
2590
2591	tx_data.data = &tx;
2592	tx_data.ni = ni;
2593	tx_data.m = m;
2594	tx_data.size = sizeof(tx);
2595	tx_data.code = WPI_CMD_TX_DATA;
2596	tx_data.ac = ac;
2597
2598	return wpi_cmd2(sc, &tx_data);
2599}
2600
2601static int
2602wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2603    const struct ieee80211_bpf_params *params)
2604{
2605	struct ieee80211com *ic = ni->ni_ic;
2606	struct ifnet *ifp = ic->ic_ifp;
2607	struct wpi_softc *sc = ifp->if_softc;
2608	int error = 0;
2609
2610	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2611
2612	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2613		ieee80211_free_node(ni);
2614		m_freem(m);
2615		return ENETDOWN;
2616	}
2617
2618	WPI_LOCK(sc);
2619	if (params == NULL) {
2620		/*
2621		 * Legacy path; interpret frame contents to decide
2622		 * precisely how to send the frame.
2623		 */
2624		error = wpi_tx_data(sc, m, ni);
2625	} else {
2626		/*
2627		 * Caller supplied explicit parameters to use in
2628		 * sending the frame.
2629		 */
2630		error = wpi_tx_data_raw(sc, m, ni, params);
2631	}
2632	WPI_UNLOCK(sc);
2633
2634	if (error != 0) {
2635		/* NB: m is reclaimed on tx failure */
2636		ieee80211_free_node(ni);
2637		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2638
2639		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2640
2641		return error;
2642	}
2643
2644	sc->sc_tx_timer = 5;
2645
2646	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2647
2648	return 0;
2649}
2650
2651/**
2652 * Process data waiting to be sent on the IFNET output queue
2653 */
2654static void
2655wpi_start(struct ifnet *ifp)
2656{
2657	struct wpi_softc *sc = ifp->if_softc;
2658
2659	WPI_LOCK(sc);
2660	wpi_start_locked(ifp);
2661	WPI_UNLOCK(sc);
2662}
2663
2664static void
2665wpi_start_locked(struct ifnet *ifp)
2666{
2667	struct wpi_softc *sc = ifp->if_softc;
2668	struct ieee80211_node *ni;
2669	struct mbuf *m;
2670
2671	WPI_LOCK_ASSERT(sc);
2672
2673	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2674
2675	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2676	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2677		return;
2678
2679	for (;;) {
2680		if (sc->qfullmsk != 0) {
2681			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2682			break;
2683		}
2684		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2685		if (m == NULL)
2686			break;
2687		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2688		if (wpi_tx_data(sc, m, ni) != 0) {
2689			WPI_UNLOCK(sc);
2690			ieee80211_free_node(ni);
2691			WPI_LOCK(sc);
2692			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2693		} else
2694			sc->sc_tx_timer = 5;
2695	}
2696
2697	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2698}
2699
2700static void
2701wpi_watchdog_rfkill(void *arg)
2702{
2703	struct wpi_softc *sc = arg;
2704	struct ifnet *ifp = sc->sc_ifp;
2705	struct ieee80211com *ic = ifp->if_l2com;
2706
2707	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2708
2709	/* No need to lock firmware memory. */
2710	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2711		/* Radio kill switch is still off. */
2712		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2713		    sc);
2714	} else
2715		ieee80211_runtask(ic, &sc->sc_radioon_task);
2716}
2717
2718/**
2719 * Called every second, wpi_watchdog used by the watch dog timer
2720 * to check that the card is still alive
2721 */
2722static void
2723wpi_watchdog(void *arg)
2724{
2725	struct wpi_softc *sc = arg;
2726	struct ifnet *ifp = sc->sc_ifp;
2727	struct ieee80211com *ic = ifp->if_l2com;
2728
2729	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2730
2731	if (sc->sc_tx_timer > 0) {
2732		if (--sc->sc_tx_timer == 0) {
2733			if_printf(ifp, "device timeout\n");
2734			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2735			ieee80211_runtask(ic, &sc->sc_reinittask);
2736		}
2737	}
2738
2739	if (sc->sc_scan_timer > 0) {
2740		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2741		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2742			if_printf(ifp, "scan timeout\n");
2743			ieee80211_cancel_scan(vap);
2744			ieee80211_runtask(ic, &sc->sc_reinittask);
2745		}
2746	}
2747
2748	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2749		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2750}
2751
2752static int
2753wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2754{
2755	struct wpi_softc *sc = ifp->if_softc;
2756	struct ieee80211com *ic = ifp->if_l2com;
2757	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2758	struct ifreq *ifr = (struct ifreq *) data;
2759	int error = 0, startall = 0, stop = 0;
2760
2761	switch (cmd) {
2762	case SIOCGIFADDR:
2763		error = ether_ioctl(ifp, cmd, data);
2764		break;
2765	case SIOCSIFFLAGS:
2766		WPI_LOCK(sc);
2767		if (ifp->if_flags & IFF_UP) {
2768			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2769				wpi_init_locked(sc);
2770				if (WPI_READ(sc, WPI_GP_CNTRL) &
2771				    WPI_GP_CNTRL_RFKILL)
2772					startall = 1;
2773				else
2774					stop = 1;
2775			}
2776		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2777			wpi_stop_locked(sc);
2778		WPI_UNLOCK(sc);
2779		if (startall)
2780			ieee80211_start_all(ic);
2781		else if (vap != NULL && stop)
2782			ieee80211_stop(vap);
2783		break;
2784	case SIOCGIFMEDIA:
2785		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2786		break;
2787	default:
2788		error = EINVAL;
2789		break;
2790	}
2791	return error;
2792}
2793
2794/*
2795 * Send a command to the firmware.
2796 */
2797static int
2798wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2799    int async)
2800{
2801	struct wpi_tx_ring *ring = &sc->txq[4];
2802	struct wpi_tx_desc *desc;
2803	struct wpi_tx_data *data;
2804	struct wpi_tx_cmd *cmd;
2805	struct mbuf *m;
2806	bus_addr_t paddr;
2807	int totlen, error;
2808
2809	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2810
2811	if (async == 0)
2812		WPI_LOCK_ASSERT(sc);
2813
2814	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2815	    wpi_cmd_str(code), size, async);
2816
2817	if (sc->flags & WPI_FLAG_BUSY) {
2818		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2819		    __func__, code);
2820		return EAGAIN;
2821	}
2822	sc->flags |= WPI_FLAG_BUSY;
2823
2824	desc = &ring->desc[ring->cur];
2825	data = &ring->data[ring->cur];
2826	totlen = 4 + size;
2827
2828	if (size > sizeof cmd->data) {
2829		/* Command is too large to fit in a descriptor. */
2830		if (totlen > MCLBYTES)
2831			return EINVAL;
2832		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2833		if (m == NULL)
2834			return ENOMEM;
2835		cmd = mtod(m, struct wpi_tx_cmd *);
2836		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2837		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2838		if (error != 0) {
2839			m_freem(m);
2840			return error;
2841		}
2842		data->m = m;
2843	} else {
2844		cmd = &ring->cmd[ring->cur];
2845		paddr = data->cmd_paddr;
2846	}
2847
2848	cmd->code = code;
2849	cmd->flags = 0;
2850	cmd->qid = ring->qid;
2851	cmd->idx = ring->cur;
2852	memcpy(cmd->data, buf, size);
2853
2854	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2855	desc->segs[0].addr = htole32(paddr);
2856	desc->segs[0].len  = htole32(totlen);
2857
2858	if (size > sizeof cmd->data) {
2859		bus_dmamap_sync(ring->data_dmat, data->map,
2860		    BUS_DMASYNC_PREWRITE);
2861	} else {
2862		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2863		    BUS_DMASYNC_PREWRITE);
2864	}
2865	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2866	    BUS_DMASYNC_PREWRITE);
2867
2868	/* Kick command ring. */
2869	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2870	wpi_update_tx_ring(sc, ring);
2871
2872	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2873
2874	if (async) {
2875		sc->flags &= ~WPI_FLAG_BUSY;
2876		return 0;
2877	}
2878
2879	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2880}
2881
2882/*
2883 * Configure HW multi-rate retries.
2884 */
2885static int
2886wpi_mrr_setup(struct wpi_softc *sc)
2887{
2888	struct ifnet *ifp = sc->sc_ifp;
2889	struct ieee80211com *ic = ifp->if_l2com;
2890	struct wpi_mrr_setup mrr;
2891	int i, error;
2892
2893	/* CCK rates (not used with 802.11a). */
2894	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2895		mrr.rates[i].flags = 0;
2896		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2897		/* Fallback to the immediate lower CCK rate (if any.) */
2898		mrr.rates[i].next =
2899		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2900		/* Try one time at this rate before falling back to "next". */
2901		mrr.rates[i].ntries = 1;
2902	}
2903	/* OFDM rates (not used with 802.11b). */
2904	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2905		mrr.rates[i].flags = 0;
2906		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2907		/* Fallback to the immediate lower rate (if any.) */
2908		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2909		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2910		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2911			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2912		    i - 1;
2913		/* Try one time at this rate before falling back to "next". */
2914		mrr.rates[i].ntries = 1;
2915	}
2916	/* Setup MRR for control frames. */
2917	mrr.which = htole32(WPI_MRR_CTL);
2918	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2919	if (error != 0) {
2920		device_printf(sc->sc_dev,
2921		    "could not setup MRR for control frames\n");
2922		return error;
2923	}
2924	/* Setup MRR for data frames. */
2925	mrr.which = htole32(WPI_MRR_DATA);
2926	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2927	if (error != 0) {
2928		device_printf(sc->sc_dev,
2929		    "could not setup MRR for data frames\n");
2930		return error;
2931	}
2932	return 0;
2933}
2934
2935static int
2936wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2937{
2938	struct ieee80211com *ic = ni->ni_ic;
2939	struct wpi_node *wn = (void *)ni;
2940	struct wpi_node_info node;
2941
2942	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2943
2944	if (wn->id == WPI_ID_UNDEFINED)
2945		return EINVAL;
2946
2947	memset(&node, 0, sizeof node);
2948	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2949	node.id = wn->id;
2950	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2951	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2952	node.action = htole32(WPI_ACTION_SET_RATE);
2953	node.antenna = WPI_ANTENNA_BOTH;
2954
2955	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2956}
2957
2958/*
2959 * Broadcast node is used to send group-addressed and management frames.
2960 */
2961static int
2962wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2963{
2964	struct ifnet *ifp = sc->sc_ifp;
2965	struct ieee80211com *ic = ifp->if_l2com;
2966	struct wpi_node_info node;
2967
2968	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2969
2970	memset(&node, 0, sizeof node);
2971	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2972	node.id = WPI_ID_BROADCAST;
2973	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2974	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2975	node.action = htole32(WPI_ACTION_SET_RATE);
2976	node.antenna = WPI_ANTENNA_BOTH;
2977
2978	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2979}
2980
2981static int
2982wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2983{
2984	struct wpi_node *wn = (void *)ni;
2985
2986	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2987
2988	if (wn->id != WPI_ID_UNDEFINED)
2989		return EINVAL;
2990
2991	wn->id = alloc_unrl(sc->sc_unr);
2992
2993	if (wn->id == (uint8_t)-1)
2994		return ENOBUFS;
2995
2996	return wpi_add_node(sc, ni);
2997}
2998
2999static void
3000wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3001{
3002	struct wpi_node *wn = (void *)ni;
3003	struct wpi_cmd_del_node node;
3004	int error;
3005
3006	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3007
3008	if (wn->id == WPI_ID_UNDEFINED) {
3009		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
3010		    __func__);
3011		return;
3012	}
3013
3014	memset(&node, 0, sizeof node);
3015	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3016	node.count = 1;
3017
3018	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3019	if (error != 0) {
3020		device_printf(sc->sc_dev,
3021		    "%s: could not delete node %u, error %d\n", __func__,
3022		    wn->id, error);
3023	}
3024}
3025
3026static int
3027wpi_updateedca(struct ieee80211com *ic)
3028{
3029#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3030	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3031	struct wpi_edca_params cmd;
3032	int aci, error;
3033
3034	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3035
3036	memset(&cmd, 0, sizeof cmd);
3037	cmd.flags = htole32(WPI_EDCA_UPDATE);
3038	for (aci = 0; aci < WME_NUM_AC; aci++) {
3039		const struct wmeParams *ac =
3040		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3041		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3042		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3043		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3044		cmd.ac[aci].txoplimit =
3045		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3046
3047		DPRINTF(sc, WPI_DEBUG_EDCA,
3048		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3049		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3050		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3051		    cmd.ac[aci].txoplimit);
3052	}
3053	IEEE80211_UNLOCK(ic);
3054	WPI_LOCK(sc);
3055	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3056	WPI_UNLOCK(sc);
3057	IEEE80211_LOCK(ic);
3058
3059	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3060
3061	return error;
3062#undef WPI_EXP2
3063}
3064
3065static void
3066wpi_set_promisc(struct wpi_softc *sc)
3067{
3068	struct ifnet *ifp = sc->sc_ifp;
3069	uint32_t promisc_filter;
3070
3071	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3072
3073	if (ifp->if_flags & IFF_PROMISC)
3074		sc->rxon.filter |= htole32(promisc_filter);
3075	else
3076		sc->rxon.filter &= ~htole32(promisc_filter);
3077}
3078
3079static void
3080wpi_update_promisc(struct ifnet *ifp)
3081{
3082	struct wpi_softc *sc = ifp->if_softc;
3083
3084	wpi_set_promisc(sc);
3085
3086	WPI_LOCK(sc);
3087	if (wpi_send_rxon(sc, 1, 1) != 0) {
3088		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3089		    __func__);
3090	}
3091	WPI_UNLOCK(sc);
3092}
3093
3094static void
3095wpi_update_mcast(struct ifnet *ifp)
3096{
3097	/* Ignore */
3098}
3099
3100static void
3101wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3102{
3103	struct wpi_cmd_led led;
3104
3105	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3106
3107	led.which = which;
3108	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3109	led.off = off;
3110	led.on = on;
3111	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3112}
3113
3114static int
3115wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3116{
3117	struct wpi_cmd_timing cmd;
3118	uint64_t val, mod;
3119
3120	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3121
3122	memset(&cmd, 0, sizeof cmd);
3123	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3124	cmd.bintval = htole16(ni->ni_intval);
3125	cmd.lintval = htole16(10);
3126
3127	/* Compute remaining time until next beacon. */
3128	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3129	mod = le64toh(cmd.tstamp) % val;
3130	cmd.binitval = htole32((uint32_t)(val - mod));
3131
3132	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3133	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3134
3135	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3136}
3137
3138/*
3139 * This function is called periodically (every 60 seconds) to adjust output
3140 * power to temperature changes.
3141 */
3142static void
3143wpi_power_calibration(struct wpi_softc *sc)
3144{
3145	int temp;
3146
3147	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3148
3149	/* Update sensor data. */
3150	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3151	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3152
3153	/* Sanity-check read value. */
3154	if (temp < -260 || temp > 25) {
3155		/* This can't be correct, ignore. */
3156		DPRINTF(sc, WPI_DEBUG_TEMP,
3157		    "out-of-range temperature reported: %d\n", temp);
3158		return;
3159	}
3160
3161	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3162
3163	/* Adjust Tx power if need be. */
3164	if (abs(temp - sc->temp) <= 6)
3165		return;
3166
3167	sc->temp = temp;
3168
3169	if (wpi_set_txpower(sc, 1) != 0) {
3170		/* just warn, too bad for the automatic calibration... */
3171		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3172	}
3173}
3174
3175/*
3176 * Set TX power for current channel.
3177 */
3178static int
3179wpi_set_txpower(struct wpi_softc *sc, int async)
3180{
3181	struct ifnet *ifp = sc->sc_ifp;
3182	struct ieee80211com *ic = ifp->if_l2com;
3183	struct ieee80211_channel *ch;
3184	struct wpi_power_group *group;
3185	struct wpi_cmd_txpower cmd;
3186	uint8_t chan;
3187	int idx, i;
3188
3189	/* Retrieve current channel from last RXON. */
3190	chan = sc->rxon.chan;
3191	ch = &ic->ic_channels[chan];
3192
3193	/* Find the TX power group to which this channel belongs. */
3194	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3195		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3196			if (chan <= group->chan)
3197				break;
3198	} else
3199		group = &sc->groups[0];
3200
3201	memset(&cmd, 0, sizeof cmd);
3202	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3203	cmd.chan = htole16(chan);
3204
3205	/* Set TX power for all OFDM and CCK rates. */
3206	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3207		/* Retrieve TX power for this channel/rate. */
3208		idx = wpi_get_power_index(sc, group, ch, i);
3209
3210		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3211
3212		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3213			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3214			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3215		} else {
3216			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3217			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3218		}
3219		DPRINTF(sc, WPI_DEBUG_TEMP,
3220		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3221	}
3222
3223	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3224}
3225
3226/*
3227 * Determine Tx power index for a given channel/rate combination.
3228 * This takes into account the regulatory information from EEPROM and the
3229 * current temperature.
3230 */
3231static int
3232wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3233    struct ieee80211_channel *c, int ridx)
3234{
3235/* Fixed-point arithmetic division using a n-bit fractional part. */
3236#define fdivround(a, b, n)      \
3237	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3238
3239/* Linear interpolation. */
3240#define interpolate(x, x1, y1, x2, y2, n)       \
3241	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3242
3243	struct ifnet *ifp = sc->sc_ifp;
3244	struct ieee80211com *ic = ifp->if_l2com;
3245	struct wpi_power_sample *sample;
3246	int pwr, idx;
3247	u_int chan;
3248
3249	/* Get channel number. */
3250	chan = ieee80211_chan2ieee(ic, c);
3251
3252	/* Default TX power is group maximum TX power minus 3dB. */
3253	pwr = group->maxpwr / 2;
3254
3255	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3256	switch (ridx) {
3257	case WPI_RIDX_OFDM36:
3258		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3259		break;
3260	case WPI_RIDX_OFDM48:
3261		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3262		break;
3263	case WPI_RIDX_OFDM54:
3264		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3265		break;
3266	}
3267
3268	/* Never exceed the channel maximum allowed TX power. */
3269	pwr = min(pwr, sc->maxpwr[chan]);
3270
3271	/* Retrieve TX power index into gain tables from samples. */
3272	for (sample = group->samples; sample < &group->samples[3]; sample++)
3273		if (pwr > sample[1].power)
3274			break;
3275	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3276	idx = interpolate(pwr, sample[0].power, sample[0].index,
3277	    sample[1].power, sample[1].index, 19);
3278
3279	/*-
3280	 * Adjust power index based on current temperature:
3281	 * - if cooler than factory-calibrated: decrease output power
3282	 * - if warmer than factory-calibrated: increase output power
3283	 */
3284	idx -= (sc->temp - group->temp) * 11 / 100;
3285
3286	/* Decrease TX power for CCK rates (-5dB). */
3287	if (ridx >= WPI_RIDX_CCK1)
3288		idx += 10;
3289
3290	/* Make sure idx stays in a valid range. */
3291	if (idx < 0)
3292		return 0;
3293	if (idx > WPI_MAX_PWR_INDEX)
3294		return WPI_MAX_PWR_INDEX;
3295	return idx;
3296
3297#undef interpolate
3298#undef fdivround
3299}
3300
3301/*
3302 * Set STA mode power saving level (between 0 and 5).
3303 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3304 */
3305static int
3306wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3307{
3308	struct wpi_pmgt_cmd cmd;
3309	const struct wpi_pmgt *pmgt;
3310	uint32_t max, skip_dtim;
3311	uint32_t reg;
3312	int i;
3313
3314	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3315	    "%s: dtim=%d, level=%d, async=%d\n",
3316	    __func__, dtim, level, async);
3317
3318	/* Select which PS parameters to use. */
3319	if (dtim <= 10)
3320		pmgt = &wpi_pmgt[0][level];
3321	else
3322		pmgt = &wpi_pmgt[1][level];
3323
3324	memset(&cmd, 0, sizeof cmd);
3325	if (level != 0)	/* not CAM */
3326		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3327	/* Retrieve PCIe Active State Power Management (ASPM). */
3328	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3329	if (!(reg & 0x1))	/* L0s Entry disabled. */
3330		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3331
3332	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3333	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3334
3335	if (dtim == 0) {
3336		dtim = 1;
3337		skip_dtim = 0;
3338	} else
3339		skip_dtim = pmgt->skip_dtim;
3340
3341	if (skip_dtim != 0) {
3342		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3343		max = pmgt->intval[4];
3344		if (max == (uint32_t)-1)
3345			max = dtim * (skip_dtim + 1);
3346		else if (max > dtim)
3347			max = (max / dtim) * dtim;
3348	} else
3349		max = dtim;
3350
3351	for (i = 0; i < 5; i++)
3352		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3353
3354	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3355}
3356
3357static int
3358wpi_send_btcoex(struct wpi_softc *sc)
3359{
3360	struct wpi_bluetooth cmd;
3361
3362        memset(&cmd, 0, sizeof cmd);
3363        cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3364        cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3365        cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3366	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3367	    __func__);
3368        return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3369}
3370
3371static int
3372wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3373{
3374	int error;
3375
3376	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3377		struct wpi_assoc rxon_assoc;
3378
3379		rxon_assoc.flags = sc->rxon.flags;
3380		rxon_assoc.filter = sc->rxon.filter;
3381		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3382		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3383		rxon_assoc.reserved = 0;
3384
3385		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3386		    sizeof (struct wpi_assoc), async);
3387	} else {
3388		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3389		    sizeof (struct wpi_rxon), async);
3390	}
3391	if (error != 0) {
3392		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3393		    error);
3394		return error;
3395	}
3396
3397	/* Configuration has changed, set Tx power accordingly. */
3398	if ((error = wpi_set_txpower(sc, async)) != 0) {
3399		device_printf(sc->sc_dev,
3400		    "%s: could not set TX power, error %d\n", __func__, error);
3401		return error;
3402	}
3403
3404	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3405		/* Add broadcast node. */
3406		error = wpi_add_broadcast_node(sc, async);
3407		if (error != 0) {
3408			device_printf(sc->sc_dev,
3409			    "could not add broadcast node, error %d\n", error);
3410			return error;
3411		}
3412	}
3413
3414	return 0;
3415}
3416
3417/**
3418 * Configure the card to listen to a particular channel, this transisions the
3419 * card in to being able to receive frames from remote devices.
3420 */
3421static int
3422wpi_config(struct wpi_softc *sc)
3423{
3424	struct ifnet *ifp = sc->sc_ifp;
3425	struct ieee80211com *ic = ifp->if_l2com;
3426	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3427	uint32_t flags;
3428	int error;
3429
3430	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3431
3432	/* Set power saving level to CAM during initialization. */
3433	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3434		device_printf(sc->sc_dev,
3435		    "%s: could not set power saving level\n", __func__);
3436		return error;
3437	}
3438
3439	/* Configure bluetooth coexistence. */
3440	if ((error = wpi_send_btcoex(sc)) != 0) {
3441		device_printf(sc->sc_dev,
3442		    "could not configure bluetooth coexistence\n");
3443		return error;
3444	}
3445
3446	/* Configure adapter. */
3447	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3448	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3449
3450	/* Set default channel. */
3451	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3452	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3453	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3454		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3455
3456	sc->rxon.filter = WPI_FILTER_MULTICAST;
3457	switch (ic->ic_opmode) {
3458	case IEEE80211_M_STA:
3459		sc->rxon.mode = WPI_MODE_STA;
3460		break;
3461	case IEEE80211_M_IBSS:
3462		sc->rxon.mode = WPI_MODE_IBSS;
3463		sc->rxon.filter |= WPI_FILTER_BEACON;
3464		break;
3465	/* XXX workaround for passive channels selection */
3466	case IEEE80211_M_AHDEMO:
3467	case IEEE80211_M_HOSTAP:
3468		sc->rxon.mode = WPI_MODE_HOSTAP;
3469		break;
3470	case IEEE80211_M_MONITOR:
3471		sc->rxon.mode = WPI_MODE_MONITOR;
3472		break;
3473	default:
3474		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3475		return EINVAL;
3476	}
3477	sc->rxon.filter = htole32(sc->rxon.filter);
3478	wpi_set_promisc(sc);
3479	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3480	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3481
3482	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3483		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3484		    __func__);
3485		return error;
3486	}
3487
3488	/* Setup rate scalling. */
3489	if ((error = wpi_mrr_setup(sc)) != 0) {
3490		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3491		    error);
3492		return error;
3493	}
3494
3495	/* Disable beacon notifications (unused). */
3496	flags = WPI_STATISTICS_BEACON_DISABLE;
3497	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3498	if (error != 0) {
3499		device_printf(sc->sc_dev,
3500		    "could not disable beacon statistics, error %d\n", error);
3501		return error;
3502	}
3503
3504	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3505
3506	return 0;
3507}
3508
3509static uint16_t
3510wpi_get_active_dwell_time(struct wpi_softc *sc,
3511    struct ieee80211_channel *c, uint8_t n_probes)
3512{
3513	/* No channel? Default to 2GHz settings. */
3514	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3515		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3516		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3517	}
3518
3519	/* 5GHz dwell time. */
3520	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3521	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3522}
3523
3524/*
3525 * Limit the total dwell time to 85% of the beacon interval.
3526 *
3527 * Returns the dwell time in milliseconds.
3528 */
3529static uint16_t
3530wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3531{
3532	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3533	struct ieee80211vap *vap = NULL;
3534	int bintval = 0;
3535
3536	/* bintval is in TU (1.024mS) */
3537	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3538		vap = TAILQ_FIRST(&ic->ic_vaps);
3539		bintval = vap->iv_bss->ni_intval;
3540	}
3541
3542	/*
3543	 * If it's non-zero, we should calculate the minimum of
3544	 * it and the DWELL_BASE.
3545	 *
3546	 * XXX Yes, the math should take into account that bintval
3547	 * is 1.024mS, not 1mS..
3548	 */
3549	if (bintval > 0) {
3550		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3551		    bintval);
3552		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3553	}
3554
3555	/* No association context? Default. */
3556	return (WPI_PASSIVE_DWELL_BASE);
3557}
3558
3559static uint16_t
3560wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3561{
3562	uint16_t passive;
3563
3564	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3565		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3566	else
3567		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3568
3569	/* Clamp to the beacon interval if we're associated. */
3570	return (wpi_limit_dwell(sc, passive));
3571}
3572
3573/*
3574 * Send a scan request to the firmware.
3575 */
3576static int
3577wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3578{
3579	struct ifnet *ifp = sc->sc_ifp;
3580	struct ieee80211com *ic = ifp->if_l2com;
3581	struct ieee80211_scan_state *ss = ic->ic_scan;
3582	struct ieee80211vap *vap = ss->ss_vap;
3583	struct wpi_scan_hdr *hdr;
3584	struct wpi_cmd_data *tx;
3585	struct wpi_scan_essid *essids;
3586	struct wpi_scan_chan *chan;
3587	struct ieee80211_frame *wh;
3588	struct ieee80211_rateset *rs;
3589	uint16_t dwell_active, dwell_passive;
3590	uint8_t *buf, *frm;
3591	int buflen, error, i, nssid;
3592
3593	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3594
3595	/*
3596	 * We are absolutely not allowed to send a scan command when another
3597	 * scan command is pending.
3598	 */
3599	if (sc->sc_scan_timer) {
3600		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3601		    __func__);
3602		return (EAGAIN);
3603	}
3604
3605	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3606	if (buf == NULL) {
3607		device_printf(sc->sc_dev,
3608		    "%s: could not allocate buffer for scan command\n",
3609		    __func__);
3610		return ENOMEM;
3611	}
3612	hdr = (struct wpi_scan_hdr *)buf;
3613
3614	/*
3615	 * Move to the next channel if no packets are received within 10 msecs
3616	 * after sending the probe request.
3617	 */
3618	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3619	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3620	/*
3621	 * Max needs to be greater than active and passive and quiet!
3622	 * It's also in microseconds!
3623	 */
3624	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3625	hdr->pause_svc = htole32((4 << 24) |
3626	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3627	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3628
3629	tx = (struct wpi_cmd_data *)(hdr + 1);
3630	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3631	tx->id = WPI_ID_BROADCAST;
3632	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3633
3634	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3635		/* Send probe requests at 6Mbps. */
3636		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3637		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3638	} else {
3639		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3640		/* Send probe requests at 1Mbps. */
3641		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3642		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3643	}
3644
3645	essids = (struct wpi_scan_essid *)(tx + 1);
3646	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3647	for (i = 0; i < nssid; i++) {
3648		essids[i].id = IEEE80211_ELEMID_SSID;
3649		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3650		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3651#ifdef WPI_DEBUG
3652		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3653			printf("Scanning Essid: ");
3654			ieee80211_print_essid(essids[i].data, essids[i].len);
3655			printf("\n");
3656		}
3657#endif
3658	}
3659
3660	/*
3661	 * Build a probe request frame.  Most of the following code is a
3662	 * copy & paste of what is done in net80211.
3663	 */
3664	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3665	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3666		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3667	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3668	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3669	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3670	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3671	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3672	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3673
3674	frm = (uint8_t *)(wh + 1);
3675	frm = ieee80211_add_ssid(frm, NULL, 0);
3676	frm = ieee80211_add_rates(frm, rs);
3677	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3678		frm = ieee80211_add_xrates(frm, rs);
3679
3680	/* Set length of probe request. */
3681	tx->len = htole16(frm - (uint8_t *)wh);
3682
3683	/*
3684	 * Construct information about the channel that we
3685	 * want to scan. The firmware expects this to be directly
3686	 * after the scan probe request
3687	 */
3688	chan = (struct wpi_scan_chan *)frm;
3689	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3690	chan->flags = 0;
3691	if (nssid) {
3692		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3693		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3694	} else
3695		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3696
3697	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3698		chan->flags |= WPI_CHAN_ACTIVE;
3699
3700	/*
3701	 * Calculate the active/passive dwell times.
3702	 */
3703
3704	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3705	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3706
3707	/* Make sure they're valid. */
3708	if (dwell_passive <= dwell_active)
3709		dwell_passive = dwell_active + 1;
3710
3711	chan->active = htole16(dwell_active);
3712	chan->passive = htole16(dwell_passive);
3713
3714	chan->dsp_gain = 0x6e;  /* Default level */
3715
3716	if (IEEE80211_IS_CHAN_5GHZ(c))
3717		chan->rf_gain = 0x3b;
3718	else
3719		chan->rf_gain = 0x28;
3720
3721	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3722	     chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3723
3724	hdr->nchan++;
3725	chan++;
3726
3727	buflen = (uint8_t *)chan - buf;
3728	hdr->len = htole16(buflen);
3729
3730	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3731	    hdr->nchan);
3732	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3733	free(buf, M_DEVBUF);
3734
3735	sc->sc_scan_timer = 5;
3736
3737	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3738
3739	return error;
3740}
3741
3742static int
3743wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3744{
3745	struct ieee80211com *ic = vap->iv_ic;
3746	struct ieee80211_node *ni = vap->iv_bss;
3747	int error;
3748
3749	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3750
3751	/* Update adapter configuration. */
3752	sc->rxon.associd = 0;
3753	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3754	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3755	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3756	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3757	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3758		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3759	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3760		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3761	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3762		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3763	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3764		sc->rxon.cck_mask  = 0;
3765		sc->rxon.ofdm_mask = 0x15;
3766	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3767		sc->rxon.cck_mask  = 0x03;
3768		sc->rxon.ofdm_mask = 0;
3769	} else {
3770		/* Assume 802.11b/g. */
3771		sc->rxon.cck_mask  = 0x0f;
3772		sc->rxon.ofdm_mask = 0x15;
3773	}
3774
3775	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3776	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3777	    sc->rxon.ofdm_mask);
3778
3779	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3780		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3781		    __func__);
3782	}
3783
3784	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3785
3786	return error;
3787}
3788
3789static int
3790wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3791{
3792	struct ifnet *ifp = sc->sc_ifp;
3793	struct ieee80211com *ic = ifp->if_l2com;
3794	struct ieee80211vap *vap = ni->ni_vap;
3795	struct wpi_vap *wvp = WPI_VAP(vap);
3796	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3797	struct ieee80211_beacon_offsets bo;
3798	struct wpi_cmd_beacon *cmd;
3799	struct mbuf *m;
3800	int totlen;
3801
3802	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3803
3804	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3805		return EINVAL;
3806
3807	m = ieee80211_beacon_alloc(ni, &bo);
3808	if (m == NULL) {
3809		device_printf(sc->sc_dev,
3810		    "%s: could not allocate beacon frame\n", __func__);
3811		return ENOMEM;
3812	}
3813	totlen = m->m_pkthdr.len;
3814
3815	if (bcn->data == NULL) {
3816		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3817		    M_NOWAIT | M_ZERO);
3818
3819		if (cmd == NULL) {
3820			device_printf(sc->sc_dev,
3821			    "could not allocate buffer for beacon command\n");
3822			m_freem(m);
3823			return ENOMEM;
3824		}
3825
3826		cmd->id = WPI_ID_BROADCAST;
3827		cmd->ofdm_mask = 0xff;
3828		cmd->cck_mask = 0x0f;
3829		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3830		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3831
3832		bcn->data = cmd;
3833		bcn->ni = NULL;
3834		bcn->code = WPI_CMD_SET_BEACON;
3835		bcn->ac = 4;
3836		bcn->size = sizeof(struct wpi_cmd_beacon);
3837	} else
3838		cmd = bcn->data;
3839
3840	cmd->len = htole16(totlen);
3841	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3842	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3843
3844	/* NB: m will be freed in wpi_cmd_done() */
3845	bcn->m = m;
3846
3847	return wpi_cmd2(sc, bcn);
3848}
3849
3850static void
3851wpi_update_beacon(struct ieee80211vap *vap, int item)
3852{
3853	struct ieee80211_node *ni = vap->iv_bss;
3854	struct ifnet *ifp = vap->iv_ifp;
3855	struct wpi_softc *sc = ifp->if_softc;
3856	int error;
3857
3858	WPI_LOCK(sc);
3859	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3860		device_printf(sc->sc_dev,
3861		    "%s: could not update beacon frame, error %d", __func__,
3862		    error);
3863	}
3864	WPI_UNLOCK(sc);
3865}
3866
3867static int
3868wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3869{
3870	struct ieee80211com *ic = vap->iv_ic;
3871	struct ieee80211_node *ni = vap->iv_bss;
3872	int error;
3873
3874	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3875
3876	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3877		/* Link LED blinks while monitoring. */
3878		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3879		return 0;
3880	}
3881
3882	/* XXX kernel panic workaround */
3883	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3884		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3885		    __func__);
3886		return EINVAL;
3887	}
3888
3889	if ((error = wpi_set_timing(sc, ni)) != 0) {
3890		device_printf(sc->sc_dev,
3891		    "%s: could not set timing, error %d\n", __func__, error);
3892		return error;
3893	}
3894
3895	/* Update adapter configuration. */
3896	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3897	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3898	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3899	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3900	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3901		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3902	/* Short preamble and slot time are negotiated when associating. */
3903	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3904	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3905		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3906	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3907		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3908	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3909		sc->rxon.cck_mask  = 0;
3910		sc->rxon.ofdm_mask = 0x15;
3911	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3912		sc->rxon.cck_mask  = 0x03;
3913		sc->rxon.ofdm_mask = 0;
3914	} else {
3915		/* Assume 802.11b/g. */
3916		sc->rxon.cck_mask  = 0x0f;
3917		sc->rxon.ofdm_mask = 0x15;
3918	}
3919	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3920
3921	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3922
3923	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3924	    sc->rxon.chan, sc->rxon.flags);
3925
3926	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3927		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3928		    __func__);
3929		return error;
3930	}
3931
3932	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3933		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3934			device_printf(sc->sc_dev,
3935			    "%s: could not setup beacon, error %d\n", __func__,
3936			    error);
3937			return error;
3938		}
3939	}
3940
3941	if (vap->iv_opmode == IEEE80211_M_STA) {
3942		/* Add BSS node. */
3943		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3944		if ((error = wpi_add_node(sc, ni)) != 0) {
3945			device_printf(sc->sc_dev,
3946			    "%s: could not add BSS node, error %d\n", __func__,
3947			    error);
3948			return error;
3949		}
3950	}
3951
3952	/* Link LED always on while associated. */
3953	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3954
3955	/* Start periodic calibration timer. */
3956	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3957
3958	/* Enable power-saving mode if requested by user. */
3959	if (vap->iv_flags & IEEE80211_F_PMGTON)
3960		(void)wpi_set_pslevel(sc, 0, 3, 1);
3961	else
3962		(void)wpi_set_pslevel(sc, 0, 0, 1);
3963
3964	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3965
3966	return 0;
3967}
3968
3969static int
3970wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3971    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3972{
3973	struct ifnet *ifp = vap->iv_ifp;
3974	struct wpi_softc *sc = ifp->if_softc;
3975
3976	if (!(&vap->iv_nw_keys[0] <= k &&
3977	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3978		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3979			/* should not happen */
3980			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3981			    __func__);
3982			return 0;
3983		}
3984		*keyix = 0;	/* NB: use key index 0 for ucast key */
3985	} else {
3986		*keyix = *rxkeyix = k - vap->iv_nw_keys;
3987
3988		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
3989			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
3990	}
3991	return 1;
3992}
3993
3994static int
3995wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
3996    const uint8_t mac[IEEE80211_ADDR_LEN])
3997{
3998	const struct ieee80211_cipher *cip = k->wk_cipher;
3999	struct ieee80211com *ic = vap->iv_ic;
4000	struct ieee80211_node *ni = vap->iv_bss;
4001	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4002	struct wpi_node *wn = (void *)ni;
4003	struct wpi_node_info node;
4004	uint16_t kflags;
4005	int error;
4006
4007	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4008
4009	switch (cip->ic_cipher) {
4010	case IEEE80211_CIPHER_AES_CCM:
4011		if (k->wk_flags & IEEE80211_KEY_GROUP)
4012			return 1;
4013
4014		kflags = WPI_KFLAG_CCMP;
4015		break;
4016	default:
4017		/* null_key_set() */
4018		return 1;
4019	}
4020
4021	if (wn->id == WPI_ID_UNDEFINED)
4022		return 0;
4023
4024	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4025	if (k->wk_flags & IEEE80211_KEY_GROUP)
4026		kflags |= WPI_KFLAG_MULTICAST;
4027
4028	memset(&node, 0, sizeof node);
4029	node.id = wn->id;
4030	node.control = WPI_NODE_UPDATE;
4031	node.flags = WPI_FLAG_KEY_SET;
4032	node.kflags = htole16(kflags);
4033	memcpy(node.key, k->wk_key, k->wk_keylen);
4034
4035	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4036	    node.id);
4037
4038	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4039	if (error != 0) {
4040		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4041		    error);
4042		return 0;
4043	}
4044
4045	return 1;
4046}
4047
4048static int
4049wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4050{
4051	const struct ieee80211_cipher *cip = k->wk_cipher;
4052	struct ieee80211com *ic = vap->iv_ic;
4053	struct ieee80211_node *ni = vap->iv_bss;
4054	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4055	struct wpi_node *wn = (void *)ni;
4056	struct wpi_node_info node;
4057
4058	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4059
4060	switch (cip->ic_cipher) {
4061	case IEEE80211_CIPHER_AES_CCM:
4062		break;
4063	default:
4064		/* null_key_delete() */
4065		return 1;
4066	}
4067
4068	if (vap->iv_state != IEEE80211_S_RUN ||
4069	    (k->wk_flags & IEEE80211_KEY_GROUP))
4070		return 1; /* Nothing to do. */
4071
4072	memset(&node, 0, sizeof node);
4073	node.id = wn->id;
4074	node.control = WPI_NODE_UPDATE;
4075	node.flags = WPI_FLAG_KEY_SET;
4076
4077	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4078	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4079
4080	return 1;
4081}
4082
4083/*
4084 * This function is called after the runtime firmware notifies us of its
4085 * readiness (called in a process context).
4086 */
4087static int
4088wpi_post_alive(struct wpi_softc *sc)
4089{
4090	int ntries, error;
4091
4092	/* Check (again) that the radio is not disabled. */
4093	if ((error = wpi_nic_lock(sc)) != 0)
4094		return error;
4095
4096	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4097
4098	/* NB: Runtime firmware must be up and running. */
4099	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4100 		device_printf(sc->sc_dev,
4101		    "RF switch: radio disabled (%s)\n", __func__);
4102		wpi_nic_unlock(sc);
4103		return EPERM;   /* :-) */
4104	}
4105	wpi_nic_unlock(sc);
4106
4107	/* Wait for thermal sensor to calibrate. */
4108	for (ntries = 0; ntries < 1000; ntries++) {
4109		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4110			break;
4111		DELAY(10);
4112	}
4113
4114	if (ntries == 1000) {
4115		device_printf(sc->sc_dev,
4116		    "timeout waiting for thermal sensor calibration\n");
4117                return ETIMEDOUT;
4118        }
4119
4120        DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4121        return 0;
4122}
4123
4124/*
4125 * The firmware boot code is small and is intended to be copied directly into
4126 * the NIC internal memory (no DMA transfer).
4127 */
4128static int
4129wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4130{
4131	int error, ntries;
4132
4133	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4134
4135	size /= sizeof (uint32_t);
4136
4137	if ((error = wpi_nic_lock(sc)) != 0)
4138		return error;
4139
4140	/* Copy microcode image into NIC memory. */
4141	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4142	    (const uint32_t *)ucode, size);
4143
4144	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4145	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4146	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4147
4148	/* Start boot load now. */
4149	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4150
4151	/* Wait for transfer to complete. */
4152	for (ntries = 0; ntries < 1000; ntries++) {
4153		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4154		DPRINTF(sc, WPI_DEBUG_HW,
4155		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4156		    WPI_FH_TX_STATUS_IDLE(6),
4157		    status & WPI_FH_TX_STATUS_IDLE(6));
4158		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4159			DPRINTF(sc, WPI_DEBUG_HW,
4160			    "Status Match! - ntries = %d\n", ntries);
4161			break;
4162		}
4163		DELAY(10);
4164	}
4165	if (ntries == 1000) {
4166		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4167		    __func__);
4168		wpi_nic_unlock(sc);
4169		return ETIMEDOUT;
4170	}
4171
4172	/* Enable boot after power up. */
4173	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4174
4175	wpi_nic_unlock(sc);
4176	return 0;
4177}
4178
4179static int
4180wpi_load_firmware(struct wpi_softc *sc)
4181{
4182	struct wpi_fw_info *fw = &sc->fw;
4183	struct wpi_dma_info *dma = &sc->fw_dma;
4184	int error;
4185
4186	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4187
4188	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4189	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4190	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4191	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4192	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4193
4194	/* Tell adapter where to find initialization sections. */
4195	if ((error = wpi_nic_lock(sc)) != 0)
4196		return error;
4197	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4198	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4199	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4200	    dma->paddr + WPI_FW_DATA_MAXSZ);
4201	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4202	wpi_nic_unlock(sc);
4203
4204	/* Load firmware boot code. */
4205	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4206	if (error != 0) {
4207		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4208		    __func__);
4209		return error;
4210	}
4211
4212	/* Now press "execute". */
4213	WPI_WRITE(sc, WPI_RESET, 0);
4214
4215	/* Wait at most one second for first alive notification. */
4216	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4217		device_printf(sc->sc_dev,
4218		    "%s: timeout waiting for adapter to initialize, error %d\n",
4219		    __func__, error);
4220		return error;
4221	}
4222
4223	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4224	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4225	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4226	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4227	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4228
4229	/* Tell adapter where to find runtime sections. */
4230	if ((error = wpi_nic_lock(sc)) != 0)
4231		return error;
4232	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4233	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4234	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4235	    dma->paddr + WPI_FW_DATA_MAXSZ);
4236	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4237	    WPI_FW_UPDATED | fw->main.textsz);
4238	wpi_nic_unlock(sc);
4239
4240	return 0;
4241}
4242
4243static int
4244wpi_read_firmware(struct wpi_softc *sc)
4245{
4246	const struct firmware *fp;
4247	struct wpi_fw_info *fw = &sc->fw;
4248	const struct wpi_firmware_hdr *hdr;
4249	int error;
4250
4251	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4252
4253	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4254	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4255
4256	WPI_UNLOCK(sc);
4257	fp = firmware_get(WPI_FW_NAME);
4258	WPI_LOCK(sc);
4259
4260	if (fp == NULL) {
4261		device_printf(sc->sc_dev,
4262		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4263		return EINVAL;
4264	}
4265
4266	sc->fw_fp = fp;
4267
4268	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4269		device_printf(sc->sc_dev,
4270		    "firmware file too short: %zu bytes\n", fp->datasize);
4271		error = EINVAL;
4272		goto fail;
4273	}
4274
4275	fw->size = fp->datasize;
4276	fw->data = (const uint8_t *)fp->data;
4277
4278	/* Extract firmware header information. */
4279	hdr = (const struct wpi_firmware_hdr *)fw->data;
4280
4281	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4282	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4283
4284	fw->main.textsz = le32toh(hdr->rtextsz);
4285	fw->main.datasz = le32toh(hdr->rdatasz);
4286	fw->init.textsz = le32toh(hdr->itextsz);
4287	fw->init.datasz = le32toh(hdr->idatasz);
4288	fw->boot.textsz = le32toh(hdr->btextsz);
4289	fw->boot.datasz = 0;
4290
4291	/* Sanity-check firmware header. */
4292	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4293	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4294	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4295	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4296	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4297	    (fw->boot.textsz & 3) != 0) {
4298		device_printf(sc->sc_dev, "invalid firmware header\n");
4299		error = EINVAL;
4300		goto fail;
4301	}
4302
4303	/* Check that all firmware sections fit. */
4304	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4305	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4306		device_printf(sc->sc_dev,
4307		    "firmware file too short: %zu bytes\n", fw->size);
4308		error = EINVAL;
4309		goto fail;
4310	}
4311
4312	/* Get pointers to firmware sections. */
4313	fw->main.text = (const uint8_t *)(hdr + 1);
4314	fw->main.data = fw->main.text + fw->main.textsz;
4315	fw->init.text = fw->main.data + fw->main.datasz;
4316	fw->init.data = fw->init.text + fw->init.textsz;
4317	fw->boot.text = fw->init.data + fw->init.datasz;
4318
4319	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4320	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4321	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4322	    hdr->major, hdr->minor, le32toh(hdr->driver),
4323	    fw->main.textsz, fw->main.datasz,
4324	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4325
4326	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4327	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4328	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4329	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4330	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4331
4332	return 0;
4333
4334fail:	wpi_unload_firmware(sc);
4335	return error;
4336}
4337
4338/**
4339 * Free the referenced firmware image
4340 */
4341static void
4342wpi_unload_firmware(struct wpi_softc *sc)
4343{
4344	if (sc->fw_fp != NULL) {
4345		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4346		sc->fw_fp = NULL;
4347	}
4348}
4349
4350static int
4351wpi_clock_wait(struct wpi_softc *sc)
4352{
4353	int ntries;
4354
4355	/* Set "initialization complete" bit. */
4356	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4357
4358	/* Wait for clock stabilization. */
4359	for (ntries = 0; ntries < 2500; ntries++) {
4360		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4361			return 0;
4362		DELAY(100);
4363	}
4364	device_printf(sc->sc_dev,
4365	    "%s: timeout waiting for clock stabilization\n", __func__);
4366
4367	return ETIMEDOUT;
4368}
4369
4370static int
4371wpi_apm_init(struct wpi_softc *sc)
4372{
4373	uint32_t reg;
4374	int error;
4375
4376	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4377
4378	/* Disable L0s exit timer (NMI bug workaround). */
4379	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4380	/* Don't wait for ICH L0s (ICH bug workaround). */
4381	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4382
4383	/* Set FH wait threshold to max (HW bug under stress workaround). */
4384	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4385
4386	/* Retrieve PCIe Active State Power Management (ASPM). */
4387	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4388	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4389	if (reg & 0x02)	/* L1 Entry enabled. */
4390		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4391	else
4392		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4393
4394	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4395
4396	/* Wait for clock stabilization before accessing prph. */
4397	if ((error = wpi_clock_wait(sc)) != 0)
4398		return error;
4399
4400	if ((error = wpi_nic_lock(sc)) != 0)
4401		return error;
4402	/* Enable DMA and BSM (Bootstrap State Machine). */
4403	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4404	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4405	DELAY(20);
4406	/* Disable L1-Active. */
4407	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4408	/* ??? */
4409	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4410	wpi_nic_unlock(sc);
4411
4412	return 0;
4413}
4414
4415static void
4416wpi_apm_stop_master(struct wpi_softc *sc)
4417{
4418	int ntries;
4419
4420	/* Stop busmaster DMA activity. */
4421	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4422
4423	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4424	    WPI_GP_CNTRL_MAC_PS)
4425		return; /* Already asleep. */
4426
4427	for (ntries = 0; ntries < 100; ntries++) {
4428		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4429			return;
4430		DELAY(10);
4431	}
4432	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4433}
4434
4435static void
4436wpi_apm_stop(struct wpi_softc *sc)
4437{
4438	wpi_apm_stop_master(sc);
4439
4440	/* Reset the entire device. */
4441	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4442	DELAY(10);
4443	/* Clear "initialization complete" bit. */
4444	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4445}
4446
4447static void
4448wpi_nic_config(struct wpi_softc *sc)
4449{
4450	uint32_t rev;
4451
4452	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4453
4454	/* voodoo from the Linux "driver".. */
4455	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4456	if ((rev & 0xc0) == 0x40)
4457		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4458	else if (!(rev & 0x80))
4459		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4460
4461	if (sc->cap == 0x80)
4462		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4463
4464	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4465		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4466	else
4467		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4468
4469	if (sc->type > 1)
4470		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4471}
4472
4473static int
4474wpi_hw_init(struct wpi_softc *sc)
4475{
4476	int chnl, ntries, error;
4477
4478	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4479
4480	/* Clear pending interrupts. */
4481	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4482
4483	if ((error = wpi_apm_init(sc)) != 0) {
4484		device_printf(sc->sc_dev,
4485		    "%s: could not power ON adapter, error %d\n", __func__,
4486		    error);
4487		return error;
4488	}
4489
4490	/* Select VMAIN power source. */
4491	if ((error = wpi_nic_lock(sc)) != 0)
4492		return error;
4493	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4494	wpi_nic_unlock(sc);
4495	/* Spin until VMAIN gets selected. */
4496	for (ntries = 0; ntries < 5000; ntries++) {
4497		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4498			break;
4499		DELAY(10);
4500	}
4501	if (ntries == 5000) {
4502		device_printf(sc->sc_dev, "timeout selecting power source\n");
4503		return ETIMEDOUT;
4504	}
4505
4506	/* Perform adapter initialization. */
4507	wpi_nic_config(sc);
4508
4509	/* Initialize RX ring. */
4510	if ((error = wpi_nic_lock(sc)) != 0)
4511		return error;
4512	/* Set physical address of RX ring. */
4513	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4514	/* Set physical address of RX read pointer. */
4515	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4516	    offsetof(struct wpi_shared, next));
4517	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4518	/* Enable RX. */
4519	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4520	    WPI_FH_RX_CONFIG_DMA_ENA |
4521	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4522	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4523	    WPI_FH_RX_CONFIG_MAXFRAG |
4524	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4525	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4526	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4527	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4528	wpi_nic_unlock(sc);
4529	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4530
4531	/* Initialize TX rings. */
4532	if ((error = wpi_nic_lock(sc)) != 0)
4533		return error;
4534	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4535	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4536	/* Enable all 6 TX rings. */
4537	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4538	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4539	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4540	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4541	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4542	/* Set physical address of TX rings. */
4543	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4544	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4545
4546	/* Enable all DMA channels. */
4547	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4548		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4549		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4550		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4551	}
4552	wpi_nic_unlock(sc);
4553	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4554
4555	/* Clear "radio off" and "commands blocked" bits. */
4556	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4557	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4558
4559	/* Clear pending interrupts. */
4560	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4561	/* Enable interrupts. */
4562	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4563
4564	/* _Really_ make sure "radio off" bit is cleared! */
4565	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4566	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4567
4568	if ((error = wpi_load_firmware(sc)) != 0) {
4569		device_printf(sc->sc_dev,
4570		    "%s: could not load firmware, error %d\n", __func__,
4571		    error);
4572		return error;
4573	}
4574	/* Wait at most one second for firmware alive notification. */
4575	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4576		device_printf(sc->sc_dev,
4577		    "%s: timeout waiting for adapter to initialize, error %d\n",
4578		    __func__, error);
4579		return error;
4580	}
4581
4582	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4583
4584	/* Do post-firmware initialization. */
4585	return wpi_post_alive(sc);
4586}
4587
4588static void
4589wpi_hw_stop(struct wpi_softc *sc)
4590{
4591	int chnl, qid, ntries;
4592
4593	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4594
4595	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4596		wpi_nic_lock(sc);
4597
4598	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4599
4600	/* Disable interrupts. */
4601	WPI_WRITE(sc, WPI_INT_MASK, 0);
4602	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4603	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4604
4605	/* Make sure we no longer hold the NIC lock. */
4606	wpi_nic_unlock(sc);
4607
4608	if (wpi_nic_lock(sc) == 0) {
4609		/* Stop TX scheduler. */
4610		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4611		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4612
4613		/* Stop all DMA channels. */
4614		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4615			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4616			for (ntries = 0; ntries < 200; ntries++) {
4617				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4618				    WPI_FH_TX_STATUS_IDLE(chnl))
4619					break;
4620				DELAY(10);
4621			}
4622		}
4623		wpi_nic_unlock(sc);
4624	}
4625
4626	/* Stop RX ring. */
4627	wpi_reset_rx_ring(sc);
4628
4629	/* Reset all TX rings. */
4630	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4631		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4632
4633	if (wpi_nic_lock(sc) == 0) {
4634		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4635		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4636		wpi_nic_unlock(sc);
4637	}
4638	DELAY(5);
4639	/* Power OFF adapter. */
4640	wpi_apm_stop(sc);
4641}
4642
4643static void
4644wpi_radio_on(void *arg0, int pending)
4645{
4646	struct wpi_softc *sc = arg0;
4647	struct ifnet *ifp = sc->sc_ifp;
4648	struct ieee80211com *ic = ifp->if_l2com;
4649	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4650
4651	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4652
4653	if (vap != NULL) {
4654		wpi_init(sc);
4655		ieee80211_init(vap);
4656	}
4657
4658	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4659		WPI_LOCK(sc);
4660		callout_stop(&sc->watchdog_rfkill);
4661		WPI_UNLOCK(sc);
4662	}
4663}
4664
4665static void
4666wpi_radio_off(void *arg0, int pending)
4667{
4668	struct wpi_softc *sc = arg0;
4669	struct ifnet *ifp = sc->sc_ifp;
4670	struct ieee80211com *ic = ifp->if_l2com;
4671	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4672
4673	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4674
4675	wpi_stop(sc);
4676	if (vap != NULL)
4677		ieee80211_stop(vap);
4678
4679	WPI_LOCK(sc);
4680	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4681	WPI_UNLOCK(sc);
4682}
4683
4684static void
4685wpi_init_locked(struct wpi_softc *sc)
4686{
4687	struct ifnet *ifp = sc->sc_ifp;
4688	int error;
4689
4690	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4691
4692	WPI_LOCK_ASSERT(sc);
4693
4694	/* Check that the radio is not disabled by hardware switch. */
4695	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4696		device_printf(sc->sc_dev,
4697		    "RF switch: radio disabled (%s)\n", __func__);
4698		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4699		    sc);
4700		return;
4701	}
4702
4703	/* Read firmware images from the filesystem. */
4704	if ((error = wpi_read_firmware(sc)) != 0) {
4705		device_printf(sc->sc_dev,
4706		    "%s: could not read firmware, error %d\n", __func__,
4707		    error);
4708		goto fail;
4709	}
4710
4711	/* Initialize hardware and upload firmware. */
4712	error = wpi_hw_init(sc);
4713	wpi_unload_firmware(sc);
4714	if (error != 0) {
4715		device_printf(sc->sc_dev,
4716		    "%s: could not initialize hardware, error %d\n", __func__,
4717		    error);
4718		goto fail;
4719	}
4720
4721	/* Configure adapter now that it is ready. */
4722	if ((error = wpi_config(sc)) != 0) {
4723		device_printf(sc->sc_dev,
4724		    "%s: could not configure device, error %d\n", __func__,
4725		    error);
4726		goto fail;
4727	}
4728
4729	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4730	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4731
4732	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4733
4734	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4735
4736	return;
4737
4738fail:	wpi_stop_locked(sc);
4739	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4740}
4741
4742static void
4743wpi_init(void *arg)
4744{
4745	struct wpi_softc *sc = arg;
4746	struct ifnet *ifp = sc->sc_ifp;
4747	struct ieee80211com *ic = ifp->if_l2com;
4748
4749	WPI_LOCK(sc);
4750	wpi_init_locked(sc);
4751	WPI_UNLOCK(sc);
4752
4753	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4754		ieee80211_start_all(ic);
4755}
4756
4757static void
4758wpi_stop_locked(struct wpi_softc *sc)
4759{
4760	struct ifnet *ifp = sc->sc_ifp;
4761
4762	WPI_LOCK_ASSERT(sc);
4763
4764	sc->sc_scan_timer = 0;
4765	sc->sc_tx_timer = 0;
4766	callout_stop(&sc->watchdog_to);
4767	callout_stop(&sc->calib_to);
4768	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4769
4770	/* Power OFF hardware. */
4771	wpi_hw_stop(sc);
4772}
4773
4774static void
4775wpi_stop(struct wpi_softc *sc)
4776{
4777	WPI_LOCK(sc);
4778	wpi_stop_locked(sc);
4779	WPI_UNLOCK(sc);
4780}
4781
4782/*
4783 * Callback from net80211 to start a scan.
4784 */
4785static void
4786wpi_scan_start(struct ieee80211com *ic)
4787{
4788	struct ifnet *ifp = ic->ic_ifp;
4789	struct wpi_softc *sc = ifp->if_softc;
4790
4791	WPI_LOCK(sc);
4792	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4793	WPI_UNLOCK(sc);
4794}
4795
4796/*
4797 * Callback from net80211 to terminate a scan.
4798 */
4799static void
4800wpi_scan_end(struct ieee80211com *ic)
4801{
4802	struct ifnet *ifp = ic->ic_ifp;
4803	struct wpi_softc *sc = ifp->if_softc;
4804	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4805
4806	if (vap->iv_state == IEEE80211_S_RUN) {
4807		WPI_LOCK(sc);
4808		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4809		WPI_UNLOCK(sc);
4810	}
4811}
4812
4813/**
4814 * Called by the net80211 framework to indicate to the driver
4815 * that the channel should be changed
4816 */
4817static void
4818wpi_set_channel(struct ieee80211com *ic)
4819{
4820	const struct ieee80211_channel *c = ic->ic_curchan;
4821	struct ifnet *ifp = ic->ic_ifp;
4822	struct wpi_softc *sc = ifp->if_softc;
4823	int error;
4824
4825	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4826
4827	WPI_LOCK(sc);
4828	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4829	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4830	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4831	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4832
4833	/*
4834	 * Only need to set the channel in Monitor mode. AP scanning and auth
4835	 * are already taken care of by their respective firmware commands.
4836	 */
4837	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4838		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4839		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4840			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4841			    WPI_RXON_24GHZ);
4842		} else {
4843			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4844			    WPI_RXON_24GHZ);
4845		}
4846		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4847			device_printf(sc->sc_dev,
4848			    "%s: error %d settting channel\n", __func__,
4849			    error);
4850	}
4851	WPI_UNLOCK(sc);
4852}
4853
4854/**
4855 * Called by net80211 to indicate that we need to scan the current
4856 * channel. The channel is previously be set via the wpi_set_channel
4857 * callback.
4858 */
4859static void
4860wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4861{
4862	struct ieee80211vap *vap = ss->ss_vap;
4863	struct ieee80211com *ic = vap->iv_ic;
4864	struct ifnet *ifp = ic->ic_ifp;
4865	struct wpi_softc *sc = ifp->if_softc;
4866	int error;
4867
4868	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4869		WPI_LOCK(sc);
4870		error = wpi_scan(sc, ic->ic_curchan);
4871		WPI_UNLOCK(sc);
4872		if (error != 0)
4873			ieee80211_cancel_scan(vap);
4874	} else {
4875		/* Send probe request when associated. */
4876		sc->sc_scan_curchan(ss, maxdwell);
4877	}
4878}
4879
4880/**
4881 * Called by the net80211 framework to indicate
4882 * the minimum dwell time has been met, terminate the scan.
4883 * We don't actually terminate the scan as the firmware will notify
4884 * us when it's finished and we have no way to interrupt it.
4885 */
4886static void
4887wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4888{
4889	/* NB: don't try to abort scan; wait for firmware to finish */
4890}
4891
4892static void
4893wpi_hw_reset(void *arg, int pending)
4894{
4895	struct wpi_softc *sc = arg;
4896	struct ifnet *ifp = sc->sc_ifp;
4897	struct ieee80211com *ic = ifp->if_l2com;
4898	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4899
4900	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4901
4902	wpi_stop(sc);
4903	if (vap != NULL)
4904		ieee80211_stop(vap);
4905	wpi_init(sc);
4906	if (vap != NULL)
4907		ieee80211_init(vap);
4908}
4909