if_wpi.c revision 280053
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#include <sys/cdefs.h>
20__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 280053 2015-03-15 20:13:07Z adrian $");
21
22/*
23 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24 *
25 * The 3945ABG network adapter doesn't use traditional hardware as
26 * many other adaptors do. Instead at run time the eeprom is set into a known
27 * state and told to load boot firmware. The boot firmware loads an init and a
28 * main  binary firmware image into SRAM on the card via DMA.
29 * Once the firmware is loaded, the driver/hw then
30 * communicate by way of circular dma rings via the SRAM to the firmware.
31 *
32 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33 * The 4 tx data rings allow for prioritization QoS.
34 *
35 * The rx data ring consists of 32 dma buffers. Two registers are used to
36 * indicate where in the ring the driver and the firmware are up to. The
37 * driver sets the initial read index (reg1) and the initial write index (reg2),
38 * the firmware updates the read index (reg1) on rx of a packet and fires an
39 * interrupt. The driver then processes the buffers starting at reg1 indicating
40 * to the firmware which buffers have been accessed by updating reg2. At the
41 * same time allocating new memory for the processed buffer.
42 *
43 * A similar thing happens with the tx rings. The difference is the firmware
44 * stop processing buffers once the queue is full and until confirmation
45 * of a successful transmition (tx_done) has occurred.
46 *
47 * The command ring operates in the same manner as the tx queues.
48 *
49 * All communication direct to the card (ie eeprom) is classed as Stage1
50 * communication
51 *
52 * All communication via the firmware to the card is classed as State2.
53 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54 * firmware. The bootstrap firmware and runtime firmware are loaded
55 * from host memory via dma to the card then told to execute. From this point
56 * on the majority of communications between the driver and the card goes
57 * via the firmware.
58 */
59
60#include "opt_wlan.h"
61#include "opt_wpi.h"
62
63#include <sys/param.h>
64#include <sys/sysctl.h>
65#include <sys/sockio.h>
66#include <sys/mbuf.h>
67#include <sys/kernel.h>
68#include <sys/socket.h>
69#include <sys/systm.h>
70#include <sys/malloc.h>
71#include <sys/queue.h>
72#include <sys/taskqueue.h>
73#include <sys/module.h>
74#include <sys/bus.h>
75#include <sys/endian.h>
76#include <sys/linker.h>
77#include <sys/firmware.h>
78
79#include <machine/bus.h>
80#include <machine/resource.h>
81#include <sys/rman.h>
82
83#include <dev/pci/pcireg.h>
84#include <dev/pci/pcivar.h>
85
86#include <net/bpf.h>
87#include <net/if.h>
88#include <net/if_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/if_types.h>
94
95#include <netinet/in.h>
96#include <netinet/in_systm.h>
97#include <netinet/in_var.h>
98#include <netinet/if_ether.h>
99#include <netinet/ip.h>
100
101#include <net80211/ieee80211_var.h>
102#include <net80211/ieee80211_radiotap.h>
103#include <net80211/ieee80211_regdomain.h>
104#include <net80211/ieee80211_ratectl.h>
105
106#include <dev/wpi/if_wpireg.h>
107#include <dev/wpi/if_wpivar.h>
108#include <dev/wpi/if_wpi_debug.h>
109
110struct wpi_ident {
111	uint16_t	vendor;
112	uint16_t	device;
113	uint16_t	subdevice;
114	const char	*name;
115};
116
117static const struct wpi_ident wpi_ident_table[] = {
118	/* The below entries support ABG regardless of the subid */
119	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121	/* The below entries only support BG */
122	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126	{ 0, 0, 0, NULL }
127};
128
129static int	wpi_probe(device_t);
130static int	wpi_attach(device_t);
131static void	wpi_radiotap_attach(struct wpi_softc *);
132static void	wpi_sysctlattach(struct wpi_softc *);
133static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135		    const uint8_t [IEEE80211_ADDR_LEN],
136		    const uint8_t [IEEE80211_ADDR_LEN]);
137static void	wpi_vap_delete(struct ieee80211vap *);
138static int	wpi_detach(device_t);
139static int	wpi_shutdown(device_t);
140static int	wpi_suspend(device_t);
141static int	wpi_resume(device_t);
142static int	wpi_nic_lock(struct wpi_softc *);
143static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146		    void **, bus_size_t, bus_size_t);
147static void	wpi_dma_contig_free(struct wpi_dma_info *);
148static int	wpi_alloc_shared(struct wpi_softc *);
149static void	wpi_free_shared(struct wpi_softc *);
150static int	wpi_alloc_fwmem(struct wpi_softc *);
151static void	wpi_free_fwmem(struct wpi_softc *);
152static int	wpi_alloc_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    int);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161static int	wpi_read_eeprom(struct wpi_softc *,
162		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167		    struct ieee80211_channel *);
168static int	wpi_setregdomain(struct ieee80211com *,
169		    struct ieee80211_regdomain *, int,
170		    struct ieee80211_channel[]);
171static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172static void	wpi_node_free(struct ieee80211_node *);
173static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176static void	wpi_calib_timeout(void *);
177static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178		    struct wpi_rx_data *);
179static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180		    struct wpi_rx_data *);
181static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183static void	wpi_notif_intr(struct wpi_softc *);
184static void	wpi_wakeup_intr(struct wpi_softc *);
185static void	wpi_fatal_intr(struct wpi_softc *);
186static void	wpi_intr(void *);
187static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189		    struct ieee80211_node *);
190static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191		    struct ieee80211_node *,
192		    const struct ieee80211_bpf_params *);
193static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194		    const struct ieee80211_bpf_params *);
195static void	wpi_start(struct ifnet *);
196static void	wpi_start_locked(struct ifnet *);
197static void	wpi_watchdog_rfkill(void *);
198static void	wpi_watchdog(void *);
199static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201static int	wpi_mrr_setup(struct wpi_softc *);
202static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206static int	wpi_updateedca(struct ieee80211com *);
207static void	wpi_set_promisc(struct wpi_softc *);
208static void	wpi_update_promisc(struct ifnet *);
209static void	wpi_update_mcast(struct ifnet *);
210static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212static void	wpi_power_calibration(struct wpi_softc *);
213static int	wpi_set_txpower(struct wpi_softc *, int);
214static int	wpi_get_power_index(struct wpi_softc *,
215		    struct wpi_power_group *, struct ieee80211_channel *, int);
216static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217static int	wpi_send_btcoex(struct wpi_softc *);
218static int	wpi_send_rxon(struct wpi_softc *, int, int);
219static int	wpi_config(struct wpi_softc *);
220static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221		    struct ieee80211_channel *, uint8_t);
222static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224		    struct ieee80211_channel *);
225static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227static void	wpi_update_beacon(struct ieee80211vap *, int);
228static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231		    ieee80211_keyix *, ieee80211_keyix *);
232static int	wpi_key_set(struct ieee80211vap *,
233		    const struct ieee80211_key *,
234		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235static int	wpi_key_delete(struct ieee80211vap *,
236		    const struct ieee80211_key *);
237static int	wpi_post_alive(struct wpi_softc *);
238static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239static int	wpi_load_firmware(struct wpi_softc *);
240static int	wpi_read_firmware(struct wpi_softc *);
241static void	wpi_unload_firmware(struct wpi_softc *);
242static int	wpi_clock_wait(struct wpi_softc *);
243static int	wpi_apm_init(struct wpi_softc *);
244static void	wpi_apm_stop_master(struct wpi_softc *);
245static void	wpi_apm_stop(struct wpi_softc *);
246static void	wpi_nic_config(struct wpi_softc *);
247static int	wpi_hw_init(struct wpi_softc *);
248static void	wpi_hw_stop(struct wpi_softc *);
249static void	wpi_radio_on(void *, int);
250static void	wpi_radio_off(void *, int);
251static void	wpi_init_locked(struct wpi_softc *);
252static void	wpi_init(void *);
253static void	wpi_stop_locked(struct wpi_softc *);
254static void	wpi_stop(struct wpi_softc *);
255static void	wpi_scan_start(struct ieee80211com *);
256static void	wpi_scan_end(struct ieee80211com *);
257static void	wpi_set_channel(struct ieee80211com *);
258static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260static void	wpi_hw_reset(void *, int);
261
262static device_method_t wpi_methods[] = {
263	/* Device interface */
264	DEVMETHOD(device_probe,		wpi_probe),
265	DEVMETHOD(device_attach,	wpi_attach),
266	DEVMETHOD(device_detach,	wpi_detach),
267	DEVMETHOD(device_shutdown,	wpi_shutdown),
268	DEVMETHOD(device_suspend,	wpi_suspend),
269	DEVMETHOD(device_resume,	wpi_resume),
270
271	DEVMETHOD_END
272};
273
274static driver_t wpi_driver = {
275	"wpi",
276	wpi_methods,
277	sizeof (struct wpi_softc)
278};
279static devclass_t wpi_devclass;
280
281DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282
283MODULE_VERSION(wpi, 1);
284
285MODULE_DEPEND(wpi, pci,  1, 1, 1);
286MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288
289static int
290wpi_probe(device_t dev)
291{
292	const struct wpi_ident *ident;
293
294	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295		if (pci_get_vendor(dev) == ident->vendor &&
296		    pci_get_device(dev) == ident->device) {
297			device_set_desc(dev, ident->name);
298			return (BUS_PROBE_DEFAULT);
299		}
300	}
301	return ENXIO;
302}
303
304static int
305wpi_attach(device_t dev)
306{
307	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308	struct ieee80211com *ic;
309	struct ifnet *ifp;
310	int i, error, rid, supportsa = 1;
311	const struct wpi_ident *ident;
312	uint8_t macaddr[IEEE80211_ADDR_LEN];
313
314	sc->sc_dev = dev;
315
316#ifdef	WPI_DEBUG
317	error = resource_int_value(device_get_name(sc->sc_dev),
318	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
319	if (error != 0)
320		sc->sc_debug = 0;
321#else
322	sc->sc_debug = 0;
323#endif
324
325	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
326
327	/*
328	 * Get the offset of the PCI Express Capability Structure in PCI
329	 * Configuration Space.
330	 */
331	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
332	if (error != 0) {
333		device_printf(dev, "PCIe capability structure not found!\n");
334		return error;
335	}
336
337	/*
338	 * Some card's only support 802.11b/g not a, check to see if
339	 * this is one such card. A 0x0 in the subdevice table indicates
340	 * the entire subdevice range is to be ignored.
341	 */
342	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
343		if (ident->subdevice &&
344		    pci_get_subdevice(dev) == ident->subdevice) {
345		    supportsa = 0;
346		    break;
347		}
348	}
349
350	/* Clear device-specific "PCI retry timeout" register (41h). */
351	pci_write_config(dev, 0x41, 0, 1);
352
353	/* Enable bus-mastering. */
354	pci_enable_busmaster(dev);
355
356	rid = PCIR_BAR(0);
357	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
358	    RF_ACTIVE);
359	if (sc->mem == NULL) {
360		device_printf(dev, "can't map mem space\n");
361		error = ENOMEM;
362		return error;
363	}
364	sc->sc_st = rman_get_bustag(sc->mem);
365	sc->sc_sh = rman_get_bushandle(sc->mem);
366
367	i = 1;
368	rid = 0;
369	if (pci_alloc_msi(dev, &i) == 0)
370		rid = 1;
371	/* Install interrupt handler. */
372	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
373	    (rid != 0 ? 0 : RF_SHAREABLE));
374	if (sc->irq == NULL) {
375		device_printf(dev, "can't map interrupt\n");
376		error = ENOMEM;
377		goto fail;
378	}
379
380	WPI_LOCK_INIT(sc);
381
382	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
383
384	/* Allocate DMA memory for firmware transfers. */
385	if ((error = wpi_alloc_fwmem(sc)) != 0) {
386		device_printf(dev,
387		    "could not allocate memory for firmware, error %d\n",
388		    error);
389		goto fail;
390	}
391
392	/* Allocate shared page. */
393	if ((error = wpi_alloc_shared(sc)) != 0) {
394		device_printf(dev, "could not allocate shared page\n");
395		goto fail;
396	}
397
398	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
399	for (i = 0; i < WPI_NTXQUEUES; i++) {
400		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
401			device_printf(dev,
402			    "could not allocate TX ring %d, error %d\n", i,
403			    error);
404			goto fail;
405		}
406	}
407
408	/* Allocate RX ring. */
409	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
410		device_printf(dev, "could not allocate RX ring, error %d\n",
411		    error);
412		goto fail;
413	}
414
415	/* Clear pending interrupts. */
416	WPI_WRITE(sc, WPI_INT, 0xffffffff);
417
418	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419	if (ifp == NULL) {
420		device_printf(dev, "can not allocate ifnet structure\n");
421		goto fail;
422	}
423
424	ic = ifp->if_l2com;
425	ic->ic_ifp = ifp;
426	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
427	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
428
429	/* Set device capabilities. */
430	ic->ic_caps =
431		  IEEE80211_C_STA		/* station mode supported */
432		| IEEE80211_C_IBSS		/* IBSS mode supported */
433		| IEEE80211_C_MONITOR		/* monitor mode supported */
434		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
435		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
436		| IEEE80211_C_TXPMGT		/* tx power management */
437		| IEEE80211_C_SHSLOT		/* short slot time supported */
438		| IEEE80211_C_WPA		/* 802.11i */
439		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
440#if 0
441		| IEEE80211_C_HOSTAP		/* Host access point mode */
442#endif
443		| IEEE80211_C_WME		/* 802.11e */
444		| IEEE80211_C_PMGT		/* Station-side power mgmt */
445		;
446
447	ic->ic_cryptocaps =
448		  IEEE80211_CRYPTO_AES_CCM;
449
450	/*
451	 * Read in the eeprom and also setup the channels for
452	 * net80211. We don't set the rates as net80211 does this for us
453	 */
454	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
455		device_printf(dev, "could not read EEPROM, error %d\n",
456		    error);
457		goto fail;
458        }
459
460#ifdef	WPI_DEBUG
461	if (bootverbose) {
462	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
463	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
464			  sc->type > 1 ? 'B': '?');
465	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
466			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
467	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
468			  supportsa ? "does" : "does not");
469
470	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
471	       what sc->rev really represents - benjsc 20070615 */
472	}
473#endif
474
475	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
476	ifp->if_softc = sc;
477	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
478	ifp->if_init = wpi_init;
479	ifp->if_ioctl = wpi_ioctl;
480	ifp->if_start = wpi_start;
481	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
482	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
483	IFQ_SET_READY(&ifp->if_snd);
484
485	ieee80211_ifattach(ic, macaddr);
486	ic->ic_vap_create = wpi_vap_create;
487	ic->ic_vap_delete = wpi_vap_delete;
488	ic->ic_raw_xmit = wpi_raw_xmit;
489	ic->ic_node_alloc = wpi_node_alloc;
490	sc->sc_node_free = ic->ic_node_free;
491	ic->ic_node_free = wpi_node_free;
492	ic->ic_wme.wme_update = wpi_updateedca;
493	ic->ic_update_promisc = wpi_update_promisc;
494	ic->ic_update_mcast = wpi_update_mcast;
495	ic->ic_scan_start = wpi_scan_start;
496	ic->ic_scan_end = wpi_scan_end;
497	ic->ic_set_channel = wpi_set_channel;
498	sc->sc_scan_curchan = ic->ic_scan_curchan;
499	ic->ic_scan_curchan = wpi_scan_curchan;
500	ic->ic_scan_mindwell = wpi_scan_mindwell;
501	ic->ic_setregdomain = wpi_setregdomain;
502
503	wpi_radiotap_attach(sc);
504
505	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
506	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
507	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
508	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
509	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
510	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
511
512	wpi_sysctlattach(sc);
513
514	/*
515	 * Hook our interrupt after all initialization is complete.
516	 */
517	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
518	    NULL, wpi_intr, sc, &sc->sc_ih);
519	if (error != 0) {
520		device_printf(dev, "can't establish interrupt, error %d\n",
521		    error);
522		goto fail;
523	}
524
525	if (bootverbose)
526		ieee80211_announce(ic);
527
528#ifdef WPI_DEBUG
529	if (sc->sc_debug & WPI_DEBUG_HW)
530		ieee80211_announce_channels(ic);
531#endif
532
533	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
534	return 0;
535
536fail:	wpi_detach(dev);
537	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
538	return error;
539}
540
541/*
542 * Attach the interface to 802.11 radiotap.
543 */
544static void
545wpi_radiotap_attach(struct wpi_softc *sc)
546{
547	struct ifnet *ifp = sc->sc_ifp;
548	struct ieee80211com *ic = ifp->if_l2com;
549	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
550	ieee80211_radiotap_attach(ic,
551	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
552		WPI_TX_RADIOTAP_PRESENT,
553	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
554		WPI_RX_RADIOTAP_PRESENT);
555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
556}
557
558static void
559wpi_sysctlattach(struct wpi_softc *sc)
560{
561#ifdef  WPI_DEBUG
562	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
563	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
564
565	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
566	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
567		"control debugging printfs");
568#endif
569}
570
571static struct ieee80211vap *
572wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
573    enum ieee80211_opmode opmode, int flags,
574    const uint8_t bssid[IEEE80211_ADDR_LEN],
575    const uint8_t mac[IEEE80211_ADDR_LEN])
576{
577	struct wpi_vap *wvp;
578	struct wpi_buf *bcn;
579	struct ieee80211vap *vap;
580
581	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
582		return NULL;
583
584	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
585	    M_80211_VAP, M_NOWAIT | M_ZERO);
586	if (wvp == NULL)
587		return NULL;
588	vap = &wvp->vap;
589	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
590
591	bcn = &wvp->wv_bcbuf;
592	bcn->data = NULL;
593
594	/* Override with driver methods. */
595	wvp->newstate = vap->iv_newstate;
596	vap->iv_key_alloc = wpi_key_alloc;
597	vap->iv_key_set = wpi_key_set;
598	vap->iv_key_delete = wpi_key_delete;
599	vap->iv_newstate = wpi_newstate;
600	vap->iv_update_beacon = wpi_update_beacon;
601
602	ieee80211_ratectl_init(vap);
603	/* Complete setup. */
604	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
605	ic->ic_opmode = opmode;
606	return vap;
607}
608
609static void
610wpi_vap_delete(struct ieee80211vap *vap)
611{
612	struct wpi_vap *wvp = WPI_VAP(vap);
613	struct wpi_buf *bcn = &wvp->wv_bcbuf;
614
615	ieee80211_ratectl_deinit(vap);
616	ieee80211_vap_detach(vap);
617
618	if (bcn->data != NULL)
619		free(bcn->data, M_DEVBUF);
620	free(wvp, M_80211_VAP);
621}
622
623static int
624wpi_detach(device_t dev)
625{
626	struct wpi_softc *sc = device_get_softc(dev);
627	struct ifnet *ifp = sc->sc_ifp;
628	struct ieee80211com *ic;
629	int qid;
630
631	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
632
633	if (ifp != NULL) {
634		ic = ifp->if_l2com;
635
636		ieee80211_draintask(ic, &sc->sc_reinittask);
637		ieee80211_draintask(ic, &sc->sc_radiooff_task);
638		ieee80211_draintask(ic, &sc->sc_radioon_task);
639
640		wpi_stop(sc);
641
642		callout_drain(&sc->watchdog_to);
643		callout_drain(&sc->watchdog_rfkill);
644		callout_drain(&sc->calib_to);
645		ieee80211_ifdetach(ic);
646	}
647
648	/* Uninstall interrupt handler. */
649	if (sc->irq != NULL) {
650		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
651		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
652		    sc->irq);
653		pci_release_msi(dev);
654	}
655
656	if (sc->txq[0].data_dmat) {
657		/* Free DMA resources. */
658		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
659			wpi_free_tx_ring(sc, &sc->txq[qid]);
660
661		wpi_free_rx_ring(sc);
662		wpi_free_shared(sc);
663	}
664
665	if (sc->fw_dma.tag)
666		wpi_free_fwmem(sc);
667
668	if (sc->mem != NULL)
669		bus_release_resource(dev, SYS_RES_MEMORY,
670		    rman_get_rid(sc->mem), sc->mem);
671
672	if (ifp != NULL)
673		if_free(ifp);
674
675	delete_unrhdr(sc->sc_unr);
676
677	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
678	WPI_LOCK_DESTROY(sc);
679	return 0;
680}
681
682static int
683wpi_shutdown(device_t dev)
684{
685	struct wpi_softc *sc = device_get_softc(dev);
686
687	wpi_stop(sc);
688	return 0;
689}
690
691static int
692wpi_suspend(device_t dev)
693{
694	struct wpi_softc *sc = device_get_softc(dev);
695	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
696
697	ieee80211_suspend_all(ic);
698	return 0;
699}
700
701static int
702wpi_resume(device_t dev)
703{
704	struct wpi_softc *sc = device_get_softc(dev);
705	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
706
707	/* Clear device-specific "PCI retry timeout" register (41h). */
708	pci_write_config(dev, 0x41, 0, 1);
709
710	ieee80211_resume_all(ic);
711	return 0;
712}
713
714/*
715 * Grab exclusive access to NIC memory.
716 */
717static int
718wpi_nic_lock(struct wpi_softc *sc)
719{
720	int ntries;
721
722	/* Request exclusive access to NIC. */
723	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
724
725	/* Spin until we actually get the lock. */
726	for (ntries = 0; ntries < 1000; ntries++) {
727		if ((WPI_READ(sc, WPI_GP_CNTRL) &
728		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
729		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
730			return 0;
731		DELAY(10);
732	}
733
734	device_printf(sc->sc_dev, "could not lock memory\n");
735
736	return ETIMEDOUT;
737}
738
739/*
740 * Release lock on NIC memory.
741 */
742static __inline void
743wpi_nic_unlock(struct wpi_softc *sc)
744{
745	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
746}
747
748static __inline uint32_t
749wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
750{
751	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
752	WPI_BARRIER_READ_WRITE(sc);
753	return WPI_READ(sc, WPI_PRPH_RDATA);
754}
755
756static __inline void
757wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
758{
759	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
760	WPI_BARRIER_WRITE(sc);
761	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
762}
763
764static __inline void
765wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
766{
767	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
768}
769
770static __inline void
771wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
772{
773	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
774}
775
776static __inline void
777wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
778    const uint32_t *data, int count)
779{
780	for (; count > 0; count--, data++, addr += 4)
781		wpi_prph_write(sc, addr, *data);
782}
783
784static __inline uint32_t
785wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
786{
787	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
788	WPI_BARRIER_READ_WRITE(sc);
789	return WPI_READ(sc, WPI_MEM_RDATA);
790}
791
792static __inline void
793wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
794    int count)
795{
796	for (; count > 0; count--, addr += 4)
797		*data++ = wpi_mem_read(sc, addr);
798}
799
800static int
801wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
802{
803	uint8_t *out = data;
804	uint32_t val;
805	int error, ntries;
806
807	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
808
809	if ((error = wpi_nic_lock(sc)) != 0)
810		return error;
811
812	for (; count > 0; count -= 2, addr++) {
813		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
814		for (ntries = 0; ntries < 10; ntries++) {
815			val = WPI_READ(sc, WPI_EEPROM);
816			if (val & WPI_EEPROM_READ_VALID)
817				break;
818			DELAY(5);
819		}
820		if (ntries == 10) {
821			device_printf(sc->sc_dev,
822			    "timeout reading ROM at 0x%x\n", addr);
823			return ETIMEDOUT;
824		}
825		*out++= val >> 16;
826		if (count > 1)
827			*out ++= val >> 24;
828	}
829
830	wpi_nic_unlock(sc);
831
832	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
833
834	return 0;
835}
836
837static void
838wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
839{
840	if (error != 0)
841		return;
842	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
843	*(bus_addr_t *)arg = segs[0].ds_addr;
844}
845
846/*
847 * Allocates a contiguous block of dma memory of the requested size and
848 * alignment.
849 */
850static int
851wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
852    void **kvap, bus_size_t size, bus_size_t alignment)
853{
854	int error;
855
856	dma->tag = NULL;
857	dma->size = size;
858
859	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
860	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
861	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
862	if (error != 0)
863		goto fail;
864
865	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
866	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
867	if (error != 0)
868		goto fail;
869
870	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
871	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
872	if (error != 0)
873		goto fail;
874
875	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
876
877	if (kvap != NULL)
878		*kvap = dma->vaddr;
879
880	return 0;
881
882fail:	wpi_dma_contig_free(dma);
883	return error;
884}
885
886static void
887wpi_dma_contig_free(struct wpi_dma_info *dma)
888{
889	if (dma->vaddr != NULL) {
890		bus_dmamap_sync(dma->tag, dma->map,
891		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
892		bus_dmamap_unload(dma->tag, dma->map);
893		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
894		dma->vaddr = NULL;
895	}
896	if (dma->tag != NULL) {
897		bus_dma_tag_destroy(dma->tag);
898		dma->tag = NULL;
899	}
900}
901
902/*
903 * Allocate a shared page between host and NIC.
904 */
905static int
906wpi_alloc_shared(struct wpi_softc *sc)
907{
908	/* Shared buffer must be aligned on a 4KB boundary. */
909	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
910	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
911}
912
913static void
914wpi_free_shared(struct wpi_softc *sc)
915{
916	wpi_dma_contig_free(&sc->shared_dma);
917}
918
919/*
920 * Allocate DMA-safe memory for firmware transfer.
921 */
922static int
923wpi_alloc_fwmem(struct wpi_softc *sc)
924{
925	/* Must be aligned on a 16-byte boundary. */
926	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
927	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
928}
929
930static void
931wpi_free_fwmem(struct wpi_softc *sc)
932{
933	wpi_dma_contig_free(&sc->fw_dma);
934}
935
936static int
937wpi_alloc_rx_ring(struct wpi_softc *sc)
938{
939	struct wpi_rx_ring *ring = &sc->rxq;
940	bus_size_t size;
941	int i, error;
942
943	ring->cur = 0;
944	ring->update = 0;
945
946	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
947
948	/* Allocate RX descriptors (16KB aligned.) */
949	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
950	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
951	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
952	if (error != 0) {
953		device_printf(sc->sc_dev,
954		    "%s: could not allocate RX ring DMA memory, error %d\n",
955		    __func__, error);
956		goto fail;
957	}
958
959	/* Create RX buffer DMA tag. */
960        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
961	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
962	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
963	    &ring->data_dmat);
964        if (error != 0) {
965                device_printf(sc->sc_dev,
966		    "%s: could not create RX buf DMA tag, error %d\n",
967		    __func__, error);
968                goto fail;
969        }
970
971	/*
972	 * Allocate and map RX buffers.
973	 */
974	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
975		struct wpi_rx_data *data = &ring->data[i];
976		bus_addr_t paddr;
977
978		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
979		if (error != 0) {
980			device_printf(sc->sc_dev,
981			    "%s: could not create RX buf DMA map, error %d\n",
982			    __func__, error);
983			goto fail;
984		}
985
986		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
987		if (data->m == NULL) {
988			device_printf(sc->sc_dev,
989			    "%s: could not allocate RX mbuf\n", __func__);
990			error = ENOBUFS;
991			goto fail;
992		}
993
994		error = bus_dmamap_load(ring->data_dmat, data->map,
995		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
996		    &paddr, BUS_DMA_NOWAIT);
997		if (error != 0 && error != EFBIG) {
998			device_printf(sc->sc_dev,
999			    "%s: can't map mbuf (error %d)\n", __func__,
1000			    error);
1001			goto fail;
1002		}
1003
1004		/* Set physical address of RX buffer. */
1005		ring->desc[i] = htole32(paddr);
1006	}
1007
1008	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1009	    BUS_DMASYNC_PREWRITE);
1010
1011	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1012
1013	return 0;
1014
1015fail:	wpi_free_rx_ring(sc);
1016
1017	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1018
1019	return error;
1020}
1021
1022static void
1023wpi_update_rx_ring(struct wpi_softc *sc)
1024{
1025	struct wpi_rx_ring *ring = &sc->rxq;
1026
1027	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1028		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1029		    __func__);
1030
1031		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1032		ring->update = 1;
1033	} else
1034		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1035}
1036
1037static void
1038wpi_reset_rx_ring(struct wpi_softc *sc)
1039{
1040	struct wpi_rx_ring *ring = &sc->rxq;
1041	int ntries;
1042
1043	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1044
1045	if (wpi_nic_lock(sc) == 0) {
1046		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1047		for (ntries = 0; ntries < 1000; ntries++) {
1048			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1049			    WPI_FH_RX_STATUS_IDLE)
1050				break;
1051			DELAY(10);
1052		}
1053#ifdef WPI_DEBUG
1054		if (ntries == 1000) {
1055			device_printf(sc->sc_dev,
1056			    "timeout resetting Rx ring\n");
1057		}
1058#endif
1059		wpi_nic_unlock(sc);
1060	}
1061
1062	ring->cur = 0;
1063	ring->update = 0;
1064}
1065
1066static void
1067wpi_free_rx_ring(struct wpi_softc *sc)
1068{
1069	struct wpi_rx_ring *ring = &sc->rxq;
1070	int i;
1071
1072	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1073
1074	wpi_dma_contig_free(&ring->desc_dma);
1075
1076	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1077		struct wpi_rx_data *data = &ring->data[i];
1078
1079		if (data->m != NULL) {
1080			bus_dmamap_sync(ring->data_dmat, data->map,
1081			    BUS_DMASYNC_POSTREAD);
1082			bus_dmamap_unload(ring->data_dmat, data->map);
1083			m_freem(data->m);
1084			data->m = NULL;
1085		}
1086		if (data->map != NULL)
1087			bus_dmamap_destroy(ring->data_dmat, data->map);
1088	}
1089	if (ring->data_dmat != NULL) {
1090		bus_dma_tag_destroy(ring->data_dmat);
1091		ring->data_dmat = NULL;
1092	}
1093}
1094
1095static int
1096wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1097{
1098	bus_addr_t paddr;
1099	bus_size_t size;
1100	int i, error;
1101
1102	ring->qid = qid;
1103	ring->queued = 0;
1104	ring->cur = 0;
1105	ring->update = 0;
1106
1107	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1108
1109	/* Allocate TX descriptors (16KB aligned.) */
1110	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1111	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1112	    size, WPI_RING_DMA_ALIGN);
1113	if (error != 0) {
1114		device_printf(sc->sc_dev,
1115		    "%s: could not allocate TX ring DMA memory, error %d\n",
1116		    __func__, error);
1117		goto fail;
1118	}
1119
1120	/* Update shared area with ring physical address. */
1121	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1122	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1123	    BUS_DMASYNC_PREWRITE);
1124
1125	/*
1126	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1127	 * to allocate commands space for other rings.
1128	 * XXX Do we really need to allocate descriptors for other rings?
1129	 */
1130	if (qid > 4)
1131		return 0;
1132
1133	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1134	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1135	    size, 4);
1136	if (error != 0) {
1137		device_printf(sc->sc_dev,
1138		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1139		    __func__, error);
1140		goto fail;
1141	}
1142
1143	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1144	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1145	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1146	    &ring->data_dmat);
1147	if (error != 0) {
1148		device_printf(sc->sc_dev,
1149		    "%s: could not create TX buf DMA tag, error %d\n",
1150		    __func__, error);
1151		goto fail;
1152	}
1153
1154	paddr = ring->cmd_dma.paddr;
1155	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1156		struct wpi_tx_data *data = &ring->data[i];
1157
1158		data->cmd_paddr = paddr;
1159		paddr += sizeof (struct wpi_tx_cmd);
1160
1161		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1162		if (error != 0) {
1163			device_printf(sc->sc_dev,
1164			    "%s: could not create TX buf DMA map, error %d\n",
1165			    __func__, error);
1166			goto fail;
1167		}
1168	}
1169
1170	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1171
1172	return 0;
1173
1174fail:	wpi_free_tx_ring(sc, ring);
1175	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1176	return error;
1177}
1178
1179static void
1180wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181{
1182	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1183		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1184		    __func__, ring->qid);
1185
1186		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1187		ring->update = 1;
1188	} else
1189		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1190}
1191
1192static void
1193wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1194{
1195	int i;
1196
1197	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1198
1199	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1200		struct wpi_tx_data *data = &ring->data[i];
1201
1202		if (data->m != NULL) {
1203			bus_dmamap_sync(ring->data_dmat, data->map,
1204			    BUS_DMASYNC_POSTWRITE);
1205			bus_dmamap_unload(ring->data_dmat, data->map);
1206			m_freem(data->m);
1207			data->m = NULL;
1208		}
1209	}
1210	/* Clear TX descriptors. */
1211	memset(ring->desc, 0, ring->desc_dma.size);
1212	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1213	    BUS_DMASYNC_PREWRITE);
1214	sc->qfullmsk &= ~(1 << ring->qid);
1215	ring->queued = 0;
1216	ring->cur = 0;
1217	ring->update = 0;
1218}
1219
1220static void
1221wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1222{
1223	int i;
1224
1225	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1226
1227	wpi_dma_contig_free(&ring->desc_dma);
1228	wpi_dma_contig_free(&ring->cmd_dma);
1229
1230	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1231		struct wpi_tx_data *data = &ring->data[i];
1232
1233		if (data->m != NULL) {
1234			bus_dmamap_sync(ring->data_dmat, data->map,
1235			    BUS_DMASYNC_POSTWRITE);
1236			bus_dmamap_unload(ring->data_dmat, data->map);
1237			m_freem(data->m);
1238		}
1239		if (data->map != NULL)
1240			bus_dmamap_destroy(ring->data_dmat, data->map);
1241	}
1242	if (ring->data_dmat != NULL) {
1243		bus_dma_tag_destroy(ring->data_dmat);
1244		ring->data_dmat = NULL;
1245	}
1246}
1247
1248/*
1249 * Extract various information from EEPROM.
1250 */
1251static int
1252wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1253{
1254#define WPI_CHK(res) do {		\
1255	if ((error = res) != 0)		\
1256		goto fail;		\
1257} while (0)
1258	int error, i;
1259
1260	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1261
1262	/* Adapter has to be powered on for EEPROM access to work. */
1263	if ((error = wpi_apm_init(sc)) != 0) {
1264		device_printf(sc->sc_dev,
1265		    "%s: could not power ON adapter, error %d\n", __func__,
1266		    error);
1267		return error;
1268	}
1269
1270	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1271		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1272		error = EIO;
1273		goto fail;
1274	}
1275	/* Clear HW ownership of EEPROM. */
1276	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1277
1278	/* Read the hardware capabilities, revision and SKU type. */
1279	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1280	    sizeof(sc->cap)));
1281	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1282	    sizeof(sc->rev)));
1283	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1284	    sizeof(sc->type)));
1285
1286	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1287	    sc->type);
1288
1289	/* Read the regulatory domain (4 ASCII characters.) */
1290	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1291	    sizeof(sc->domain)));
1292
1293	/* Read MAC address. */
1294	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1295	    IEEE80211_ADDR_LEN));
1296
1297	/* Read the list of authorized channels. */
1298	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1299		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1300
1301	/* Read the list of TX power groups. */
1302	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1303		WPI_CHK(wpi_read_eeprom_group(sc, i));
1304
1305fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1306
1307	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1308	    __func__);
1309
1310	return error;
1311#undef WPI_CHK
1312}
1313
1314/*
1315 * Translate EEPROM flags to net80211.
1316 */
1317static uint32_t
1318wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1319{
1320	uint32_t nflags;
1321
1322	nflags = 0;
1323	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1324		nflags |= IEEE80211_CHAN_PASSIVE;
1325	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1326		nflags |= IEEE80211_CHAN_NOADHOC;
1327	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1328		nflags |= IEEE80211_CHAN_DFS;
1329		/* XXX apparently IBSS may still be marked */
1330		nflags |= IEEE80211_CHAN_NOADHOC;
1331	}
1332
1333	return nflags;
1334}
1335
1336static void
1337wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1338{
1339	struct ifnet *ifp = sc->sc_ifp;
1340	struct ieee80211com *ic = ifp->if_l2com;
1341	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1342	const struct wpi_chan_band *band = &wpi_bands[n];
1343	struct ieee80211_channel *c;
1344	uint8_t chan;
1345	int i, nflags;
1346
1347	for (i = 0; i < band->nchan; i++) {
1348		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1349			DPRINTF(sc, WPI_DEBUG_HW,
1350			    "Channel Not Valid: %d, band %d\n",
1351			     band->chan[i],n);
1352			continue;
1353		}
1354
1355		chan = band->chan[i];
1356		nflags = wpi_eeprom_channel_flags(&channels[i]);
1357
1358		c = &ic->ic_channels[ic->ic_nchans++];
1359		c->ic_ieee = chan;
1360		c->ic_maxregpower = channels[i].maxpwr;
1361		c->ic_maxpower = 2*c->ic_maxregpower;
1362
1363		if (n == 0) {	/* 2GHz band */
1364			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1365			/* G =>'s B is supported */
1366			c->ic_flags = IEEE80211_CHAN_B | nflags;
1367			c = &ic->ic_channels[ic->ic_nchans++];
1368			c[0] = c[-1];
1369			c->ic_flags = IEEE80211_CHAN_G | nflags;
1370		} else {	/* 5GHz band */
1371			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1372			c->ic_flags = IEEE80211_CHAN_A | nflags;
1373		}
1374
1375		/* Save maximum allowed TX power for this channel. */
1376		sc->maxpwr[chan] = channels[i].maxpwr;
1377
1378		DPRINTF(sc, WPI_DEBUG_EEPROM,
1379		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1380		    " offset %d\n", chan, c->ic_freq,
1381		    channels[i].flags, sc->maxpwr[chan],
1382		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1383	}
1384}
1385
1386/**
1387 * Read the eeprom to find out what channels are valid for the given
1388 * band and update net80211 with what we find.
1389 */
1390static int
1391wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1392{
1393	struct ifnet *ifp = sc->sc_ifp;
1394	struct ieee80211com *ic = ifp->if_l2com;
1395	const struct wpi_chan_band *band = &wpi_bands[n];
1396	int error;
1397
1398	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1399
1400	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1401	    band->nchan * sizeof (struct wpi_eeprom_chan));
1402	if (error != 0) {
1403		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1404		return error;
1405	}
1406
1407	wpi_read_eeprom_band(sc, n);
1408
1409	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1410
1411	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1412
1413	return 0;
1414}
1415
1416static struct wpi_eeprom_chan *
1417wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1418{
1419	int i, j;
1420
1421	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1422		for (i = 0; i < wpi_bands[j].nchan; i++)
1423			if (wpi_bands[j].chan[i] == c->ic_ieee)
1424				return &sc->eeprom_channels[j][i];
1425
1426	return NULL;
1427}
1428
1429/*
1430 * Enforce flags read from EEPROM.
1431 */
1432static int
1433wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1434    int nchan, struct ieee80211_channel chans[])
1435{
1436	struct ifnet *ifp = ic->ic_ifp;
1437	struct wpi_softc *sc = ifp->if_softc;
1438	int i;
1439
1440	for (i = 0; i < nchan; i++) {
1441		struct ieee80211_channel *c = &chans[i];
1442		struct wpi_eeprom_chan *channel;
1443
1444		channel = wpi_find_eeprom_channel(sc, c);
1445		if (channel == NULL) {
1446			if_printf(ic->ic_ifp,
1447			    "%s: invalid channel %u freq %u/0x%x\n",
1448			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1449			return EINVAL;
1450		}
1451		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1452	}
1453
1454	return 0;
1455}
1456
1457static int
1458wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1459{
1460	struct wpi_power_group *group = &sc->groups[n];
1461	struct wpi_eeprom_group rgroup;
1462	int i, error;
1463
1464	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1465
1466	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1467	    &rgroup, sizeof rgroup)) != 0) {
1468		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1469		return error;
1470	}
1471
1472	/* Save TX power group information. */
1473	group->chan   = rgroup.chan;
1474	group->maxpwr = rgroup.maxpwr;
1475	/* Retrieve temperature at which the samples were taken. */
1476	group->temp   = (int16_t)le16toh(rgroup.temp);
1477
1478	DPRINTF(sc, WPI_DEBUG_EEPROM,
1479	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1480	    group->maxpwr, group->temp);
1481
1482	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1483		group->samples[i].index = rgroup.samples[i].index;
1484		group->samples[i].power = rgroup.samples[i].power;
1485
1486		DPRINTF(sc, WPI_DEBUG_EEPROM,
1487		    "\tsample %d: index=%d power=%d\n", i,
1488		    group->samples[i].index, group->samples[i].power);
1489	}
1490
1491	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1492
1493	return 0;
1494}
1495
1496static struct ieee80211_node *
1497wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1498{
1499	struct wpi_node *wn;
1500
1501	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1502	    M_NOWAIT | M_ZERO);
1503
1504	if (wn == NULL)
1505		return NULL;
1506
1507	wn->id = WPI_ID_UNDEFINED;
1508
1509	return &wn->ni;
1510}
1511
1512static void
1513wpi_node_free(struct ieee80211_node *ni)
1514{
1515	struct ieee80211com *ic = ni->ni_ic;
1516	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1517	struct wpi_node *wn = (struct wpi_node *)ni;
1518
1519	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1520		free_unr(sc->sc_unr, wn->id);
1521
1522		WPI_LOCK(sc);
1523		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1524			wpi_del_node(sc, ni);
1525		WPI_UNLOCK(sc);
1526	}
1527
1528	sc->sc_node_free(ni);
1529}
1530
1531/**
1532 * Called by net80211 when ever there is a change to 80211 state machine
1533 */
1534static int
1535wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1536{
1537	struct wpi_vap *wvp = WPI_VAP(vap);
1538	struct ieee80211com *ic = vap->iv_ic;
1539	struct ifnet *ifp = ic->ic_ifp;
1540	struct wpi_softc *sc = ifp->if_softc;
1541	int error = 0;
1542
1543	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1544
1545	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1546		ieee80211_state_name[vap->iv_state],
1547		ieee80211_state_name[nstate]);
1548
1549	IEEE80211_UNLOCK(ic);
1550	WPI_LOCK(sc);
1551	switch (nstate) {
1552	case IEEE80211_S_SCAN:
1553		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1554		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1555		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1556			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1557			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1558				device_printf(sc->sc_dev,
1559				    "%s: could not send RXON\n", __func__);
1560			}
1561		}
1562		break;
1563
1564	case IEEE80211_S_ASSOC:
1565		if (vap->iv_state != IEEE80211_S_RUN)
1566			break;
1567		/* FALLTHROUGH */
1568	case IEEE80211_S_AUTH:
1569		/*
1570		 * The node must be registered in the firmware before auth.
1571		 * Also the associd must be cleared on RUN -> ASSOC
1572		 * transitions.
1573		 */
1574		if ((error = wpi_auth(sc, vap)) != 0) {
1575			device_printf(sc->sc_dev,
1576			    "%s: could not move to AUTH state, error %d\n",
1577			    __func__, error);
1578		}
1579		break;
1580
1581	case IEEE80211_S_RUN:
1582		/*
1583		 * RUN -> RUN transition; Just restart the timers.
1584		 */
1585		if (vap->iv_state == IEEE80211_S_RUN) {
1586			wpi_calib_timeout(sc);
1587			break;
1588		}
1589
1590		/*
1591		 * !RUN -> RUN requires setting the association id
1592		 * which is done with a firmware cmd.  We also defer
1593		 * starting the timers until that work is done.
1594		 */
1595		if ((error = wpi_run(sc, vap)) != 0) {
1596			device_printf(sc->sc_dev,
1597			    "%s: could not move to RUN state\n", __func__);
1598		}
1599		break;
1600
1601	default:
1602		break;
1603	}
1604	WPI_UNLOCK(sc);
1605	IEEE80211_LOCK(ic);
1606	if (error != 0) {
1607		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1608		return error;
1609	}
1610
1611	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1612
1613	return wvp->newstate(vap, nstate, arg);
1614}
1615
1616static void
1617wpi_calib_timeout(void *arg)
1618{
1619	struct wpi_softc *sc = arg;
1620	struct ifnet *ifp = sc->sc_ifp;
1621	struct ieee80211com *ic = ifp->if_l2com;
1622	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1623
1624	if (vap->iv_state != IEEE80211_S_RUN)
1625		return;
1626
1627	wpi_power_calibration(sc);
1628
1629	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1630}
1631
1632static __inline uint8_t
1633rate2plcp(const uint8_t rate)
1634{
1635	switch (rate) {
1636	case 12:	return 0xd;
1637	case 18:	return 0xf;
1638	case 24:	return 0x5;
1639	case 36:	return 0x7;
1640	case 48:	return 0x9;
1641	case 72:	return 0xb;
1642	case 96:	return 0x1;
1643	case 108:	return 0x3;
1644	case 2:		return 10;
1645	case 4:		return 20;
1646	case 11:	return 55;
1647	case 22:	return 110;
1648	default:	return 0;
1649	}
1650}
1651
1652static __inline uint8_t
1653plcp2rate(const uint8_t plcp)
1654{
1655	switch (plcp) {
1656	case 0xd:	return 12;
1657	case 0xf:	return 18;
1658	case 0x5:	return 24;
1659	case 0x7:	return 36;
1660	case 0x9:	return 48;
1661	case 0xb:	return 72;
1662	case 0x1:	return 96;
1663	case 0x3:	return 108;
1664	case 10:	return 2;
1665	case 20:	return 4;
1666	case 55:	return 11;
1667	case 110:	return 22;
1668	default:	return 0;
1669	}
1670}
1671
1672/* Quickly determine if a given rate is CCK or OFDM. */
1673#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1674
1675static void
1676wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1677    struct wpi_rx_data *data)
1678{
1679	struct ifnet *ifp = sc->sc_ifp;
1680	const struct ieee80211_cipher *cip = NULL;
1681	struct ieee80211com *ic = ifp->if_l2com;
1682	struct wpi_rx_ring *ring = &sc->rxq;
1683	struct wpi_rx_stat *stat;
1684	struct wpi_rx_head *head;
1685	struct wpi_rx_tail *tail;
1686	struct ieee80211_frame *wh;
1687	struct ieee80211_node *ni;
1688	struct mbuf *m, *m1;
1689	bus_addr_t paddr;
1690	uint32_t flags;
1691	uint16_t len;
1692	int error;
1693
1694	stat = (struct wpi_rx_stat *)(desc + 1);
1695
1696	if (stat->len > WPI_STAT_MAXLEN) {
1697		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1698		goto fail1;
1699	}
1700
1701	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1702	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1703	len = le16toh(head->len);
1704	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1705	flags = le32toh(tail->flags);
1706
1707	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1708	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1709	    le32toh(desc->len), len, (int8_t)stat->rssi,
1710	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1711
1712	/* Discard frames with a bad FCS early. */
1713	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1714		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1715		    __func__, flags);
1716		goto fail1;
1717	}
1718	/* Discard frames that are too short. */
1719	if (len < sizeof (*wh)) {
1720		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1721		    __func__, len);
1722		goto fail1;
1723	}
1724
1725	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1726	if (m1 == NULL) {
1727		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1728		    __func__);
1729		goto fail1;
1730	}
1731	bus_dmamap_unload(ring->data_dmat, data->map);
1732
1733	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1734	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1735	if (error != 0 && error != EFBIG) {
1736		device_printf(sc->sc_dev,
1737		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1738		m_freem(m1);
1739
1740		/* Try to reload the old mbuf. */
1741		error = bus_dmamap_load(ring->data_dmat, data->map,
1742		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1743		    &paddr, BUS_DMA_NOWAIT);
1744		if (error != 0 && error != EFBIG) {
1745			panic("%s: could not load old RX mbuf", __func__);
1746		}
1747		/* Physical address may have changed. */
1748		ring->desc[ring->cur] = htole32(paddr);
1749		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1750		    BUS_DMASYNC_PREWRITE);
1751		goto fail1;
1752	}
1753
1754	m = data->m;
1755	data->m = m1;
1756	/* Update RX descriptor. */
1757	ring->desc[ring->cur] = htole32(paddr);
1758	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1759	    BUS_DMASYNC_PREWRITE);
1760
1761	/* Finalize mbuf. */
1762	m->m_pkthdr.rcvif = ifp;
1763	m->m_data = (caddr_t)(head + 1);
1764	m->m_pkthdr.len = m->m_len = len;
1765
1766	/* Grab a reference to the source node. */
1767	wh = mtod(m, struct ieee80211_frame *);
1768	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1769
1770	if (ni != NULL)
1771		cip = ni->ni_ucastkey.wk_cipher;
1772	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1773	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1774	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1775		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1776			goto fail2;
1777
1778		/* Check whether decryption was successful or not. */
1779		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1780			DPRINTF(sc, WPI_DEBUG_RECV,
1781			    "CCMP decryption failed 0x%x\n", flags);
1782			goto fail2;
1783		}
1784		m->m_flags |= M_WEP;
1785	}
1786
1787	if (ieee80211_radiotap_active(ic)) {
1788		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1789
1790		tap->wr_flags = 0;
1791		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1792			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1793		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1794		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1795		tap->wr_tsft = tail->tstamp;
1796		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1797		tap->wr_rate = plcp2rate(head->plcp);
1798	}
1799
1800	WPI_UNLOCK(sc);
1801
1802	/* Send the frame to the 802.11 layer. */
1803	if (ni != NULL) {
1804		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1805		/* Node is no longer needed. */
1806		ieee80211_free_node(ni);
1807	} else
1808		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1809
1810	WPI_LOCK(sc);
1811
1812	return;
1813
1814fail2:	ieee80211_free_node(ni);
1815	m_freem(m);
1816
1817fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1818}
1819
1820static void
1821wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1822    struct wpi_rx_data *data)
1823{
1824	/* Ignore */
1825}
1826
1827static void
1828wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1829{
1830	struct ifnet *ifp = sc->sc_ifp;
1831	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1832	struct wpi_tx_data *data = &ring->data[desc->idx];
1833	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1834	struct mbuf *m;
1835	struct ieee80211_node *ni;
1836	struct ieee80211vap *vap;
1837	int ackfailcnt = stat->ackfailcnt;
1838	int status = le32toh(stat->status);
1839
1840	KASSERT(data->ni != NULL, ("no node"));
1841
1842	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1843
1844	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1845	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1846	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1847	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1848
1849	/* Unmap and free mbuf. */
1850	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1851	bus_dmamap_unload(ring->data_dmat, data->map);
1852	m = data->m, data->m = NULL;
1853	ni = data->ni, data->ni = NULL;
1854	vap = ni->ni_vap;
1855
1856	/*
1857	 * Update rate control statistics for the node.
1858	 */
1859	WPI_UNLOCK(sc);
1860	if ((status & 0xff) != 1) {
1861		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1862		ieee80211_ratectl_tx_complete(vap, ni,
1863		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1864	} else {
1865		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1866		ieee80211_ratectl_tx_complete(vap, ni,
1867		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1868	}
1869
1870	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1871	WPI_LOCK(sc);
1872
1873	sc->sc_tx_timer = 0;
1874	if (--ring->queued < WPI_TX_RING_LOMARK) {
1875		sc->qfullmsk &= ~(1 << ring->qid);
1876		if (sc->qfullmsk == 0 &&
1877		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1878			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1879			wpi_start_locked(ifp);
1880		}
1881	}
1882
1883	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1884}
1885
1886/*
1887 * Process a "command done" firmware notification.  This is where we wakeup
1888 * processes waiting for a synchronous command completion.
1889 */
1890static void
1891wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1892{
1893	struct wpi_tx_ring *ring = &sc->txq[4];
1894	struct wpi_tx_data *data;
1895
1896	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1897				   "type=%s len=%d\n", desc->qid, desc->idx,
1898				   desc->flags, wpi_cmd_str(desc->type),
1899				   le32toh(desc->len));
1900
1901	if ((desc->qid & 7) != 4)
1902		return;	/* Not a command ack. */
1903
1904	data = &ring->data[desc->idx];
1905
1906	/* If the command was mapped in an mbuf, free it. */
1907	if (data->m != NULL) {
1908		bus_dmamap_sync(ring->data_dmat, data->map,
1909		    BUS_DMASYNC_POSTWRITE);
1910		bus_dmamap_unload(ring->data_dmat, data->map);
1911		m_freem(data->m);
1912		data->m = NULL;
1913	}
1914
1915	sc->flags &= ~WPI_FLAG_BUSY;
1916	wakeup(&ring->cmd[desc->idx]);
1917}
1918
1919static void
1920wpi_notif_intr(struct wpi_softc *sc)
1921{
1922	struct ifnet *ifp = sc->sc_ifp;
1923	struct ieee80211com *ic = ifp->if_l2com;
1924	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1925	int hw;
1926
1927	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1928	    BUS_DMASYNC_POSTREAD);
1929
1930	hw = le32toh(sc->shared->next);
1931	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1932
1933	while (sc->rxq.cur != hw) {
1934		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1935
1936		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1937		struct wpi_rx_desc *desc;
1938
1939		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1940		    BUS_DMASYNC_POSTREAD);
1941		desc = mtod(data->m, struct wpi_rx_desc *);
1942
1943		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1944		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1945		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1946		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1947
1948		if (!(desc->qid & 0x80))	/* Reply to a command. */
1949			wpi_cmd_done(sc, desc);
1950
1951		switch (desc->type) {
1952		case WPI_RX_DONE:
1953			/* An 802.11 frame has been received. */
1954			wpi_rx_done(sc, desc, data);
1955			break;
1956
1957		case WPI_TX_DONE:
1958			/* An 802.11 frame has been transmitted. */
1959			wpi_tx_done(sc, desc);
1960			break;
1961
1962		case WPI_RX_STATISTICS:
1963		case WPI_BEACON_STATISTICS:
1964			wpi_rx_statistics(sc, desc, data);
1965			break;
1966
1967		case WPI_BEACON_MISSED:
1968		{
1969			struct wpi_beacon_missed *miss =
1970			    (struct wpi_beacon_missed *)(desc + 1);
1971			int misses;
1972
1973			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1974			    BUS_DMASYNC_POSTREAD);
1975			misses = le32toh(miss->consecutive);
1976
1977			DPRINTF(sc, WPI_DEBUG_STATE,
1978			    "%s: beacons missed %d/%d\n", __func__, misses,
1979			    le32toh(miss->total));
1980
1981			if (vap->iv_state == IEEE80211_S_RUN &&
1982			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1983				if (misses >=  vap->iv_bmissthreshold) {
1984					WPI_UNLOCK(sc);
1985					ieee80211_beacon_miss(ic);
1986					WPI_LOCK(sc);
1987				}
1988			}
1989			break;
1990		}
1991		case WPI_UC_READY:
1992		{
1993			struct wpi_ucode_info *uc =
1994			    (struct wpi_ucode_info *)(desc + 1);
1995
1996			/* The microcontroller is ready. */
1997			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1998			    BUS_DMASYNC_POSTREAD);
1999			DPRINTF(sc, WPI_DEBUG_RESET,
2000			    "microcode alive notification version=%d.%d "
2001			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2002			    uc->subtype, le32toh(uc->valid));
2003
2004			if (le32toh(uc->valid) != 1) {
2005				device_printf(sc->sc_dev,
2006				    "microcontroller initialization failed\n");
2007				wpi_stop_locked(sc);
2008			}
2009			/* Save the address of the error log in SRAM. */
2010			sc->errptr = le32toh(uc->errptr);
2011			break;
2012		}
2013		case WPI_STATE_CHANGED:
2014		{
2015                        bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2016                            BUS_DMASYNC_POSTREAD);
2017
2018			uint32_t *status = (uint32_t *)(desc + 1);
2019
2020			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2021			    le32toh(*status));
2022
2023			if (le32toh(*status) & 1) {
2024				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2025				return;
2026			}
2027			break;
2028		}
2029		case WPI_START_SCAN:
2030		{
2031			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2032			    BUS_DMASYNC_POSTREAD);
2033#ifdef WPI_DEBUG
2034			struct wpi_start_scan *scan =
2035			    (struct wpi_start_scan *)(desc + 1);
2036			DPRINTF(sc, WPI_DEBUG_SCAN,
2037			    "%s: scanning channel %d status %x\n",
2038			    __func__, scan->chan, le32toh(scan->status));
2039#endif
2040			break;
2041		}
2042		case WPI_STOP_SCAN:
2043		{
2044			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2045			    BUS_DMASYNC_POSTREAD);
2046#ifdef WPI_DEBUG
2047			struct wpi_stop_scan *scan =
2048			    (struct wpi_stop_scan *)(desc + 1);
2049			DPRINTF(sc, WPI_DEBUG_SCAN,
2050			    "scan finished nchan=%d status=%d chan=%d\n",
2051			    scan->nchan, scan->status, scan->chan);
2052#endif
2053			sc->sc_scan_timer = 0;
2054			WPI_UNLOCK(sc);
2055			ieee80211_scan_next(vap);
2056			WPI_LOCK(sc);
2057			break;
2058		}
2059		}
2060	}
2061
2062	/* Tell the firmware what we have processed. */
2063	wpi_update_rx_ring(sc);
2064}
2065
2066/*
2067 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2068 * from power-down sleep mode.
2069 */
2070static void
2071wpi_wakeup_intr(struct wpi_softc *sc)
2072{
2073	int qid;
2074
2075	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2076	    "%s: ucode wakeup from power-down sleep\n", __func__);
2077
2078	/* Wakeup RX and TX rings. */
2079	if (sc->rxq.update) {
2080		sc->rxq.update = 0;
2081		wpi_update_rx_ring(sc);
2082	}
2083	for (qid = 0; qid < WPI_NTXQUEUES; qid++) {
2084		struct wpi_tx_ring *ring = &sc->txq[qid];
2085
2086		if (ring->update) {
2087			ring->update = 0;
2088			wpi_update_tx_ring(sc, ring);
2089		}
2090	}
2091
2092	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2093}
2094
2095/*
2096 * Dump the error log of the firmware when a firmware panic occurs.  Although
2097 * we can't debug the firmware because it is neither open source nor free, it
2098 * can help us to identify certain classes of problems.
2099 */
2100static void
2101wpi_fatal_intr(struct wpi_softc *sc)
2102{
2103	struct wpi_fw_dump dump;
2104	uint32_t i, offset, count;
2105	const uint32_t size_errmsg =
2106	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2107
2108	/* Check that the error log address is valid. */
2109	if (sc->errptr < WPI_FW_DATA_BASE ||
2110	    sc->errptr + sizeof (dump) >
2111	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2112		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2113		    sc->errptr);
2114                return;
2115        }
2116	if (wpi_nic_lock(sc) != 0) {
2117		printf("%s: could not read firmware error log\n", __func__);
2118                return;
2119        }
2120	/* Read number of entries in the log. */
2121	count = wpi_mem_read(sc, sc->errptr);
2122	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2123		printf("%s: invalid count field (count = %u)\n", __func__,
2124		    count);
2125		wpi_nic_unlock(sc);
2126		return;
2127	}
2128	/* Skip "count" field. */
2129	offset = sc->errptr + sizeof (uint32_t);
2130	printf("firmware error log (count = %u):\n", count);
2131	for (i = 0; i < count; i++) {
2132		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2133		    sizeof (dump) / sizeof (uint32_t));
2134
2135		printf("  error type = \"%s\" (0x%08X)\n",
2136		    (dump.desc < size_errmsg) ?
2137		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2138		    dump.desc);
2139		printf("  error data      = 0x%08X\n",
2140		    dump.data);
2141		printf("  branch link     = 0x%08X%08X\n",
2142		    dump.blink[0], dump.blink[1]);
2143		printf("  interrupt link  = 0x%08X%08X\n",
2144		    dump.ilink[0], dump.ilink[1]);
2145		printf("  time            = %u\n", dump.time);
2146
2147		offset += sizeof (dump);
2148	}
2149	wpi_nic_unlock(sc);
2150	/* Dump driver status (TX and RX rings) while we're here. */
2151	printf("driver status:\n");
2152	for (i = 0; i < WPI_NTXQUEUES; i++) {
2153		struct wpi_tx_ring *ring = &sc->txq[i];
2154		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2155		    i, ring->qid, ring->cur, ring->queued);
2156	}
2157	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2158}
2159
2160static void
2161wpi_intr(void *arg)
2162{
2163	struct wpi_softc *sc = arg;
2164	struct ifnet *ifp = sc->sc_ifp;
2165	uint32_t r1, r2;
2166
2167	WPI_LOCK(sc);
2168
2169	/* Disable interrupts. */
2170	WPI_WRITE(sc, WPI_INT_MASK, 0);
2171
2172	r1 = WPI_READ(sc, WPI_INT);
2173
2174	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2175		WPI_UNLOCK(sc);
2176		return;	/* Hardware gone! */
2177	}
2178
2179	r2 = WPI_READ(sc, WPI_FH_INT);
2180
2181	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2182	    r1, r2);
2183
2184	if (r1 == 0 && r2 == 0)
2185		goto done;	/* Interrupt not for us. */
2186
2187	/* Acknowledge interrupts. */
2188	WPI_WRITE(sc, WPI_INT, r1);
2189	WPI_WRITE(sc, WPI_FH_INT, r2);
2190
2191	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2192		struct ieee80211com *ic = ifp->if_l2com;
2193
2194		device_printf(sc->sc_dev, "fatal firmware error\n");
2195		wpi_fatal_intr(sc);
2196		DPRINTF(sc, WPI_DEBUG_HW,
2197		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2198		    "(Hardware Error)");
2199		ieee80211_runtask(ic, &sc->sc_reinittask);
2200		sc->flags &= ~WPI_FLAG_BUSY;
2201		WPI_UNLOCK(sc);
2202		return;
2203	}
2204
2205	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2206	    (r2 & WPI_FH_INT_RX))
2207		wpi_notif_intr(sc);
2208
2209	if (r1 & WPI_INT_ALIVE)
2210		wakeup(sc);	/* Firmware is alive. */
2211
2212	if (r1 & WPI_INT_WAKEUP)
2213		wpi_wakeup_intr(sc);
2214
2215done:
2216	/* Re-enable interrupts. */
2217	if (ifp->if_flags & IFF_UP)
2218		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2219
2220	WPI_UNLOCK(sc);
2221}
2222
2223static int
2224wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2225{
2226	struct ieee80211_frame *wh;
2227	struct wpi_tx_cmd *cmd;
2228	struct wpi_tx_data *data;
2229	struct wpi_tx_desc *desc;
2230	struct wpi_tx_ring *ring;
2231	struct mbuf *m1;
2232	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2233	int error, i, hdrlen, nsegs, totlen, pad;
2234
2235	WPI_LOCK_ASSERT(sc);
2236
2237	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2238
2239	wh = mtod(buf->m, struct ieee80211_frame *);
2240	hdrlen = ieee80211_anyhdrsize(wh);
2241	totlen = buf->m->m_pkthdr.len;
2242
2243	if (hdrlen & 3) {
2244		/* First segment length must be a multiple of 4. */
2245		pad = 4 - (hdrlen & 3);
2246	} else
2247		pad = 0;
2248
2249	ring = &sc->txq[buf->ac];
2250	desc = &ring->desc[ring->cur];
2251	data = &ring->data[ring->cur];
2252
2253	/* Prepare TX firmware command. */
2254	cmd = &ring->cmd[ring->cur];
2255	cmd->code = buf->code;
2256	cmd->flags = 0;
2257	cmd->qid = ring->qid;
2258	cmd->idx = ring->cur;
2259
2260	memcpy(cmd->data, buf->data, buf->size);
2261
2262	/* Save and trim IEEE802.11 header. */
2263	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2264	m_adj(buf->m, hdrlen);
2265
2266	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2267	    segs, &nsegs, BUS_DMA_NOWAIT);
2268	if (error != 0 && error != EFBIG) {
2269		device_printf(sc->sc_dev,
2270		    "%s: can't map mbuf (error %d)\n", __func__, error);
2271		m_freem(buf->m);
2272		return error;
2273	}
2274	if (error != 0) {
2275		/* Too many DMA segments, linearize mbuf. */
2276		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2277		if (m1 == NULL) {
2278			device_printf(sc->sc_dev,
2279			    "%s: could not defrag mbuf\n", __func__);
2280			m_freem(buf->m);
2281			return ENOBUFS;
2282		}
2283		buf->m = m1;
2284
2285		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2286		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2287		if (error != 0) {
2288			device_printf(sc->sc_dev,
2289			    "%s: can't map mbuf (error %d)\n", __func__, error);
2290			m_freem(buf->m);
2291			return error;
2292		}
2293	}
2294
2295	KASSERT(nsegs < WPI_MAX_SCATTER,
2296	    ("too many DMA segments, nsegs (%d) should be less than %d",
2297	     nsegs, WPI_MAX_SCATTER));
2298
2299	data->m = buf->m;
2300	data->ni = buf->ni;
2301
2302	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2303	    __func__, ring->qid, ring->cur, totlen, nsegs);
2304
2305	/* Fill TX descriptor. */
2306	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2307	/* First DMA segment is used by the TX command. */
2308	desc->segs[0].addr = htole32(data->cmd_paddr);
2309	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2310	/* Other DMA segments are for data payload. */
2311	seg = &segs[0];
2312	for (i = 1; i <= nsegs; i++) {
2313		desc->segs[i].addr = htole32(seg->ds_addr);
2314		desc->segs[i].len  = htole32(seg->ds_len);
2315		seg++;
2316	}
2317
2318	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2319	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2320	    BUS_DMASYNC_PREWRITE);
2321	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2322	    BUS_DMASYNC_PREWRITE);
2323
2324	/* Kick TX ring. */
2325	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2326	wpi_update_tx_ring(sc, ring);
2327
2328	/* Mark TX ring as full if we reach a certain threshold. */
2329	if (++ring->queued > WPI_TX_RING_HIMARK)
2330		sc->qfullmsk |= 1 << ring->qid;
2331
2332	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2333
2334	return 0;
2335}
2336
2337/*
2338 * Construct the data packet for a transmit buffer.
2339 */
2340static int
2341wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2342{
2343	const struct ieee80211_txparam *tp;
2344	struct ieee80211vap *vap = ni->ni_vap;
2345	struct ieee80211com *ic = ni->ni_ic;
2346	struct wpi_node *wn = (void *)ni;
2347	struct ieee80211_channel *chan;
2348	struct ieee80211_frame *wh;
2349	struct ieee80211_key *k = NULL;
2350	struct wpi_cmd_data tx;
2351	struct wpi_buf tx_data;
2352	uint32_t flags;
2353	uint16_t qos;
2354	uint8_t tid, type;
2355	int ac, error, rate, ismcast, totlen;
2356
2357	wh = mtod(m, struct ieee80211_frame *);
2358	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2359	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2360
2361	/* Select EDCA Access Category and TX ring for this frame. */
2362	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2363 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2364		tid = qos & IEEE80211_QOS_TID;
2365	} else {
2366		qos = 0;
2367		tid = 0;
2368        }
2369	ac = M_WME_GETAC(m);
2370
2371	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2372		ni->ni_chan : ic->ic_curchan;
2373	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2374
2375	/* Choose a TX rate index. */
2376	if (type == IEEE80211_FC0_TYPE_MGT)
2377		rate = tp->mgmtrate;
2378	else if (ismcast)
2379		rate = tp->mcastrate;
2380	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2381		rate = tp->ucastrate;
2382	else if (m->m_flags & M_EAPOL)
2383		rate = tp->mgmtrate;
2384	else {
2385		/* XXX pass pktlen */
2386		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2387		rate = ni->ni_txrate;
2388	}
2389
2390	/* Encrypt the frame if need be. */
2391	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2392		/* Retrieve key for TX. */
2393		k = ieee80211_crypto_encap(ni, m);
2394		if (k == NULL) {
2395			error = ENOBUFS;
2396			goto fail;
2397		}
2398		/* 802.11 header may have moved. */
2399		wh = mtod(m, struct ieee80211_frame *);
2400	}
2401	totlen = m->m_pkthdr.len;
2402
2403	if (ieee80211_radiotap_active_vap(vap)) {
2404		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2405
2406		tap->wt_flags = 0;
2407		tap->wt_rate = rate;
2408		if (k != NULL)
2409			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2410
2411		ieee80211_radiotap_tx(vap, m);
2412	}
2413
2414	flags = 0;
2415	if (!ismcast) {
2416		/* Unicast frame, check if an ACK is expected. */
2417		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2418		    IEEE80211_QOS_ACKPOLICY_NOACK)
2419			flags |= WPI_TX_NEED_ACK;
2420	}
2421
2422	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2423		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2424
2425	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2426	if (!ismcast) {
2427		/* NB: Group frames are sent using CCK in 802.11b/g. */
2428		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2429			flags |= WPI_TX_NEED_RTS;
2430		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2431		    WPI_RATE_IS_OFDM(rate)) {
2432			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2433				flags |= WPI_TX_NEED_CTS;
2434			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2435				flags |= WPI_TX_NEED_RTS;
2436		}
2437
2438		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2439			flags |= WPI_TX_FULL_TXOP;
2440	}
2441
2442	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2443	if (type == IEEE80211_FC0_TYPE_MGT) {
2444		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2445
2446		/* Tell HW to set timestamp in probe responses. */
2447		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2448			flags |= WPI_TX_INSERT_TSTAMP;
2449		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2450		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2451			tx.timeout = htole16(3);
2452		else
2453			tx.timeout = htole16(2);
2454	}
2455
2456	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2457		tx.id = WPI_ID_BROADCAST;
2458	else {
2459		if (wn->id == WPI_ID_UNDEFINED &&
2460		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2461		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2462			error = wpi_add_ibss_node(sc, ni);
2463			if (error != 0) {
2464				device_printf(sc->sc_dev,
2465				    "%s: could not add IBSS node, error %d\n",
2466				    __func__, error);
2467				goto fail;
2468			}
2469		}
2470
2471		if (wn->id == WPI_ID_UNDEFINED) {
2472			device_printf(sc->sc_dev,
2473			    "%s: undefined node id\n", __func__);
2474			error = EINVAL;
2475			goto fail;
2476		}
2477
2478		tx.id = wn->id;
2479	}
2480
2481	if (type != IEEE80211_FC0_TYPE_MGT)
2482		tx.data_ntries = tp->maxretry;
2483
2484	tx.len = htole16(totlen);
2485	tx.flags = htole32(flags);
2486	tx.plcp = rate2plcp(rate);
2487	tx.tid = tid;
2488	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2489	tx.ofdm_mask = 0xff;
2490	tx.cck_mask = 0x0f;
2491	tx.rts_ntries = 7;
2492
2493	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2494		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2495			tx.security = WPI_CIPHER_CCMP;
2496			memcpy(tx.key, k->wk_key, k->wk_keylen);
2497		}
2498	}
2499
2500	tx_data.data = &tx;
2501	tx_data.ni = ni;
2502	tx_data.m = m;
2503	tx_data.size = sizeof(tx);
2504	tx_data.code = WPI_CMD_TX_DATA;
2505	tx_data.ac = ac;
2506
2507	return wpi_cmd2(sc, &tx_data);
2508
2509fail:	m_freem(m);
2510	return error;
2511}
2512
2513static int
2514wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2515    const struct ieee80211_bpf_params *params)
2516{
2517	struct ieee80211vap *vap = ni->ni_vap;
2518	struct ieee80211_frame *wh;
2519	struct wpi_cmd_data tx;
2520	struct wpi_buf tx_data;
2521	uint32_t flags;
2522	uint8_t type;
2523	int ac, rate, totlen;
2524
2525	wh = mtod(m, struct ieee80211_frame *);
2526	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2527	totlen = m->m_pkthdr.len;
2528
2529	ac = params->ibp_pri & 3;
2530
2531	/* Choose a TX rate index. */
2532	rate = params->ibp_rate0;
2533
2534	flags = 0;
2535	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2536		flags |= WPI_TX_NEED_ACK;
2537	if (params->ibp_flags & IEEE80211_BPF_RTS)
2538		flags |= WPI_TX_NEED_RTS;
2539	if (params->ibp_flags & IEEE80211_BPF_CTS)
2540		flags |= WPI_TX_NEED_CTS;
2541	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2542		flags |= WPI_TX_FULL_TXOP;
2543
2544	if (ieee80211_radiotap_active_vap(vap)) {
2545		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2546
2547		tap->wt_flags = 0;
2548		tap->wt_rate = rate;
2549
2550		ieee80211_radiotap_tx(vap, m);
2551	}
2552
2553	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2554	if (type == IEEE80211_FC0_TYPE_MGT) {
2555		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2556
2557		/* Tell HW to set timestamp in probe responses. */
2558		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2559			flags |= WPI_TX_INSERT_TSTAMP;
2560		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2561		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2562			tx.timeout = htole16(3);
2563		else
2564			tx.timeout = htole16(2);
2565	}
2566
2567	tx.len = htole16(totlen);
2568	tx.flags = htole32(flags);
2569	tx.plcp = rate2plcp(rate);
2570	tx.id = WPI_ID_BROADCAST;
2571	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2572	tx.rts_ntries = params->ibp_try1;
2573	tx.data_ntries = params->ibp_try0;
2574
2575	tx_data.data = &tx;
2576	tx_data.ni = ni;
2577	tx_data.m = m;
2578	tx_data.size = sizeof(tx);
2579	tx_data.code = WPI_CMD_TX_DATA;
2580	tx_data.ac = ac;
2581
2582	return wpi_cmd2(sc, &tx_data);
2583}
2584
2585static int
2586wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2587    const struct ieee80211_bpf_params *params)
2588{
2589	struct ieee80211com *ic = ni->ni_ic;
2590	struct ifnet *ifp = ic->ic_ifp;
2591	struct wpi_softc *sc = ifp->if_softc;
2592	int error = 0;
2593
2594	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2595
2596	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2597		ieee80211_free_node(ni);
2598		m_freem(m);
2599		return ENETDOWN;
2600	}
2601
2602	WPI_LOCK(sc);
2603	if (params == NULL) {
2604		/*
2605		 * Legacy path; interpret frame contents to decide
2606		 * precisely how to send the frame.
2607		 */
2608		error = wpi_tx_data(sc, m, ni);
2609	} else {
2610		/*
2611		 * Caller supplied explicit parameters to use in
2612		 * sending the frame.
2613		 */
2614		error = wpi_tx_data_raw(sc, m, ni, params);
2615	}
2616	WPI_UNLOCK(sc);
2617
2618	if (error != 0) {
2619		/* NB: m is reclaimed on tx failure */
2620		ieee80211_free_node(ni);
2621		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2622
2623		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2624
2625		return error;
2626	}
2627
2628	sc->sc_tx_timer = 5;
2629
2630	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2631
2632	return 0;
2633}
2634
2635/**
2636 * Process data waiting to be sent on the IFNET output queue
2637 */
2638static void
2639wpi_start(struct ifnet *ifp)
2640{
2641	struct wpi_softc *sc = ifp->if_softc;
2642
2643	WPI_LOCK(sc);
2644	wpi_start_locked(ifp);
2645	WPI_UNLOCK(sc);
2646}
2647
2648static void
2649wpi_start_locked(struct ifnet *ifp)
2650{
2651	struct wpi_softc *sc = ifp->if_softc;
2652	struct ieee80211_node *ni;
2653	struct mbuf *m;
2654
2655	WPI_LOCK_ASSERT(sc);
2656
2657	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2658
2659	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2660	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2661		return;
2662
2663	for (;;) {
2664		if (sc->qfullmsk != 0) {
2665			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2666			break;
2667		}
2668		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2669		if (m == NULL)
2670			break;
2671		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2672		if (wpi_tx_data(sc, m, ni) != 0) {
2673			WPI_UNLOCK(sc);
2674			ieee80211_free_node(ni);
2675			WPI_LOCK(sc);
2676			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2677		} else
2678			sc->sc_tx_timer = 5;
2679	}
2680
2681	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2682}
2683
2684static void
2685wpi_watchdog_rfkill(void *arg)
2686{
2687	struct wpi_softc *sc = arg;
2688	struct ifnet *ifp = sc->sc_ifp;
2689	struct ieee80211com *ic = ifp->if_l2com;
2690
2691	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2692
2693	/* No need to lock firmware memory. */
2694	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2695		/* Radio kill switch is still off. */
2696		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2697		    sc);
2698	} else
2699		ieee80211_runtask(ic, &sc->sc_radioon_task);
2700}
2701
2702/**
2703 * Called every second, wpi_watchdog used by the watch dog timer
2704 * to check that the card is still alive
2705 */
2706static void
2707wpi_watchdog(void *arg)
2708{
2709	struct wpi_softc *sc = arg;
2710	struct ifnet *ifp = sc->sc_ifp;
2711	struct ieee80211com *ic = ifp->if_l2com;
2712
2713	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2714
2715	if (sc->sc_tx_timer > 0) {
2716		if (--sc->sc_tx_timer == 0) {
2717			if_printf(ifp, "device timeout\n");
2718			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2719			ieee80211_runtask(ic, &sc->sc_reinittask);
2720		}
2721	}
2722
2723	if (sc->sc_scan_timer > 0) {
2724		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2725		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2726			if_printf(ifp, "scan timeout\n");
2727			ieee80211_cancel_scan(vap);
2728			ieee80211_runtask(ic, &sc->sc_reinittask);
2729		}
2730	}
2731
2732	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2733		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2734}
2735
2736static int
2737wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2738{
2739	struct wpi_softc *sc = ifp->if_softc;
2740	struct ieee80211com *ic = ifp->if_l2com;
2741	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2742	struct ifreq *ifr = (struct ifreq *) data;
2743	int error = 0, startall = 0, stop = 0;
2744
2745	switch (cmd) {
2746	case SIOCGIFADDR:
2747		error = ether_ioctl(ifp, cmd, data);
2748		break;
2749	case SIOCSIFFLAGS:
2750		WPI_LOCK(sc);
2751		if (ifp->if_flags & IFF_UP) {
2752			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2753				wpi_init_locked(sc);
2754				if (WPI_READ(sc, WPI_GP_CNTRL) &
2755				    WPI_GP_CNTRL_RFKILL)
2756					startall = 1;
2757				else
2758					stop = 1;
2759			}
2760		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2761			wpi_stop_locked(sc);
2762		WPI_UNLOCK(sc);
2763		if (startall)
2764			ieee80211_start_all(ic);
2765		else if (vap != NULL && stop)
2766			ieee80211_stop(vap);
2767		break;
2768	case SIOCGIFMEDIA:
2769		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2770		break;
2771	default:
2772		error = EINVAL;
2773		break;
2774	}
2775	return error;
2776}
2777
2778/*
2779 * Send a command to the firmware.
2780 */
2781static int
2782wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2783    int async)
2784{
2785	struct wpi_tx_ring *ring = &sc->txq[4];
2786	struct wpi_tx_desc *desc;
2787	struct wpi_tx_data *data;
2788	struct wpi_tx_cmd *cmd;
2789	struct mbuf *m;
2790	bus_addr_t paddr;
2791	int totlen, error;
2792
2793	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2794
2795	if (async == 0)
2796		WPI_LOCK_ASSERT(sc);
2797
2798	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2799	    wpi_cmd_str(code), size, async);
2800
2801	if (sc->flags & WPI_FLAG_BUSY) {
2802		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2803		    __func__, code);
2804		return EAGAIN;
2805	}
2806	sc->flags |= WPI_FLAG_BUSY;
2807
2808	desc = &ring->desc[ring->cur];
2809	data = &ring->data[ring->cur];
2810	totlen = 4 + size;
2811
2812	if (size > sizeof cmd->data) {
2813		/* Command is too large to fit in a descriptor. */
2814		if (totlen > MCLBYTES)
2815			return EINVAL;
2816		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2817		if (m == NULL)
2818			return ENOMEM;
2819		cmd = mtod(m, struct wpi_tx_cmd *);
2820		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2821		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2822		if (error != 0) {
2823			m_freem(m);
2824			return error;
2825		}
2826		data->m = m;
2827	} else {
2828		cmd = &ring->cmd[ring->cur];
2829		paddr = data->cmd_paddr;
2830	}
2831
2832	cmd->code = code;
2833	cmd->flags = 0;
2834	cmd->qid = ring->qid;
2835	cmd->idx = ring->cur;
2836	memcpy(cmd->data, buf, size);
2837
2838	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2839	desc->segs[0].addr = htole32(paddr);
2840	desc->segs[0].len  = htole32(totlen);
2841
2842	if (size > sizeof cmd->data) {
2843		bus_dmamap_sync(ring->data_dmat, data->map,
2844		    BUS_DMASYNC_PREWRITE);
2845	} else {
2846		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2847		    BUS_DMASYNC_PREWRITE);
2848	}
2849	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2850	    BUS_DMASYNC_PREWRITE);
2851
2852	/* Kick command ring. */
2853	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2854	wpi_update_tx_ring(sc, ring);
2855
2856	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2857
2858	if (async) {
2859		sc->flags &= ~WPI_FLAG_BUSY;
2860		return 0;
2861	}
2862
2863	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2864}
2865
2866/*
2867 * Configure HW multi-rate retries.
2868 */
2869static int
2870wpi_mrr_setup(struct wpi_softc *sc)
2871{
2872	struct ifnet *ifp = sc->sc_ifp;
2873	struct ieee80211com *ic = ifp->if_l2com;
2874	struct wpi_mrr_setup mrr;
2875	int i, error;
2876
2877	/* CCK rates (not used with 802.11a). */
2878	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2879		mrr.rates[i].flags = 0;
2880		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2881		/* Fallback to the immediate lower CCK rate (if any.) */
2882		mrr.rates[i].next =
2883		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2884		/* Try one time at this rate before falling back to "next". */
2885		mrr.rates[i].ntries = 1;
2886	}
2887	/* OFDM rates (not used with 802.11b). */
2888	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2889		mrr.rates[i].flags = 0;
2890		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2891		/* Fallback to the immediate lower rate (if any.) */
2892		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2893		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2894		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2895			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2896		    i - 1;
2897		/* Try one time at this rate before falling back to "next". */
2898		mrr.rates[i].ntries = 1;
2899	}
2900	/* Setup MRR for control frames. */
2901	mrr.which = htole32(WPI_MRR_CTL);
2902	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2903	if (error != 0) {
2904		device_printf(sc->sc_dev,
2905		    "could not setup MRR for control frames\n");
2906		return error;
2907	}
2908	/* Setup MRR for data frames. */
2909	mrr.which = htole32(WPI_MRR_DATA);
2910	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2911	if (error != 0) {
2912		device_printf(sc->sc_dev,
2913		    "could not setup MRR for data frames\n");
2914		return error;
2915	}
2916	return 0;
2917}
2918
2919static int
2920wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2921{
2922	struct ieee80211com *ic = ni->ni_ic;
2923	struct wpi_node *wn = (void *)ni;
2924	struct wpi_node_info node;
2925
2926	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2927
2928	if (wn->id == WPI_ID_UNDEFINED)
2929		return EINVAL;
2930
2931	memset(&node, 0, sizeof node);
2932	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2933	node.id = wn->id;
2934	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2935	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2936	node.action = htole32(WPI_ACTION_SET_RATE);
2937	node.antenna = WPI_ANTENNA_BOTH;
2938
2939	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2940}
2941
2942/*
2943 * Broadcast node is used to send group-addressed and management frames.
2944 */
2945static int
2946wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2947{
2948	struct ifnet *ifp = sc->sc_ifp;
2949	struct ieee80211com *ic = ifp->if_l2com;
2950	struct wpi_node_info node;
2951
2952	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2953
2954	memset(&node, 0, sizeof node);
2955	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2956	node.id = WPI_ID_BROADCAST;
2957	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2958	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2959	node.action = htole32(WPI_ACTION_SET_RATE);
2960	node.antenna = WPI_ANTENNA_BOTH;
2961
2962	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2963}
2964
2965static int
2966wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2967{
2968	struct wpi_node *wn = (void *)ni;
2969
2970	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2971
2972	if (wn->id != WPI_ID_UNDEFINED)
2973		return EINVAL;
2974
2975	wn->id = alloc_unrl(sc->sc_unr);
2976
2977	if (wn->id == (uint8_t)-1)
2978		return ENOBUFS;
2979
2980	return wpi_add_node(sc, ni);
2981}
2982
2983static void
2984wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2985{
2986	struct wpi_node *wn = (void *)ni;
2987	struct wpi_cmd_del_node node;
2988	int error;
2989
2990	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2991
2992	if (wn->id == WPI_ID_UNDEFINED) {
2993		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
2994		    __func__);
2995		return;
2996	}
2997
2998	memset(&node, 0, sizeof node);
2999	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3000	node.count = 1;
3001
3002	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3003	if (error != 0) {
3004		device_printf(sc->sc_dev,
3005		    "%s: could not delete node %u, error %d\n", __func__,
3006		    wn->id, error);
3007	}
3008}
3009
3010static int
3011wpi_updateedca(struct ieee80211com *ic)
3012{
3013#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3014	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3015	struct wpi_edca_params cmd;
3016	int aci, error;
3017
3018	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3019
3020	memset(&cmd, 0, sizeof cmd);
3021	cmd.flags = htole32(WPI_EDCA_UPDATE);
3022	for (aci = 0; aci < WME_NUM_AC; aci++) {
3023		const struct wmeParams *ac =
3024		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3025		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3026		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3027		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3028		cmd.ac[aci].txoplimit =
3029		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3030
3031		DPRINTF(sc, WPI_DEBUG_EDCA,
3032		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3033		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3034		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3035		    cmd.ac[aci].txoplimit);
3036	}
3037	IEEE80211_UNLOCK(ic);
3038	WPI_LOCK(sc);
3039	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3040	WPI_UNLOCK(sc);
3041	IEEE80211_LOCK(ic);
3042
3043	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3044
3045	return error;
3046#undef WPI_EXP2
3047}
3048
3049static void
3050wpi_set_promisc(struct wpi_softc *sc)
3051{
3052	struct ifnet *ifp = sc->sc_ifp;
3053	uint32_t promisc_filter;
3054
3055	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3056
3057	if (ifp->if_flags & IFF_PROMISC)
3058		sc->rxon.filter |= htole32(promisc_filter);
3059	else
3060		sc->rxon.filter &= ~htole32(promisc_filter);
3061}
3062
3063static void
3064wpi_update_promisc(struct ifnet *ifp)
3065{
3066	struct wpi_softc *sc = ifp->if_softc;
3067
3068	wpi_set_promisc(sc);
3069
3070	WPI_LOCK(sc);
3071	if (wpi_send_rxon(sc, 1, 1) != 0) {
3072		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3073		    __func__);
3074	}
3075	WPI_UNLOCK(sc);
3076}
3077
3078static void
3079wpi_update_mcast(struct ifnet *ifp)
3080{
3081	/* Ignore */
3082}
3083
3084static void
3085wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3086{
3087	struct wpi_cmd_led led;
3088
3089	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3090
3091	led.which = which;
3092	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3093	led.off = off;
3094	led.on = on;
3095	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3096}
3097
3098static int
3099wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3100{
3101	struct wpi_cmd_timing cmd;
3102	uint64_t val, mod;
3103
3104	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3105
3106	memset(&cmd, 0, sizeof cmd);
3107	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3108	cmd.bintval = htole16(ni->ni_intval);
3109	cmd.lintval = htole16(10);
3110
3111	/* Compute remaining time until next beacon. */
3112	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3113	mod = le64toh(cmd.tstamp) % val;
3114	cmd.binitval = htole32((uint32_t)(val - mod));
3115
3116	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3117	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3118
3119	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3120}
3121
3122/*
3123 * This function is called periodically (every 60 seconds) to adjust output
3124 * power to temperature changes.
3125 */
3126static void
3127wpi_power_calibration(struct wpi_softc *sc)
3128{
3129	int temp;
3130
3131	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3132
3133	/* Update sensor data. */
3134	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3135	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3136
3137	/* Sanity-check read value. */
3138	if (temp < -260 || temp > 25) {
3139		/* This can't be correct, ignore. */
3140		DPRINTF(sc, WPI_DEBUG_TEMP,
3141		    "out-of-range temperature reported: %d\n", temp);
3142		return;
3143	}
3144
3145	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3146
3147	/* Adjust Tx power if need be. */
3148	if (abs(temp - sc->temp) <= 6)
3149		return;
3150
3151	sc->temp = temp;
3152
3153	if (wpi_set_txpower(sc, 1) != 0) {
3154		/* just warn, too bad for the automatic calibration... */
3155		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3156	}
3157}
3158
3159/*
3160 * Set TX power for current channel.
3161 */
3162static int
3163wpi_set_txpower(struct wpi_softc *sc, int async)
3164{
3165	struct ifnet *ifp = sc->sc_ifp;
3166	struct ieee80211com *ic = ifp->if_l2com;
3167	struct ieee80211_channel *ch;
3168	struct wpi_power_group *group;
3169	struct wpi_cmd_txpower cmd;
3170	uint8_t chan;
3171	int idx, i;
3172
3173	/* Retrieve current channel from last RXON. */
3174	chan = sc->rxon.chan;
3175	ch = &ic->ic_channels[chan];
3176
3177	/* Find the TX power group to which this channel belongs. */
3178	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3179		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3180			if (chan <= group->chan)
3181				break;
3182	} else
3183		group = &sc->groups[0];
3184
3185	memset(&cmd, 0, sizeof cmd);
3186	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3187	cmd.chan = htole16(chan);
3188
3189	/* Set TX power for all OFDM and CCK rates. */
3190	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3191		/* Retrieve TX power for this channel/rate. */
3192		idx = wpi_get_power_index(sc, group, ch, i);
3193
3194		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3195
3196		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3197			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3198			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3199		} else {
3200			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3201			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3202		}
3203		DPRINTF(sc, WPI_DEBUG_TEMP,
3204		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3205	}
3206
3207	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3208}
3209
3210/*
3211 * Determine Tx power index for a given channel/rate combination.
3212 * This takes into account the regulatory information from EEPROM and the
3213 * current temperature.
3214 */
3215static int
3216wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3217    struct ieee80211_channel *c, int ridx)
3218{
3219/* Fixed-point arithmetic division using a n-bit fractional part. */
3220#define fdivround(a, b, n)      \
3221	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3222
3223/* Linear interpolation. */
3224#define interpolate(x, x1, y1, x2, y2, n)       \
3225	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3226
3227	struct ifnet *ifp = sc->sc_ifp;
3228	struct ieee80211com *ic = ifp->if_l2com;
3229	struct wpi_power_sample *sample;
3230	int pwr, idx;
3231	u_int chan;
3232
3233	/* Get channel number. */
3234	chan = ieee80211_chan2ieee(ic, c);
3235
3236	/* Default TX power is group maximum TX power minus 3dB. */
3237	pwr = group->maxpwr / 2;
3238
3239	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3240	switch (ridx) {
3241	case WPI_RIDX_OFDM36:
3242		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3243		break;
3244	case WPI_RIDX_OFDM48:
3245		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3246		break;
3247	case WPI_RIDX_OFDM54:
3248		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3249		break;
3250	}
3251
3252	/* Never exceed the channel maximum allowed TX power. */
3253	pwr = min(pwr, sc->maxpwr[chan]);
3254
3255	/* Retrieve TX power index into gain tables from samples. */
3256	for (sample = group->samples; sample < &group->samples[3]; sample++)
3257		if (pwr > sample[1].power)
3258			break;
3259	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3260	idx = interpolate(pwr, sample[0].power, sample[0].index,
3261	    sample[1].power, sample[1].index, 19);
3262
3263	/*-
3264	 * Adjust power index based on current temperature:
3265	 * - if cooler than factory-calibrated: decrease output power
3266	 * - if warmer than factory-calibrated: increase output power
3267	 */
3268	idx -= (sc->temp - group->temp) * 11 / 100;
3269
3270	/* Decrease TX power for CCK rates (-5dB). */
3271	if (ridx >= WPI_RIDX_CCK1)
3272		idx += 10;
3273
3274	/* Make sure idx stays in a valid range. */
3275	if (idx < 0)
3276		return 0;
3277	if (idx > WPI_MAX_PWR_INDEX)
3278		return WPI_MAX_PWR_INDEX;
3279	return idx;
3280
3281#undef interpolate
3282#undef fdivround
3283}
3284
3285/*
3286 * Set STA mode power saving level (between 0 and 5).
3287 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3288 */
3289static int
3290wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3291{
3292	struct wpi_pmgt_cmd cmd;
3293	const struct wpi_pmgt *pmgt;
3294	uint32_t max, skip_dtim;
3295	uint32_t reg;
3296	int i;
3297
3298	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3299	    "%s: dtim=%d, level=%d, async=%d\n",
3300	    __func__, dtim, level, async);
3301
3302	/* Select which PS parameters to use. */
3303	if (dtim <= 10)
3304		pmgt = &wpi_pmgt[0][level];
3305	else
3306		pmgt = &wpi_pmgt[1][level];
3307
3308	memset(&cmd, 0, sizeof cmd);
3309	if (level != 0)	/* not CAM */
3310		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3311	/* Retrieve PCIe Active State Power Management (ASPM). */
3312	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3313	if (!(reg & 0x1))	/* L0s Entry disabled. */
3314		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3315
3316	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3317	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3318
3319	if (dtim == 0) {
3320		dtim = 1;
3321		skip_dtim = 0;
3322	} else
3323		skip_dtim = pmgt->skip_dtim;
3324
3325	if (skip_dtim != 0) {
3326		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3327		max = pmgt->intval[4];
3328		if (max == (uint32_t)-1)
3329			max = dtim * (skip_dtim + 1);
3330		else if (max > dtim)
3331			max = (max / dtim) * dtim;
3332	} else
3333		max = dtim;
3334
3335	for (i = 0; i < 5; i++)
3336		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3337
3338	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3339}
3340
3341static int
3342wpi_send_btcoex(struct wpi_softc *sc)
3343{
3344	struct wpi_bluetooth cmd;
3345
3346        memset(&cmd, 0, sizeof cmd);
3347        cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3348        cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3349        cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3350	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3351	    __func__);
3352        return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3353}
3354
3355static int
3356wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3357{
3358	int error;
3359
3360	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3361		struct wpi_assoc rxon_assoc;
3362
3363		rxon_assoc.flags = sc->rxon.flags;
3364		rxon_assoc.filter = sc->rxon.filter;
3365		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3366		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3367		rxon_assoc.reserved = 0;
3368
3369		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3370		    sizeof (struct wpi_assoc), async);
3371	} else {
3372		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3373		    sizeof (struct wpi_rxon), async);
3374	}
3375	if (error != 0) {
3376		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3377		    error);
3378		return error;
3379	}
3380
3381	/* Configuration has changed, set Tx power accordingly. */
3382	if ((error = wpi_set_txpower(sc, async)) != 0) {
3383		device_printf(sc->sc_dev,
3384		    "%s: could not set TX power, error %d\n", __func__, error);
3385		return error;
3386	}
3387
3388	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3389		/* Add broadcast node. */
3390		error = wpi_add_broadcast_node(sc, async);
3391		if (error != 0) {
3392			device_printf(sc->sc_dev,
3393			    "could not add broadcast node, error %d\n", error);
3394			return error;
3395		}
3396	}
3397
3398	return 0;
3399}
3400
3401/**
3402 * Configure the card to listen to a particular channel, this transisions the
3403 * card in to being able to receive frames from remote devices.
3404 */
3405static int
3406wpi_config(struct wpi_softc *sc)
3407{
3408	struct ifnet *ifp = sc->sc_ifp;
3409	struct ieee80211com *ic = ifp->if_l2com;
3410	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3411	uint32_t flags;
3412	int error;
3413
3414	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3415
3416	/* Set power saving level to CAM during initialization. */
3417	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3418		device_printf(sc->sc_dev,
3419		    "%s: could not set power saving level\n", __func__);
3420		return error;
3421	}
3422
3423	/* Configure bluetooth coexistence. */
3424	if ((error = wpi_send_btcoex(sc)) != 0) {
3425		device_printf(sc->sc_dev,
3426		    "could not configure bluetooth coexistence\n");
3427		return error;
3428	}
3429
3430	/* Configure adapter. */
3431	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3432	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3433
3434	/* Set default channel. */
3435	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3436	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3437	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3438		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3439
3440	sc->rxon.filter = WPI_FILTER_MULTICAST;
3441	switch (ic->ic_opmode) {
3442	case IEEE80211_M_STA:
3443		sc->rxon.mode = WPI_MODE_STA;
3444		break;
3445	case IEEE80211_M_IBSS:
3446		sc->rxon.mode = WPI_MODE_IBSS;
3447		sc->rxon.filter |= WPI_FILTER_BEACON;
3448		break;
3449	/* XXX workaround for passive channels selection */
3450	case IEEE80211_M_AHDEMO:
3451	case IEEE80211_M_HOSTAP:
3452		sc->rxon.mode = WPI_MODE_HOSTAP;
3453		break;
3454	case IEEE80211_M_MONITOR:
3455		sc->rxon.mode = WPI_MODE_MONITOR;
3456		break;
3457	default:
3458		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3459		return EINVAL;
3460	}
3461	sc->rxon.filter = htole32(sc->rxon.filter);
3462	wpi_set_promisc(sc);
3463	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3464	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3465
3466	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3467		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3468		    __func__);
3469		return error;
3470	}
3471
3472	/* Setup rate scalling. */
3473	if ((error = wpi_mrr_setup(sc)) != 0) {
3474		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3475		    error);
3476		return error;
3477	}
3478
3479	/* Disable beacon notifications (unused). */
3480	flags = WPI_STATISTICS_BEACON_DISABLE;
3481	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3482	if (error != 0) {
3483		device_printf(sc->sc_dev,
3484		    "could not disable beacon statistics, error %d\n", error);
3485		return error;
3486	}
3487
3488	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3489
3490	return 0;
3491}
3492
3493static uint16_t
3494wpi_get_active_dwell_time(struct wpi_softc *sc,
3495    struct ieee80211_channel *c, uint8_t n_probes)
3496{
3497	/* No channel? Default to 2GHz settings. */
3498	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3499		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3500		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3501	}
3502
3503	/* 5GHz dwell time. */
3504	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3505	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3506}
3507
3508/*
3509 * Limit the total dwell time to 85% of the beacon interval.
3510 *
3511 * Returns the dwell time in milliseconds.
3512 */
3513static uint16_t
3514wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3515{
3516	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3517	struct ieee80211vap *vap = NULL;
3518	int bintval = 0;
3519
3520	/* bintval is in TU (1.024mS) */
3521	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3522		vap = TAILQ_FIRST(&ic->ic_vaps);
3523		bintval = vap->iv_bss->ni_intval;
3524	}
3525
3526	/*
3527	 * If it's non-zero, we should calculate the minimum of
3528	 * it and the DWELL_BASE.
3529	 *
3530	 * XXX Yes, the math should take into account that bintval
3531	 * is 1.024mS, not 1mS..
3532	 */
3533	if (bintval > 0) {
3534		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3535		    bintval);
3536		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3537	}
3538
3539	/* No association context? Default. */
3540	return (WPI_PASSIVE_DWELL_BASE);
3541}
3542
3543static uint16_t
3544wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3545{
3546	uint16_t passive;
3547
3548	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3549		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3550	else
3551		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3552
3553	/* Clamp to the beacon interval if we're associated. */
3554	return (wpi_limit_dwell(sc, passive));
3555}
3556
3557/*
3558 * Send a scan request to the firmware.
3559 */
3560static int
3561wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3562{
3563	struct ifnet *ifp = sc->sc_ifp;
3564	struct ieee80211com *ic = ifp->if_l2com;
3565	struct ieee80211_scan_state *ss = ic->ic_scan;
3566	struct ieee80211vap *vap = ss->ss_vap;
3567	struct wpi_scan_hdr *hdr;
3568	struct wpi_cmd_data *tx;
3569	struct wpi_scan_essid *essids;
3570	struct wpi_scan_chan *chan;
3571	struct ieee80211_frame *wh;
3572	struct ieee80211_rateset *rs;
3573	uint16_t dwell_active, dwell_passive;
3574	uint8_t *buf, *frm;
3575	int buflen, error, i, nssid;
3576
3577	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3578
3579	/*
3580	 * We are absolutely not allowed to send a scan command when another
3581	 * scan command is pending.
3582	 */
3583	if (sc->sc_scan_timer) {
3584		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3585		    __func__);
3586		return (EAGAIN);
3587	}
3588
3589	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3590	if (buf == NULL) {
3591		device_printf(sc->sc_dev,
3592		    "%s: could not allocate buffer for scan command\n",
3593		    __func__);
3594		return ENOMEM;
3595	}
3596	hdr = (struct wpi_scan_hdr *)buf;
3597
3598	/*
3599	 * Move to the next channel if no packets are received within 10 msecs
3600	 * after sending the probe request.
3601	 */
3602	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3603	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3604	/*
3605	 * Max needs to be greater than active and passive and quiet!
3606	 * It's also in microseconds!
3607	 */
3608	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3609	hdr->pause_svc = htole32((4 << 24) |
3610	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3611	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3612
3613	tx = (struct wpi_cmd_data *)(hdr + 1);
3614	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3615	tx->id = WPI_ID_BROADCAST;
3616	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3617
3618	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3619		/* Send probe requests at 6Mbps. */
3620		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3621		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3622	} else {
3623		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3624		/* Send probe requests at 1Mbps. */
3625		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3626		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3627	}
3628
3629	essids = (struct wpi_scan_essid *)(tx + 1);
3630	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3631	for (i = 0; i < nssid; i++) {
3632		essids[i].id = IEEE80211_ELEMID_SSID;
3633		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3634		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3635#ifdef WPI_DEBUG
3636		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3637			printf("Scanning Essid: ");
3638			ieee80211_print_essid(essids[i].data, essids[i].len);
3639			printf("\n");
3640		}
3641#endif
3642	}
3643
3644	/*
3645	 * Build a probe request frame.  Most of the following code is a
3646	 * copy & paste of what is done in net80211.
3647	 */
3648	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3649	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3650		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3651	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3652	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3653	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3654	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3655	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3656	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3657
3658	frm = (uint8_t *)(wh + 1);
3659	frm = ieee80211_add_ssid(frm, NULL, 0);
3660	frm = ieee80211_add_rates(frm, rs);
3661	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3662		frm = ieee80211_add_xrates(frm, rs);
3663
3664	/* Set length of probe request. */
3665	tx->len = htole16(frm - (uint8_t *)wh);
3666
3667	/*
3668	 * Construct information about the channel that we
3669	 * want to scan. The firmware expects this to be directly
3670	 * after the scan probe request
3671	 */
3672	chan = (struct wpi_scan_chan *)frm;
3673	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3674	chan->flags = 0;
3675	if (nssid) {
3676		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3677		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3678	} else
3679		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3680
3681	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3682		chan->flags |= WPI_CHAN_ACTIVE;
3683
3684	/*
3685	 * Calculate the active/passive dwell times.
3686	 */
3687
3688	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3689	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3690
3691	/* Make sure they're valid. */
3692	if (dwell_passive <= dwell_active)
3693		dwell_passive = dwell_active + 1;
3694
3695	chan->active = htole16(dwell_active);
3696	chan->passive = htole16(dwell_passive);
3697
3698	chan->dsp_gain = 0x6e;  /* Default level */
3699
3700	if (IEEE80211_IS_CHAN_5GHZ(c))
3701		chan->rf_gain = 0x3b;
3702	else
3703		chan->rf_gain = 0x28;
3704
3705	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3706	     chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3707
3708	hdr->nchan++;
3709	chan++;
3710
3711	buflen = (uint8_t *)chan - buf;
3712	hdr->len = htole16(buflen);
3713
3714	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3715	    hdr->nchan);
3716	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3717	free(buf, M_DEVBUF);
3718
3719	sc->sc_scan_timer = 5;
3720
3721	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3722
3723	return error;
3724}
3725
3726static int
3727wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3728{
3729	struct ieee80211com *ic = vap->iv_ic;
3730	struct ieee80211_node *ni = vap->iv_bss;
3731	int error;
3732
3733	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3734
3735	/* Update adapter configuration. */
3736	sc->rxon.associd = 0;
3737	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3738	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3739	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3740	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3741	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3742		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3743	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3744		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3745	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3746		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3747	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3748		sc->rxon.cck_mask  = 0;
3749		sc->rxon.ofdm_mask = 0x15;
3750	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3751		sc->rxon.cck_mask  = 0x03;
3752		sc->rxon.ofdm_mask = 0;
3753	} else {
3754		/* Assume 802.11b/g. */
3755		sc->rxon.cck_mask  = 0x0f;
3756		sc->rxon.ofdm_mask = 0x15;
3757	}
3758
3759	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3760	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3761	    sc->rxon.ofdm_mask);
3762
3763	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3764		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3765		    __func__);
3766	}
3767
3768	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3769
3770	return error;
3771}
3772
3773static int
3774wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3775{
3776	struct ifnet *ifp = sc->sc_ifp;
3777	struct ieee80211com *ic = ifp->if_l2com;
3778	struct ieee80211vap *vap = ni->ni_vap;
3779	struct wpi_vap *wvp = WPI_VAP(vap);
3780	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3781	struct ieee80211_beacon_offsets bo;
3782	struct wpi_cmd_beacon *cmd;
3783	struct mbuf *m;
3784	int totlen;
3785
3786	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3787
3788	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3789		return EINVAL;
3790
3791	m = ieee80211_beacon_alloc(ni, &bo);
3792	if (m == NULL) {
3793		device_printf(sc->sc_dev,
3794		    "%s: could not allocate beacon frame\n", __func__);
3795		return ENOMEM;
3796	}
3797	totlen = m->m_pkthdr.len;
3798
3799	if (bcn->data == NULL) {
3800		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3801		    M_NOWAIT | M_ZERO);
3802
3803		if (cmd == NULL) {
3804			device_printf(sc->sc_dev,
3805			    "could not allocate buffer for beacon command\n");
3806			m_freem(m);
3807			return ENOMEM;
3808		}
3809
3810		cmd->id = WPI_ID_BROADCAST;
3811		cmd->ofdm_mask = 0xff;
3812		cmd->cck_mask = 0x0f;
3813		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3814		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3815
3816		bcn->data = cmd;
3817		bcn->ni = NULL;
3818		bcn->code = WPI_CMD_SET_BEACON;
3819		bcn->ac = 4;
3820		bcn->size = sizeof(struct wpi_cmd_beacon);
3821	} else
3822		cmd = bcn->data;
3823
3824	cmd->len = htole16(totlen);
3825	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3826	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3827
3828	/* NB: m will be freed in wpi_cmd_done() */
3829	bcn->m = m;
3830
3831	return wpi_cmd2(sc, bcn);
3832}
3833
3834static void
3835wpi_update_beacon(struct ieee80211vap *vap, int item)
3836{
3837	struct ieee80211_node *ni = vap->iv_bss;
3838	struct ifnet *ifp = vap->iv_ifp;
3839	struct wpi_softc *sc = ifp->if_softc;
3840	int error;
3841
3842	WPI_LOCK(sc);
3843	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3844		device_printf(sc->sc_dev,
3845		    "%s: could not update beacon frame, error %d", __func__,
3846		    error);
3847	}
3848	WPI_UNLOCK(sc);
3849}
3850
3851static int
3852wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3853{
3854	struct ieee80211com *ic = vap->iv_ic;
3855	struct ieee80211_node *ni = vap->iv_bss;
3856	int error;
3857
3858	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3859
3860	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3861		/* Link LED blinks while monitoring. */
3862		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3863		return 0;
3864	}
3865
3866	/* XXX kernel panic workaround */
3867	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3868		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3869		    __func__);
3870		return EINVAL;
3871	}
3872
3873	if ((error = wpi_set_timing(sc, ni)) != 0) {
3874		device_printf(sc->sc_dev,
3875		    "%s: could not set timing, error %d\n", __func__, error);
3876		return error;
3877	}
3878
3879	/* Update adapter configuration. */
3880	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3881	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3882	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3883	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3884	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3885		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3886	/* Short preamble and slot time are negotiated when associating. */
3887	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3888	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3889		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3890	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3891		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3892	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3893		sc->rxon.cck_mask  = 0;
3894		sc->rxon.ofdm_mask = 0x15;
3895	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3896		sc->rxon.cck_mask  = 0x03;
3897		sc->rxon.ofdm_mask = 0;
3898	} else {
3899		/* Assume 802.11b/g. */
3900		sc->rxon.cck_mask  = 0x0f;
3901		sc->rxon.ofdm_mask = 0x15;
3902	}
3903	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3904
3905	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3906
3907	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3908	    sc->rxon.chan, sc->rxon.flags);
3909
3910	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3911		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3912		    __func__);
3913		return error;
3914	}
3915
3916	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3917		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3918			device_printf(sc->sc_dev,
3919			    "%s: could not setup beacon, error %d\n", __func__,
3920			    error);
3921			return error;
3922		}
3923	}
3924
3925	if (vap->iv_opmode == IEEE80211_M_STA) {
3926		/* Add BSS node. */
3927		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3928		if ((error = wpi_add_node(sc, ni)) != 0) {
3929			device_printf(sc->sc_dev,
3930			    "%s: could not add BSS node, error %d\n", __func__,
3931			    error);
3932			return error;
3933		}
3934	}
3935
3936	/* Link LED always on while associated. */
3937	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3938
3939	/* Start periodic calibration timer. */
3940	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3941
3942	/* Enable power-saving mode if requested by user. */
3943	if (vap->iv_flags & IEEE80211_F_PMGTON)
3944		(void)wpi_set_pslevel(sc, 0, 3, 1);
3945	else
3946		(void)wpi_set_pslevel(sc, 0, 0, 1);
3947
3948	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3949
3950	return 0;
3951}
3952
3953static int
3954wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3955    ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3956{
3957	struct ifnet *ifp = vap->iv_ifp;
3958	struct wpi_softc *sc = ifp->if_softc;
3959
3960	if (!(&vap->iv_nw_keys[0] <= k &&
3961	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3962		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3963			/* should not happen */
3964			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3965			    __func__);
3966			return 0;
3967		}
3968		*keyix = 0;	/* NB: use key index 0 for ucast key */
3969	} else {
3970		*keyix = *rxkeyix = k - vap->iv_nw_keys;
3971
3972		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
3973			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
3974	}
3975	return 1;
3976}
3977
3978static int
3979wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
3980    const uint8_t mac[IEEE80211_ADDR_LEN])
3981{
3982	const struct ieee80211_cipher *cip = k->wk_cipher;
3983	struct ieee80211com *ic = vap->iv_ic;
3984	struct ieee80211_node *ni = vap->iv_bss;
3985	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3986	struct wpi_node *wn = (void *)ni;
3987	struct wpi_node_info node;
3988	uint16_t kflags;
3989	int error;
3990
3991	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3992
3993	switch (cip->ic_cipher) {
3994	case IEEE80211_CIPHER_AES_CCM:
3995		if (k->wk_flags & IEEE80211_KEY_GROUP)
3996			return 1;
3997
3998		kflags = WPI_KFLAG_CCMP;
3999		break;
4000	default:
4001		/* null_key_set() */
4002		return 1;
4003	}
4004
4005	if (wn->id == WPI_ID_UNDEFINED)
4006		return 0;
4007
4008	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4009	if (k->wk_flags & IEEE80211_KEY_GROUP)
4010		kflags |= WPI_KFLAG_MULTICAST;
4011
4012	memset(&node, 0, sizeof node);
4013	node.id = wn->id;
4014	node.control = WPI_NODE_UPDATE;
4015	node.flags = WPI_FLAG_KEY_SET;
4016	node.kflags = htole16(kflags);
4017	memcpy(node.key, k->wk_key, k->wk_keylen);
4018
4019	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4020	    node.id);
4021
4022	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4023	if (error != 0) {
4024		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4025		    error);
4026		return 0;
4027	}
4028
4029	return 1;
4030}
4031
4032static int
4033wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4034{
4035	const struct ieee80211_cipher *cip = k->wk_cipher;
4036	struct ieee80211com *ic = vap->iv_ic;
4037	struct ieee80211_node *ni = vap->iv_bss;
4038	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4039	struct wpi_node *wn = (void *)ni;
4040	struct wpi_node_info node;
4041
4042	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4043
4044	switch (cip->ic_cipher) {
4045	case IEEE80211_CIPHER_AES_CCM:
4046		break;
4047	default:
4048		/* null_key_delete() */
4049		return 1;
4050	}
4051
4052	if (vap->iv_state != IEEE80211_S_RUN ||
4053	    (k->wk_flags & IEEE80211_KEY_GROUP))
4054		return 1; /* Nothing to do. */
4055
4056	memset(&node, 0, sizeof node);
4057	node.id = wn->id;
4058	node.control = WPI_NODE_UPDATE;
4059	node.flags = WPI_FLAG_KEY_SET;
4060
4061	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4062	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4063
4064	return 1;
4065}
4066
4067/*
4068 * This function is called after the runtime firmware notifies us of its
4069 * readiness (called in a process context).
4070 */
4071static int
4072wpi_post_alive(struct wpi_softc *sc)
4073{
4074	int ntries, error;
4075
4076	/* Check (again) that the radio is not disabled. */
4077	if ((error = wpi_nic_lock(sc)) != 0)
4078		return error;
4079
4080	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4081
4082	/* NB: Runtime firmware must be up and running. */
4083	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4084 		device_printf(sc->sc_dev,
4085		    "RF switch: radio disabled (%s)\n", __func__);
4086		wpi_nic_unlock(sc);
4087		return EPERM;   /* :-) */
4088	}
4089	wpi_nic_unlock(sc);
4090
4091	/* Wait for thermal sensor to calibrate. */
4092	for (ntries = 0; ntries < 1000; ntries++) {
4093		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4094			break;
4095		DELAY(10);
4096	}
4097
4098	if (ntries == 1000) {
4099		device_printf(sc->sc_dev,
4100		    "timeout waiting for thermal sensor calibration\n");
4101                return ETIMEDOUT;
4102        }
4103
4104        DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4105        return 0;
4106}
4107
4108/*
4109 * The firmware boot code is small and is intended to be copied directly into
4110 * the NIC internal memory (no DMA transfer).
4111 */
4112static int
4113wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4114{
4115	int error, ntries;
4116
4117	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4118
4119	size /= sizeof (uint32_t);
4120
4121	if ((error = wpi_nic_lock(sc)) != 0)
4122		return error;
4123
4124	/* Copy microcode image into NIC memory. */
4125	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4126	    (const uint32_t *)ucode, size);
4127
4128	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4129	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4130	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4131
4132	/* Start boot load now. */
4133	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4134
4135	/* Wait for transfer to complete. */
4136	for (ntries = 0; ntries < 1000; ntries++) {
4137		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4138		DPRINTF(sc, WPI_DEBUG_HW,
4139		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4140		    WPI_FH_TX_STATUS_IDLE(6),
4141		    status & WPI_FH_TX_STATUS_IDLE(6));
4142		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4143			DPRINTF(sc, WPI_DEBUG_HW,
4144			    "Status Match! - ntries = %d\n", ntries);
4145			break;
4146		}
4147		DELAY(10);
4148	}
4149	if (ntries == 1000) {
4150		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4151		    __func__);
4152		wpi_nic_unlock(sc);
4153		return ETIMEDOUT;
4154	}
4155
4156	/* Enable boot after power up. */
4157	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4158
4159	wpi_nic_unlock(sc);
4160	return 0;
4161}
4162
4163static int
4164wpi_load_firmware(struct wpi_softc *sc)
4165{
4166	struct wpi_fw_info *fw = &sc->fw;
4167	struct wpi_dma_info *dma = &sc->fw_dma;
4168	int error;
4169
4170	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4171
4172	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4173	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4174	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4175	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4176	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4177
4178	/* Tell adapter where to find initialization sections. */
4179	if ((error = wpi_nic_lock(sc)) != 0)
4180		return error;
4181	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4182	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4183	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4184	    dma->paddr + WPI_FW_DATA_MAXSZ);
4185	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4186	wpi_nic_unlock(sc);
4187
4188	/* Load firmware boot code. */
4189	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4190	if (error != 0) {
4191		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4192		    __func__);
4193		return error;
4194	}
4195
4196	/* Now press "execute". */
4197	WPI_WRITE(sc, WPI_RESET, 0);
4198
4199	/* Wait at most one second for first alive notification. */
4200	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4201		device_printf(sc->sc_dev,
4202		    "%s: timeout waiting for adapter to initialize, error %d\n",
4203		    __func__, error);
4204		return error;
4205	}
4206
4207	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4208	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4209	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4210	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4211	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4212
4213	/* Tell adapter where to find runtime sections. */
4214	if ((error = wpi_nic_lock(sc)) != 0)
4215		return error;
4216	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4217	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4218	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4219	    dma->paddr + WPI_FW_DATA_MAXSZ);
4220	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4221	    WPI_FW_UPDATED | fw->main.textsz);
4222	wpi_nic_unlock(sc);
4223
4224	return 0;
4225}
4226
4227static int
4228wpi_read_firmware(struct wpi_softc *sc)
4229{
4230	const struct firmware *fp;
4231	struct wpi_fw_info *fw = &sc->fw;
4232	const struct wpi_firmware_hdr *hdr;
4233	int error;
4234
4235	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4236
4237	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4238	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4239
4240	WPI_UNLOCK(sc);
4241	fp = firmware_get(WPI_FW_NAME);
4242	WPI_LOCK(sc);
4243
4244	if (fp == NULL) {
4245		device_printf(sc->sc_dev,
4246		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4247		return EINVAL;
4248	}
4249
4250	sc->fw_fp = fp;
4251
4252	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4253		device_printf(sc->sc_dev,
4254		    "firmware file too short: %zu bytes\n", fp->datasize);
4255		error = EINVAL;
4256		goto fail;
4257	}
4258
4259	fw->size = fp->datasize;
4260	fw->data = (const uint8_t *)fp->data;
4261
4262	/* Extract firmware header information. */
4263	hdr = (const struct wpi_firmware_hdr *)fw->data;
4264
4265	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4266	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4267
4268	fw->main.textsz = le32toh(hdr->rtextsz);
4269	fw->main.datasz = le32toh(hdr->rdatasz);
4270	fw->init.textsz = le32toh(hdr->itextsz);
4271	fw->init.datasz = le32toh(hdr->idatasz);
4272	fw->boot.textsz = le32toh(hdr->btextsz);
4273	fw->boot.datasz = 0;
4274
4275	/* Sanity-check firmware header. */
4276	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4277	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4278	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4279	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4280	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4281	    (fw->boot.textsz & 3) != 0) {
4282		device_printf(sc->sc_dev, "invalid firmware header\n");
4283		error = EINVAL;
4284		goto fail;
4285	}
4286
4287	/* Check that all firmware sections fit. */
4288	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4289	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4290		device_printf(sc->sc_dev,
4291		    "firmware file too short: %zu bytes\n", fw->size);
4292		error = EINVAL;
4293		goto fail;
4294	}
4295
4296	/* Get pointers to firmware sections. */
4297	fw->main.text = (const uint8_t *)(hdr + 1);
4298	fw->main.data = fw->main.text + fw->main.textsz;
4299	fw->init.text = fw->main.data + fw->main.datasz;
4300	fw->init.data = fw->init.text + fw->init.textsz;
4301	fw->boot.text = fw->init.data + fw->init.datasz;
4302
4303	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4304	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4305	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4306	    hdr->major, hdr->minor, le32toh(hdr->driver),
4307	    fw->main.textsz, fw->main.datasz,
4308	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4309
4310	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4311	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4312	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4313	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4314	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4315
4316	return 0;
4317
4318fail:	wpi_unload_firmware(sc);
4319	return error;
4320}
4321
4322/**
4323 * Free the referenced firmware image
4324 */
4325static void
4326wpi_unload_firmware(struct wpi_softc *sc)
4327{
4328	if (sc->fw_fp != NULL) {
4329		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4330		sc->fw_fp = NULL;
4331	}
4332}
4333
4334static int
4335wpi_clock_wait(struct wpi_softc *sc)
4336{
4337	int ntries;
4338
4339	/* Set "initialization complete" bit. */
4340	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4341
4342	/* Wait for clock stabilization. */
4343	for (ntries = 0; ntries < 2500; ntries++) {
4344		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4345			return 0;
4346		DELAY(100);
4347	}
4348	device_printf(sc->sc_dev,
4349	    "%s: timeout waiting for clock stabilization\n", __func__);
4350
4351	return ETIMEDOUT;
4352}
4353
4354static int
4355wpi_apm_init(struct wpi_softc *sc)
4356{
4357	uint32_t reg;
4358	int error;
4359
4360	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4361
4362	/* Disable L0s exit timer (NMI bug workaround). */
4363	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4364	/* Don't wait for ICH L0s (ICH bug workaround). */
4365	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4366
4367	/* Set FH wait threshold to max (HW bug under stress workaround). */
4368	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4369
4370	/* Retrieve PCIe Active State Power Management (ASPM). */
4371	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4372	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4373	if (reg & 0x02)	/* L1 Entry enabled. */
4374		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4375	else
4376		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4377
4378	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4379
4380	/* Wait for clock stabilization before accessing prph. */
4381	if ((error = wpi_clock_wait(sc)) != 0)
4382		return error;
4383
4384	if ((error = wpi_nic_lock(sc)) != 0)
4385		return error;
4386	/* Enable DMA and BSM (Bootstrap State Machine). */
4387	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4388	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4389	DELAY(20);
4390	/* Disable L1-Active. */
4391	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4392	/* ??? */
4393	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4394	wpi_nic_unlock(sc);
4395
4396	return 0;
4397}
4398
4399static void
4400wpi_apm_stop_master(struct wpi_softc *sc)
4401{
4402	int ntries;
4403
4404	/* Stop busmaster DMA activity. */
4405	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4406
4407	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4408	    WPI_GP_CNTRL_MAC_PS)
4409		return; /* Already asleep. */
4410
4411	for (ntries = 0; ntries < 100; ntries++) {
4412		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4413			return;
4414		DELAY(10);
4415	}
4416	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4417}
4418
4419static void
4420wpi_apm_stop(struct wpi_softc *sc)
4421{
4422	wpi_apm_stop_master(sc);
4423
4424	/* Reset the entire device. */
4425	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4426	DELAY(10);
4427	/* Clear "initialization complete" bit. */
4428	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4429}
4430
4431static void
4432wpi_nic_config(struct wpi_softc *sc)
4433{
4434	uint32_t rev;
4435
4436	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4437
4438	/* voodoo from the Linux "driver".. */
4439	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4440	if ((rev & 0xc0) == 0x40)
4441		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4442	else if (!(rev & 0x80))
4443		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4444
4445	if (sc->cap == 0x80)
4446		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4447
4448	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4449		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4450	else
4451		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4452
4453	if (sc->type > 1)
4454		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4455}
4456
4457static int
4458wpi_hw_init(struct wpi_softc *sc)
4459{
4460	int chnl, ntries, error;
4461
4462	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4463
4464	/* Clear pending interrupts. */
4465	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4466
4467	if ((error = wpi_apm_init(sc)) != 0) {
4468		device_printf(sc->sc_dev,
4469		    "%s: could not power ON adapter, error %d\n", __func__,
4470		    error);
4471		return error;
4472	}
4473
4474	/* Select VMAIN power source. */
4475	if ((error = wpi_nic_lock(sc)) != 0)
4476		return error;
4477	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4478	wpi_nic_unlock(sc);
4479	/* Spin until VMAIN gets selected. */
4480	for (ntries = 0; ntries < 5000; ntries++) {
4481		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4482			break;
4483		DELAY(10);
4484	}
4485	if (ntries == 5000) {
4486		device_printf(sc->sc_dev, "timeout selecting power source\n");
4487		return ETIMEDOUT;
4488	}
4489
4490	/* Perform adapter initialization. */
4491	wpi_nic_config(sc);
4492
4493	/* Initialize RX ring. */
4494	if ((error = wpi_nic_lock(sc)) != 0)
4495		return error;
4496	/* Set physical address of RX ring. */
4497	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4498	/* Set physical address of RX read pointer. */
4499	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4500	    offsetof(struct wpi_shared, next));
4501	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4502	/* Enable RX. */
4503	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4504	    WPI_FH_RX_CONFIG_DMA_ENA |
4505	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4506	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4507	    WPI_FH_RX_CONFIG_MAXFRAG |
4508	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4509	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4510	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4511	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4512	wpi_nic_unlock(sc);
4513	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4514
4515	/* Initialize TX rings. */
4516	if ((error = wpi_nic_lock(sc)) != 0)
4517		return error;
4518	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4519	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4520	/* Enable all 6 TX rings. */
4521	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4522	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4523	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4524	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4525	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4526	/* Set physical address of TX rings. */
4527	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4528	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4529
4530	/* Enable all DMA channels. */
4531	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4532		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4533		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4534		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4535	}
4536	wpi_nic_unlock(sc);
4537	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4538
4539	/* Clear "radio off" and "commands blocked" bits. */
4540	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4541	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4542
4543	/* Clear pending interrupts. */
4544	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4545	/* Enable interrupts. */
4546	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4547
4548	/* _Really_ make sure "radio off" bit is cleared! */
4549	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4550	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4551
4552	if ((error = wpi_load_firmware(sc)) != 0) {
4553		device_printf(sc->sc_dev,
4554		    "%s: could not load firmware, error %d\n", __func__,
4555		    error);
4556		return error;
4557	}
4558	/* Wait at most one second for firmware alive notification. */
4559	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4560		device_printf(sc->sc_dev,
4561		    "%s: timeout waiting for adapter to initialize, error %d\n",
4562		    __func__, error);
4563		return error;
4564	}
4565
4566	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4567
4568	/* Do post-firmware initialization. */
4569	return wpi_post_alive(sc);
4570}
4571
4572static void
4573wpi_hw_stop(struct wpi_softc *sc)
4574{
4575	int chnl, qid, ntries;
4576
4577	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4578
4579	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4580		wpi_nic_lock(sc);
4581
4582	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4583
4584	/* Disable interrupts. */
4585	WPI_WRITE(sc, WPI_INT_MASK, 0);
4586	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4587	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4588
4589	/* Make sure we no longer hold the NIC lock. */
4590	wpi_nic_unlock(sc);
4591
4592	if (wpi_nic_lock(sc) == 0) {
4593		/* Stop TX scheduler. */
4594		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4595		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4596
4597		/* Stop all DMA channels. */
4598		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4599			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4600			for (ntries = 0; ntries < 200; ntries++) {
4601				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4602				    WPI_FH_TX_STATUS_IDLE(chnl))
4603					break;
4604				DELAY(10);
4605			}
4606		}
4607		wpi_nic_unlock(sc);
4608	}
4609
4610	/* Stop RX ring. */
4611	wpi_reset_rx_ring(sc);
4612
4613	/* Reset all TX rings. */
4614	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4615		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4616
4617	if (wpi_nic_lock(sc) == 0) {
4618		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4619		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4620		wpi_nic_unlock(sc);
4621	}
4622	DELAY(5);
4623	/* Power OFF adapter. */
4624	wpi_apm_stop(sc);
4625}
4626
4627static void
4628wpi_radio_on(void *arg0, int pending)
4629{
4630	struct wpi_softc *sc = arg0;
4631	struct ifnet *ifp = sc->sc_ifp;
4632	struct ieee80211com *ic = ifp->if_l2com;
4633	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4634
4635	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4636
4637	if (vap != NULL) {
4638		wpi_init(sc);
4639		ieee80211_init(vap);
4640	}
4641
4642	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4643		WPI_LOCK(sc);
4644		callout_stop(&sc->watchdog_rfkill);
4645		WPI_UNLOCK(sc);
4646	}
4647}
4648
4649static void
4650wpi_radio_off(void *arg0, int pending)
4651{
4652	struct wpi_softc *sc = arg0;
4653	struct ifnet *ifp = sc->sc_ifp;
4654	struct ieee80211com *ic = ifp->if_l2com;
4655	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4656
4657	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4658
4659	wpi_stop(sc);
4660	if (vap != NULL)
4661		ieee80211_stop(vap);
4662
4663	WPI_LOCK(sc);
4664	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4665	WPI_UNLOCK(sc);
4666}
4667
4668static void
4669wpi_init_locked(struct wpi_softc *sc)
4670{
4671	struct ifnet *ifp = sc->sc_ifp;
4672	int error;
4673
4674	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4675
4676	WPI_LOCK_ASSERT(sc);
4677
4678	/* Check that the radio is not disabled by hardware switch. */
4679	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4680		device_printf(sc->sc_dev,
4681		    "RF switch: radio disabled (%s)\n", __func__);
4682		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4683		    sc);
4684		return;
4685	}
4686
4687	/* Read firmware images from the filesystem. */
4688	if ((error = wpi_read_firmware(sc)) != 0) {
4689		device_printf(sc->sc_dev,
4690		    "%s: could not read firmware, error %d\n", __func__,
4691		    error);
4692		goto fail;
4693	}
4694
4695	/* Initialize hardware and upload firmware. */
4696	error = wpi_hw_init(sc);
4697	wpi_unload_firmware(sc);
4698	if (error != 0) {
4699		device_printf(sc->sc_dev,
4700		    "%s: could not initialize hardware, error %d\n", __func__,
4701		    error);
4702		goto fail;
4703	}
4704
4705	/* Configure adapter now that it is ready. */
4706	if ((error = wpi_config(sc)) != 0) {
4707		device_printf(sc->sc_dev,
4708		    "%s: could not configure device, error %d\n", __func__,
4709		    error);
4710		goto fail;
4711	}
4712
4713	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4714	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4715
4716	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4717
4718	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4719
4720	return;
4721
4722fail:	wpi_stop_locked(sc);
4723	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4724}
4725
4726static void
4727wpi_init(void *arg)
4728{
4729	struct wpi_softc *sc = arg;
4730	struct ifnet *ifp = sc->sc_ifp;
4731	struct ieee80211com *ic = ifp->if_l2com;
4732
4733	WPI_LOCK(sc);
4734	wpi_init_locked(sc);
4735	WPI_UNLOCK(sc);
4736
4737	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4738		ieee80211_start_all(ic);
4739}
4740
4741static void
4742wpi_stop_locked(struct wpi_softc *sc)
4743{
4744	struct ifnet *ifp = sc->sc_ifp;
4745
4746	WPI_LOCK_ASSERT(sc);
4747
4748	sc->sc_scan_timer = 0;
4749	sc->sc_tx_timer = 0;
4750	callout_stop(&sc->watchdog_to);
4751	callout_stop(&sc->calib_to);
4752	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4753
4754	/* Power OFF hardware. */
4755	wpi_hw_stop(sc);
4756}
4757
4758static void
4759wpi_stop(struct wpi_softc *sc)
4760{
4761	WPI_LOCK(sc);
4762	wpi_stop_locked(sc);
4763	WPI_UNLOCK(sc);
4764}
4765
4766/*
4767 * Callback from net80211 to start a scan.
4768 */
4769static void
4770wpi_scan_start(struct ieee80211com *ic)
4771{
4772	struct ifnet *ifp = ic->ic_ifp;
4773	struct wpi_softc *sc = ifp->if_softc;
4774
4775	WPI_LOCK(sc);
4776	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4777	WPI_UNLOCK(sc);
4778}
4779
4780/*
4781 * Callback from net80211 to terminate a scan.
4782 */
4783static void
4784wpi_scan_end(struct ieee80211com *ic)
4785{
4786	struct ifnet *ifp = ic->ic_ifp;
4787	struct wpi_softc *sc = ifp->if_softc;
4788	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4789
4790	if (vap->iv_state == IEEE80211_S_RUN) {
4791		WPI_LOCK(sc);
4792		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4793		WPI_UNLOCK(sc);
4794	}
4795}
4796
4797/**
4798 * Called by the net80211 framework to indicate to the driver
4799 * that the channel should be changed
4800 */
4801static void
4802wpi_set_channel(struct ieee80211com *ic)
4803{
4804	const struct ieee80211_channel *c = ic->ic_curchan;
4805	struct ifnet *ifp = ic->ic_ifp;
4806	struct wpi_softc *sc = ifp->if_softc;
4807	int error;
4808
4809	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4810
4811	WPI_LOCK(sc);
4812	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4813	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4814	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4815	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4816
4817	/*
4818	 * Only need to set the channel in Monitor mode. AP scanning and auth
4819	 * are already taken care of by their respective firmware commands.
4820	 */
4821	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4822		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4823		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4824			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4825			    WPI_RXON_24GHZ);
4826		} else {
4827			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4828			    WPI_RXON_24GHZ);
4829		}
4830		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4831			device_printf(sc->sc_dev,
4832			    "%s: error %d settting channel\n", __func__,
4833			    error);
4834	}
4835	WPI_UNLOCK(sc);
4836}
4837
4838/**
4839 * Called by net80211 to indicate that we need to scan the current
4840 * channel. The channel is previously be set via the wpi_set_channel
4841 * callback.
4842 */
4843static void
4844wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4845{
4846	struct ieee80211vap *vap = ss->ss_vap;
4847	struct ieee80211com *ic = vap->iv_ic;
4848	struct ifnet *ifp = ic->ic_ifp;
4849	struct wpi_softc *sc = ifp->if_softc;
4850	int error;
4851
4852	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4853		WPI_LOCK(sc);
4854		error = wpi_scan(sc, ic->ic_curchan);
4855		WPI_UNLOCK(sc);
4856		if (error != 0)
4857			ieee80211_cancel_scan(vap);
4858	} else {
4859		/* Send probe request when associated. */
4860		sc->sc_scan_curchan(ss, maxdwell);
4861	}
4862}
4863
4864/**
4865 * Called by the net80211 framework to indicate
4866 * the minimum dwell time has been met, terminate the scan.
4867 * We don't actually terminate the scan as the firmware will notify
4868 * us when it's finished and we have no way to interrupt it.
4869 */
4870static void
4871wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4872{
4873	/* NB: don't try to abort scan; wait for firmware to finish */
4874}
4875
4876static void
4877wpi_hw_reset(void *arg, int pending)
4878{
4879	struct wpi_softc *sc = arg;
4880	struct ifnet *ifp = sc->sc_ifp;
4881	struct ieee80211com *ic = ifp->if_l2com;
4882	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4883
4884	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4885
4886	wpi_stop(sc);
4887	if (vap != NULL)
4888		ieee80211_stop(vap);
4889	wpi_init(sc);
4890	if (vap != NULL)
4891		ieee80211_init(vap);
4892}
4893