if_wpi.c revision 260064
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 260064 2013-12-29 23:46:59Z marius $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include "opt_wlan.h"
63
64#include <sys/param.h>
65#include <sys/sysctl.h>
66#include <sys/sockio.h>
67#include <sys/mbuf.h>
68#include <sys/kernel.h>
69#include <sys/socket.h>
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#include <sys/queue.h>
73#include <sys/taskqueue.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/endian.h>
77#include <sys/linker.h>
78#include <sys/firmware.h>
79
80#include <machine/bus.h>
81#include <machine/resource.h>
82#include <sys/rman.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <net/bpf.h>
88#include <net/if.h>
89#include <net/if_var.h>
90#include <net/if_arp.h>
91#include <net/ethernet.h>
92#include <net/if_dl.h>
93#include <net/if_media.h>
94#include <net/if_types.h>
95
96#include <net80211/ieee80211_var.h>
97#include <net80211/ieee80211_radiotap.h>
98#include <net80211/ieee80211_regdomain.h>
99#include <net80211/ieee80211_ratectl.h>
100
101#include <netinet/in.h>
102#include <netinet/in_systm.h>
103#include <netinet/in_var.h>
104#include <netinet/ip.h>
105#include <netinet/if_ether.h>
106
107#include <dev/wpi/if_wpireg.h>
108#include <dev/wpi/if_wpivar.h>
109
110#define WPI_DEBUG
111
112#ifdef WPI_DEBUG
113#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
114#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
115#define	WPI_DEBUG_SET	(wpi_debug != 0)
116
117enum {
118	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130	WPI_DEBUG_ANY		= 0xffffffff
131};
132
133static int wpi_debug = 0;
134SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135TUNABLE_INT("debug.wpi", &wpi_debug);
136
137#else
138#define DPRINTF(x)
139#define DPRINTFN(n, x)
140#define WPI_DEBUG_SET	0
141#endif
142
143struct wpi_ident {
144	uint16_t	vendor;
145	uint16_t	device;
146	uint16_t	subdevice;
147	const char	*name;
148};
149
150static const struct wpi_ident wpi_ident_table[] = {
151	/* The below entries support ABG regardless of the subid */
152	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154	/* The below entries only support BG */
155	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159	{ 0, 0, 0, NULL }
160};
161
162static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
164		    const uint8_t [IEEE80211_ADDR_LEN],
165		    const uint8_t [IEEE80211_ADDR_LEN]);
166static void	wpi_vap_delete(struct ieee80211vap *);
167static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168		    void **, bus_size_t, bus_size_t, int);
169static void	wpi_dma_contig_free(struct wpi_dma_info *);
170static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171static int	wpi_alloc_shared(struct wpi_softc *);
172static void	wpi_free_shared(struct wpi_softc *);
173static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177		    int, int);
178static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181static void	wpi_mem_lock(struct wpi_softc *);
182static void	wpi_mem_unlock(struct wpi_softc *);
183static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
184static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
185static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
186		    const uint32_t *, int);
187static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
188static int	wpi_alloc_fwmem(struct wpi_softc *);
189static void	wpi_free_fwmem(struct wpi_softc *);
190static int	wpi_load_firmware(struct wpi_softc *);
191static void	wpi_unload_firmware(struct wpi_softc *);
192static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
193static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
194		    struct wpi_rx_data *);
195static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
196static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
197static void	wpi_notif_intr(struct wpi_softc *);
198static void	wpi_intr(void *);
199static uint8_t	wpi_plcp_signal(int);
200static void	wpi_watchdog(void *);
201static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202		    struct ieee80211_node *, int);
203static void	wpi_start(struct ifnet *);
204static void	wpi_start_locked(struct ifnet *);
205static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206		    const struct ieee80211_bpf_params *);
207static void	wpi_scan_start(struct ieee80211com *);
208static void	wpi_scan_end(struct ieee80211com *);
209static void	wpi_set_channel(struct ieee80211com *);
210static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
211static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
212static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
213static void	wpi_read_eeprom(struct wpi_softc *,
214		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
215static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218static int	wpi_wme_update(struct ieee80211com *);
219static int	wpi_mrr_setup(struct wpi_softc *);
220static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222#if 0
223static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224#endif
225static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227static int	wpi_scan(struct wpi_softc *);
228static int	wpi_config(struct wpi_softc *);
229static void	wpi_stop_master(struct wpi_softc *);
230static int	wpi_power_up(struct wpi_softc *);
231static int	wpi_reset(struct wpi_softc *);
232static void	wpi_hwreset(void *, int);
233static void	wpi_rfreset(void *, int);
234static void	wpi_hw_config(struct wpi_softc *);
235static void	wpi_init(void *);
236static void	wpi_init_locked(struct wpi_softc *, int);
237static void	wpi_stop(struct wpi_softc *);
238static void	wpi_stop_locked(struct wpi_softc *);
239
240static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241		    int);
242static void	wpi_calib_timeout(void *);
243static void	wpi_power_calibration(struct wpi_softc *, int);
244static int	wpi_get_power_index(struct wpi_softc *,
245		    struct wpi_power_group *, struct ieee80211_channel *, int);
246#ifdef WPI_DEBUG
247static const char *wpi_cmd_str(int);
248#endif
249static int wpi_probe(device_t);
250static int wpi_attach(device_t);
251static int wpi_detach(device_t);
252static int wpi_shutdown(device_t);
253static int wpi_suspend(device_t);
254static int wpi_resume(device_t);
255
256static device_method_t wpi_methods[] = {
257	/* Device interface */
258	DEVMETHOD(device_probe,		wpi_probe),
259	DEVMETHOD(device_attach,	wpi_attach),
260	DEVMETHOD(device_detach,	wpi_detach),
261	DEVMETHOD(device_shutdown,	wpi_shutdown),
262	DEVMETHOD(device_suspend,	wpi_suspend),
263	DEVMETHOD(device_resume,	wpi_resume),
264
265	DEVMETHOD_END
266};
267
268static driver_t wpi_driver = {
269	"wpi",
270	wpi_methods,
271	sizeof (struct wpi_softc)
272};
273
274static devclass_t wpi_devclass;
275
276DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
277
278MODULE_VERSION(wpi, 1);
279
280static const uint8_t wpi_ridx_to_plcp[] = {
281	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282	/* R1-R4 (ral/ural is R4-R1) */
283	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284	/* CCK: device-dependent */
285	10, 20, 55, 110
286};
287
288static const uint8_t wpi_ridx_to_rate[] = {
289	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
290	2, 4, 11, 22 /*CCK */
291};
292
293static int
294wpi_probe(device_t dev)
295{
296	const struct wpi_ident *ident;
297
298	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299		if (pci_get_vendor(dev) == ident->vendor &&
300		    pci_get_device(dev) == ident->device) {
301			device_set_desc(dev, ident->name);
302			return (BUS_PROBE_DEFAULT);
303		}
304	}
305	return ENXIO;
306}
307
308/**
309 * Load the firmare image from disk to the allocated dma buffer.
310 * we also maintain the reference to the firmware pointer as there
311 * is times where we may need to reload the firmware but we are not
312 * in a context that can access the filesystem (ie taskq cause by restart)
313 *
314 * @return 0 on success, an errno on failure
315 */
316static int
317wpi_load_firmware(struct wpi_softc *sc)
318{
319	const struct firmware *fp;
320	struct wpi_dma_info *dma = &sc->fw_dma;
321	const struct wpi_firmware_hdr *hdr;
322	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
323	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
324	int error;
325
326	DPRINTFN(WPI_DEBUG_FIRMWARE,
327	    ("Attempting Loading Firmware from wpi_fw module\n"));
328
329	WPI_UNLOCK(sc);
330
331	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
332		device_printf(sc->sc_dev,
333		    "could not load firmware image 'wpifw'\n");
334		error = ENOENT;
335		WPI_LOCK(sc);
336		goto fail;
337	}
338
339	fp = sc->fw_fp;
340
341	WPI_LOCK(sc);
342
343	/* Validate the firmware is minimum a particular version */
344	if (fp->version < WPI_FW_MINVERSION) {
345	    device_printf(sc->sc_dev,
346			   "firmware version is too old. Need %d, got %d\n",
347			   WPI_FW_MINVERSION,
348			   fp->version);
349	    error = ENXIO;
350	    goto fail;
351	}
352
353	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
354		device_printf(sc->sc_dev,
355		    "firmware file too short: %zu bytes\n", fp->datasize);
356		error = ENXIO;
357		goto fail;
358	}
359
360	hdr = (const struct wpi_firmware_hdr *)fp->data;
361
362	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
363	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
364
365	rtextsz = le32toh(hdr->rtextsz);
366	rdatasz = le32toh(hdr->rdatasz);
367	itextsz = le32toh(hdr->itextsz);
368	idatasz = le32toh(hdr->idatasz);
369	btextsz = le32toh(hdr->btextsz);
370
371	/* check that all firmware segments are present */
372	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
373		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
374		device_printf(sc->sc_dev,
375		    "firmware file too short: %zu bytes\n", fp->datasize);
376		error = ENXIO; /* XXX appropriate error code? */
377		goto fail;
378	}
379
380	/* get pointers to firmware segments */
381	rtext = (const uint8_t *)(hdr + 1);
382	rdata = rtext + rtextsz;
383	itext = rdata + rdatasz;
384	idata = itext + itextsz;
385	btext = idata + idatasz;
386
387	DPRINTFN(WPI_DEBUG_FIRMWARE,
388	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
389	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
390	     (le32toh(hdr->version) & 0xff000000) >> 24,
391	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
392	     (le32toh(hdr->version) & 0x0000ffff),
393	     rtextsz, rdatasz,
394	     itextsz, idatasz, btextsz));
395
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
399	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
400	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
401
402	/* sanity checks */
403	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
404	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
405	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
406	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
407	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
408	    (btextsz & 3) != 0) {
409		device_printf(sc->sc_dev, "firmware invalid\n");
410		error = EINVAL;
411		goto fail;
412	}
413
414	/* copy initialization images into pre-allocated DMA-safe memory */
415	memcpy(dma->vaddr, idata, idatasz);
416	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
417
418	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
419
420	/* tell adapter where to find initialization images */
421	wpi_mem_lock(sc);
422	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
423	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
424	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
425	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
426	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
427	wpi_mem_unlock(sc);
428
429	/* load firmware boot code */
430	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
431	    device_printf(sc->sc_dev, "Failed to load microcode\n");
432	    goto fail;
433	}
434
435	/* now press "execute" */
436	WPI_WRITE(sc, WPI_RESET, 0);
437
438	/* wait at most one second for the first alive notification */
439	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
440		device_printf(sc->sc_dev,
441		    "timeout waiting for adapter to initialize\n");
442		goto fail;
443	}
444
445	/* copy runtime images into pre-allocated DMA-sage memory */
446	memcpy(dma->vaddr, rdata, rdatasz);
447	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
448	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
449
450	/* tell adapter where to find runtime images */
451	wpi_mem_lock(sc);
452	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
453	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
454	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
455	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
456	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
457	wpi_mem_unlock(sc);
458
459	/* wait at most one second for the first alive notification */
460	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
461		device_printf(sc->sc_dev,
462		    "timeout waiting for adapter to initialize2\n");
463		goto fail;
464	}
465
466	DPRINTFN(WPI_DEBUG_FIRMWARE,
467	    ("Firmware loaded to driver successfully\n"));
468	return error;
469fail:
470	wpi_unload_firmware(sc);
471	return error;
472}
473
474/**
475 * Free the referenced firmware image
476 */
477static void
478wpi_unload_firmware(struct wpi_softc *sc)
479{
480
481	if (sc->fw_fp) {
482		WPI_UNLOCK(sc);
483		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
484		WPI_LOCK(sc);
485		sc->fw_fp = NULL;
486	}
487}
488
489static int
490wpi_attach(device_t dev)
491{
492	struct wpi_softc *sc = device_get_softc(dev);
493	struct ifnet *ifp;
494	struct ieee80211com *ic;
495	int ac, error, rid, supportsa = 1;
496	uint32_t tmp;
497	const struct wpi_ident *ident;
498	uint8_t macaddr[IEEE80211_ADDR_LEN];
499
500	sc->sc_dev = dev;
501
502	if (bootverbose || WPI_DEBUG_SET)
503	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
504
505	/*
506	 * Some card's only support 802.11b/g not a, check to see if
507	 * this is one such card. A 0x0 in the subdevice table indicates
508	 * the entire subdevice range is to be ignored.
509	 */
510	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
511		if (ident->subdevice &&
512		    pci_get_subdevice(dev) == ident->subdevice) {
513		    supportsa = 0;
514		    break;
515		}
516	}
517
518	/* Create the tasks that can be queued */
519	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
520	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
521
522	WPI_LOCK_INIT(sc);
523
524	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
525	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
526
527	/* disable the retry timeout register */
528	pci_write_config(dev, 0x41, 0, 1);
529
530	/* enable bus-mastering */
531	pci_enable_busmaster(dev);
532
533	rid = PCIR_BAR(0);
534	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
535	    RF_ACTIVE);
536	if (sc->mem == NULL) {
537		device_printf(dev, "could not allocate memory resource\n");
538		error = ENOMEM;
539		goto fail;
540	}
541
542	sc->sc_st = rman_get_bustag(sc->mem);
543	sc->sc_sh = rman_get_bushandle(sc->mem);
544
545	rid = 0;
546	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
547	    RF_ACTIVE | RF_SHAREABLE);
548	if (sc->irq == NULL) {
549		device_printf(dev, "could not allocate interrupt resource\n");
550		error = ENOMEM;
551		goto fail;
552	}
553
554	/*
555	 * Allocate DMA memory for firmware transfers.
556	 */
557	if ((error = wpi_alloc_fwmem(sc)) != 0) {
558		printf(": could not allocate firmware memory\n");
559		error = ENOMEM;
560		goto fail;
561	}
562
563	/*
564	 * Put adapter into a known state.
565	 */
566	if ((error = wpi_reset(sc)) != 0) {
567		device_printf(dev, "could not reset adapter\n");
568		goto fail;
569	}
570
571	wpi_mem_lock(sc);
572	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
573	if (bootverbose || WPI_DEBUG_SET)
574	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
575
576	wpi_mem_unlock(sc);
577
578	/* Allocate shared page */
579	if ((error = wpi_alloc_shared(sc)) != 0) {
580		device_printf(dev, "could not allocate shared page\n");
581		goto fail;
582	}
583
584	/* tx data queues  - 4 for QoS purposes */
585	for (ac = 0; ac < WME_NUM_AC; ac++) {
586		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
587		if (error != 0) {
588		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
589		    goto fail;
590		}
591	}
592
593	/* command queue to talk to the card's firmware */
594	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
595	if (error != 0) {
596		device_printf(dev, "could not allocate command ring\n");
597		goto fail;
598	}
599
600	/* receive data queue */
601	error = wpi_alloc_rx_ring(sc, &sc->rxq);
602	if (error != 0) {
603		device_printf(dev, "could not allocate Rx ring\n");
604		goto fail;
605	}
606
607	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
608	if (ifp == NULL) {
609		device_printf(dev, "can not if_alloc()\n");
610		error = ENOMEM;
611		goto fail;
612	}
613	ic = ifp->if_l2com;
614
615	ic->ic_ifp = ifp;
616	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
617	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
618
619	/* set device capabilities */
620	ic->ic_caps =
621		  IEEE80211_C_STA		/* station mode supported */
622		| IEEE80211_C_MONITOR		/* monitor mode supported */
623		| IEEE80211_C_TXPMGT		/* tx power management */
624		| IEEE80211_C_SHSLOT		/* short slot time supported */
625		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
626		| IEEE80211_C_WPA		/* 802.11i */
627/* XXX looks like WME is partly supported? */
628#if 0
629		| IEEE80211_C_IBSS		/* IBSS mode support */
630		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
631		| IEEE80211_C_WME		/* 802.11e */
632		| IEEE80211_C_HOSTAP		/* Host access point mode */
633#endif
634		;
635
636	/*
637	 * Read in the eeprom and also setup the channels for
638	 * net80211. We don't set the rates as net80211 does this for us
639	 */
640	wpi_read_eeprom(sc, macaddr);
641
642	if (bootverbose || WPI_DEBUG_SET) {
643	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
644	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
645			  sc->type > 1 ? 'B': '?');
646	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
647			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
648	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
649			  supportsa ? "does" : "does not");
650
651	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
652	       what sc->rev really represents - benjsc 20070615 */
653	}
654
655	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
656	ifp->if_softc = sc;
657	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658	ifp->if_init = wpi_init;
659	ifp->if_ioctl = wpi_ioctl;
660	ifp->if_start = wpi_start;
661	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
662	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
663	IFQ_SET_READY(&ifp->if_snd);
664
665	ieee80211_ifattach(ic, macaddr);
666	/* override default methods */
667	ic->ic_raw_xmit = wpi_raw_xmit;
668	ic->ic_wme.wme_update = wpi_wme_update;
669	ic->ic_scan_start = wpi_scan_start;
670	ic->ic_scan_end = wpi_scan_end;
671	ic->ic_set_channel = wpi_set_channel;
672	ic->ic_scan_curchan = wpi_scan_curchan;
673	ic->ic_scan_mindwell = wpi_scan_mindwell;
674
675	ic->ic_vap_create = wpi_vap_create;
676	ic->ic_vap_delete = wpi_vap_delete;
677
678	ieee80211_radiotap_attach(ic,
679	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
680		WPI_TX_RADIOTAP_PRESENT,
681	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
682		WPI_RX_RADIOTAP_PRESENT);
683
684	/*
685	 * Hook our interrupt after all initialization is complete.
686	 */
687	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
688	    NULL, wpi_intr, sc, &sc->sc_ih);
689	if (error != 0) {
690		device_printf(dev, "could not set up interrupt\n");
691		goto fail;
692	}
693
694	if (bootverbose)
695		ieee80211_announce(ic);
696#ifdef XXX_DEBUG
697	ieee80211_announce_channels(ic);
698#endif
699	return 0;
700
701fail:	wpi_detach(dev);
702	return ENXIO;
703}
704
705static int
706wpi_detach(device_t dev)
707{
708	struct wpi_softc *sc = device_get_softc(dev);
709	struct ifnet *ifp = sc->sc_ifp;
710	struct ieee80211com *ic;
711	int ac;
712
713	if (sc->irq != NULL)
714		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
715
716	if (ifp != NULL) {
717		ic = ifp->if_l2com;
718
719		ieee80211_draintask(ic, &sc->sc_restarttask);
720		ieee80211_draintask(ic, &sc->sc_radiotask);
721		wpi_stop(sc);
722		callout_drain(&sc->watchdog_to);
723		callout_drain(&sc->calib_to);
724		ieee80211_ifdetach(ic);
725	}
726
727	WPI_LOCK(sc);
728	if (sc->txq[0].data_dmat) {
729		for (ac = 0; ac < WME_NUM_AC; ac++)
730			wpi_free_tx_ring(sc, &sc->txq[ac]);
731
732		wpi_free_tx_ring(sc, &sc->cmdq);
733		wpi_free_rx_ring(sc, &sc->rxq);
734		wpi_free_shared(sc);
735	}
736
737	if (sc->fw_fp != NULL) {
738		wpi_unload_firmware(sc);
739	}
740
741	if (sc->fw_dma.tag)
742		wpi_free_fwmem(sc);
743	WPI_UNLOCK(sc);
744
745	if (sc->irq != NULL)
746		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
747		    sc->irq);
748	if (sc->mem != NULL)
749		bus_release_resource(dev, SYS_RES_MEMORY,
750		    rman_get_rid(sc->mem), sc->mem);
751
752	if (ifp != NULL)
753		if_free(ifp);
754
755	WPI_LOCK_DESTROY(sc);
756
757	return 0;
758}
759
760static struct ieee80211vap *
761wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
762    enum ieee80211_opmode opmode, int flags,
763    const uint8_t bssid[IEEE80211_ADDR_LEN],
764    const uint8_t mac[IEEE80211_ADDR_LEN])
765{
766	struct wpi_vap *wvp;
767	struct ieee80211vap *vap;
768
769	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
770		return NULL;
771	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
772	    M_80211_VAP, M_NOWAIT | M_ZERO);
773	if (wvp == NULL)
774		return NULL;
775	vap = &wvp->vap;
776	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
777	/* override with driver methods */
778	wvp->newstate = vap->iv_newstate;
779	vap->iv_newstate = wpi_newstate;
780
781	ieee80211_ratectl_init(vap);
782	/* complete setup */
783	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
784	ic->ic_opmode = opmode;
785	return vap;
786}
787
788static void
789wpi_vap_delete(struct ieee80211vap *vap)
790{
791	struct wpi_vap *wvp = WPI_VAP(vap);
792
793	ieee80211_ratectl_deinit(vap);
794	ieee80211_vap_detach(vap);
795	free(wvp, M_80211_VAP);
796}
797
798static void
799wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800{
801	if (error != 0)
802		return;
803
804	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
805
806	*(bus_addr_t *)arg = segs[0].ds_addr;
807}
808
809/*
810 * Allocates a contiguous block of dma memory of the requested size and
811 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
812 * allocations greater than 4096 may fail. Hence if the requested alignment is
813 * greater we allocate 'alignment' size extra memory and shift the vaddr and
814 * paddr after the dma load. This bypasses the problem at the cost of a little
815 * more memory.
816 */
817static int
818wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
819    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
820{
821	int error;
822	bus_size_t align;
823	bus_size_t reqsize;
824
825	DPRINTFN(WPI_DEBUG_DMA,
826	    ("Size: %zd - alignment %zd\n", size, alignment));
827
828	dma->size = size;
829	dma->tag = NULL;
830
831	if (alignment > 4096) {
832		align = PAGE_SIZE;
833		reqsize = size + alignment;
834	} else {
835		align = alignment;
836		reqsize = size;
837	}
838	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
839	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
840	    NULL, NULL, reqsize,
841	    1, reqsize, flags,
842	    NULL, NULL, &dma->tag);
843	if (error != 0) {
844		device_printf(sc->sc_dev,
845		    "could not create shared page DMA tag\n");
846		goto fail;
847	}
848	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
849	    flags | BUS_DMA_ZERO, &dma->map);
850	if (error != 0) {
851		device_printf(sc->sc_dev,
852		    "could not allocate shared page DMA memory\n");
853		goto fail;
854	}
855
856	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
857	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
858
859	/* Save the original pointers so we can free all the memory */
860	dma->paddr = dma->paddr_start;
861	dma->vaddr = dma->vaddr_start;
862
863	/*
864	 * Check the alignment and increment by 4096 until we get the
865	 * requested alignment. Fail if can't obtain the alignment
866	 * we requested.
867	 */
868	if ((dma->paddr & (alignment -1 )) != 0) {
869		int i;
870
871		for (i = 0; i < alignment / 4096; i++) {
872			if ((dma->paddr & (alignment - 1 )) == 0)
873				break;
874			dma->paddr += 4096;
875			dma->vaddr += 4096;
876		}
877		if (i == alignment / 4096) {
878			device_printf(sc->sc_dev,
879			    "alignment requirement was not satisfied\n");
880			goto fail;
881		}
882	}
883
884	if (error != 0) {
885		device_printf(sc->sc_dev,
886		    "could not load shared page DMA map\n");
887		goto fail;
888	}
889
890	if (kvap != NULL)
891		*kvap = dma->vaddr;
892
893	return 0;
894
895fail:
896	wpi_dma_contig_free(dma);
897	return error;
898}
899
900static void
901wpi_dma_contig_free(struct wpi_dma_info *dma)
902{
903	if (dma->tag) {
904		if (dma->map != NULL) {
905			if (dma->paddr_start != 0) {
906				bus_dmamap_sync(dma->tag, dma->map,
907				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
908				bus_dmamap_unload(dma->tag, dma->map);
909			}
910			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
911		}
912		bus_dma_tag_destroy(dma->tag);
913	}
914}
915
916/*
917 * Allocate a shared page between host and NIC.
918 */
919static int
920wpi_alloc_shared(struct wpi_softc *sc)
921{
922	int error;
923
924	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
925	    (void **)&sc->shared, sizeof (struct wpi_shared),
926	    PAGE_SIZE,
927	    BUS_DMA_NOWAIT);
928
929	if (error != 0) {
930		device_printf(sc->sc_dev,
931		    "could not allocate shared area DMA memory\n");
932	}
933
934	return error;
935}
936
937static void
938wpi_free_shared(struct wpi_softc *sc)
939{
940	wpi_dma_contig_free(&sc->shared_dma);
941}
942
943static int
944wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
945{
946
947	int i, error;
948
949	ring->cur = 0;
950
951	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
953	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
954
955	if (error != 0) {
956		device_printf(sc->sc_dev,
957		    "%s: could not allocate rx ring DMA memory, error %d\n",
958		    __func__, error);
959		goto fail;
960	}
961
962        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
963	    BUS_SPACE_MAXADDR_32BIT,
964            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
965            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
966        if (error != 0) {
967                device_printf(sc->sc_dev,
968		    "%s: bus_dma_tag_create_failed, error %d\n",
969		    __func__, error);
970                goto fail;
971        }
972
973	/*
974	 * Setup Rx buffers.
975	 */
976	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
977		struct wpi_rx_data *data = &ring->data[i];
978		struct mbuf *m;
979		bus_addr_t paddr;
980
981		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
982		if (error != 0) {
983			device_printf(sc->sc_dev,
984			    "%s: bus_dmamap_create failed, error %d\n",
985			    __func__, error);
986			goto fail;
987		}
988		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
989		if (m == NULL) {
990			device_printf(sc->sc_dev,
991			   "%s: could not allocate rx mbuf\n", __func__);
992			error = ENOMEM;
993			goto fail;
994		}
995		/* map page */
996		error = bus_dmamap_load(ring->data_dmat, data->map,
997		    mtod(m, caddr_t), MJUMPAGESIZE,
998		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
999		if (error != 0 && error != EFBIG) {
1000			device_printf(sc->sc_dev,
1001			    "%s: bus_dmamap_load failed, error %d\n",
1002			    __func__, error);
1003			m_freem(m);
1004			error = ENOMEM;	/* XXX unique code */
1005			goto fail;
1006		}
1007		bus_dmamap_sync(ring->data_dmat, data->map,
1008		    BUS_DMASYNC_PREWRITE);
1009
1010		data->m = m;
1011		ring->desc[i] = htole32(paddr);
1012	}
1013	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1014	    BUS_DMASYNC_PREWRITE);
1015	return 0;
1016fail:
1017	wpi_free_rx_ring(sc, ring);
1018	return error;
1019}
1020
1021static void
1022wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1023{
1024	int ntries;
1025
1026	wpi_mem_lock(sc);
1027
1028	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1029
1030	for (ntries = 0; ntries < 100; ntries++) {
1031		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1032			break;
1033		DELAY(10);
1034	}
1035
1036	wpi_mem_unlock(sc);
1037
1038#ifdef WPI_DEBUG
1039	if (ntries == 100 && wpi_debug > 0)
1040		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1041#endif
1042
1043	ring->cur = 0;
1044}
1045
1046static void
1047wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1048{
1049	int i;
1050
1051	wpi_dma_contig_free(&ring->desc_dma);
1052
1053	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054		struct wpi_rx_data *data = &ring->data[i];
1055
1056		if (data->m != NULL) {
1057			bus_dmamap_sync(ring->data_dmat, data->map,
1058			    BUS_DMASYNC_POSTREAD);
1059			bus_dmamap_unload(ring->data_dmat, data->map);
1060			m_freem(data->m);
1061		}
1062		if (data->map != NULL)
1063			bus_dmamap_destroy(ring->data_dmat, data->map);
1064	}
1065}
1066
1067static int
1068wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1069	int qid)
1070{
1071	struct wpi_tx_data *data;
1072	int i, error;
1073
1074	ring->qid = qid;
1075	ring->count = count;
1076	ring->queued = 0;
1077	ring->cur = 0;
1078	ring->data = NULL;
1079
1080	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1081		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1082		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1083
1084	if (error != 0) {
1085	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1086	    goto fail;
1087	}
1088
1089	/* update shared page with ring's base address */
1090	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1091
1092	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1093		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1094		BUS_DMA_NOWAIT);
1095
1096	if (error != 0) {
1097		device_printf(sc->sc_dev,
1098		    "could not allocate tx command DMA memory\n");
1099		goto fail;
1100	}
1101
1102	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1103	    M_NOWAIT | M_ZERO);
1104	if (ring->data == NULL) {
1105		device_printf(sc->sc_dev,
1106		    "could not allocate tx data slots\n");
1107		goto fail;
1108	}
1109
1110	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1111	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1112	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1113	    &ring->data_dmat);
1114	if (error != 0) {
1115		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1116		goto fail;
1117	}
1118
1119	for (i = 0; i < count; i++) {
1120		data = &ring->data[i];
1121
1122		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123		if (error != 0) {
1124			device_printf(sc->sc_dev,
1125			    "could not create tx buf DMA map\n");
1126			goto fail;
1127		}
1128		bus_dmamap_sync(ring->data_dmat, data->map,
1129		    BUS_DMASYNC_PREWRITE);
1130	}
1131
1132	return 0;
1133
1134fail:
1135	wpi_free_tx_ring(sc, ring);
1136	return error;
1137}
1138
1139static void
1140wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1141{
1142	struct wpi_tx_data *data;
1143	int i, ntries;
1144
1145	wpi_mem_lock(sc);
1146
1147	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1148	for (ntries = 0; ntries < 100; ntries++) {
1149		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1150			break;
1151		DELAY(10);
1152	}
1153#ifdef WPI_DEBUG
1154	if (ntries == 100 && wpi_debug > 0)
1155		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1156		    ring->qid);
1157#endif
1158	wpi_mem_unlock(sc);
1159
1160	for (i = 0; i < ring->count; i++) {
1161		data = &ring->data[i];
1162
1163		if (data->m != NULL) {
1164			bus_dmamap_unload(ring->data_dmat, data->map);
1165			m_freem(data->m);
1166			data->m = NULL;
1167		}
1168	}
1169
1170	ring->queued = 0;
1171	ring->cur = 0;
1172}
1173
1174static void
1175wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1176{
1177	struct wpi_tx_data *data;
1178	int i;
1179
1180	wpi_dma_contig_free(&ring->desc_dma);
1181	wpi_dma_contig_free(&ring->cmd_dma);
1182
1183	if (ring->data != NULL) {
1184		for (i = 0; i < ring->count; i++) {
1185			data = &ring->data[i];
1186
1187			if (data->m != NULL) {
1188				bus_dmamap_sync(ring->data_dmat, data->map,
1189				    BUS_DMASYNC_POSTWRITE);
1190				bus_dmamap_unload(ring->data_dmat, data->map);
1191				m_freem(data->m);
1192				data->m = NULL;
1193			}
1194		}
1195		free(ring->data, M_DEVBUF);
1196	}
1197
1198	if (ring->data_dmat != NULL)
1199		bus_dma_tag_destroy(ring->data_dmat);
1200}
1201
1202static int
1203wpi_shutdown(device_t dev)
1204{
1205	struct wpi_softc *sc = device_get_softc(dev);
1206
1207	WPI_LOCK(sc);
1208	wpi_stop_locked(sc);
1209	wpi_unload_firmware(sc);
1210	WPI_UNLOCK(sc);
1211
1212	return 0;
1213}
1214
1215static int
1216wpi_suspend(device_t dev)
1217{
1218	struct wpi_softc *sc = device_get_softc(dev);
1219	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1220
1221	ieee80211_suspend_all(ic);
1222	return 0;
1223}
1224
1225static int
1226wpi_resume(device_t dev)
1227{
1228	struct wpi_softc *sc = device_get_softc(dev);
1229	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1230
1231	pci_write_config(dev, 0x41, 0, 1);
1232
1233	ieee80211_resume_all(ic);
1234	return 0;
1235}
1236
1237/**
1238 * Called by net80211 when ever there is a change to 80211 state machine
1239 */
1240static int
1241wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1242{
1243	struct wpi_vap *wvp = WPI_VAP(vap);
1244	struct ieee80211com *ic = vap->iv_ic;
1245	struct ifnet *ifp = ic->ic_ifp;
1246	struct wpi_softc *sc = ifp->if_softc;
1247	int error;
1248
1249	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1250		ieee80211_state_name[vap->iv_state],
1251		ieee80211_state_name[nstate], sc->flags));
1252
1253	IEEE80211_UNLOCK(ic);
1254	WPI_LOCK(sc);
1255	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1256		/*
1257		 * On !INIT -> SCAN transitions, we need to clear any possible
1258		 * knowledge about associations.
1259		 */
1260		error = wpi_config(sc);
1261		if (error != 0) {
1262			device_printf(sc->sc_dev,
1263			    "%s: device config failed, error %d\n",
1264			    __func__, error);
1265		}
1266	}
1267	if (nstate == IEEE80211_S_AUTH ||
1268	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1269		/*
1270		 * The node must be registered in the firmware before auth.
1271		 * Also the associd must be cleared on RUN -> ASSOC
1272		 * transitions.
1273		 */
1274		error = wpi_auth(sc, vap);
1275		if (error != 0) {
1276			device_printf(sc->sc_dev,
1277			    "%s: could not move to auth state, error %d\n",
1278			    __func__, error);
1279		}
1280	}
1281	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1282		error = wpi_run(sc, vap);
1283		if (error != 0) {
1284			device_printf(sc->sc_dev,
1285			    "%s: could not move to run state, error %d\n",
1286			    __func__, error);
1287		}
1288	}
1289	if (nstate == IEEE80211_S_RUN) {
1290		/* RUN -> RUN transition; just restart the timers */
1291		wpi_calib_timeout(sc);
1292		/* XXX split out rate control timer */
1293	}
1294	WPI_UNLOCK(sc);
1295	IEEE80211_LOCK(ic);
1296	return wvp->newstate(vap, nstate, arg);
1297}
1298
1299/*
1300 * Grab exclusive access to NIC memory.
1301 */
1302static void
1303wpi_mem_lock(struct wpi_softc *sc)
1304{
1305	int ntries;
1306	uint32_t tmp;
1307
1308	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310
1311	/* spin until we actually get the lock */
1312	for (ntries = 0; ntries < 100; ntries++) {
1313		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315			break;
1316		DELAY(10);
1317	}
1318	if (ntries == 100)
1319		device_printf(sc->sc_dev, "could not lock memory\n");
1320}
1321
1322/*
1323 * Release lock on NIC memory.
1324 */
1325static void
1326wpi_mem_unlock(struct wpi_softc *sc)
1327{
1328	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330}
1331
1332static uint32_t
1333wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334{
1335	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337}
1338
1339static void
1340wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341{
1342	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344}
1345
1346static void
1347wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348    const uint32_t *data, int wlen)
1349{
1350	for (; wlen > 0; wlen--, data++, addr+=4)
1351		wpi_mem_write(sc, addr, *data);
1352}
1353
1354/*
1355 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356 * using the traditional bit-bang method. Data is read up until len bytes have
1357 * been obtained.
1358 */
1359static uint16_t
1360wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361{
1362	int ntries;
1363	uint32_t val;
1364	uint8_t *out = data;
1365
1366	wpi_mem_lock(sc);
1367
1368	for (; len > 0; len -= 2, addr++) {
1369		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370
1371		for (ntries = 0; ntries < 10; ntries++) {
1372			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373				break;
1374			DELAY(5);
1375		}
1376
1377		if (ntries == 10) {
1378			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379			return ETIMEDOUT;
1380		}
1381
1382		*out++= val >> 16;
1383		if (len > 1)
1384			*out ++= val >> 24;
1385	}
1386
1387	wpi_mem_unlock(sc);
1388
1389	return 0;
1390}
1391
1392/*
1393 * The firmware text and data segments are transferred to the NIC using DMA.
1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395 * where to find it.  Once the NIC has copied the firmware into its internal
1396 * memory, we can free our local copy in the driver.
1397 */
1398static int
1399wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400{
1401	int error, ntries;
1402
1403	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404
1405	size /= sizeof(uint32_t);
1406
1407	wpi_mem_lock(sc);
1408
1409	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410	    (const uint32_t *)fw, size);
1411
1412	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415
1416	/* run microcode */
1417	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418
1419	/* wait while the adapter is busy copying the firmware */
1420	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422		DPRINTFN(WPI_DEBUG_HW,
1423		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425		if (status & WPI_TX_IDLE(6)) {
1426			DPRINTFN(WPI_DEBUG_HW,
1427			    ("Status Match! - ntries = %d\n", ntries));
1428			break;
1429		}
1430		DELAY(10);
1431	}
1432	if (ntries == 1000) {
1433		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434		error = ETIMEDOUT;
1435	}
1436
1437	/* start the microcode executing */
1438	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439
1440	wpi_mem_unlock(sc);
1441
1442	return (error);
1443}
1444
1445static void
1446wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447	struct wpi_rx_data *data)
1448{
1449	struct ifnet *ifp = sc->sc_ifp;
1450	struct ieee80211com *ic = ifp->if_l2com;
1451	struct wpi_rx_ring *ring = &sc->rxq;
1452	struct wpi_rx_stat *stat;
1453	struct wpi_rx_head *head;
1454	struct wpi_rx_tail *tail;
1455	struct ieee80211_node *ni;
1456	struct mbuf *m, *mnew;
1457	bus_addr_t paddr;
1458	int error;
1459
1460	stat = (struct wpi_rx_stat *)(desc + 1);
1461
1462	if (stat->len > WPI_STAT_MAXLEN) {
1463		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464		ifp->if_ierrors++;
1465		return;
1466	}
1467
1468	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1469	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1470	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1471
1472	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1473	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1474	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1475	    (uintmax_t)le64toh(tail->tstamp)));
1476
1477	/* discard Rx frames with bad CRC early */
1478	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1479		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1480		    le32toh(tail->flags)));
1481		ifp->if_ierrors++;
1482		return;
1483	}
1484	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1485		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1486		    le16toh(head->len)));
1487		ifp->if_ierrors++;
1488		return;
1489	}
1490
1491	/* XXX don't need mbuf, just dma buffer */
1492	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1493	if (mnew == NULL) {
1494		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1495		    __func__));
1496		ifp->if_ierrors++;
1497		return;
1498	}
1499	bus_dmamap_unload(ring->data_dmat, data->map);
1500
1501	error = bus_dmamap_load(ring->data_dmat, data->map,
1502	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1503	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1504	if (error != 0 && error != EFBIG) {
1505		device_printf(sc->sc_dev,
1506		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1507		m_freem(mnew);
1508		ifp->if_ierrors++;
1509		return;
1510	}
1511	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1512
1513	/* finalize mbuf and swap in new one */
1514	m = data->m;
1515	m->m_pkthdr.rcvif = ifp;
1516	m->m_data = (caddr_t)(head + 1);
1517	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1518
1519	data->m = mnew;
1520	/* update Rx descriptor */
1521	ring->desc[ring->cur] = htole32(paddr);
1522
1523	if (ieee80211_radiotap_active(ic)) {
1524		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1525
1526		tap->wr_flags = 0;
1527		tap->wr_chan_freq =
1528			htole16(ic->ic_channels[head->chan].ic_freq);
1529		tap->wr_chan_flags =
1530			htole16(ic->ic_channels[head->chan].ic_flags);
1531		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1532		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1533		tap->wr_tsft = tail->tstamp;
1534		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1535		switch (head->rate) {
1536		/* CCK rates */
1537		case  10: tap->wr_rate =   2; break;
1538		case  20: tap->wr_rate =   4; break;
1539		case  55: tap->wr_rate =  11; break;
1540		case 110: tap->wr_rate =  22; break;
1541		/* OFDM rates */
1542		case 0xd: tap->wr_rate =  12; break;
1543		case 0xf: tap->wr_rate =  18; break;
1544		case 0x5: tap->wr_rate =  24; break;
1545		case 0x7: tap->wr_rate =  36; break;
1546		case 0x9: tap->wr_rate =  48; break;
1547		case 0xb: tap->wr_rate =  72; break;
1548		case 0x1: tap->wr_rate =  96; break;
1549		case 0x3: tap->wr_rate = 108; break;
1550		/* unknown rate: should not happen */
1551		default:  tap->wr_rate =   0;
1552		}
1553		if (le16toh(head->flags) & 0x4)
1554			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1555	}
1556
1557	WPI_UNLOCK(sc);
1558
1559	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1560	if (ni != NULL) {
1561		(void) ieee80211_input(ni, m, stat->rssi, 0);
1562		ieee80211_free_node(ni);
1563	} else
1564		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1565
1566	WPI_LOCK(sc);
1567}
1568
1569static void
1570wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1571{
1572	struct ifnet *ifp = sc->sc_ifp;
1573	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1574	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1575	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1576	struct ieee80211_node *ni = txdata->ni;
1577	struct ieee80211vap *vap = ni->ni_vap;
1578	int retrycnt = 0;
1579
1580	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1581	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1582	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1583	    le32toh(stat->status)));
1584
1585	/*
1586	 * Update rate control statistics for the node.
1587	 * XXX we should not count mgmt frames since they're always sent at
1588	 * the lowest available bit-rate.
1589	 * XXX frames w/o ACK shouldn't be used either
1590	 */
1591	if (stat->ntries > 0) {
1592		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593		retrycnt = 1;
1594	}
1595	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1596	    &retrycnt, NULL);
1597
1598	/* XXX oerrors should only count errors !maxtries */
1599	if ((le32toh(stat->status) & 0xff) != 1)
1600		ifp->if_oerrors++;
1601	else
1602		ifp->if_opackets++;
1603
1604	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1605	bus_dmamap_unload(ring->data_dmat, txdata->map);
1606	/* XXX handle M_TXCB? */
1607	m_freem(txdata->m);
1608	txdata->m = NULL;
1609	ieee80211_free_node(txdata->ni);
1610	txdata->ni = NULL;
1611
1612	ring->queued--;
1613
1614	sc->sc_tx_timer = 0;
1615	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1616	wpi_start_locked(ifp);
1617}
1618
1619static void
1620wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1621{
1622	struct wpi_tx_ring *ring = &sc->cmdq;
1623	struct wpi_tx_data *data;
1624
1625	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1626				 "type=%s len=%d\n", desc->qid, desc->idx,
1627				 desc->flags, wpi_cmd_str(desc->type),
1628				 le32toh(desc->len)));
1629
1630	if ((desc->qid & 7) != 4)
1631		return;	/* not a command ack */
1632
1633	data = &ring->data[desc->idx];
1634
1635	/* if the command was mapped in a mbuf, free it */
1636	if (data->m != NULL) {
1637		bus_dmamap_unload(ring->data_dmat, data->map);
1638		m_freem(data->m);
1639		data->m = NULL;
1640	}
1641
1642	sc->flags &= ~WPI_FLAG_BUSY;
1643	wakeup(&ring->cmd[desc->idx]);
1644}
1645
1646static void
1647wpi_notif_intr(struct wpi_softc *sc)
1648{
1649	struct ifnet *ifp = sc->sc_ifp;
1650	struct ieee80211com *ic = ifp->if_l2com;
1651	struct wpi_rx_desc *desc;
1652	struct wpi_rx_data *data;
1653	uint32_t hw;
1654
1655	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1656	    BUS_DMASYNC_POSTREAD);
1657
1658	hw = le32toh(sc->shared->next);
1659	while (sc->rxq.cur != hw) {
1660		data = &sc->rxq.data[sc->rxq.cur];
1661
1662		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1663		    BUS_DMASYNC_POSTREAD);
1664		desc = (void *)data->m->m_ext.ext_buf;
1665
1666		DPRINTFN(WPI_DEBUG_NOTIFY,
1667			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1668			  desc->qid,
1669			  desc->idx,
1670			  desc->flags,
1671			  desc->type,
1672			  le32toh(desc->len)));
1673
1674		if (!(desc->qid & 0x80))	/* reply to a command */
1675			wpi_cmd_intr(sc, desc);
1676
1677		switch (desc->type) {
1678		case WPI_RX_DONE:
1679			/* a 802.11 frame was received */
1680			wpi_rx_intr(sc, desc, data);
1681			break;
1682
1683		case WPI_TX_DONE:
1684			/* a 802.11 frame has been transmitted */
1685			wpi_tx_intr(sc, desc);
1686			break;
1687
1688		case WPI_UC_READY:
1689		{
1690			struct wpi_ucode_info *uc =
1691				(struct wpi_ucode_info *)(desc + 1);
1692
1693			/* the microcontroller is ready */
1694			DPRINTF(("microcode alive notification version %x "
1695				"alive %x\n", le32toh(uc->version),
1696				le32toh(uc->valid)));
1697
1698			if (le32toh(uc->valid) != 1) {
1699				device_printf(sc->sc_dev,
1700				    "microcontroller initialization failed\n");
1701				wpi_stop_locked(sc);
1702			}
1703			break;
1704		}
1705		case WPI_STATE_CHANGED:
1706		{
1707			uint32_t *status = (uint32_t *)(desc + 1);
1708
1709			/* enabled/disabled notification */
1710			DPRINTF(("state changed to %x\n", le32toh(*status)));
1711
1712			if (le32toh(*status) & 1) {
1713				device_printf(sc->sc_dev,
1714				    "Radio transmitter is switched off\n");
1715				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1716				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1717				/* Disable firmware commands */
1718				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1719			}
1720			break;
1721		}
1722		case WPI_START_SCAN:
1723		{
1724#ifdef WPI_DEBUG
1725			struct wpi_start_scan *scan =
1726				(struct wpi_start_scan *)(desc + 1);
1727#endif
1728
1729			DPRINTFN(WPI_DEBUG_SCANNING,
1730				 ("scanning channel %d status %x\n",
1731			    scan->chan, le32toh(scan->status)));
1732			break;
1733		}
1734		case WPI_STOP_SCAN:
1735		{
1736#ifdef WPI_DEBUG
1737			struct wpi_stop_scan *scan =
1738				(struct wpi_stop_scan *)(desc + 1);
1739#endif
1740			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1741
1742			DPRINTFN(WPI_DEBUG_SCANNING,
1743			    ("scan finished nchan=%d status=%d chan=%d\n",
1744			     scan->nchan, scan->status, scan->chan));
1745
1746			sc->sc_scan_timer = 0;
1747			ieee80211_scan_next(vap);
1748			break;
1749		}
1750		case WPI_MISSED_BEACON:
1751		{
1752			struct wpi_missed_beacon *beacon =
1753				(struct wpi_missed_beacon *)(desc + 1);
1754			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1755
1756			if (le32toh(beacon->consecutive) >=
1757			    vap->iv_bmissthreshold) {
1758				DPRINTF(("Beacon miss: %u >= %u\n",
1759					 le32toh(beacon->consecutive),
1760					 vap->iv_bmissthreshold));
1761				ieee80211_beacon_miss(ic);
1762			}
1763			break;
1764		}
1765		}
1766
1767		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1768	}
1769
1770	/* tell the firmware what we have processed */
1771	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1772	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1773}
1774
1775static void
1776wpi_intr(void *arg)
1777{
1778	struct wpi_softc *sc = arg;
1779	uint32_t r;
1780
1781	WPI_LOCK(sc);
1782
1783	r = WPI_READ(sc, WPI_INTR);
1784	if (r == 0 || r == 0xffffffff) {
1785		WPI_UNLOCK(sc);
1786		return;
1787	}
1788
1789	/* disable interrupts */
1790	WPI_WRITE(sc, WPI_MASK, 0);
1791	/* ack interrupts */
1792	WPI_WRITE(sc, WPI_INTR, r);
1793
1794	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1795		struct ifnet *ifp = sc->sc_ifp;
1796		struct ieee80211com *ic = ifp->if_l2com;
1797		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1798
1799		device_printf(sc->sc_dev, "fatal firmware error\n");
1800		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1801				"(Hardware Error)"));
1802		if (vap != NULL)
1803			ieee80211_cancel_scan(vap);
1804		ieee80211_runtask(ic, &sc->sc_restarttask);
1805		sc->flags &= ~WPI_FLAG_BUSY;
1806		WPI_UNLOCK(sc);
1807		return;
1808	}
1809
1810	if (r & WPI_RX_INTR)
1811		wpi_notif_intr(sc);
1812
1813	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1814		wakeup(sc);
1815
1816	/* re-enable interrupts */
1817	if (sc->sc_ifp->if_flags & IFF_UP)
1818		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1819
1820	WPI_UNLOCK(sc);
1821}
1822
1823static uint8_t
1824wpi_plcp_signal(int rate)
1825{
1826	switch (rate) {
1827	/* CCK rates (returned values are device-dependent) */
1828	case 2:		return 10;
1829	case 4:		return 20;
1830	case 11:	return 55;
1831	case 22:	return 110;
1832
1833	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1834	/* R1-R4 (ral/ural is R4-R1) */
1835	case 12:	return 0xd;
1836	case 18:	return 0xf;
1837	case 24:	return 0x5;
1838	case 36:	return 0x7;
1839	case 48:	return 0x9;
1840	case 72:	return 0xb;
1841	case 96:	return 0x1;
1842	case 108:	return 0x3;
1843
1844	/* unsupported rates (should not get there) */
1845	default:	return 0;
1846	}
1847}
1848
1849/* quickly determine if a given rate is CCK or OFDM */
1850#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1851
1852/*
1853 * Construct the data packet for a transmit buffer and acutally put
1854 * the buffer onto the transmit ring, kicking the card to process the
1855 * the buffer.
1856 */
1857static int
1858wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1859	int ac)
1860{
1861	struct ieee80211vap *vap = ni->ni_vap;
1862	struct ifnet *ifp = sc->sc_ifp;
1863	struct ieee80211com *ic = ifp->if_l2com;
1864	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1865	struct wpi_tx_ring *ring = &sc->txq[ac];
1866	struct wpi_tx_desc *desc;
1867	struct wpi_tx_data *data;
1868	struct wpi_tx_cmd *cmd;
1869	struct wpi_cmd_data *tx;
1870	struct ieee80211_frame *wh;
1871	const struct ieee80211_txparam *tp;
1872	struct ieee80211_key *k;
1873	struct mbuf *mnew;
1874	int i, error, nsegs, rate, hdrlen, ismcast;
1875	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1876
1877	desc = &ring->desc[ring->cur];
1878	data = &ring->data[ring->cur];
1879
1880	wh = mtod(m0, struct ieee80211_frame *);
1881
1882	hdrlen = ieee80211_hdrsize(wh);
1883	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1884
1885	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1886		k = ieee80211_crypto_encap(ni, m0);
1887		if (k == NULL) {
1888			m_freem(m0);
1889			return ENOBUFS;
1890		}
1891		/* packet header may have moved, reset our local pointer */
1892		wh = mtod(m0, struct ieee80211_frame *);
1893	}
1894
1895	cmd = &ring->cmd[ring->cur];
1896	cmd->code = WPI_CMD_TX_DATA;
1897	cmd->flags = 0;
1898	cmd->qid = ring->qid;
1899	cmd->idx = ring->cur;
1900
1901	tx = (struct wpi_cmd_data *)cmd->data;
1902	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1903	tx->timeout = htole16(0);
1904	tx->ofdm_mask = 0xff;
1905	tx->cck_mask = 0x0f;
1906	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1907	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1908	tx->len = htole16(m0->m_pkthdr.len);
1909
1910	if (!ismcast) {
1911		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1912		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1913			tx->flags |= htole32(WPI_TX_NEED_ACK);
1914		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1915			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1916			tx->rts_ntries = 7;
1917		}
1918	}
1919	/* pick a rate */
1920	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1921	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1922		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1923		/* tell h/w to set timestamp in probe responses */
1924		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1925			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1926		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1927		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1928			tx->timeout = htole16(3);
1929		else
1930			tx->timeout = htole16(2);
1931		rate = tp->mgmtrate;
1932	} else if (ismcast) {
1933		rate = tp->mcastrate;
1934	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1935		rate = tp->ucastrate;
1936	} else {
1937		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1938		rate = ni->ni_txrate;
1939	}
1940	tx->rate = wpi_plcp_signal(rate);
1941
1942	/* be very persistant at sending frames out */
1943#if 0
1944	tx->data_ntries = tp->maxretry;
1945#else
1946	tx->data_ntries = 15;		/* XXX way too high */
1947#endif
1948
1949	if (ieee80211_radiotap_active_vap(vap)) {
1950		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1951		tap->wt_flags = 0;
1952		tap->wt_rate = rate;
1953		tap->wt_hwqueue = ac;
1954		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1955			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1956
1957		ieee80211_radiotap_tx(vap, m0);
1958	}
1959
1960	/* save and trim IEEE802.11 header */
1961	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1962	m_adj(m0, hdrlen);
1963
1964	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1965	    &nsegs, BUS_DMA_NOWAIT);
1966	if (error != 0 && error != EFBIG) {
1967		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1968		    error);
1969		m_freem(m0);
1970		return error;
1971	}
1972	if (error != 0) {
1973		/* XXX use m_collapse */
1974		mnew = m_defrag(m0, M_NOWAIT);
1975		if (mnew == NULL) {
1976			device_printf(sc->sc_dev,
1977			    "could not defragment mbuf\n");
1978			m_freem(m0);
1979			return ENOBUFS;
1980		}
1981		m0 = mnew;
1982
1983		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1984		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1985		if (error != 0) {
1986			device_printf(sc->sc_dev,
1987			    "could not map mbuf (error %d)\n", error);
1988			m_freem(m0);
1989			return error;
1990		}
1991	}
1992
1993	data->m = m0;
1994	data->ni = ni;
1995
1996	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1997	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1998
1999	/* first scatter/gather segment is used by the tx data command */
2000	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2001	    (1 + nsegs) << 24);
2002	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2003	    ring->cur * sizeof (struct wpi_tx_cmd));
2004	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2005	for (i = 1; i <= nsegs; i++) {
2006		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2007		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2008	}
2009
2010	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2011	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2012	    BUS_DMASYNC_PREWRITE);
2013
2014	ring->queued++;
2015
2016	/* kick ring */
2017	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2018	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2019
2020	return 0;
2021}
2022
2023/**
2024 * Process data waiting to be sent on the IFNET output queue
2025 */
2026static void
2027wpi_start(struct ifnet *ifp)
2028{
2029	struct wpi_softc *sc = ifp->if_softc;
2030
2031	WPI_LOCK(sc);
2032	wpi_start_locked(ifp);
2033	WPI_UNLOCK(sc);
2034}
2035
2036static void
2037wpi_start_locked(struct ifnet *ifp)
2038{
2039	struct wpi_softc *sc = ifp->if_softc;
2040	struct ieee80211_node *ni;
2041	struct mbuf *m;
2042	int ac;
2043
2044	WPI_LOCK_ASSERT(sc);
2045
2046	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2047		return;
2048
2049	for (;;) {
2050		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2051		if (m == NULL)
2052			break;
2053		ac = M_WME_GETAC(m);
2054		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2055			/* there is no place left in this ring */
2056			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2057			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2058			break;
2059		}
2060		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2061		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2062			ieee80211_free_node(ni);
2063			ifp->if_oerrors++;
2064			break;
2065		}
2066		sc->sc_tx_timer = 5;
2067	}
2068}
2069
2070static int
2071wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2072	const struct ieee80211_bpf_params *params)
2073{
2074	struct ieee80211com *ic = ni->ni_ic;
2075	struct ifnet *ifp = ic->ic_ifp;
2076	struct wpi_softc *sc = ifp->if_softc;
2077
2078	/* prevent management frames from being sent if we're not ready */
2079	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2080		m_freem(m);
2081		ieee80211_free_node(ni);
2082		return ENETDOWN;
2083	}
2084	WPI_LOCK(sc);
2085
2086	/* management frames go into ring 0 */
2087	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2088		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2089		m_freem(m);
2090		WPI_UNLOCK(sc);
2091		ieee80211_free_node(ni);
2092		return ENOBUFS;		/* XXX */
2093	}
2094
2095	ifp->if_opackets++;
2096	if (wpi_tx_data(sc, m, ni, 0) != 0)
2097		goto bad;
2098	sc->sc_tx_timer = 5;
2099	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2100
2101	WPI_UNLOCK(sc);
2102	return 0;
2103bad:
2104	ifp->if_oerrors++;
2105	WPI_UNLOCK(sc);
2106	ieee80211_free_node(ni);
2107	return EIO;		/* XXX */
2108}
2109
2110static int
2111wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2112{
2113	struct wpi_softc *sc = ifp->if_softc;
2114	struct ieee80211com *ic = ifp->if_l2com;
2115	struct ifreq *ifr = (struct ifreq *) data;
2116	int error = 0, startall = 0;
2117
2118	switch (cmd) {
2119	case SIOCSIFFLAGS:
2120		WPI_LOCK(sc);
2121		if ((ifp->if_flags & IFF_UP)) {
2122			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2123				wpi_init_locked(sc, 0);
2124				startall = 1;
2125			}
2126		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2127			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2128			wpi_stop_locked(sc);
2129		WPI_UNLOCK(sc);
2130		if (startall)
2131			ieee80211_start_all(ic);
2132		break;
2133	case SIOCGIFMEDIA:
2134		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2135		break;
2136	case SIOCGIFADDR:
2137		error = ether_ioctl(ifp, cmd, data);
2138		break;
2139	default:
2140		error = EINVAL;
2141		break;
2142	}
2143	return error;
2144}
2145
2146/*
2147 * Extract various information from EEPROM.
2148 */
2149static void
2150wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2151{
2152	int i;
2153
2154	/* read the hardware capabilities, revision and SKU type */
2155	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2156	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2157	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2158
2159	/* read the regulatory domain */
2160	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2161
2162	/* read in the hw MAC address */
2163	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2164
2165	/* read the list of authorized channels */
2166	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2167		wpi_read_eeprom_channels(sc,i);
2168
2169	/* read the power level calibration info for each group */
2170	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2171		wpi_read_eeprom_group(sc,i);
2172}
2173
2174/*
2175 * Send a command to the firmware.
2176 */
2177static int
2178wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2179{
2180	struct wpi_tx_ring *ring = &sc->cmdq;
2181	struct wpi_tx_desc *desc;
2182	struct wpi_tx_cmd *cmd;
2183
2184#ifdef WPI_DEBUG
2185	if (!async) {
2186		WPI_LOCK_ASSERT(sc);
2187	}
2188#endif
2189
2190	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2191		    async));
2192
2193	if (sc->flags & WPI_FLAG_BUSY) {
2194		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2195		    __func__, code);
2196		return EAGAIN;
2197	}
2198	sc->flags|= WPI_FLAG_BUSY;
2199
2200	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2201	    code, size));
2202
2203	desc = &ring->desc[ring->cur];
2204	cmd = &ring->cmd[ring->cur];
2205
2206	cmd->code = code;
2207	cmd->flags = 0;
2208	cmd->qid = ring->qid;
2209	cmd->idx = ring->cur;
2210	memcpy(cmd->data, buf, size);
2211
2212	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2213	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2214		ring->cur * sizeof (struct wpi_tx_cmd));
2215	desc->segs[0].len  = htole32(4 + size);
2216
2217	/* kick cmd ring */
2218	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2219	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2220
2221	if (async) {
2222		sc->flags &= ~ WPI_FLAG_BUSY;
2223		return 0;
2224	}
2225
2226	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2227}
2228
2229static int
2230wpi_wme_update(struct ieee80211com *ic)
2231{
2232#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2233#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2234	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2235	const struct wmeParams *wmep;
2236	struct wpi_wme_setup wme;
2237	int ac;
2238
2239	/* don't override default WME values if WME is not actually enabled */
2240	if (!(ic->ic_flags & IEEE80211_F_WME))
2241		return 0;
2242
2243	wme.flags = 0;
2244	for (ac = 0; ac < WME_NUM_AC; ac++) {
2245		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2246		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2247		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2248		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2249		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2250
2251		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2252		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2253		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2254	}
2255	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2256#undef WPI_USEC
2257#undef WPI_EXP2
2258}
2259
2260/*
2261 * Configure h/w multi-rate retries.
2262 */
2263static int
2264wpi_mrr_setup(struct wpi_softc *sc)
2265{
2266	struct ifnet *ifp = sc->sc_ifp;
2267	struct ieee80211com *ic = ifp->if_l2com;
2268	struct wpi_mrr_setup mrr;
2269	int i, error;
2270
2271	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2272
2273	/* CCK rates (not used with 802.11a) */
2274	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2275		mrr.rates[i].flags = 0;
2276		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2277		/* fallback to the immediate lower CCK rate (if any) */
2278		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2279		/* try one time at this rate before falling back to "next" */
2280		mrr.rates[i].ntries = 1;
2281	}
2282
2283	/* OFDM rates (not used with 802.11b) */
2284	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2285		mrr.rates[i].flags = 0;
2286		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2287		/* fallback to the immediate lower OFDM rate (if any) */
2288		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2289		mrr.rates[i].next = (i == WPI_OFDM6) ?
2290		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2291			WPI_OFDM6 : WPI_CCK2) :
2292		    i - 1;
2293		/* try one time at this rate before falling back to "next" */
2294		mrr.rates[i].ntries = 1;
2295	}
2296
2297	/* setup MRR for control frames */
2298	mrr.which = WPI_MRR_CTL;
2299	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2300	if (error != 0) {
2301		device_printf(sc->sc_dev,
2302		    "could not setup MRR for control frames\n");
2303		return error;
2304	}
2305
2306	/* setup MRR for data frames */
2307	mrr.which = WPI_MRR_DATA;
2308	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2309	if (error != 0) {
2310		device_printf(sc->sc_dev,
2311		    "could not setup MRR for data frames\n");
2312		return error;
2313	}
2314
2315	return 0;
2316}
2317
2318static void
2319wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2320{
2321	struct wpi_cmd_led led;
2322
2323	led.which = which;
2324	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2325	led.off = off;
2326	led.on = on;
2327
2328	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2329}
2330
2331static void
2332wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2333{
2334	struct wpi_cmd_tsf tsf;
2335	uint64_t val, mod;
2336
2337	memset(&tsf, 0, sizeof tsf);
2338	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2339	tsf.bintval = htole16(ni->ni_intval);
2340	tsf.lintval = htole16(10);
2341
2342	/* compute remaining time until next beacon */
2343	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2344	mod = le64toh(tsf.tstamp) % val;
2345	tsf.binitval = htole32((uint32_t)(val - mod));
2346
2347	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2348		device_printf(sc->sc_dev, "could not enable TSF\n");
2349}
2350
2351#if 0
2352/*
2353 * Build a beacon frame that the firmware will broadcast periodically in
2354 * IBSS or HostAP modes.
2355 */
2356static int
2357wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2358{
2359	struct ifnet *ifp = sc->sc_ifp;
2360	struct ieee80211com *ic = ifp->if_l2com;
2361	struct wpi_tx_ring *ring = &sc->cmdq;
2362	struct wpi_tx_desc *desc;
2363	struct wpi_tx_data *data;
2364	struct wpi_tx_cmd *cmd;
2365	struct wpi_cmd_beacon *bcn;
2366	struct ieee80211_beacon_offsets bo;
2367	struct mbuf *m0;
2368	bus_addr_t physaddr;
2369	int error;
2370
2371	desc = &ring->desc[ring->cur];
2372	data = &ring->data[ring->cur];
2373
2374	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2375	if (m0 == NULL) {
2376		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2377		return ENOMEM;
2378	}
2379
2380	cmd = &ring->cmd[ring->cur];
2381	cmd->code = WPI_CMD_SET_BEACON;
2382	cmd->flags = 0;
2383	cmd->qid = ring->qid;
2384	cmd->idx = ring->cur;
2385
2386	bcn = (struct wpi_cmd_beacon *)cmd->data;
2387	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2388	bcn->id = WPI_ID_BROADCAST;
2389	bcn->ofdm_mask = 0xff;
2390	bcn->cck_mask = 0x0f;
2391	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2392	bcn->len = htole16(m0->m_pkthdr.len);
2393	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2394		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2395	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2396
2397	/* save and trim IEEE802.11 header */
2398	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2399	m_adj(m0, sizeof (struct ieee80211_frame));
2400
2401	/* assume beacon frame is contiguous */
2402	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2403	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2404	if (error != 0) {
2405		device_printf(sc->sc_dev, "could not map beacon\n");
2406		m_freem(m0);
2407		return error;
2408	}
2409
2410	data->m = m0;
2411
2412	/* first scatter/gather segment is used by the beacon command */
2413	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2414	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2415		ring->cur * sizeof (struct wpi_tx_cmd));
2416	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2417	desc->segs[1].addr = htole32(physaddr);
2418	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2419
2420	/* kick cmd ring */
2421	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2422	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2423
2424	return 0;
2425}
2426#endif
2427
2428static int
2429wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2430{
2431	struct ieee80211com *ic = vap->iv_ic;
2432	struct ieee80211_node *ni = vap->iv_bss;
2433	struct wpi_node_info node;
2434	int error;
2435
2436
2437	/* update adapter's configuration */
2438	sc->config.associd = 0;
2439	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2440	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2441	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2442	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2443		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2444		    WPI_CONFIG_24GHZ);
2445	} else {
2446		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2447		    WPI_CONFIG_24GHZ);
2448	}
2449	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2450		sc->config.cck_mask  = 0;
2451		sc->config.ofdm_mask = 0x15;
2452	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2453		sc->config.cck_mask  = 0x03;
2454		sc->config.ofdm_mask = 0;
2455	} else {
2456		/* XXX assume 802.11b/g */
2457		sc->config.cck_mask  = 0x0f;
2458		sc->config.ofdm_mask = 0x15;
2459	}
2460
2461	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2462		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2463	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2464		sizeof (struct wpi_config), 1);
2465	if (error != 0) {
2466		device_printf(sc->sc_dev, "could not configure\n");
2467		return error;
2468	}
2469
2470	/* configuration has changed, set Tx power accordingly */
2471	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2472		device_printf(sc->sc_dev, "could not set Tx power\n");
2473		return error;
2474	}
2475
2476	/* add default node */
2477	memset(&node, 0, sizeof node);
2478	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2479	node.id = WPI_ID_BSS;
2480	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2481	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2482	node.action = htole32(WPI_ACTION_SET_RATE);
2483	node.antenna = WPI_ANTENNA_BOTH;
2484	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2485	if (error != 0)
2486		device_printf(sc->sc_dev, "could not add BSS node\n");
2487
2488	return (error);
2489}
2490
2491static int
2492wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2493{
2494	struct ieee80211com *ic = vap->iv_ic;
2495	struct ieee80211_node *ni = vap->iv_bss;
2496	int error;
2497
2498	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2499		/* link LED blinks while monitoring */
2500		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2501		return 0;
2502	}
2503
2504	wpi_enable_tsf(sc, ni);
2505
2506	/* update adapter's configuration */
2507	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2508	/* short preamble/slot time are negotiated when associating */
2509	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2510	    WPI_CONFIG_SHSLOT);
2511	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2512		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2513	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2514		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2515	sc->config.filter |= htole32(WPI_FILTER_BSS);
2516
2517	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2518
2519	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2520		    sc->config.flags));
2521	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2522		    wpi_config), 1);
2523	if (error != 0) {
2524		device_printf(sc->sc_dev, "could not update configuration\n");
2525		return error;
2526	}
2527
2528	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2529	if (error != 0) {
2530		device_printf(sc->sc_dev, "could set txpower\n");
2531		return error;
2532	}
2533
2534	/* link LED always on while associated */
2535	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2536
2537	/* start automatic rate control timer */
2538	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2539
2540	return (error);
2541}
2542
2543/*
2544 * Send a scan request to the firmware.  Since this command is huge, we map it
2545 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2546 * much of this code is similar to that in wpi_cmd but because we must manually
2547 * construct the probe & channels, we duplicate what's needed here. XXX In the
2548 * future, this function should be modified to use wpi_cmd to help cleanup the
2549 * code base.
2550 */
2551static int
2552wpi_scan(struct wpi_softc *sc)
2553{
2554	struct ifnet *ifp = sc->sc_ifp;
2555	struct ieee80211com *ic = ifp->if_l2com;
2556	struct ieee80211_scan_state *ss = ic->ic_scan;
2557	struct wpi_tx_ring *ring = &sc->cmdq;
2558	struct wpi_tx_desc *desc;
2559	struct wpi_tx_data *data;
2560	struct wpi_tx_cmd *cmd;
2561	struct wpi_scan_hdr *hdr;
2562	struct wpi_scan_chan *chan;
2563	struct ieee80211_frame *wh;
2564	struct ieee80211_rateset *rs;
2565	struct ieee80211_channel *c;
2566	enum ieee80211_phymode mode;
2567	uint8_t *frm;
2568	int nrates, pktlen, error, i, nssid;
2569	bus_addr_t physaddr;
2570
2571	desc = &ring->desc[ring->cur];
2572	data = &ring->data[ring->cur];
2573
2574	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2575	if (data->m == NULL) {
2576		device_printf(sc->sc_dev,
2577		    "could not allocate mbuf for scan command\n");
2578		return ENOMEM;
2579	}
2580
2581	cmd = mtod(data->m, struct wpi_tx_cmd *);
2582	cmd->code = WPI_CMD_SCAN;
2583	cmd->flags = 0;
2584	cmd->qid = ring->qid;
2585	cmd->idx = ring->cur;
2586
2587	hdr = (struct wpi_scan_hdr *)cmd->data;
2588	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2589
2590	/*
2591	 * Move to the next channel if no packets are received within 5 msecs
2592	 * after sending the probe request (this helps to reduce the duration
2593	 * of active scans).
2594	 */
2595	hdr->quiet = htole16(5);
2596	hdr->threshold = htole16(1);
2597
2598	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2599		/* send probe requests at 6Mbps */
2600		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2601
2602		/* Enable crc checking */
2603		hdr->promotion = htole16(1);
2604	} else {
2605		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2606		/* send probe requests at 1Mbps */
2607		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2608	}
2609	hdr->tx.id = WPI_ID_BROADCAST;
2610	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2611	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2612
2613	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2614	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2615	for (i = 0; i < nssid; i++) {
2616		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2617		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2618		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2619		    hdr->scan_essids[i].esslen);
2620#ifdef WPI_DEBUG
2621		if (wpi_debug & WPI_DEBUG_SCANNING) {
2622			printf("Scanning Essid: ");
2623			ieee80211_print_essid(hdr->scan_essids[i].essid,
2624			    hdr->scan_essids[i].esslen);
2625			printf("\n");
2626		}
2627#endif
2628	}
2629
2630	/*
2631	 * Build a probe request frame.  Most of the following code is a
2632	 * copy & paste of what is done in net80211.
2633	 */
2634	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2635	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2636		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2637	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2638	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2639	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2640	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2641	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2642	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2643
2644	frm = (uint8_t *)(wh + 1);
2645
2646	/* add essid IE, the hardware will fill this in for us */
2647	*frm++ = IEEE80211_ELEMID_SSID;
2648	*frm++ = 0;
2649
2650	mode = ieee80211_chan2mode(ic->ic_curchan);
2651	rs = &ic->ic_sup_rates[mode];
2652
2653	/* add supported rates IE */
2654	*frm++ = IEEE80211_ELEMID_RATES;
2655	nrates = rs->rs_nrates;
2656	if (nrates > IEEE80211_RATE_SIZE)
2657		nrates = IEEE80211_RATE_SIZE;
2658	*frm++ = nrates;
2659	memcpy(frm, rs->rs_rates, nrates);
2660	frm += nrates;
2661
2662	/* add supported xrates IE */
2663	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2664		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2665		*frm++ = IEEE80211_ELEMID_XRATES;
2666		*frm++ = nrates;
2667		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2668		frm += nrates;
2669	}
2670
2671	/* setup length of probe request */
2672	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2673
2674	/*
2675	 * Construct information about the channel that we
2676	 * want to scan. The firmware expects this to be directly
2677	 * after the scan probe request
2678	 */
2679	c = ic->ic_curchan;
2680	chan = (struct wpi_scan_chan *)frm;
2681	chan->chan = ieee80211_chan2ieee(ic, c);
2682	chan->flags = 0;
2683	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2684		chan->flags |= WPI_CHAN_ACTIVE;
2685		if (nssid != 0)
2686			chan->flags |= WPI_CHAN_DIRECT;
2687	}
2688	chan->gain_dsp = 0x6e; /* Default level */
2689	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2690		chan->active = htole16(10);
2691		chan->passive = htole16(ss->ss_maxdwell);
2692		chan->gain_radio = 0x3b;
2693	} else {
2694		chan->active = htole16(20);
2695		chan->passive = htole16(ss->ss_maxdwell);
2696		chan->gain_radio = 0x28;
2697	}
2698
2699	DPRINTFN(WPI_DEBUG_SCANNING,
2700	    ("Scanning %u Passive: %d\n",
2701	     chan->chan,
2702	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2703
2704	hdr->nchan++;
2705	chan++;
2706
2707	frm += sizeof (struct wpi_scan_chan);
2708#if 0
2709	// XXX All Channels....
2710	for (c  = &ic->ic_channels[1];
2711	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2712		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2713			continue;
2714
2715		chan->chan = ieee80211_chan2ieee(ic, c);
2716		chan->flags = 0;
2717		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2718		    chan->flags |= WPI_CHAN_ACTIVE;
2719		    if (ic->ic_des_ssid[0].len != 0)
2720			chan->flags |= WPI_CHAN_DIRECT;
2721		}
2722		chan->gain_dsp = 0x6e; /* Default level */
2723		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2724			chan->active = htole16(10);
2725			chan->passive = htole16(110);
2726			chan->gain_radio = 0x3b;
2727		} else {
2728			chan->active = htole16(20);
2729			chan->passive = htole16(120);
2730			chan->gain_radio = 0x28;
2731		}
2732
2733		DPRINTFN(WPI_DEBUG_SCANNING,
2734			 ("Scanning %u Passive: %d\n",
2735			  chan->chan,
2736			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2737
2738		hdr->nchan++;
2739		chan++;
2740
2741		frm += sizeof (struct wpi_scan_chan);
2742	}
2743#endif
2744
2745	hdr->len = htole16(frm - (uint8_t *)hdr);
2746	pktlen = frm - (uint8_t *)cmd;
2747
2748	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2749	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2750	if (error != 0) {
2751		device_printf(sc->sc_dev, "could not map scan command\n");
2752		m_freem(data->m);
2753		data->m = NULL;
2754		return error;
2755	}
2756
2757	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2758	desc->segs[0].addr = htole32(physaddr);
2759	desc->segs[0].len  = htole32(pktlen);
2760
2761	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2762	    BUS_DMASYNC_PREWRITE);
2763	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2764
2765	/* kick cmd ring */
2766	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2767	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2768
2769	sc->sc_scan_timer = 5;
2770	return 0;	/* will be notified async. of failure/success */
2771}
2772
2773/**
2774 * Configure the card to listen to a particular channel, this transisions the
2775 * card in to being able to receive frames from remote devices.
2776 */
2777static int
2778wpi_config(struct wpi_softc *sc)
2779{
2780	struct ifnet *ifp = sc->sc_ifp;
2781	struct ieee80211com *ic = ifp->if_l2com;
2782	struct wpi_power power;
2783	struct wpi_bluetooth bluetooth;
2784	struct wpi_node_info node;
2785	int error;
2786
2787	/* set power mode */
2788	memset(&power, 0, sizeof power);
2789	power.flags = htole32(WPI_POWER_CAM|0x8);
2790	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2791	if (error != 0) {
2792		device_printf(sc->sc_dev, "could not set power mode\n");
2793		return error;
2794	}
2795
2796	/* configure bluetooth coexistence */
2797	memset(&bluetooth, 0, sizeof bluetooth);
2798	bluetooth.flags = 3;
2799	bluetooth.lead = 0xaa;
2800	bluetooth.kill = 1;
2801	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2802	    0);
2803	if (error != 0) {
2804		device_printf(sc->sc_dev,
2805		    "could not configure bluetooth coexistence\n");
2806		return error;
2807	}
2808
2809	/* configure adapter */
2810	memset(&sc->config, 0, sizeof (struct wpi_config));
2811	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2812	/*set default channel*/
2813	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2814	sc->config.flags = htole32(WPI_CONFIG_TSF);
2815	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2816		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2817		    WPI_CONFIG_24GHZ);
2818	}
2819	sc->config.filter = 0;
2820	switch (ic->ic_opmode) {
2821	case IEEE80211_M_STA:
2822	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2823		sc->config.mode = WPI_MODE_STA;
2824		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2825		break;
2826	case IEEE80211_M_IBSS:
2827	case IEEE80211_M_AHDEMO:
2828		sc->config.mode = WPI_MODE_IBSS;
2829		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2830					     WPI_FILTER_MULTICAST);
2831		break;
2832	case IEEE80211_M_HOSTAP:
2833		sc->config.mode = WPI_MODE_HOSTAP;
2834		break;
2835	case IEEE80211_M_MONITOR:
2836		sc->config.mode = WPI_MODE_MONITOR;
2837		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2838			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2839		break;
2840	default:
2841		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2842		return EINVAL;
2843	}
2844	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2845	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2846	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2847		sizeof (struct wpi_config), 0);
2848	if (error != 0) {
2849		device_printf(sc->sc_dev, "configure command failed\n");
2850		return error;
2851	}
2852
2853	/* configuration has changed, set Tx power accordingly */
2854	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2855	    device_printf(sc->sc_dev, "could not set Tx power\n");
2856	    return error;
2857	}
2858
2859	/* add broadcast node */
2860	memset(&node, 0, sizeof node);
2861	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2862	node.id = WPI_ID_BROADCAST;
2863	node.rate = wpi_plcp_signal(2);
2864	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2865	if (error != 0) {
2866		device_printf(sc->sc_dev, "could not add broadcast node\n");
2867		return error;
2868	}
2869
2870	/* Setup rate scalling */
2871	error = wpi_mrr_setup(sc);
2872	if (error != 0) {
2873		device_printf(sc->sc_dev, "could not setup MRR\n");
2874		return error;
2875	}
2876
2877	return 0;
2878}
2879
2880static void
2881wpi_stop_master(struct wpi_softc *sc)
2882{
2883	uint32_t tmp;
2884	int ntries;
2885
2886	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2887
2888	tmp = WPI_READ(sc, WPI_RESET);
2889	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2890
2891	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2892	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2893		return;	/* already asleep */
2894
2895	for (ntries = 0; ntries < 100; ntries++) {
2896		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2897			break;
2898		DELAY(10);
2899	}
2900	if (ntries == 100) {
2901		device_printf(sc->sc_dev, "timeout waiting for master\n");
2902	}
2903}
2904
2905static int
2906wpi_power_up(struct wpi_softc *sc)
2907{
2908	uint32_t tmp;
2909	int ntries;
2910
2911	wpi_mem_lock(sc);
2912	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2913	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2914	wpi_mem_unlock(sc);
2915
2916	for (ntries = 0; ntries < 5000; ntries++) {
2917		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2918			break;
2919		DELAY(10);
2920	}
2921	if (ntries == 5000) {
2922		device_printf(sc->sc_dev,
2923		    "timeout waiting for NIC to power up\n");
2924		return ETIMEDOUT;
2925	}
2926	return 0;
2927}
2928
2929static int
2930wpi_reset(struct wpi_softc *sc)
2931{
2932	uint32_t tmp;
2933	int ntries;
2934
2935	DPRINTFN(WPI_DEBUG_HW,
2936	    ("Resetting the card - clearing any uploaded firmware\n"));
2937
2938	/* clear any pending interrupts */
2939	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2940
2941	tmp = WPI_READ(sc, WPI_PLL_CTL);
2942	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2943
2944	tmp = WPI_READ(sc, WPI_CHICKEN);
2945	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2946
2947	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2948	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2949
2950	/* wait for clock stabilization */
2951	for (ntries = 0; ntries < 25000; ntries++) {
2952		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2953			break;
2954		DELAY(10);
2955	}
2956	if (ntries == 25000) {
2957		device_printf(sc->sc_dev,
2958		    "timeout waiting for clock stabilization\n");
2959		return ETIMEDOUT;
2960	}
2961
2962	/* initialize EEPROM */
2963	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2964
2965	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2966		device_printf(sc->sc_dev, "EEPROM not found\n");
2967		return EIO;
2968	}
2969	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2970
2971	return 0;
2972}
2973
2974static void
2975wpi_hw_config(struct wpi_softc *sc)
2976{
2977	uint32_t rev, hw;
2978
2979	/* voodoo from the Linux "driver".. */
2980	hw = WPI_READ(sc, WPI_HWCONFIG);
2981
2982	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2983	if ((rev & 0xc0) == 0x40)
2984		hw |= WPI_HW_ALM_MB;
2985	else if (!(rev & 0x80))
2986		hw |= WPI_HW_ALM_MM;
2987
2988	if (sc->cap == 0x80)
2989		hw |= WPI_HW_SKU_MRC;
2990
2991	hw &= ~WPI_HW_REV_D;
2992	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2993		hw |= WPI_HW_REV_D;
2994
2995	if (sc->type > 1)
2996		hw |= WPI_HW_TYPE_B;
2997
2998	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2999}
3000
3001static void
3002wpi_rfkill_resume(struct wpi_softc *sc)
3003{
3004	struct ifnet *ifp = sc->sc_ifp;
3005	struct ieee80211com *ic = ifp->if_l2com;
3006	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3007	int ntries;
3008
3009	/* enable firmware again */
3010	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3011	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3012
3013	/* wait for thermal sensors to calibrate */
3014	for (ntries = 0; ntries < 1000; ntries++) {
3015		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3016			break;
3017		DELAY(10);
3018	}
3019
3020	if (ntries == 1000) {
3021		device_printf(sc->sc_dev,
3022		    "timeout waiting for thermal calibration\n");
3023		return;
3024	}
3025	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3026
3027	if (wpi_config(sc) != 0) {
3028		device_printf(sc->sc_dev, "device config failed\n");
3029		return;
3030	}
3031
3032	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3033	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3034	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3035
3036	if (vap != NULL) {
3037		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3038			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3039				ieee80211_beacon_miss(ic);
3040				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3041			} else
3042				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3043		} else {
3044			ieee80211_scan_next(vap);
3045			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3046		}
3047	}
3048
3049	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3050}
3051
3052static void
3053wpi_init_locked(struct wpi_softc *sc, int force)
3054{
3055	struct ifnet *ifp = sc->sc_ifp;
3056	uint32_t tmp;
3057	int ntries, qid;
3058
3059	wpi_stop_locked(sc);
3060	(void)wpi_reset(sc);
3061
3062	wpi_mem_lock(sc);
3063	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3064	DELAY(20);
3065	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3066	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3067	wpi_mem_unlock(sc);
3068
3069	(void)wpi_power_up(sc);
3070	wpi_hw_config(sc);
3071
3072	/* init Rx ring */
3073	wpi_mem_lock(sc);
3074	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3075	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3076	    offsetof(struct wpi_shared, next));
3077	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3078	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3079	wpi_mem_unlock(sc);
3080
3081	/* init Tx rings */
3082	wpi_mem_lock(sc);
3083	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3084	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3085	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3086	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3087	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3088	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3089	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3090
3091	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3092	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3093
3094	for (qid = 0; qid < 6; qid++) {
3095		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3096		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3097		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3098	}
3099	wpi_mem_unlock(sc);
3100
3101	/* clear "radio off" and "disable command" bits (reversed logic) */
3102	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3104	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3105
3106	/* clear any pending interrupts */
3107	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3108
3109	/* enable interrupts */
3110	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3111
3112	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3113	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3114
3115	if ((wpi_load_firmware(sc)) != 0) {
3116	    device_printf(sc->sc_dev,
3117		"A problem occurred loading the firmware to the driver\n");
3118	    return;
3119	}
3120
3121	/* At this point the firmware is up and running. If the hardware
3122	 * RF switch is turned off thermal calibration will fail, though
3123	 * the card is still happy to continue to accept commands, catch
3124	 * this case and schedule a task to watch for it to be turned on.
3125	 */
3126	wpi_mem_lock(sc);
3127	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3128	wpi_mem_unlock(sc);
3129
3130	if (!(tmp & 0x1)) {
3131		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3132		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3133		goto out;
3134	}
3135
3136	/* wait for thermal sensors to calibrate */
3137	for (ntries = 0; ntries < 1000; ntries++) {
3138		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3139			break;
3140		DELAY(10);
3141	}
3142
3143	if (ntries == 1000) {
3144		device_printf(sc->sc_dev,
3145		    "timeout waiting for thermal sensors calibration\n");
3146		return;
3147	}
3148	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3149
3150	if (wpi_config(sc) != 0) {
3151		device_printf(sc->sc_dev, "device config failed\n");
3152		return;
3153	}
3154
3155	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3156	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3157out:
3158	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3159}
3160
3161static void
3162wpi_init(void *arg)
3163{
3164	struct wpi_softc *sc = arg;
3165	struct ifnet *ifp = sc->sc_ifp;
3166	struct ieee80211com *ic = ifp->if_l2com;
3167
3168	WPI_LOCK(sc);
3169	wpi_init_locked(sc, 0);
3170	WPI_UNLOCK(sc);
3171
3172	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3173		ieee80211_start_all(ic);		/* start all vaps */
3174}
3175
3176static void
3177wpi_stop_locked(struct wpi_softc *sc)
3178{
3179	struct ifnet *ifp = sc->sc_ifp;
3180	uint32_t tmp;
3181	int ac;
3182
3183	sc->sc_tx_timer = 0;
3184	sc->sc_scan_timer = 0;
3185	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3186	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3187	callout_stop(&sc->watchdog_to);
3188	callout_stop(&sc->calib_to);
3189
3190	/* disable interrupts */
3191	WPI_WRITE(sc, WPI_MASK, 0);
3192	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3193	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3194	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3195
3196	wpi_mem_lock(sc);
3197	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3198	wpi_mem_unlock(sc);
3199
3200	/* reset all Tx rings */
3201	for (ac = 0; ac < 4; ac++)
3202		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3203	wpi_reset_tx_ring(sc, &sc->cmdq);
3204
3205	/* reset Rx ring */
3206	wpi_reset_rx_ring(sc, &sc->rxq);
3207
3208	wpi_mem_lock(sc);
3209	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3210	wpi_mem_unlock(sc);
3211
3212	DELAY(5);
3213
3214	wpi_stop_master(sc);
3215
3216	tmp = WPI_READ(sc, WPI_RESET);
3217	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3218	sc->flags &= ~WPI_FLAG_BUSY;
3219}
3220
3221static void
3222wpi_stop(struct wpi_softc *sc)
3223{
3224	WPI_LOCK(sc);
3225	wpi_stop_locked(sc);
3226	WPI_UNLOCK(sc);
3227}
3228
3229static void
3230wpi_calib_timeout(void *arg)
3231{
3232	struct wpi_softc *sc = arg;
3233	struct ifnet *ifp = sc->sc_ifp;
3234	struct ieee80211com *ic = ifp->if_l2com;
3235	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3236	int temp;
3237
3238	if (vap->iv_state != IEEE80211_S_RUN)
3239		return;
3240
3241	/* update sensor data */
3242	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3243	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3244
3245	wpi_power_calibration(sc, temp);
3246
3247	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3248}
3249
3250/*
3251 * This function is called periodically (every 60 seconds) to adjust output
3252 * power to temperature changes.
3253 */
3254static void
3255wpi_power_calibration(struct wpi_softc *sc, int temp)
3256{
3257	struct ifnet *ifp = sc->sc_ifp;
3258	struct ieee80211com *ic = ifp->if_l2com;
3259	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3260
3261	/* sanity-check read value */
3262	if (temp < -260 || temp > 25) {
3263		/* this can't be correct, ignore */
3264		DPRINTFN(WPI_DEBUG_TEMP,
3265		    ("out-of-range temperature reported: %d\n", temp));
3266		return;
3267	}
3268
3269	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3270
3271	/* adjust Tx power if need be */
3272	if (abs(temp - sc->temp) <= 6)
3273		return;
3274
3275	sc->temp = temp;
3276
3277	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3278		/* just warn, too bad for the automatic calibration... */
3279		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3280	}
3281}
3282
3283/**
3284 * Read the eeprom to find out what channels are valid for the given
3285 * band and update net80211 with what we find.
3286 */
3287static void
3288wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3289{
3290	struct ifnet *ifp = sc->sc_ifp;
3291	struct ieee80211com *ic = ifp->if_l2com;
3292	const struct wpi_chan_band *band = &wpi_bands[n];
3293	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3294	struct ieee80211_channel *c;
3295	int chan, i, passive;
3296
3297	wpi_read_prom_data(sc, band->addr, channels,
3298	    band->nchan * sizeof (struct wpi_eeprom_chan));
3299
3300	for (i = 0; i < band->nchan; i++) {
3301		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3302			DPRINTFN(WPI_DEBUG_HW,
3303			    ("Channel Not Valid: %d, band %d\n",
3304			     band->chan[i],n));
3305			continue;
3306		}
3307
3308		passive = 0;
3309		chan = band->chan[i];
3310		c = &ic->ic_channels[ic->ic_nchans++];
3311
3312		/* is active scan allowed on this channel? */
3313		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3314			passive = IEEE80211_CHAN_PASSIVE;
3315		}
3316
3317		if (n == 0) {	/* 2GHz band */
3318			c->ic_ieee = chan;
3319			c->ic_freq = ieee80211_ieee2mhz(chan,
3320			    IEEE80211_CHAN_2GHZ);
3321			c->ic_flags = IEEE80211_CHAN_B | passive;
3322
3323			c = &ic->ic_channels[ic->ic_nchans++];
3324			c->ic_ieee = chan;
3325			c->ic_freq = ieee80211_ieee2mhz(chan,
3326			    IEEE80211_CHAN_2GHZ);
3327			c->ic_flags = IEEE80211_CHAN_G | passive;
3328
3329		} else {	/* 5GHz band */
3330			/*
3331			 * Some 3945ABG adapters support channels 7, 8, 11
3332			 * and 12 in the 2GHz *and* 5GHz bands.
3333			 * Because of limitations in our net80211(9) stack,
3334			 * we can't support these channels in 5GHz band.
3335			 * XXX not true; just need to map to proper frequency
3336			 */
3337			if (chan <= 14)
3338				continue;
3339
3340			c->ic_ieee = chan;
3341			c->ic_freq = ieee80211_ieee2mhz(chan,
3342			    IEEE80211_CHAN_5GHZ);
3343			c->ic_flags = IEEE80211_CHAN_A | passive;
3344		}
3345
3346		/* save maximum allowed power for this channel */
3347		sc->maxpwr[chan] = channels[i].maxpwr;
3348
3349#if 0
3350		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3351		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3352		//ic->ic_channels[chan].ic_minpower...
3353		//ic->ic_channels[chan].ic_maxregtxpower...
3354#endif
3355
3356		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3357		    " passive=%d, offset %d\n", chan, c->ic_freq,
3358		    channels[i].flags, sc->maxpwr[chan],
3359		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3360		    ic->ic_nchans));
3361	}
3362}
3363
3364static void
3365wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3366{
3367	struct wpi_power_group *group = &sc->groups[n];
3368	struct wpi_eeprom_group rgroup;
3369	int i;
3370
3371	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3372	    sizeof rgroup);
3373
3374	/* save power group information */
3375	group->chan   = rgroup.chan;
3376	group->maxpwr = rgroup.maxpwr;
3377	/* temperature at which the samples were taken */
3378	group->temp   = (int16_t)le16toh(rgroup.temp);
3379
3380	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3381		    group->chan, group->maxpwr, group->temp));
3382
3383	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3384		group->samples[i].index = rgroup.samples[i].index;
3385		group->samples[i].power = rgroup.samples[i].power;
3386
3387		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3388			    group->samples[i].index, group->samples[i].power));
3389	}
3390}
3391
3392/*
3393 * Update Tx power to match what is defined for channel `c'.
3394 */
3395static int
3396wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3397{
3398	struct ifnet *ifp = sc->sc_ifp;
3399	struct ieee80211com *ic = ifp->if_l2com;
3400	struct wpi_power_group *group;
3401	struct wpi_cmd_txpower txpower;
3402	u_int chan;
3403	int i;
3404
3405	/* get channel number */
3406	chan = ieee80211_chan2ieee(ic, c);
3407
3408	/* find the power group to which this channel belongs */
3409	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3410		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3411			if (chan <= group->chan)
3412				break;
3413	} else
3414		group = &sc->groups[0];
3415
3416	memset(&txpower, 0, sizeof txpower);
3417	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3418	txpower.channel = htole16(chan);
3419
3420	/* set Tx power for all OFDM and CCK rates */
3421	for (i = 0; i <= 11 ; i++) {
3422		/* retrieve Tx power for this channel/rate combination */
3423		int idx = wpi_get_power_index(sc, group, c,
3424		    wpi_ridx_to_rate[i]);
3425
3426		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3427
3428		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3429			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3430			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3431		} else {
3432			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3433			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3434		}
3435		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3436			    chan, wpi_ridx_to_rate[i], idx));
3437	}
3438
3439	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3440}
3441
3442/*
3443 * Determine Tx power index for a given channel/rate combination.
3444 * This takes into account the regulatory information from EEPROM and the
3445 * current temperature.
3446 */
3447static int
3448wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3449    struct ieee80211_channel *c, int rate)
3450{
3451/* fixed-point arithmetic division using a n-bit fractional part */
3452#define fdivround(a, b, n)      \
3453	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3454
3455/* linear interpolation */
3456#define interpolate(x, x1, y1, x2, y2, n)       \
3457	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3458
3459	struct ifnet *ifp = sc->sc_ifp;
3460	struct ieee80211com *ic = ifp->if_l2com;
3461	struct wpi_power_sample *sample;
3462	int pwr, idx;
3463	u_int chan;
3464
3465	/* get channel number */
3466	chan = ieee80211_chan2ieee(ic, c);
3467
3468	/* default power is group's maximum power - 3dB */
3469	pwr = group->maxpwr / 2;
3470
3471	/* decrease power for highest OFDM rates to reduce distortion */
3472	switch (rate) {
3473		case 72:	/* 36Mb/s */
3474			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3475			break;
3476		case 96:	/* 48Mb/s */
3477			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3478			break;
3479		case 108:	/* 54Mb/s */
3480			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3481			break;
3482	}
3483
3484	/* never exceed channel's maximum allowed Tx power */
3485	pwr = min(pwr, sc->maxpwr[chan]);
3486
3487	/* retrieve power index into gain tables from samples */
3488	for (sample = group->samples; sample < &group->samples[3]; sample++)
3489		if (pwr > sample[1].power)
3490			break;
3491	/* fixed-point linear interpolation using a 19-bit fractional part */
3492	idx = interpolate(pwr, sample[0].power, sample[0].index,
3493	    sample[1].power, sample[1].index, 19);
3494
3495	/*
3496	 *  Adjust power index based on current temperature
3497	 *	- if colder than factory-calibrated: decreate output power
3498	 *	- if warmer than factory-calibrated: increase output power
3499	 */
3500	idx -= (sc->temp - group->temp) * 11 / 100;
3501
3502	/* decrease power for CCK rates (-5dB) */
3503	if (!WPI_RATE_IS_OFDM(rate))
3504		idx += 10;
3505
3506	/* keep power index in a valid range */
3507	if (idx < 0)
3508		return 0;
3509	if (idx > WPI_MAX_PWR_INDEX)
3510		return WPI_MAX_PWR_INDEX;
3511	return idx;
3512
3513#undef interpolate
3514#undef fdivround
3515}
3516
3517/**
3518 * Called by net80211 framework to indicate that a scan
3519 * is starting. This function doesn't actually do the scan,
3520 * wpi_scan_curchan starts things off. This function is more
3521 * of an early warning from the framework we should get ready
3522 * for the scan.
3523 */
3524static void
3525wpi_scan_start(struct ieee80211com *ic)
3526{
3527	struct ifnet *ifp = ic->ic_ifp;
3528	struct wpi_softc *sc = ifp->if_softc;
3529
3530	WPI_LOCK(sc);
3531	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3532	WPI_UNLOCK(sc);
3533}
3534
3535/**
3536 * Called by the net80211 framework, indicates that the
3537 * scan has ended. If there is a scan in progress on the card
3538 * then it should be aborted.
3539 */
3540static void
3541wpi_scan_end(struct ieee80211com *ic)
3542{
3543	/* XXX ignore */
3544}
3545
3546/**
3547 * Called by the net80211 framework to indicate to the driver
3548 * that the channel should be changed
3549 */
3550static void
3551wpi_set_channel(struct ieee80211com *ic)
3552{
3553	struct ifnet *ifp = ic->ic_ifp;
3554	struct wpi_softc *sc = ifp->if_softc;
3555	int error;
3556
3557	/*
3558	 * Only need to set the channel in Monitor mode. AP scanning and auth
3559	 * are already taken care of by their respective firmware commands.
3560	 */
3561	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3562		WPI_LOCK(sc);
3563		error = wpi_config(sc);
3564		WPI_UNLOCK(sc);
3565		if (error != 0)
3566			device_printf(sc->sc_dev,
3567			    "error %d settting channel\n", error);
3568	}
3569}
3570
3571/**
3572 * Called by net80211 to indicate that we need to scan the current
3573 * channel. The channel is previously be set via the wpi_set_channel
3574 * callback.
3575 */
3576static void
3577wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3578{
3579	struct ieee80211vap *vap = ss->ss_vap;
3580	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3581	struct wpi_softc *sc = ifp->if_softc;
3582
3583	WPI_LOCK(sc);
3584	if (wpi_scan(sc))
3585		ieee80211_cancel_scan(vap);
3586	WPI_UNLOCK(sc);
3587}
3588
3589/**
3590 * Called by the net80211 framework to indicate
3591 * the minimum dwell time has been met, terminate the scan.
3592 * We don't actually terminate the scan as the firmware will notify
3593 * us when it's finished and we have no way to interrupt it.
3594 */
3595static void
3596wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3597{
3598	/* NB: don't try to abort scan; wait for firmware to finish */
3599}
3600
3601static void
3602wpi_hwreset(void *arg, int pending)
3603{
3604	struct wpi_softc *sc = arg;
3605
3606	WPI_LOCK(sc);
3607	wpi_init_locked(sc, 0);
3608	WPI_UNLOCK(sc);
3609}
3610
3611static void
3612wpi_rfreset(void *arg, int pending)
3613{
3614	struct wpi_softc *sc = arg;
3615
3616	WPI_LOCK(sc);
3617	wpi_rfkill_resume(sc);
3618	WPI_UNLOCK(sc);
3619}
3620
3621/*
3622 * Allocate DMA-safe memory for firmware transfer.
3623 */
3624static int
3625wpi_alloc_fwmem(struct wpi_softc *sc)
3626{
3627	/* allocate enough contiguous space to store text and data */
3628	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3629	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3630	    BUS_DMA_NOWAIT);
3631}
3632
3633static void
3634wpi_free_fwmem(struct wpi_softc *sc)
3635{
3636	wpi_dma_contig_free(&sc->fw_dma);
3637}
3638
3639/**
3640 * Called every second, wpi_watchdog used by the watch dog timer
3641 * to check that the card is still alive
3642 */
3643static void
3644wpi_watchdog(void *arg)
3645{
3646	struct wpi_softc *sc = arg;
3647	struct ifnet *ifp = sc->sc_ifp;
3648	struct ieee80211com *ic = ifp->if_l2com;
3649	uint32_t tmp;
3650
3651	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3652
3653	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3654		/* No need to lock firmware memory */
3655		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3656
3657		if ((tmp & 0x1) == 0) {
3658			/* Radio kill switch is still off */
3659			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3660			return;
3661		}
3662
3663		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3664		ieee80211_runtask(ic, &sc->sc_radiotask);
3665		return;
3666	}
3667
3668	if (sc->sc_tx_timer > 0) {
3669		if (--sc->sc_tx_timer == 0) {
3670			device_printf(sc->sc_dev,"device timeout\n");
3671			ifp->if_oerrors++;
3672			ieee80211_runtask(ic, &sc->sc_restarttask);
3673		}
3674	}
3675	if (sc->sc_scan_timer > 0) {
3676		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3677		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3678			device_printf(sc->sc_dev,"scan timeout\n");
3679			ieee80211_cancel_scan(vap);
3680			ieee80211_runtask(ic, &sc->sc_restarttask);
3681		}
3682	}
3683
3684	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3685		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3686}
3687
3688#ifdef WPI_DEBUG
3689static const char *wpi_cmd_str(int cmd)
3690{
3691	switch (cmd) {
3692	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3693	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3694	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3695	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3696	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3697	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3698	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3699	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3700	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3701	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3702	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3703	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3704	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3705	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3706
3707	default:
3708		KASSERT(1, ("Unknown Command: %d\n", cmd));
3709		return "UNKNOWN CMD";	/* Make the compiler happy */
3710	}
3711}
3712#endif
3713
3714MODULE_DEPEND(wpi, pci,  1, 1, 1);
3715MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3716MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3717