if_wpi.c revision 257176
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 257176 2013-10-26 17:58:36Z glebius $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include "opt_wlan.h"
63
64#include <sys/param.h>
65#include <sys/sysctl.h>
66#include <sys/sockio.h>
67#include <sys/mbuf.h>
68#include <sys/kernel.h>
69#include <sys/socket.h>
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#include <sys/queue.h>
73#include <sys/taskqueue.h>
74#include <sys/module.h>
75#include <sys/bus.h>
76#include <sys/endian.h>
77#include <sys/linker.h>
78#include <sys/firmware.h>
79
80#include <machine/bus.h>
81#include <machine/resource.h>
82#include <sys/rman.h>
83
84#include <dev/pci/pcireg.h>
85#include <dev/pci/pcivar.h>
86
87#include <net/bpf.h>
88#include <net/if.h>
89#include <net/if_var.h>
90#include <net/if_arp.h>
91#include <net/ethernet.h>
92#include <net/if_dl.h>
93#include <net/if_media.h>
94#include <net/if_types.h>
95
96#include <net80211/ieee80211_var.h>
97#include <net80211/ieee80211_radiotap.h>
98#include <net80211/ieee80211_regdomain.h>
99#include <net80211/ieee80211_ratectl.h>
100
101#include <netinet/in.h>
102#include <netinet/in_systm.h>
103#include <netinet/in_var.h>
104#include <netinet/ip.h>
105#include <netinet/if_ether.h>
106
107#include <dev/wpi/if_wpireg.h>
108#include <dev/wpi/if_wpivar.h>
109
110#define WPI_DEBUG
111
112#ifdef WPI_DEBUG
113#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
114#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
115#define	WPI_DEBUG_SET	(wpi_debug != 0)
116
117enum {
118	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130	WPI_DEBUG_ANY		= 0xffffffff
131};
132
133static int wpi_debug = 0;
134SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135TUNABLE_INT("debug.wpi", &wpi_debug);
136
137#else
138#define DPRINTF(x)
139#define DPRINTFN(n, x)
140#define WPI_DEBUG_SET	0
141#endif
142
143struct wpi_ident {
144	uint16_t	vendor;
145	uint16_t	device;
146	uint16_t	subdevice;
147	const char	*name;
148};
149
150static const struct wpi_ident wpi_ident_table[] = {
151	/* The below entries support ABG regardless of the subid */
152	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154	/* The below entries only support BG */
155	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159	{ 0, 0, 0, NULL }
160};
161
162static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
164		    const uint8_t [IEEE80211_ADDR_LEN],
165		    const uint8_t [IEEE80211_ADDR_LEN]);
166static void	wpi_vap_delete(struct ieee80211vap *);
167static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168		    void **, bus_size_t, bus_size_t, int);
169static void	wpi_dma_contig_free(struct wpi_dma_info *);
170static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171static int	wpi_alloc_shared(struct wpi_softc *);
172static void	wpi_free_shared(struct wpi_softc *);
173static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177		    int, int);
178static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181static void	wpi_mem_lock(struct wpi_softc *);
182static void	wpi_mem_unlock(struct wpi_softc *);
183static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
184static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
185static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
186		    const uint32_t *, int);
187static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
188static int	wpi_alloc_fwmem(struct wpi_softc *);
189static void	wpi_free_fwmem(struct wpi_softc *);
190static int	wpi_load_firmware(struct wpi_softc *);
191static void	wpi_unload_firmware(struct wpi_softc *);
192static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
193static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
194		    struct wpi_rx_data *);
195static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
196static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
197static void	wpi_notif_intr(struct wpi_softc *);
198static void	wpi_intr(void *);
199static uint8_t	wpi_plcp_signal(int);
200static void	wpi_watchdog(void *);
201static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202		    struct ieee80211_node *, int);
203static void	wpi_start(struct ifnet *);
204static void	wpi_start_locked(struct ifnet *);
205static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206		    const struct ieee80211_bpf_params *);
207static void	wpi_scan_start(struct ieee80211com *);
208static void	wpi_scan_end(struct ieee80211com *);
209static void	wpi_set_channel(struct ieee80211com *);
210static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
211static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
212static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
213static void	wpi_read_eeprom(struct wpi_softc *,
214		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
215static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218static int	wpi_wme_update(struct ieee80211com *);
219static int	wpi_mrr_setup(struct wpi_softc *);
220static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222#if 0
223static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224#endif
225static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227static int	wpi_scan(struct wpi_softc *);
228static int	wpi_config(struct wpi_softc *);
229static void	wpi_stop_master(struct wpi_softc *);
230static int	wpi_power_up(struct wpi_softc *);
231static int	wpi_reset(struct wpi_softc *);
232static void	wpi_hwreset(void *, int);
233static void	wpi_rfreset(void *, int);
234static void	wpi_hw_config(struct wpi_softc *);
235static void	wpi_init(void *);
236static void	wpi_init_locked(struct wpi_softc *, int);
237static void	wpi_stop(struct wpi_softc *);
238static void	wpi_stop_locked(struct wpi_softc *);
239
240static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241		    int);
242static void	wpi_calib_timeout(void *);
243static void	wpi_power_calibration(struct wpi_softc *, int);
244static int	wpi_get_power_index(struct wpi_softc *,
245		    struct wpi_power_group *, struct ieee80211_channel *, int);
246#ifdef WPI_DEBUG
247static const char *wpi_cmd_str(int);
248#endif
249static int wpi_probe(device_t);
250static int wpi_attach(device_t);
251static int wpi_detach(device_t);
252static int wpi_shutdown(device_t);
253static int wpi_suspend(device_t);
254static int wpi_resume(device_t);
255
256
257static device_method_t wpi_methods[] = {
258	/* Device interface */
259	DEVMETHOD(device_probe,		wpi_probe),
260	DEVMETHOD(device_attach,	wpi_attach),
261	DEVMETHOD(device_detach,	wpi_detach),
262	DEVMETHOD(device_shutdown,	wpi_shutdown),
263	DEVMETHOD(device_suspend,	wpi_suspend),
264	DEVMETHOD(device_resume,	wpi_resume),
265
266	{ 0, 0 }
267};
268
269static driver_t wpi_driver = {
270	"wpi",
271	wpi_methods,
272	sizeof (struct wpi_softc)
273};
274
275static devclass_t wpi_devclass;
276
277DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
278
279MODULE_VERSION(wpi, 1);
280
281static const uint8_t wpi_ridx_to_plcp[] = {
282	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
283	/* R1-R4 (ral/ural is R4-R1) */
284	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
285	/* CCK: device-dependent */
286	10, 20, 55, 110
287};
288static const uint8_t wpi_ridx_to_rate[] = {
289	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
290	2, 4, 11, 22 /*CCK */
291};
292
293
294static int
295wpi_probe(device_t dev)
296{
297	const struct wpi_ident *ident;
298
299	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
300		if (pci_get_vendor(dev) == ident->vendor &&
301		    pci_get_device(dev) == ident->device) {
302			device_set_desc(dev, ident->name);
303			return 0;
304		}
305	}
306	return ENXIO;
307}
308
309/**
310 * Load the firmare image from disk to the allocated dma buffer.
311 * we also maintain the reference to the firmware pointer as there
312 * is times where we may need to reload the firmware but we are not
313 * in a context that can access the filesystem (ie taskq cause by restart)
314 *
315 * @return 0 on success, an errno on failure
316 */
317static int
318wpi_load_firmware(struct wpi_softc *sc)
319{
320	const struct firmware *fp;
321	struct wpi_dma_info *dma = &sc->fw_dma;
322	const struct wpi_firmware_hdr *hdr;
323	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
324	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
325	int error;
326
327	DPRINTFN(WPI_DEBUG_FIRMWARE,
328	    ("Attempting Loading Firmware from wpi_fw module\n"));
329
330	WPI_UNLOCK(sc);
331
332	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
333		device_printf(sc->sc_dev,
334		    "could not load firmware image 'wpifw'\n");
335		error = ENOENT;
336		WPI_LOCK(sc);
337		goto fail;
338	}
339
340	fp = sc->fw_fp;
341
342	WPI_LOCK(sc);
343
344	/* Validate the firmware is minimum a particular version */
345	if (fp->version < WPI_FW_MINVERSION) {
346	    device_printf(sc->sc_dev,
347			   "firmware version is too old. Need %d, got %d\n",
348			   WPI_FW_MINVERSION,
349			   fp->version);
350	    error = ENXIO;
351	    goto fail;
352	}
353
354	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
355		device_printf(sc->sc_dev,
356		    "firmware file too short: %zu bytes\n", fp->datasize);
357		error = ENXIO;
358		goto fail;
359	}
360
361	hdr = (const struct wpi_firmware_hdr *)fp->data;
362
363	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
364	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
365
366	rtextsz = le32toh(hdr->rtextsz);
367	rdatasz = le32toh(hdr->rdatasz);
368	itextsz = le32toh(hdr->itextsz);
369	idatasz = le32toh(hdr->idatasz);
370	btextsz = le32toh(hdr->btextsz);
371
372	/* check that all firmware segments are present */
373	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
374		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
375		device_printf(sc->sc_dev,
376		    "firmware file too short: %zu bytes\n", fp->datasize);
377		error = ENXIO; /* XXX appropriate error code? */
378		goto fail;
379	}
380
381	/* get pointers to firmware segments */
382	rtext = (const uint8_t *)(hdr + 1);
383	rdata = rtext + rtextsz;
384	itext = rdata + rdatasz;
385	idata = itext + itextsz;
386	btext = idata + idatasz;
387
388	DPRINTFN(WPI_DEBUG_FIRMWARE,
389	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
390	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
391	     (le32toh(hdr->version) & 0xff000000) >> 24,
392	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
393	     (le32toh(hdr->version) & 0x0000ffff),
394	     rtextsz, rdatasz,
395	     itextsz, idatasz, btextsz));
396
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
399	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
400	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
401	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
402
403	/* sanity checks */
404	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
405	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
406	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
407	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
408	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
409	    (btextsz & 3) != 0) {
410		device_printf(sc->sc_dev, "firmware invalid\n");
411		error = EINVAL;
412		goto fail;
413	}
414
415	/* copy initialization images into pre-allocated DMA-safe memory */
416	memcpy(dma->vaddr, idata, idatasz);
417	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
418
419	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
420
421	/* tell adapter where to find initialization images */
422	wpi_mem_lock(sc);
423	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
424	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
425	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
426	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
427	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
428	wpi_mem_unlock(sc);
429
430	/* load firmware boot code */
431	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
432	    device_printf(sc->sc_dev, "Failed to load microcode\n");
433	    goto fail;
434	}
435
436	/* now press "execute" */
437	WPI_WRITE(sc, WPI_RESET, 0);
438
439	/* wait at most one second for the first alive notification */
440	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
441		device_printf(sc->sc_dev,
442		    "timeout waiting for adapter to initialize\n");
443		goto fail;
444	}
445
446	/* copy runtime images into pre-allocated DMA-sage memory */
447	memcpy(dma->vaddr, rdata, rdatasz);
448	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
449	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
450
451	/* tell adapter where to find runtime images */
452	wpi_mem_lock(sc);
453	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
454	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
455	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
456	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
457	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
458	wpi_mem_unlock(sc);
459
460	/* wait at most one second for the first alive notification */
461	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
462		device_printf(sc->sc_dev,
463		    "timeout waiting for adapter to initialize2\n");
464		goto fail;
465	}
466
467	DPRINTFN(WPI_DEBUG_FIRMWARE,
468	    ("Firmware loaded to driver successfully\n"));
469	return error;
470fail:
471	wpi_unload_firmware(sc);
472	return error;
473}
474
475/**
476 * Free the referenced firmware image
477 */
478static void
479wpi_unload_firmware(struct wpi_softc *sc)
480{
481
482	if (sc->fw_fp) {
483		WPI_UNLOCK(sc);
484		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
485		WPI_LOCK(sc);
486		sc->fw_fp = NULL;
487	}
488}
489
490static int
491wpi_attach(device_t dev)
492{
493	struct wpi_softc *sc = device_get_softc(dev);
494	struct ifnet *ifp;
495	struct ieee80211com *ic;
496	int ac, error, supportsa = 1;
497	uint32_t tmp;
498	const struct wpi_ident *ident;
499	uint8_t macaddr[IEEE80211_ADDR_LEN];
500
501	sc->sc_dev = dev;
502
503	if (bootverbose || WPI_DEBUG_SET)
504	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
505
506	/*
507	 * Some card's only support 802.11b/g not a, check to see if
508	 * this is one such card. A 0x0 in the subdevice table indicates
509	 * the entire subdevice range is to be ignored.
510	 */
511	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
512		if (ident->subdevice &&
513		    pci_get_subdevice(dev) == ident->subdevice) {
514		    supportsa = 0;
515		    break;
516		}
517	}
518
519	/* Create the tasks that can be queued */
520	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
521	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
522
523	WPI_LOCK_INIT(sc);
524
525	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
526	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
527
528	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
529		device_printf(dev, "chip is in D%d power mode "
530		    "-- setting to D0\n", pci_get_powerstate(dev));
531		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
532	}
533
534	/* disable the retry timeout register */
535	pci_write_config(dev, 0x41, 0, 1);
536
537	/* enable bus-mastering */
538	pci_enable_busmaster(dev);
539
540	sc->mem_rid = PCIR_BAR(0);
541	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
542	    RF_ACTIVE);
543	if (sc->mem == NULL) {
544		device_printf(dev, "could not allocate memory resource\n");
545		error = ENOMEM;
546		goto fail;
547	}
548
549	sc->sc_st = rman_get_bustag(sc->mem);
550	sc->sc_sh = rman_get_bushandle(sc->mem);
551
552	sc->irq_rid = 0;
553	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
554	    RF_ACTIVE | RF_SHAREABLE);
555	if (sc->irq == NULL) {
556		device_printf(dev, "could not allocate interrupt resource\n");
557		error = ENOMEM;
558		goto fail;
559	}
560
561	/*
562	 * Allocate DMA memory for firmware transfers.
563	 */
564	if ((error = wpi_alloc_fwmem(sc)) != 0) {
565		printf(": could not allocate firmware memory\n");
566		error = ENOMEM;
567		goto fail;
568	}
569
570	/*
571	 * Put adapter into a known state.
572	 */
573	if ((error = wpi_reset(sc)) != 0) {
574		device_printf(dev, "could not reset adapter\n");
575		goto fail;
576	}
577
578	wpi_mem_lock(sc);
579	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
580	if (bootverbose || WPI_DEBUG_SET)
581	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
582
583	wpi_mem_unlock(sc);
584
585	/* Allocate shared page */
586	if ((error = wpi_alloc_shared(sc)) != 0) {
587		device_printf(dev, "could not allocate shared page\n");
588		goto fail;
589	}
590
591	/* tx data queues  - 4 for QoS purposes */
592	for (ac = 0; ac < WME_NUM_AC; ac++) {
593		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
594		if (error != 0) {
595		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
596		    goto fail;
597		}
598	}
599
600	/* command queue to talk to the card's firmware */
601	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
602	if (error != 0) {
603		device_printf(dev, "could not allocate command ring\n");
604		goto fail;
605	}
606
607	/* receive data queue */
608	error = wpi_alloc_rx_ring(sc, &sc->rxq);
609	if (error != 0) {
610		device_printf(dev, "could not allocate Rx ring\n");
611		goto fail;
612	}
613
614	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
615	if (ifp == NULL) {
616		device_printf(dev, "can not if_alloc()\n");
617		error = ENOMEM;
618		goto fail;
619	}
620	ic = ifp->if_l2com;
621
622	ic->ic_ifp = ifp;
623	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
624	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
625
626	/* set device capabilities */
627	ic->ic_caps =
628		  IEEE80211_C_STA		/* station mode supported */
629		| IEEE80211_C_MONITOR		/* monitor mode supported */
630		| IEEE80211_C_TXPMGT		/* tx power management */
631		| IEEE80211_C_SHSLOT		/* short slot time supported */
632		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
633		| IEEE80211_C_WPA		/* 802.11i */
634/* XXX looks like WME is partly supported? */
635#if 0
636		| IEEE80211_C_IBSS		/* IBSS mode support */
637		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
638		| IEEE80211_C_WME		/* 802.11e */
639		| IEEE80211_C_HOSTAP		/* Host access point mode */
640#endif
641		;
642
643	/*
644	 * Read in the eeprom and also setup the channels for
645	 * net80211. We don't set the rates as net80211 does this for us
646	 */
647	wpi_read_eeprom(sc, macaddr);
648
649	if (bootverbose || WPI_DEBUG_SET) {
650	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
651	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
652			  sc->type > 1 ? 'B': '?');
653	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
654			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
655	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
656			  supportsa ? "does" : "does not");
657
658	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
659	       what sc->rev really represents - benjsc 20070615 */
660	}
661
662	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
663	ifp->if_softc = sc;
664	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
665	ifp->if_init = wpi_init;
666	ifp->if_ioctl = wpi_ioctl;
667	ifp->if_start = wpi_start;
668	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
669	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
670	IFQ_SET_READY(&ifp->if_snd);
671
672	ieee80211_ifattach(ic, macaddr);
673	/* override default methods */
674	ic->ic_raw_xmit = wpi_raw_xmit;
675	ic->ic_wme.wme_update = wpi_wme_update;
676	ic->ic_scan_start = wpi_scan_start;
677	ic->ic_scan_end = wpi_scan_end;
678	ic->ic_set_channel = wpi_set_channel;
679	ic->ic_scan_curchan = wpi_scan_curchan;
680	ic->ic_scan_mindwell = wpi_scan_mindwell;
681
682	ic->ic_vap_create = wpi_vap_create;
683	ic->ic_vap_delete = wpi_vap_delete;
684
685	ieee80211_radiotap_attach(ic,
686	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
687		WPI_TX_RADIOTAP_PRESENT,
688	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
689		WPI_RX_RADIOTAP_PRESENT);
690
691	/*
692	 * Hook our interrupt after all initialization is complete.
693	 */
694	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
695	    NULL, wpi_intr, sc, &sc->sc_ih);
696	if (error != 0) {
697		device_printf(dev, "could not set up interrupt\n");
698		goto fail;
699	}
700
701	if (bootverbose)
702		ieee80211_announce(ic);
703#ifdef XXX_DEBUG
704	ieee80211_announce_channels(ic);
705#endif
706	return 0;
707
708fail:	wpi_detach(dev);
709	return ENXIO;
710}
711
712static int
713wpi_detach(device_t dev)
714{
715	struct wpi_softc *sc = device_get_softc(dev);
716	struct ifnet *ifp = sc->sc_ifp;
717	struct ieee80211com *ic;
718	int ac;
719
720	if (ifp != NULL) {
721		ic = ifp->if_l2com;
722
723		ieee80211_draintask(ic, &sc->sc_restarttask);
724		ieee80211_draintask(ic, &sc->sc_radiotask);
725		wpi_stop(sc);
726		callout_drain(&sc->watchdog_to);
727		callout_drain(&sc->calib_to);
728		ieee80211_ifdetach(ic);
729	}
730
731	WPI_LOCK(sc);
732	if (sc->txq[0].data_dmat) {
733		for (ac = 0; ac < WME_NUM_AC; ac++)
734			wpi_free_tx_ring(sc, &sc->txq[ac]);
735
736		wpi_free_tx_ring(sc, &sc->cmdq);
737		wpi_free_rx_ring(sc, &sc->rxq);
738		wpi_free_shared(sc);
739	}
740
741	if (sc->fw_fp != NULL) {
742		wpi_unload_firmware(sc);
743	}
744
745	if (sc->fw_dma.tag)
746		wpi_free_fwmem(sc);
747	WPI_UNLOCK(sc);
748
749	if (sc->irq != NULL) {
750		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
751		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
752	}
753
754	if (sc->mem != NULL)
755		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
756
757	if (ifp != NULL)
758		if_free(ifp);
759
760	WPI_LOCK_DESTROY(sc);
761
762	return 0;
763}
764
765static struct ieee80211vap *
766wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
767    enum ieee80211_opmode opmode, int flags,
768    const uint8_t bssid[IEEE80211_ADDR_LEN],
769    const uint8_t mac[IEEE80211_ADDR_LEN])
770{
771	struct wpi_vap *wvp;
772	struct ieee80211vap *vap;
773
774	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
775		return NULL;
776	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
777	    M_80211_VAP, M_NOWAIT | M_ZERO);
778	if (wvp == NULL)
779		return NULL;
780	vap = &wvp->vap;
781	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
782	/* override with driver methods */
783	wvp->newstate = vap->iv_newstate;
784	vap->iv_newstate = wpi_newstate;
785
786	ieee80211_ratectl_init(vap);
787	/* complete setup */
788	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
789	ic->ic_opmode = opmode;
790	return vap;
791}
792
793static void
794wpi_vap_delete(struct ieee80211vap *vap)
795{
796	struct wpi_vap *wvp = WPI_VAP(vap);
797
798	ieee80211_ratectl_deinit(vap);
799	ieee80211_vap_detach(vap);
800	free(wvp, M_80211_VAP);
801}
802
803static void
804wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
805{
806	if (error != 0)
807		return;
808
809	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
810
811	*(bus_addr_t *)arg = segs[0].ds_addr;
812}
813
814/*
815 * Allocates a contiguous block of dma memory of the requested size and
816 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
817 * allocations greater than 4096 may fail. Hence if the requested alignment is
818 * greater we allocate 'alignment' size extra memory and shift the vaddr and
819 * paddr after the dma load. This bypasses the problem at the cost of a little
820 * more memory.
821 */
822static int
823wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
824    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
825{
826	int error;
827	bus_size_t align;
828	bus_size_t reqsize;
829
830	DPRINTFN(WPI_DEBUG_DMA,
831	    ("Size: %zd - alignment %zd\n", size, alignment));
832
833	dma->size = size;
834	dma->tag = NULL;
835
836	if (alignment > 4096) {
837		align = PAGE_SIZE;
838		reqsize = size + alignment;
839	} else {
840		align = alignment;
841		reqsize = size;
842	}
843	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
844	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
845	    NULL, NULL, reqsize,
846	    1, reqsize, flags,
847	    NULL, NULL, &dma->tag);
848	if (error != 0) {
849		device_printf(sc->sc_dev,
850		    "could not create shared page DMA tag\n");
851		goto fail;
852	}
853	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
854	    flags | BUS_DMA_ZERO, &dma->map);
855	if (error != 0) {
856		device_printf(sc->sc_dev,
857		    "could not allocate shared page DMA memory\n");
858		goto fail;
859	}
860
861	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
862	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
863
864	/* Save the original pointers so we can free all the memory */
865	dma->paddr = dma->paddr_start;
866	dma->vaddr = dma->vaddr_start;
867
868	/*
869	 * Check the alignment and increment by 4096 until we get the
870	 * requested alignment. Fail if can't obtain the alignment
871	 * we requested.
872	 */
873	if ((dma->paddr & (alignment -1 )) != 0) {
874		int i;
875
876		for (i = 0; i < alignment / 4096; i++) {
877			if ((dma->paddr & (alignment - 1 )) == 0)
878				break;
879			dma->paddr += 4096;
880			dma->vaddr += 4096;
881		}
882		if (i == alignment / 4096) {
883			device_printf(sc->sc_dev,
884			    "alignment requirement was not satisfied\n");
885			goto fail;
886		}
887	}
888
889	if (error != 0) {
890		device_printf(sc->sc_dev,
891		    "could not load shared page DMA map\n");
892		goto fail;
893	}
894
895	if (kvap != NULL)
896		*kvap = dma->vaddr;
897
898	return 0;
899
900fail:
901	wpi_dma_contig_free(dma);
902	return error;
903}
904
905static void
906wpi_dma_contig_free(struct wpi_dma_info *dma)
907{
908	if (dma->tag) {
909		if (dma->map != NULL) {
910			if (dma->paddr_start != 0) {
911				bus_dmamap_sync(dma->tag, dma->map,
912				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
913				bus_dmamap_unload(dma->tag, dma->map);
914			}
915			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
916		}
917		bus_dma_tag_destroy(dma->tag);
918	}
919}
920
921/*
922 * Allocate a shared page between host and NIC.
923 */
924static int
925wpi_alloc_shared(struct wpi_softc *sc)
926{
927	int error;
928
929	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
930	    (void **)&sc->shared, sizeof (struct wpi_shared),
931	    PAGE_SIZE,
932	    BUS_DMA_NOWAIT);
933
934	if (error != 0) {
935		device_printf(sc->sc_dev,
936		    "could not allocate shared area DMA memory\n");
937	}
938
939	return error;
940}
941
942static void
943wpi_free_shared(struct wpi_softc *sc)
944{
945	wpi_dma_contig_free(&sc->shared_dma);
946}
947
948static int
949wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
950{
951
952	int i, error;
953
954	ring->cur = 0;
955
956	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
957	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
958	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
959
960	if (error != 0) {
961		device_printf(sc->sc_dev,
962		    "%s: could not allocate rx ring DMA memory, error %d\n",
963		    __func__, error);
964		goto fail;
965	}
966
967        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
968	    BUS_SPACE_MAXADDR_32BIT,
969            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
970            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
971        if (error != 0) {
972                device_printf(sc->sc_dev,
973		    "%s: bus_dma_tag_create_failed, error %d\n",
974		    __func__, error);
975                goto fail;
976        }
977
978	/*
979	 * Setup Rx buffers.
980	 */
981	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
982		struct wpi_rx_data *data = &ring->data[i];
983		struct mbuf *m;
984		bus_addr_t paddr;
985
986		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
987		if (error != 0) {
988			device_printf(sc->sc_dev,
989			    "%s: bus_dmamap_create failed, error %d\n",
990			    __func__, error);
991			goto fail;
992		}
993		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
994		if (m == NULL) {
995			device_printf(sc->sc_dev,
996			   "%s: could not allocate rx mbuf\n", __func__);
997			error = ENOMEM;
998			goto fail;
999		}
1000		/* map page */
1001		error = bus_dmamap_load(ring->data_dmat, data->map,
1002		    mtod(m, caddr_t), MJUMPAGESIZE,
1003		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1004		if (error != 0 && error != EFBIG) {
1005			device_printf(sc->sc_dev,
1006			    "%s: bus_dmamap_load failed, error %d\n",
1007			    __func__, error);
1008			m_freem(m);
1009			error = ENOMEM;	/* XXX unique code */
1010			goto fail;
1011		}
1012		bus_dmamap_sync(ring->data_dmat, data->map,
1013		    BUS_DMASYNC_PREWRITE);
1014
1015		data->m = m;
1016		ring->desc[i] = htole32(paddr);
1017	}
1018	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1019	    BUS_DMASYNC_PREWRITE);
1020	return 0;
1021fail:
1022	wpi_free_rx_ring(sc, ring);
1023	return error;
1024}
1025
1026static void
1027wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1028{
1029	int ntries;
1030
1031	wpi_mem_lock(sc);
1032
1033	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1034
1035	for (ntries = 0; ntries < 100; ntries++) {
1036		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1037			break;
1038		DELAY(10);
1039	}
1040
1041	wpi_mem_unlock(sc);
1042
1043#ifdef WPI_DEBUG
1044	if (ntries == 100 && wpi_debug > 0)
1045		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1046#endif
1047
1048	ring->cur = 0;
1049}
1050
1051static void
1052wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1053{
1054	int i;
1055
1056	wpi_dma_contig_free(&ring->desc_dma);
1057
1058	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1059		struct wpi_rx_data *data = &ring->data[i];
1060
1061		if (data->m != NULL) {
1062			bus_dmamap_sync(ring->data_dmat, data->map,
1063			    BUS_DMASYNC_POSTREAD);
1064			bus_dmamap_unload(ring->data_dmat, data->map);
1065			m_freem(data->m);
1066		}
1067		if (data->map != NULL)
1068			bus_dmamap_destroy(ring->data_dmat, data->map);
1069	}
1070}
1071
1072static int
1073wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1074	int qid)
1075{
1076	struct wpi_tx_data *data;
1077	int i, error;
1078
1079	ring->qid = qid;
1080	ring->count = count;
1081	ring->queued = 0;
1082	ring->cur = 0;
1083	ring->data = NULL;
1084
1085	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1086		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1087		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1088
1089	if (error != 0) {
1090	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1091	    goto fail;
1092	}
1093
1094	/* update shared page with ring's base address */
1095	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1096
1097	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1098		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1099		BUS_DMA_NOWAIT);
1100
1101	if (error != 0) {
1102		device_printf(sc->sc_dev,
1103		    "could not allocate tx command DMA memory\n");
1104		goto fail;
1105	}
1106
1107	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1108	    M_NOWAIT | M_ZERO);
1109	if (ring->data == NULL) {
1110		device_printf(sc->sc_dev,
1111		    "could not allocate tx data slots\n");
1112		goto fail;
1113	}
1114
1115	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1116	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1117	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1118	    &ring->data_dmat);
1119	if (error != 0) {
1120		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1121		goto fail;
1122	}
1123
1124	for (i = 0; i < count; i++) {
1125		data = &ring->data[i];
1126
1127		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1128		if (error != 0) {
1129			device_printf(sc->sc_dev,
1130			    "could not create tx buf DMA map\n");
1131			goto fail;
1132		}
1133		bus_dmamap_sync(ring->data_dmat, data->map,
1134		    BUS_DMASYNC_PREWRITE);
1135	}
1136
1137	return 0;
1138
1139fail:
1140	wpi_free_tx_ring(sc, ring);
1141	return error;
1142}
1143
1144static void
1145wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146{
1147	struct wpi_tx_data *data;
1148	int i, ntries;
1149
1150	wpi_mem_lock(sc);
1151
1152	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1153	for (ntries = 0; ntries < 100; ntries++) {
1154		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1155			break;
1156		DELAY(10);
1157	}
1158#ifdef WPI_DEBUG
1159	if (ntries == 100 && wpi_debug > 0)
1160		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1161		    ring->qid);
1162#endif
1163	wpi_mem_unlock(sc);
1164
1165	for (i = 0; i < ring->count; i++) {
1166		data = &ring->data[i];
1167
1168		if (data->m != NULL) {
1169			bus_dmamap_unload(ring->data_dmat, data->map);
1170			m_freem(data->m);
1171			data->m = NULL;
1172		}
1173	}
1174
1175	ring->queued = 0;
1176	ring->cur = 0;
1177}
1178
1179static void
1180wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181{
1182	struct wpi_tx_data *data;
1183	int i;
1184
1185	wpi_dma_contig_free(&ring->desc_dma);
1186	wpi_dma_contig_free(&ring->cmd_dma);
1187
1188	if (ring->data != NULL) {
1189		for (i = 0; i < ring->count; i++) {
1190			data = &ring->data[i];
1191
1192			if (data->m != NULL) {
1193				bus_dmamap_sync(ring->data_dmat, data->map,
1194				    BUS_DMASYNC_POSTWRITE);
1195				bus_dmamap_unload(ring->data_dmat, data->map);
1196				m_freem(data->m);
1197				data->m = NULL;
1198			}
1199		}
1200		free(ring->data, M_DEVBUF);
1201	}
1202
1203	if (ring->data_dmat != NULL)
1204		bus_dma_tag_destroy(ring->data_dmat);
1205}
1206
1207static int
1208wpi_shutdown(device_t dev)
1209{
1210	struct wpi_softc *sc = device_get_softc(dev);
1211
1212	WPI_LOCK(sc);
1213	wpi_stop_locked(sc);
1214	wpi_unload_firmware(sc);
1215	WPI_UNLOCK(sc);
1216
1217	return 0;
1218}
1219
1220static int
1221wpi_suspend(device_t dev)
1222{
1223	struct wpi_softc *sc = device_get_softc(dev);
1224	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1225
1226	ieee80211_suspend_all(ic);
1227	return 0;
1228}
1229
1230static int
1231wpi_resume(device_t dev)
1232{
1233	struct wpi_softc *sc = device_get_softc(dev);
1234	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1235
1236	pci_write_config(dev, 0x41, 0, 1);
1237
1238	ieee80211_resume_all(ic);
1239	return 0;
1240}
1241
1242/**
1243 * Called by net80211 when ever there is a change to 80211 state machine
1244 */
1245static int
1246wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1247{
1248	struct wpi_vap *wvp = WPI_VAP(vap);
1249	struct ieee80211com *ic = vap->iv_ic;
1250	struct ifnet *ifp = ic->ic_ifp;
1251	struct wpi_softc *sc = ifp->if_softc;
1252	int error;
1253
1254	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1255		ieee80211_state_name[vap->iv_state],
1256		ieee80211_state_name[nstate], sc->flags));
1257
1258	IEEE80211_UNLOCK(ic);
1259	WPI_LOCK(sc);
1260	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1261		/*
1262		 * On !INIT -> SCAN transitions, we need to clear any possible
1263		 * knowledge about associations.
1264		 */
1265		error = wpi_config(sc);
1266		if (error != 0) {
1267			device_printf(sc->sc_dev,
1268			    "%s: device config failed, error %d\n",
1269			    __func__, error);
1270		}
1271	}
1272	if (nstate == IEEE80211_S_AUTH ||
1273	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1274		/*
1275		 * The node must be registered in the firmware before auth.
1276		 * Also the associd must be cleared on RUN -> ASSOC
1277		 * transitions.
1278		 */
1279		error = wpi_auth(sc, vap);
1280		if (error != 0) {
1281			device_printf(sc->sc_dev,
1282			    "%s: could not move to auth state, error %d\n",
1283			    __func__, error);
1284		}
1285	}
1286	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287		error = wpi_run(sc, vap);
1288		if (error != 0) {
1289			device_printf(sc->sc_dev,
1290			    "%s: could not move to run state, error %d\n",
1291			    __func__, error);
1292		}
1293	}
1294	if (nstate == IEEE80211_S_RUN) {
1295		/* RUN -> RUN transition; just restart the timers */
1296		wpi_calib_timeout(sc);
1297		/* XXX split out rate control timer */
1298	}
1299	WPI_UNLOCK(sc);
1300	IEEE80211_LOCK(ic);
1301	return wvp->newstate(vap, nstate, arg);
1302}
1303
1304/*
1305 * Grab exclusive access to NIC memory.
1306 */
1307static void
1308wpi_mem_lock(struct wpi_softc *sc)
1309{
1310	int ntries;
1311	uint32_t tmp;
1312
1313	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1314	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1315
1316	/* spin until we actually get the lock */
1317	for (ntries = 0; ntries < 100; ntries++) {
1318		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1319			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1320			break;
1321		DELAY(10);
1322	}
1323	if (ntries == 100)
1324		device_printf(sc->sc_dev, "could not lock memory\n");
1325}
1326
1327/*
1328 * Release lock on NIC memory.
1329 */
1330static void
1331wpi_mem_unlock(struct wpi_softc *sc)
1332{
1333	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1334	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1335}
1336
1337static uint32_t
1338wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1339{
1340	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1341	return WPI_READ(sc, WPI_READ_MEM_DATA);
1342}
1343
1344static void
1345wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1346{
1347	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1348	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1349}
1350
1351static void
1352wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1353    const uint32_t *data, int wlen)
1354{
1355	for (; wlen > 0; wlen--, data++, addr+=4)
1356		wpi_mem_write(sc, addr, *data);
1357}
1358
1359/*
1360 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1361 * using the traditional bit-bang method. Data is read up until len bytes have
1362 * been obtained.
1363 */
1364static uint16_t
1365wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1366{
1367	int ntries;
1368	uint32_t val;
1369	uint8_t *out = data;
1370
1371	wpi_mem_lock(sc);
1372
1373	for (; len > 0; len -= 2, addr++) {
1374		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1375
1376		for (ntries = 0; ntries < 10; ntries++) {
1377			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1378				break;
1379			DELAY(5);
1380		}
1381
1382		if (ntries == 10) {
1383			device_printf(sc->sc_dev, "could not read EEPROM\n");
1384			return ETIMEDOUT;
1385		}
1386
1387		*out++= val >> 16;
1388		if (len > 1)
1389			*out ++= val >> 24;
1390	}
1391
1392	wpi_mem_unlock(sc);
1393
1394	return 0;
1395}
1396
1397/*
1398 * The firmware text and data segments are transferred to the NIC using DMA.
1399 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1400 * where to find it.  Once the NIC has copied the firmware into its internal
1401 * memory, we can free our local copy in the driver.
1402 */
1403static int
1404wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1405{
1406	int error, ntries;
1407
1408	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1409
1410	size /= sizeof(uint32_t);
1411
1412	wpi_mem_lock(sc);
1413
1414	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1415	    (const uint32_t *)fw, size);
1416
1417	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1418	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1419	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1420
1421	/* run microcode */
1422	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1423
1424	/* wait while the adapter is busy copying the firmware */
1425	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1426		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1427		DPRINTFN(WPI_DEBUG_HW,
1428		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1429		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1430		if (status & WPI_TX_IDLE(6)) {
1431			DPRINTFN(WPI_DEBUG_HW,
1432			    ("Status Match! - ntries = %d\n", ntries));
1433			break;
1434		}
1435		DELAY(10);
1436	}
1437	if (ntries == 1000) {
1438		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1439		error = ETIMEDOUT;
1440	}
1441
1442	/* start the microcode executing */
1443	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1444
1445	wpi_mem_unlock(sc);
1446
1447	return (error);
1448}
1449
1450static void
1451wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1452	struct wpi_rx_data *data)
1453{
1454	struct ifnet *ifp = sc->sc_ifp;
1455	struct ieee80211com *ic = ifp->if_l2com;
1456	struct wpi_rx_ring *ring = &sc->rxq;
1457	struct wpi_rx_stat *stat;
1458	struct wpi_rx_head *head;
1459	struct wpi_rx_tail *tail;
1460	struct ieee80211_node *ni;
1461	struct mbuf *m, *mnew;
1462	bus_addr_t paddr;
1463	int error;
1464
1465	stat = (struct wpi_rx_stat *)(desc + 1);
1466
1467	if (stat->len > WPI_STAT_MAXLEN) {
1468		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1469		ifp->if_ierrors++;
1470		return;
1471	}
1472
1473	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1474	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1475	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1476
1477	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1478	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1479	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1480	    (uintmax_t)le64toh(tail->tstamp)));
1481
1482	/* discard Rx frames with bad CRC early */
1483	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1485		    le32toh(tail->flags)));
1486		ifp->if_ierrors++;
1487		return;
1488	}
1489	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1490		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1491		    le16toh(head->len)));
1492		ifp->if_ierrors++;
1493		return;
1494	}
1495
1496	/* XXX don't need mbuf, just dma buffer */
1497	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1498	if (mnew == NULL) {
1499		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1500		    __func__));
1501		ifp->if_ierrors++;
1502		return;
1503	}
1504	bus_dmamap_unload(ring->data_dmat, data->map);
1505
1506	error = bus_dmamap_load(ring->data_dmat, data->map,
1507	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1508	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1509	if (error != 0 && error != EFBIG) {
1510		device_printf(sc->sc_dev,
1511		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1512		m_freem(mnew);
1513		ifp->if_ierrors++;
1514		return;
1515	}
1516	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1517
1518	/* finalize mbuf and swap in new one */
1519	m = data->m;
1520	m->m_pkthdr.rcvif = ifp;
1521	m->m_data = (caddr_t)(head + 1);
1522	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1523
1524	data->m = mnew;
1525	/* update Rx descriptor */
1526	ring->desc[ring->cur] = htole32(paddr);
1527
1528	if (ieee80211_radiotap_active(ic)) {
1529		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1530
1531		tap->wr_flags = 0;
1532		tap->wr_chan_freq =
1533			htole16(ic->ic_channels[head->chan].ic_freq);
1534		tap->wr_chan_flags =
1535			htole16(ic->ic_channels[head->chan].ic_flags);
1536		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1537		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1538		tap->wr_tsft = tail->tstamp;
1539		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1540		switch (head->rate) {
1541		/* CCK rates */
1542		case  10: tap->wr_rate =   2; break;
1543		case  20: tap->wr_rate =   4; break;
1544		case  55: tap->wr_rate =  11; break;
1545		case 110: tap->wr_rate =  22; break;
1546		/* OFDM rates */
1547		case 0xd: tap->wr_rate =  12; break;
1548		case 0xf: tap->wr_rate =  18; break;
1549		case 0x5: tap->wr_rate =  24; break;
1550		case 0x7: tap->wr_rate =  36; break;
1551		case 0x9: tap->wr_rate =  48; break;
1552		case 0xb: tap->wr_rate =  72; break;
1553		case 0x1: tap->wr_rate =  96; break;
1554		case 0x3: tap->wr_rate = 108; break;
1555		/* unknown rate: should not happen */
1556		default:  tap->wr_rate =   0;
1557		}
1558		if (le16toh(head->flags) & 0x4)
1559			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1560	}
1561
1562	WPI_UNLOCK(sc);
1563
1564	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1565	if (ni != NULL) {
1566		(void) ieee80211_input(ni, m, stat->rssi, 0);
1567		ieee80211_free_node(ni);
1568	} else
1569		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1570
1571	WPI_LOCK(sc);
1572}
1573
1574static void
1575wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1576{
1577	struct ifnet *ifp = sc->sc_ifp;
1578	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1579	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1580	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1581	struct ieee80211_node *ni = txdata->ni;
1582	struct ieee80211vap *vap = ni->ni_vap;
1583	int retrycnt = 0;
1584
1585	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1586	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1587	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1588	    le32toh(stat->status)));
1589
1590	/*
1591	 * Update rate control statistics for the node.
1592	 * XXX we should not count mgmt frames since they're always sent at
1593	 * the lowest available bit-rate.
1594	 * XXX frames w/o ACK shouldn't be used either
1595	 */
1596	if (stat->ntries > 0) {
1597		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1598		retrycnt = 1;
1599	}
1600	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1601	    &retrycnt, NULL);
1602
1603	/* XXX oerrors should only count errors !maxtries */
1604	if ((le32toh(stat->status) & 0xff) != 1)
1605		ifp->if_oerrors++;
1606	else
1607		ifp->if_opackets++;
1608
1609	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1610	bus_dmamap_unload(ring->data_dmat, txdata->map);
1611	/* XXX handle M_TXCB? */
1612	m_freem(txdata->m);
1613	txdata->m = NULL;
1614	ieee80211_free_node(txdata->ni);
1615	txdata->ni = NULL;
1616
1617	ring->queued--;
1618
1619	sc->sc_tx_timer = 0;
1620	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1621	wpi_start_locked(ifp);
1622}
1623
1624static void
1625wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1626{
1627	struct wpi_tx_ring *ring = &sc->cmdq;
1628	struct wpi_tx_data *data;
1629
1630	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1631				 "type=%s len=%d\n", desc->qid, desc->idx,
1632				 desc->flags, wpi_cmd_str(desc->type),
1633				 le32toh(desc->len)));
1634
1635	if ((desc->qid & 7) != 4)
1636		return;	/* not a command ack */
1637
1638	data = &ring->data[desc->idx];
1639
1640	/* if the command was mapped in a mbuf, free it */
1641	if (data->m != NULL) {
1642		bus_dmamap_unload(ring->data_dmat, data->map);
1643		m_freem(data->m);
1644		data->m = NULL;
1645	}
1646
1647	sc->flags &= ~WPI_FLAG_BUSY;
1648	wakeup(&ring->cmd[desc->idx]);
1649}
1650
1651static void
1652wpi_notif_intr(struct wpi_softc *sc)
1653{
1654	struct ifnet *ifp = sc->sc_ifp;
1655	struct ieee80211com *ic = ifp->if_l2com;
1656	struct wpi_rx_desc *desc;
1657	struct wpi_rx_data *data;
1658	uint32_t hw;
1659
1660	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1661	    BUS_DMASYNC_POSTREAD);
1662
1663	hw = le32toh(sc->shared->next);
1664	while (sc->rxq.cur != hw) {
1665		data = &sc->rxq.data[sc->rxq.cur];
1666
1667		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1668		    BUS_DMASYNC_POSTREAD);
1669		desc = (void *)data->m->m_ext.ext_buf;
1670
1671		DPRINTFN(WPI_DEBUG_NOTIFY,
1672			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1673			  desc->qid,
1674			  desc->idx,
1675			  desc->flags,
1676			  desc->type,
1677			  le32toh(desc->len)));
1678
1679		if (!(desc->qid & 0x80))	/* reply to a command */
1680			wpi_cmd_intr(sc, desc);
1681
1682		switch (desc->type) {
1683		case WPI_RX_DONE:
1684			/* a 802.11 frame was received */
1685			wpi_rx_intr(sc, desc, data);
1686			break;
1687
1688		case WPI_TX_DONE:
1689			/* a 802.11 frame has been transmitted */
1690			wpi_tx_intr(sc, desc);
1691			break;
1692
1693		case WPI_UC_READY:
1694		{
1695			struct wpi_ucode_info *uc =
1696				(struct wpi_ucode_info *)(desc + 1);
1697
1698			/* the microcontroller is ready */
1699			DPRINTF(("microcode alive notification version %x "
1700				"alive %x\n", le32toh(uc->version),
1701				le32toh(uc->valid)));
1702
1703			if (le32toh(uc->valid) != 1) {
1704				device_printf(sc->sc_dev,
1705				    "microcontroller initialization failed\n");
1706				wpi_stop_locked(sc);
1707			}
1708			break;
1709		}
1710		case WPI_STATE_CHANGED:
1711		{
1712			uint32_t *status = (uint32_t *)(desc + 1);
1713
1714			/* enabled/disabled notification */
1715			DPRINTF(("state changed to %x\n", le32toh(*status)));
1716
1717			if (le32toh(*status) & 1) {
1718				device_printf(sc->sc_dev,
1719				    "Radio transmitter is switched off\n");
1720				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1721				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1722				/* Disable firmware commands */
1723				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1724			}
1725			break;
1726		}
1727		case WPI_START_SCAN:
1728		{
1729#ifdef WPI_DEBUG
1730			struct wpi_start_scan *scan =
1731				(struct wpi_start_scan *)(desc + 1);
1732#endif
1733
1734			DPRINTFN(WPI_DEBUG_SCANNING,
1735				 ("scanning channel %d status %x\n",
1736			    scan->chan, le32toh(scan->status)));
1737			break;
1738		}
1739		case WPI_STOP_SCAN:
1740		{
1741#ifdef WPI_DEBUG
1742			struct wpi_stop_scan *scan =
1743				(struct wpi_stop_scan *)(desc + 1);
1744#endif
1745			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1746
1747			DPRINTFN(WPI_DEBUG_SCANNING,
1748			    ("scan finished nchan=%d status=%d chan=%d\n",
1749			     scan->nchan, scan->status, scan->chan));
1750
1751			sc->sc_scan_timer = 0;
1752			ieee80211_scan_next(vap);
1753			break;
1754		}
1755		case WPI_MISSED_BEACON:
1756		{
1757			struct wpi_missed_beacon *beacon =
1758				(struct wpi_missed_beacon *)(desc + 1);
1759			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1760
1761			if (le32toh(beacon->consecutive) >=
1762			    vap->iv_bmissthreshold) {
1763				DPRINTF(("Beacon miss: %u >= %u\n",
1764					 le32toh(beacon->consecutive),
1765					 vap->iv_bmissthreshold));
1766				ieee80211_beacon_miss(ic);
1767			}
1768			break;
1769		}
1770		}
1771
1772		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1773	}
1774
1775	/* tell the firmware what we have processed */
1776	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1777	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1778}
1779
1780static void
1781wpi_intr(void *arg)
1782{
1783	struct wpi_softc *sc = arg;
1784	uint32_t r;
1785
1786	WPI_LOCK(sc);
1787
1788	r = WPI_READ(sc, WPI_INTR);
1789	if (r == 0 || r == 0xffffffff) {
1790		WPI_UNLOCK(sc);
1791		return;
1792	}
1793
1794	/* disable interrupts */
1795	WPI_WRITE(sc, WPI_MASK, 0);
1796	/* ack interrupts */
1797	WPI_WRITE(sc, WPI_INTR, r);
1798
1799	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1800		struct ifnet *ifp = sc->sc_ifp;
1801		struct ieee80211com *ic = ifp->if_l2com;
1802		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1803
1804		device_printf(sc->sc_dev, "fatal firmware error\n");
1805		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1806				"(Hardware Error)"));
1807		if (vap != NULL)
1808			ieee80211_cancel_scan(vap);
1809		ieee80211_runtask(ic, &sc->sc_restarttask);
1810		sc->flags &= ~WPI_FLAG_BUSY;
1811		WPI_UNLOCK(sc);
1812		return;
1813	}
1814
1815	if (r & WPI_RX_INTR)
1816		wpi_notif_intr(sc);
1817
1818	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1819		wakeup(sc);
1820
1821	/* re-enable interrupts */
1822	if (sc->sc_ifp->if_flags & IFF_UP)
1823		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1824
1825	WPI_UNLOCK(sc);
1826}
1827
1828static uint8_t
1829wpi_plcp_signal(int rate)
1830{
1831	switch (rate) {
1832	/* CCK rates (returned values are device-dependent) */
1833	case 2:		return 10;
1834	case 4:		return 20;
1835	case 11:	return 55;
1836	case 22:	return 110;
1837
1838	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1839	/* R1-R4 (ral/ural is R4-R1) */
1840	case 12:	return 0xd;
1841	case 18:	return 0xf;
1842	case 24:	return 0x5;
1843	case 36:	return 0x7;
1844	case 48:	return 0x9;
1845	case 72:	return 0xb;
1846	case 96:	return 0x1;
1847	case 108:	return 0x3;
1848
1849	/* unsupported rates (should not get there) */
1850	default:	return 0;
1851	}
1852}
1853
1854/* quickly determine if a given rate is CCK or OFDM */
1855#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1856
1857/*
1858 * Construct the data packet for a transmit buffer and acutally put
1859 * the buffer onto the transmit ring, kicking the card to process the
1860 * the buffer.
1861 */
1862static int
1863wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1864	int ac)
1865{
1866	struct ieee80211vap *vap = ni->ni_vap;
1867	struct ifnet *ifp = sc->sc_ifp;
1868	struct ieee80211com *ic = ifp->if_l2com;
1869	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1870	struct wpi_tx_ring *ring = &sc->txq[ac];
1871	struct wpi_tx_desc *desc;
1872	struct wpi_tx_data *data;
1873	struct wpi_tx_cmd *cmd;
1874	struct wpi_cmd_data *tx;
1875	struct ieee80211_frame *wh;
1876	const struct ieee80211_txparam *tp;
1877	struct ieee80211_key *k;
1878	struct mbuf *mnew;
1879	int i, error, nsegs, rate, hdrlen, ismcast;
1880	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1881
1882	desc = &ring->desc[ring->cur];
1883	data = &ring->data[ring->cur];
1884
1885	wh = mtod(m0, struct ieee80211_frame *);
1886
1887	hdrlen = ieee80211_hdrsize(wh);
1888	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1889
1890	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1891		k = ieee80211_crypto_encap(ni, m0);
1892		if (k == NULL) {
1893			m_freem(m0);
1894			return ENOBUFS;
1895		}
1896		/* packet header may have moved, reset our local pointer */
1897		wh = mtod(m0, struct ieee80211_frame *);
1898	}
1899
1900	cmd = &ring->cmd[ring->cur];
1901	cmd->code = WPI_CMD_TX_DATA;
1902	cmd->flags = 0;
1903	cmd->qid = ring->qid;
1904	cmd->idx = ring->cur;
1905
1906	tx = (struct wpi_cmd_data *)cmd->data;
1907	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1908	tx->timeout = htole16(0);
1909	tx->ofdm_mask = 0xff;
1910	tx->cck_mask = 0x0f;
1911	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1912	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1913	tx->len = htole16(m0->m_pkthdr.len);
1914
1915	if (!ismcast) {
1916		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1917		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1918			tx->flags |= htole32(WPI_TX_NEED_ACK);
1919		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1920			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1921			tx->rts_ntries = 7;
1922		}
1923	}
1924	/* pick a rate */
1925	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1926	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1927		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1928		/* tell h/w to set timestamp in probe responses */
1929		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1930			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1931		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1932		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1933			tx->timeout = htole16(3);
1934		else
1935			tx->timeout = htole16(2);
1936		rate = tp->mgmtrate;
1937	} else if (ismcast) {
1938		rate = tp->mcastrate;
1939	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1940		rate = tp->ucastrate;
1941	} else {
1942		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1943		rate = ni->ni_txrate;
1944	}
1945	tx->rate = wpi_plcp_signal(rate);
1946
1947	/* be very persistant at sending frames out */
1948#if 0
1949	tx->data_ntries = tp->maxretry;
1950#else
1951	tx->data_ntries = 15;		/* XXX way too high */
1952#endif
1953
1954	if (ieee80211_radiotap_active_vap(vap)) {
1955		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1956		tap->wt_flags = 0;
1957		tap->wt_rate = rate;
1958		tap->wt_hwqueue = ac;
1959		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1960			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1961
1962		ieee80211_radiotap_tx(vap, m0);
1963	}
1964
1965	/* save and trim IEEE802.11 header */
1966	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1967	m_adj(m0, hdrlen);
1968
1969	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1970	    &nsegs, BUS_DMA_NOWAIT);
1971	if (error != 0 && error != EFBIG) {
1972		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1973		    error);
1974		m_freem(m0);
1975		return error;
1976	}
1977	if (error != 0) {
1978		/* XXX use m_collapse */
1979		mnew = m_defrag(m0, M_NOWAIT);
1980		if (mnew == NULL) {
1981			device_printf(sc->sc_dev,
1982			    "could not defragment mbuf\n");
1983			m_freem(m0);
1984			return ENOBUFS;
1985		}
1986		m0 = mnew;
1987
1988		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1989		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1990		if (error != 0) {
1991			device_printf(sc->sc_dev,
1992			    "could not map mbuf (error %d)\n", error);
1993			m_freem(m0);
1994			return error;
1995		}
1996	}
1997
1998	data->m = m0;
1999	data->ni = ni;
2000
2001	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2002	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2003
2004	/* first scatter/gather segment is used by the tx data command */
2005	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2006	    (1 + nsegs) << 24);
2007	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2008	    ring->cur * sizeof (struct wpi_tx_cmd));
2009	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2010	for (i = 1; i <= nsegs; i++) {
2011		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2012		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2013	}
2014
2015	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2016	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2017	    BUS_DMASYNC_PREWRITE);
2018
2019	ring->queued++;
2020
2021	/* kick ring */
2022	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2023	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2024
2025	return 0;
2026}
2027
2028/**
2029 * Process data waiting to be sent on the IFNET output queue
2030 */
2031static void
2032wpi_start(struct ifnet *ifp)
2033{
2034	struct wpi_softc *sc = ifp->if_softc;
2035
2036	WPI_LOCK(sc);
2037	wpi_start_locked(ifp);
2038	WPI_UNLOCK(sc);
2039}
2040
2041static void
2042wpi_start_locked(struct ifnet *ifp)
2043{
2044	struct wpi_softc *sc = ifp->if_softc;
2045	struct ieee80211_node *ni;
2046	struct mbuf *m;
2047	int ac;
2048
2049	WPI_LOCK_ASSERT(sc);
2050
2051	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2052		return;
2053
2054	for (;;) {
2055		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2056		if (m == NULL)
2057			break;
2058		ac = M_WME_GETAC(m);
2059		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2060			/* there is no place left in this ring */
2061			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2062			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2063			break;
2064		}
2065		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2066		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2067			ieee80211_free_node(ni);
2068			ifp->if_oerrors++;
2069			break;
2070		}
2071		sc->sc_tx_timer = 5;
2072	}
2073}
2074
2075static int
2076wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2077	const struct ieee80211_bpf_params *params)
2078{
2079	struct ieee80211com *ic = ni->ni_ic;
2080	struct ifnet *ifp = ic->ic_ifp;
2081	struct wpi_softc *sc = ifp->if_softc;
2082
2083	/* prevent management frames from being sent if we're not ready */
2084	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2085		m_freem(m);
2086		ieee80211_free_node(ni);
2087		return ENETDOWN;
2088	}
2089	WPI_LOCK(sc);
2090
2091	/* management frames go into ring 0 */
2092	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2093		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2094		m_freem(m);
2095		WPI_UNLOCK(sc);
2096		ieee80211_free_node(ni);
2097		return ENOBUFS;		/* XXX */
2098	}
2099
2100	ifp->if_opackets++;
2101	if (wpi_tx_data(sc, m, ni, 0) != 0)
2102		goto bad;
2103	sc->sc_tx_timer = 5;
2104	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2105
2106	WPI_UNLOCK(sc);
2107	return 0;
2108bad:
2109	ifp->if_oerrors++;
2110	WPI_UNLOCK(sc);
2111	ieee80211_free_node(ni);
2112	return EIO;		/* XXX */
2113}
2114
2115static int
2116wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2117{
2118	struct wpi_softc *sc = ifp->if_softc;
2119	struct ieee80211com *ic = ifp->if_l2com;
2120	struct ifreq *ifr = (struct ifreq *) data;
2121	int error = 0, startall = 0;
2122
2123	switch (cmd) {
2124	case SIOCSIFFLAGS:
2125		WPI_LOCK(sc);
2126		if ((ifp->if_flags & IFF_UP)) {
2127			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2128				wpi_init_locked(sc, 0);
2129				startall = 1;
2130			}
2131		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2132			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2133			wpi_stop_locked(sc);
2134		WPI_UNLOCK(sc);
2135		if (startall)
2136			ieee80211_start_all(ic);
2137		break;
2138	case SIOCGIFMEDIA:
2139		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2140		break;
2141	case SIOCGIFADDR:
2142		error = ether_ioctl(ifp, cmd, data);
2143		break;
2144	default:
2145		error = EINVAL;
2146		break;
2147	}
2148	return error;
2149}
2150
2151/*
2152 * Extract various information from EEPROM.
2153 */
2154static void
2155wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2156{
2157	int i;
2158
2159	/* read the hardware capabilities, revision and SKU type */
2160	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2161	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2162	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2163
2164	/* read the regulatory domain */
2165	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2166
2167	/* read in the hw MAC address */
2168	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2169
2170	/* read the list of authorized channels */
2171	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2172		wpi_read_eeprom_channels(sc,i);
2173
2174	/* read the power level calibration info for each group */
2175	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2176		wpi_read_eeprom_group(sc,i);
2177}
2178
2179/*
2180 * Send a command to the firmware.
2181 */
2182static int
2183wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2184{
2185	struct wpi_tx_ring *ring = &sc->cmdq;
2186	struct wpi_tx_desc *desc;
2187	struct wpi_tx_cmd *cmd;
2188
2189#ifdef WPI_DEBUG
2190	if (!async) {
2191		WPI_LOCK_ASSERT(sc);
2192	}
2193#endif
2194
2195	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2196		    async));
2197
2198	if (sc->flags & WPI_FLAG_BUSY) {
2199		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2200		    __func__, code);
2201		return EAGAIN;
2202	}
2203	sc->flags|= WPI_FLAG_BUSY;
2204
2205	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2206	    code, size));
2207
2208	desc = &ring->desc[ring->cur];
2209	cmd = &ring->cmd[ring->cur];
2210
2211	cmd->code = code;
2212	cmd->flags = 0;
2213	cmd->qid = ring->qid;
2214	cmd->idx = ring->cur;
2215	memcpy(cmd->data, buf, size);
2216
2217	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2218	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2219		ring->cur * sizeof (struct wpi_tx_cmd));
2220	desc->segs[0].len  = htole32(4 + size);
2221
2222	/* kick cmd ring */
2223	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2224	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2225
2226	if (async) {
2227		sc->flags &= ~ WPI_FLAG_BUSY;
2228		return 0;
2229	}
2230
2231	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2232}
2233
2234static int
2235wpi_wme_update(struct ieee80211com *ic)
2236{
2237#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2238#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2239	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2240	const struct wmeParams *wmep;
2241	struct wpi_wme_setup wme;
2242	int ac;
2243
2244	/* don't override default WME values if WME is not actually enabled */
2245	if (!(ic->ic_flags & IEEE80211_F_WME))
2246		return 0;
2247
2248	wme.flags = 0;
2249	for (ac = 0; ac < WME_NUM_AC; ac++) {
2250		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2251		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2252		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2253		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2254		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2255
2256		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2257		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2258		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2259	}
2260	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2261#undef WPI_USEC
2262#undef WPI_EXP2
2263}
2264
2265/*
2266 * Configure h/w multi-rate retries.
2267 */
2268static int
2269wpi_mrr_setup(struct wpi_softc *sc)
2270{
2271	struct ifnet *ifp = sc->sc_ifp;
2272	struct ieee80211com *ic = ifp->if_l2com;
2273	struct wpi_mrr_setup mrr;
2274	int i, error;
2275
2276	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2277
2278	/* CCK rates (not used with 802.11a) */
2279	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2280		mrr.rates[i].flags = 0;
2281		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2282		/* fallback to the immediate lower CCK rate (if any) */
2283		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2284		/* try one time at this rate before falling back to "next" */
2285		mrr.rates[i].ntries = 1;
2286	}
2287
2288	/* OFDM rates (not used with 802.11b) */
2289	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2290		mrr.rates[i].flags = 0;
2291		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2292		/* fallback to the immediate lower OFDM rate (if any) */
2293		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2294		mrr.rates[i].next = (i == WPI_OFDM6) ?
2295		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2296			WPI_OFDM6 : WPI_CCK2) :
2297		    i - 1;
2298		/* try one time at this rate before falling back to "next" */
2299		mrr.rates[i].ntries = 1;
2300	}
2301
2302	/* setup MRR for control frames */
2303	mrr.which = WPI_MRR_CTL;
2304	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2305	if (error != 0) {
2306		device_printf(sc->sc_dev,
2307		    "could not setup MRR for control frames\n");
2308		return error;
2309	}
2310
2311	/* setup MRR for data frames */
2312	mrr.which = WPI_MRR_DATA;
2313	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2314	if (error != 0) {
2315		device_printf(sc->sc_dev,
2316		    "could not setup MRR for data frames\n");
2317		return error;
2318	}
2319
2320	return 0;
2321}
2322
2323static void
2324wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2325{
2326	struct wpi_cmd_led led;
2327
2328	led.which = which;
2329	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2330	led.off = off;
2331	led.on = on;
2332
2333	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2334}
2335
2336static void
2337wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2338{
2339	struct wpi_cmd_tsf tsf;
2340	uint64_t val, mod;
2341
2342	memset(&tsf, 0, sizeof tsf);
2343	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2344	tsf.bintval = htole16(ni->ni_intval);
2345	tsf.lintval = htole16(10);
2346
2347	/* compute remaining time until next beacon */
2348	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2349	mod = le64toh(tsf.tstamp) % val;
2350	tsf.binitval = htole32((uint32_t)(val - mod));
2351
2352	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2353		device_printf(sc->sc_dev, "could not enable TSF\n");
2354}
2355
2356#if 0
2357/*
2358 * Build a beacon frame that the firmware will broadcast periodically in
2359 * IBSS or HostAP modes.
2360 */
2361static int
2362wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2363{
2364	struct ifnet *ifp = sc->sc_ifp;
2365	struct ieee80211com *ic = ifp->if_l2com;
2366	struct wpi_tx_ring *ring = &sc->cmdq;
2367	struct wpi_tx_desc *desc;
2368	struct wpi_tx_data *data;
2369	struct wpi_tx_cmd *cmd;
2370	struct wpi_cmd_beacon *bcn;
2371	struct ieee80211_beacon_offsets bo;
2372	struct mbuf *m0;
2373	bus_addr_t physaddr;
2374	int error;
2375
2376	desc = &ring->desc[ring->cur];
2377	data = &ring->data[ring->cur];
2378
2379	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2380	if (m0 == NULL) {
2381		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2382		return ENOMEM;
2383	}
2384
2385	cmd = &ring->cmd[ring->cur];
2386	cmd->code = WPI_CMD_SET_BEACON;
2387	cmd->flags = 0;
2388	cmd->qid = ring->qid;
2389	cmd->idx = ring->cur;
2390
2391	bcn = (struct wpi_cmd_beacon *)cmd->data;
2392	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2393	bcn->id = WPI_ID_BROADCAST;
2394	bcn->ofdm_mask = 0xff;
2395	bcn->cck_mask = 0x0f;
2396	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2397	bcn->len = htole16(m0->m_pkthdr.len);
2398	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2399		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2400	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2401
2402	/* save and trim IEEE802.11 header */
2403	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2404	m_adj(m0, sizeof (struct ieee80211_frame));
2405
2406	/* assume beacon frame is contiguous */
2407	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2408	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2409	if (error != 0) {
2410		device_printf(sc->sc_dev, "could not map beacon\n");
2411		m_freem(m0);
2412		return error;
2413	}
2414
2415	data->m = m0;
2416
2417	/* first scatter/gather segment is used by the beacon command */
2418	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2419	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2420		ring->cur * sizeof (struct wpi_tx_cmd));
2421	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2422	desc->segs[1].addr = htole32(physaddr);
2423	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2424
2425	/* kick cmd ring */
2426	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2427	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2428
2429	return 0;
2430}
2431#endif
2432
2433static int
2434wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2435{
2436	struct ieee80211com *ic = vap->iv_ic;
2437	struct ieee80211_node *ni = vap->iv_bss;
2438	struct wpi_node_info node;
2439	int error;
2440
2441
2442	/* update adapter's configuration */
2443	sc->config.associd = 0;
2444	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2445	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2446	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2447	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2448		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2449		    WPI_CONFIG_24GHZ);
2450	} else {
2451		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2452		    WPI_CONFIG_24GHZ);
2453	}
2454	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2455		sc->config.cck_mask  = 0;
2456		sc->config.ofdm_mask = 0x15;
2457	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2458		sc->config.cck_mask  = 0x03;
2459		sc->config.ofdm_mask = 0;
2460	} else {
2461		/* XXX assume 802.11b/g */
2462		sc->config.cck_mask  = 0x0f;
2463		sc->config.ofdm_mask = 0x15;
2464	}
2465
2466	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2467		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2468	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2469		sizeof (struct wpi_config), 1);
2470	if (error != 0) {
2471		device_printf(sc->sc_dev, "could not configure\n");
2472		return error;
2473	}
2474
2475	/* configuration has changed, set Tx power accordingly */
2476	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2477		device_printf(sc->sc_dev, "could not set Tx power\n");
2478		return error;
2479	}
2480
2481	/* add default node */
2482	memset(&node, 0, sizeof node);
2483	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2484	node.id = WPI_ID_BSS;
2485	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2486	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2487	node.action = htole32(WPI_ACTION_SET_RATE);
2488	node.antenna = WPI_ANTENNA_BOTH;
2489	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2490	if (error != 0)
2491		device_printf(sc->sc_dev, "could not add BSS node\n");
2492
2493	return (error);
2494}
2495
2496static int
2497wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2498{
2499	struct ieee80211com *ic = vap->iv_ic;
2500	struct ieee80211_node *ni = vap->iv_bss;
2501	int error;
2502
2503	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2504		/* link LED blinks while monitoring */
2505		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2506		return 0;
2507	}
2508
2509	wpi_enable_tsf(sc, ni);
2510
2511	/* update adapter's configuration */
2512	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2513	/* short preamble/slot time are negotiated when associating */
2514	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2515	    WPI_CONFIG_SHSLOT);
2516	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2517		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2518	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2519		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2520	sc->config.filter |= htole32(WPI_FILTER_BSS);
2521
2522	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2523
2524	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2525		    sc->config.flags));
2526	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2527		    wpi_config), 1);
2528	if (error != 0) {
2529		device_printf(sc->sc_dev, "could not update configuration\n");
2530		return error;
2531	}
2532
2533	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2534	if (error != 0) {
2535		device_printf(sc->sc_dev, "could set txpower\n");
2536		return error;
2537	}
2538
2539	/* link LED always on while associated */
2540	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2541
2542	/* start automatic rate control timer */
2543	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2544
2545	return (error);
2546}
2547
2548/*
2549 * Send a scan request to the firmware.  Since this command is huge, we map it
2550 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2551 * much of this code is similar to that in wpi_cmd but because we must manually
2552 * construct the probe & channels, we duplicate what's needed here. XXX In the
2553 * future, this function should be modified to use wpi_cmd to help cleanup the
2554 * code base.
2555 */
2556static int
2557wpi_scan(struct wpi_softc *sc)
2558{
2559	struct ifnet *ifp = sc->sc_ifp;
2560	struct ieee80211com *ic = ifp->if_l2com;
2561	struct ieee80211_scan_state *ss = ic->ic_scan;
2562	struct wpi_tx_ring *ring = &sc->cmdq;
2563	struct wpi_tx_desc *desc;
2564	struct wpi_tx_data *data;
2565	struct wpi_tx_cmd *cmd;
2566	struct wpi_scan_hdr *hdr;
2567	struct wpi_scan_chan *chan;
2568	struct ieee80211_frame *wh;
2569	struct ieee80211_rateset *rs;
2570	struct ieee80211_channel *c;
2571	enum ieee80211_phymode mode;
2572	uint8_t *frm;
2573	int nrates, pktlen, error, i, nssid;
2574	bus_addr_t physaddr;
2575
2576	desc = &ring->desc[ring->cur];
2577	data = &ring->data[ring->cur];
2578
2579	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2580	if (data->m == NULL) {
2581		device_printf(sc->sc_dev,
2582		    "could not allocate mbuf for scan command\n");
2583		return ENOMEM;
2584	}
2585
2586	cmd = mtod(data->m, struct wpi_tx_cmd *);
2587	cmd->code = WPI_CMD_SCAN;
2588	cmd->flags = 0;
2589	cmd->qid = ring->qid;
2590	cmd->idx = ring->cur;
2591
2592	hdr = (struct wpi_scan_hdr *)cmd->data;
2593	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2594
2595	/*
2596	 * Move to the next channel if no packets are received within 5 msecs
2597	 * after sending the probe request (this helps to reduce the duration
2598	 * of active scans).
2599	 */
2600	hdr->quiet = htole16(5);
2601	hdr->threshold = htole16(1);
2602
2603	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2604		/* send probe requests at 6Mbps */
2605		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2606
2607		/* Enable crc checking */
2608		hdr->promotion = htole16(1);
2609	} else {
2610		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2611		/* send probe requests at 1Mbps */
2612		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2613	}
2614	hdr->tx.id = WPI_ID_BROADCAST;
2615	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2616	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2617
2618	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2619	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2620	for (i = 0; i < nssid; i++) {
2621		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2622		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2623		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2624		    hdr->scan_essids[i].esslen);
2625#ifdef WPI_DEBUG
2626		if (wpi_debug & WPI_DEBUG_SCANNING) {
2627			printf("Scanning Essid: ");
2628			ieee80211_print_essid(hdr->scan_essids[i].essid,
2629			    hdr->scan_essids[i].esslen);
2630			printf("\n");
2631		}
2632#endif
2633	}
2634
2635	/*
2636	 * Build a probe request frame.  Most of the following code is a
2637	 * copy & paste of what is done in net80211.
2638	 */
2639	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2640	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2641		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2642	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2643	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2644	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2645	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2646	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2647	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2648
2649	frm = (uint8_t *)(wh + 1);
2650
2651	/* add essid IE, the hardware will fill this in for us */
2652	*frm++ = IEEE80211_ELEMID_SSID;
2653	*frm++ = 0;
2654
2655	mode = ieee80211_chan2mode(ic->ic_curchan);
2656	rs = &ic->ic_sup_rates[mode];
2657
2658	/* add supported rates IE */
2659	*frm++ = IEEE80211_ELEMID_RATES;
2660	nrates = rs->rs_nrates;
2661	if (nrates > IEEE80211_RATE_SIZE)
2662		nrates = IEEE80211_RATE_SIZE;
2663	*frm++ = nrates;
2664	memcpy(frm, rs->rs_rates, nrates);
2665	frm += nrates;
2666
2667	/* add supported xrates IE */
2668	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2669		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2670		*frm++ = IEEE80211_ELEMID_XRATES;
2671		*frm++ = nrates;
2672		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2673		frm += nrates;
2674	}
2675
2676	/* setup length of probe request */
2677	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2678
2679	/*
2680	 * Construct information about the channel that we
2681	 * want to scan. The firmware expects this to be directly
2682	 * after the scan probe request
2683	 */
2684	c = ic->ic_curchan;
2685	chan = (struct wpi_scan_chan *)frm;
2686	chan->chan = ieee80211_chan2ieee(ic, c);
2687	chan->flags = 0;
2688	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2689		chan->flags |= WPI_CHAN_ACTIVE;
2690		if (nssid != 0)
2691			chan->flags |= WPI_CHAN_DIRECT;
2692	}
2693	chan->gain_dsp = 0x6e; /* Default level */
2694	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2695		chan->active = htole16(10);
2696		chan->passive = htole16(ss->ss_maxdwell);
2697		chan->gain_radio = 0x3b;
2698	} else {
2699		chan->active = htole16(20);
2700		chan->passive = htole16(ss->ss_maxdwell);
2701		chan->gain_radio = 0x28;
2702	}
2703
2704	DPRINTFN(WPI_DEBUG_SCANNING,
2705	    ("Scanning %u Passive: %d\n",
2706	     chan->chan,
2707	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2708
2709	hdr->nchan++;
2710	chan++;
2711
2712	frm += sizeof (struct wpi_scan_chan);
2713#if 0
2714	// XXX All Channels....
2715	for (c  = &ic->ic_channels[1];
2716	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2717		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2718			continue;
2719
2720		chan->chan = ieee80211_chan2ieee(ic, c);
2721		chan->flags = 0;
2722		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2723		    chan->flags |= WPI_CHAN_ACTIVE;
2724		    if (ic->ic_des_ssid[0].len != 0)
2725			chan->flags |= WPI_CHAN_DIRECT;
2726		}
2727		chan->gain_dsp = 0x6e; /* Default level */
2728		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2729			chan->active = htole16(10);
2730			chan->passive = htole16(110);
2731			chan->gain_radio = 0x3b;
2732		} else {
2733			chan->active = htole16(20);
2734			chan->passive = htole16(120);
2735			chan->gain_radio = 0x28;
2736		}
2737
2738		DPRINTFN(WPI_DEBUG_SCANNING,
2739			 ("Scanning %u Passive: %d\n",
2740			  chan->chan,
2741			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2742
2743		hdr->nchan++;
2744		chan++;
2745
2746		frm += sizeof (struct wpi_scan_chan);
2747	}
2748#endif
2749
2750	hdr->len = htole16(frm - (uint8_t *)hdr);
2751	pktlen = frm - (uint8_t *)cmd;
2752
2753	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2754	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2755	if (error != 0) {
2756		device_printf(sc->sc_dev, "could not map scan command\n");
2757		m_freem(data->m);
2758		data->m = NULL;
2759		return error;
2760	}
2761
2762	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2763	desc->segs[0].addr = htole32(physaddr);
2764	desc->segs[0].len  = htole32(pktlen);
2765
2766	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2767	    BUS_DMASYNC_PREWRITE);
2768	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2769
2770	/* kick cmd ring */
2771	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2772	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2773
2774	sc->sc_scan_timer = 5;
2775	return 0;	/* will be notified async. of failure/success */
2776}
2777
2778/**
2779 * Configure the card to listen to a particular channel, this transisions the
2780 * card in to being able to receive frames from remote devices.
2781 */
2782static int
2783wpi_config(struct wpi_softc *sc)
2784{
2785	struct ifnet *ifp = sc->sc_ifp;
2786	struct ieee80211com *ic = ifp->if_l2com;
2787	struct wpi_power power;
2788	struct wpi_bluetooth bluetooth;
2789	struct wpi_node_info node;
2790	int error;
2791
2792	/* set power mode */
2793	memset(&power, 0, sizeof power);
2794	power.flags = htole32(WPI_POWER_CAM|0x8);
2795	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2796	if (error != 0) {
2797		device_printf(sc->sc_dev, "could not set power mode\n");
2798		return error;
2799	}
2800
2801	/* configure bluetooth coexistence */
2802	memset(&bluetooth, 0, sizeof bluetooth);
2803	bluetooth.flags = 3;
2804	bluetooth.lead = 0xaa;
2805	bluetooth.kill = 1;
2806	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2807	    0);
2808	if (error != 0) {
2809		device_printf(sc->sc_dev,
2810		    "could not configure bluetooth coexistence\n");
2811		return error;
2812	}
2813
2814	/* configure adapter */
2815	memset(&sc->config, 0, sizeof (struct wpi_config));
2816	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2817	/*set default channel*/
2818	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2819	sc->config.flags = htole32(WPI_CONFIG_TSF);
2820	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2821		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2822		    WPI_CONFIG_24GHZ);
2823	}
2824	sc->config.filter = 0;
2825	switch (ic->ic_opmode) {
2826	case IEEE80211_M_STA:
2827	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2828		sc->config.mode = WPI_MODE_STA;
2829		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2830		break;
2831	case IEEE80211_M_IBSS:
2832	case IEEE80211_M_AHDEMO:
2833		sc->config.mode = WPI_MODE_IBSS;
2834		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2835					     WPI_FILTER_MULTICAST);
2836		break;
2837	case IEEE80211_M_HOSTAP:
2838		sc->config.mode = WPI_MODE_HOSTAP;
2839		break;
2840	case IEEE80211_M_MONITOR:
2841		sc->config.mode = WPI_MODE_MONITOR;
2842		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2843			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2844		break;
2845	default:
2846		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2847		return EINVAL;
2848	}
2849	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2850	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2851	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2852		sizeof (struct wpi_config), 0);
2853	if (error != 0) {
2854		device_printf(sc->sc_dev, "configure command failed\n");
2855		return error;
2856	}
2857
2858	/* configuration has changed, set Tx power accordingly */
2859	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2860	    device_printf(sc->sc_dev, "could not set Tx power\n");
2861	    return error;
2862	}
2863
2864	/* add broadcast node */
2865	memset(&node, 0, sizeof node);
2866	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2867	node.id = WPI_ID_BROADCAST;
2868	node.rate = wpi_plcp_signal(2);
2869	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2870	if (error != 0) {
2871		device_printf(sc->sc_dev, "could not add broadcast node\n");
2872		return error;
2873	}
2874
2875	/* Setup rate scalling */
2876	error = wpi_mrr_setup(sc);
2877	if (error != 0) {
2878		device_printf(sc->sc_dev, "could not setup MRR\n");
2879		return error;
2880	}
2881
2882	return 0;
2883}
2884
2885static void
2886wpi_stop_master(struct wpi_softc *sc)
2887{
2888	uint32_t tmp;
2889	int ntries;
2890
2891	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2892
2893	tmp = WPI_READ(sc, WPI_RESET);
2894	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2895
2896	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2897	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2898		return;	/* already asleep */
2899
2900	for (ntries = 0; ntries < 100; ntries++) {
2901		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2902			break;
2903		DELAY(10);
2904	}
2905	if (ntries == 100) {
2906		device_printf(sc->sc_dev, "timeout waiting for master\n");
2907	}
2908}
2909
2910static int
2911wpi_power_up(struct wpi_softc *sc)
2912{
2913	uint32_t tmp;
2914	int ntries;
2915
2916	wpi_mem_lock(sc);
2917	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2918	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2919	wpi_mem_unlock(sc);
2920
2921	for (ntries = 0; ntries < 5000; ntries++) {
2922		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2923			break;
2924		DELAY(10);
2925	}
2926	if (ntries == 5000) {
2927		device_printf(sc->sc_dev,
2928		    "timeout waiting for NIC to power up\n");
2929		return ETIMEDOUT;
2930	}
2931	return 0;
2932}
2933
2934static int
2935wpi_reset(struct wpi_softc *sc)
2936{
2937	uint32_t tmp;
2938	int ntries;
2939
2940	DPRINTFN(WPI_DEBUG_HW,
2941	    ("Resetting the card - clearing any uploaded firmware\n"));
2942
2943	/* clear any pending interrupts */
2944	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2945
2946	tmp = WPI_READ(sc, WPI_PLL_CTL);
2947	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2948
2949	tmp = WPI_READ(sc, WPI_CHICKEN);
2950	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2951
2952	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2953	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2954
2955	/* wait for clock stabilization */
2956	for (ntries = 0; ntries < 25000; ntries++) {
2957		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2958			break;
2959		DELAY(10);
2960	}
2961	if (ntries == 25000) {
2962		device_printf(sc->sc_dev,
2963		    "timeout waiting for clock stabilization\n");
2964		return ETIMEDOUT;
2965	}
2966
2967	/* initialize EEPROM */
2968	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2969
2970	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2971		device_printf(sc->sc_dev, "EEPROM not found\n");
2972		return EIO;
2973	}
2974	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2975
2976	return 0;
2977}
2978
2979static void
2980wpi_hw_config(struct wpi_softc *sc)
2981{
2982	uint32_t rev, hw;
2983
2984	/* voodoo from the Linux "driver".. */
2985	hw = WPI_READ(sc, WPI_HWCONFIG);
2986
2987	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2988	if ((rev & 0xc0) == 0x40)
2989		hw |= WPI_HW_ALM_MB;
2990	else if (!(rev & 0x80))
2991		hw |= WPI_HW_ALM_MM;
2992
2993	if (sc->cap == 0x80)
2994		hw |= WPI_HW_SKU_MRC;
2995
2996	hw &= ~WPI_HW_REV_D;
2997	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2998		hw |= WPI_HW_REV_D;
2999
3000	if (sc->type > 1)
3001		hw |= WPI_HW_TYPE_B;
3002
3003	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3004}
3005
3006static void
3007wpi_rfkill_resume(struct wpi_softc *sc)
3008{
3009	struct ifnet *ifp = sc->sc_ifp;
3010	struct ieee80211com *ic = ifp->if_l2com;
3011	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3012	int ntries;
3013
3014	/* enable firmware again */
3015	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3016	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3017
3018	/* wait for thermal sensors to calibrate */
3019	for (ntries = 0; ntries < 1000; ntries++) {
3020		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3021			break;
3022		DELAY(10);
3023	}
3024
3025	if (ntries == 1000) {
3026		device_printf(sc->sc_dev,
3027		    "timeout waiting for thermal calibration\n");
3028		return;
3029	}
3030	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3031
3032	if (wpi_config(sc) != 0) {
3033		device_printf(sc->sc_dev, "device config failed\n");
3034		return;
3035	}
3036
3037	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3038	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3039	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3040
3041	if (vap != NULL) {
3042		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3043			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3044				ieee80211_beacon_miss(ic);
3045				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3046			} else
3047				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3048		} else {
3049			ieee80211_scan_next(vap);
3050			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3051		}
3052	}
3053
3054	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3055}
3056
3057static void
3058wpi_init_locked(struct wpi_softc *sc, int force)
3059{
3060	struct ifnet *ifp = sc->sc_ifp;
3061	uint32_t tmp;
3062	int ntries, qid;
3063
3064	wpi_stop_locked(sc);
3065	(void)wpi_reset(sc);
3066
3067	wpi_mem_lock(sc);
3068	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3069	DELAY(20);
3070	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3071	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3072	wpi_mem_unlock(sc);
3073
3074	(void)wpi_power_up(sc);
3075	wpi_hw_config(sc);
3076
3077	/* init Rx ring */
3078	wpi_mem_lock(sc);
3079	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3080	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3081	    offsetof(struct wpi_shared, next));
3082	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3083	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3084	wpi_mem_unlock(sc);
3085
3086	/* init Tx rings */
3087	wpi_mem_lock(sc);
3088	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3089	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3090	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3091	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3092	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3093	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3094	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3095
3096	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3097	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3098
3099	for (qid = 0; qid < 6; qid++) {
3100		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3101		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3102		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3103	}
3104	wpi_mem_unlock(sc);
3105
3106	/* clear "radio off" and "disable command" bits (reversed logic) */
3107	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3108	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3109	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3110
3111	/* clear any pending interrupts */
3112	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3113
3114	/* enable interrupts */
3115	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3116
3117	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3119
3120	if ((wpi_load_firmware(sc)) != 0) {
3121	    device_printf(sc->sc_dev,
3122		"A problem occurred loading the firmware to the driver\n");
3123	    return;
3124	}
3125
3126	/* At this point the firmware is up and running. If the hardware
3127	 * RF switch is turned off thermal calibration will fail, though
3128	 * the card is still happy to continue to accept commands, catch
3129	 * this case and schedule a task to watch for it to be turned on.
3130	 */
3131	wpi_mem_lock(sc);
3132	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3133	wpi_mem_unlock(sc);
3134
3135	if (!(tmp & 0x1)) {
3136		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3137		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3138		goto out;
3139	}
3140
3141	/* wait for thermal sensors to calibrate */
3142	for (ntries = 0; ntries < 1000; ntries++) {
3143		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3144			break;
3145		DELAY(10);
3146	}
3147
3148	if (ntries == 1000) {
3149		device_printf(sc->sc_dev,
3150		    "timeout waiting for thermal sensors calibration\n");
3151		return;
3152	}
3153	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3154
3155	if (wpi_config(sc) != 0) {
3156		device_printf(sc->sc_dev, "device config failed\n");
3157		return;
3158	}
3159
3160	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3161	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3162out:
3163	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3164}
3165
3166static void
3167wpi_init(void *arg)
3168{
3169	struct wpi_softc *sc = arg;
3170	struct ifnet *ifp = sc->sc_ifp;
3171	struct ieee80211com *ic = ifp->if_l2com;
3172
3173	WPI_LOCK(sc);
3174	wpi_init_locked(sc, 0);
3175	WPI_UNLOCK(sc);
3176
3177	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3178		ieee80211_start_all(ic);		/* start all vaps */
3179}
3180
3181static void
3182wpi_stop_locked(struct wpi_softc *sc)
3183{
3184	struct ifnet *ifp = sc->sc_ifp;
3185	uint32_t tmp;
3186	int ac;
3187
3188	sc->sc_tx_timer = 0;
3189	sc->sc_scan_timer = 0;
3190	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3191	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3192	callout_stop(&sc->watchdog_to);
3193	callout_stop(&sc->calib_to);
3194
3195
3196	/* disable interrupts */
3197	WPI_WRITE(sc, WPI_MASK, 0);
3198	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3199	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3200	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3201
3202	wpi_mem_lock(sc);
3203	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3204	wpi_mem_unlock(sc);
3205
3206	/* reset all Tx rings */
3207	for (ac = 0; ac < 4; ac++)
3208		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3209	wpi_reset_tx_ring(sc, &sc->cmdq);
3210
3211	/* reset Rx ring */
3212	wpi_reset_rx_ring(sc, &sc->rxq);
3213
3214	wpi_mem_lock(sc);
3215	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3216	wpi_mem_unlock(sc);
3217
3218	DELAY(5);
3219
3220	wpi_stop_master(sc);
3221
3222	tmp = WPI_READ(sc, WPI_RESET);
3223	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3224	sc->flags &= ~WPI_FLAG_BUSY;
3225}
3226
3227static void
3228wpi_stop(struct wpi_softc *sc)
3229{
3230	WPI_LOCK(sc);
3231	wpi_stop_locked(sc);
3232	WPI_UNLOCK(sc);
3233}
3234
3235static void
3236wpi_calib_timeout(void *arg)
3237{
3238	struct wpi_softc *sc = arg;
3239	struct ifnet *ifp = sc->sc_ifp;
3240	struct ieee80211com *ic = ifp->if_l2com;
3241	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3242	int temp;
3243
3244	if (vap->iv_state != IEEE80211_S_RUN)
3245		return;
3246
3247	/* update sensor data */
3248	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3249	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3250
3251	wpi_power_calibration(sc, temp);
3252
3253	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3254}
3255
3256/*
3257 * This function is called periodically (every 60 seconds) to adjust output
3258 * power to temperature changes.
3259 */
3260static void
3261wpi_power_calibration(struct wpi_softc *sc, int temp)
3262{
3263	struct ifnet *ifp = sc->sc_ifp;
3264	struct ieee80211com *ic = ifp->if_l2com;
3265	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3266
3267	/* sanity-check read value */
3268	if (temp < -260 || temp > 25) {
3269		/* this can't be correct, ignore */
3270		DPRINTFN(WPI_DEBUG_TEMP,
3271		    ("out-of-range temperature reported: %d\n", temp));
3272		return;
3273	}
3274
3275	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3276
3277	/* adjust Tx power if need be */
3278	if (abs(temp - sc->temp) <= 6)
3279		return;
3280
3281	sc->temp = temp;
3282
3283	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3284		/* just warn, too bad for the automatic calibration... */
3285		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3286	}
3287}
3288
3289/**
3290 * Read the eeprom to find out what channels are valid for the given
3291 * band and update net80211 with what we find.
3292 */
3293static void
3294wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3295{
3296	struct ifnet *ifp = sc->sc_ifp;
3297	struct ieee80211com *ic = ifp->if_l2com;
3298	const struct wpi_chan_band *band = &wpi_bands[n];
3299	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3300	struct ieee80211_channel *c;
3301	int chan, i, passive;
3302
3303	wpi_read_prom_data(sc, band->addr, channels,
3304	    band->nchan * sizeof (struct wpi_eeprom_chan));
3305
3306	for (i = 0; i < band->nchan; i++) {
3307		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3308			DPRINTFN(WPI_DEBUG_HW,
3309			    ("Channel Not Valid: %d, band %d\n",
3310			     band->chan[i],n));
3311			continue;
3312		}
3313
3314		passive = 0;
3315		chan = band->chan[i];
3316		c = &ic->ic_channels[ic->ic_nchans++];
3317
3318		/* is active scan allowed on this channel? */
3319		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3320			passive = IEEE80211_CHAN_PASSIVE;
3321		}
3322
3323		if (n == 0) {	/* 2GHz band */
3324			c->ic_ieee = chan;
3325			c->ic_freq = ieee80211_ieee2mhz(chan,
3326			    IEEE80211_CHAN_2GHZ);
3327			c->ic_flags = IEEE80211_CHAN_B | passive;
3328
3329			c = &ic->ic_channels[ic->ic_nchans++];
3330			c->ic_ieee = chan;
3331			c->ic_freq = ieee80211_ieee2mhz(chan,
3332			    IEEE80211_CHAN_2GHZ);
3333			c->ic_flags = IEEE80211_CHAN_G | passive;
3334
3335		} else {	/* 5GHz band */
3336			/*
3337			 * Some 3945ABG adapters support channels 7, 8, 11
3338			 * and 12 in the 2GHz *and* 5GHz bands.
3339			 * Because of limitations in our net80211(9) stack,
3340			 * we can't support these channels in 5GHz band.
3341			 * XXX not true; just need to map to proper frequency
3342			 */
3343			if (chan <= 14)
3344				continue;
3345
3346			c->ic_ieee = chan;
3347			c->ic_freq = ieee80211_ieee2mhz(chan,
3348			    IEEE80211_CHAN_5GHZ);
3349			c->ic_flags = IEEE80211_CHAN_A | passive;
3350		}
3351
3352		/* save maximum allowed power for this channel */
3353		sc->maxpwr[chan] = channels[i].maxpwr;
3354
3355#if 0
3356		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3357		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3358		//ic->ic_channels[chan].ic_minpower...
3359		//ic->ic_channels[chan].ic_maxregtxpower...
3360#endif
3361
3362		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3363		    " passive=%d, offset %d\n", chan, c->ic_freq,
3364		    channels[i].flags, sc->maxpwr[chan],
3365		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3366		    ic->ic_nchans));
3367	}
3368}
3369
3370static void
3371wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3372{
3373	struct wpi_power_group *group = &sc->groups[n];
3374	struct wpi_eeprom_group rgroup;
3375	int i;
3376
3377	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3378	    sizeof rgroup);
3379
3380	/* save power group information */
3381	group->chan   = rgroup.chan;
3382	group->maxpwr = rgroup.maxpwr;
3383	/* temperature at which the samples were taken */
3384	group->temp   = (int16_t)le16toh(rgroup.temp);
3385
3386	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3387		    group->chan, group->maxpwr, group->temp));
3388
3389	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3390		group->samples[i].index = rgroup.samples[i].index;
3391		group->samples[i].power = rgroup.samples[i].power;
3392
3393		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3394			    group->samples[i].index, group->samples[i].power));
3395	}
3396}
3397
3398/*
3399 * Update Tx power to match what is defined for channel `c'.
3400 */
3401static int
3402wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3403{
3404	struct ifnet *ifp = sc->sc_ifp;
3405	struct ieee80211com *ic = ifp->if_l2com;
3406	struct wpi_power_group *group;
3407	struct wpi_cmd_txpower txpower;
3408	u_int chan;
3409	int i;
3410
3411	/* get channel number */
3412	chan = ieee80211_chan2ieee(ic, c);
3413
3414	/* find the power group to which this channel belongs */
3415	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3416		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3417			if (chan <= group->chan)
3418				break;
3419	} else
3420		group = &sc->groups[0];
3421
3422	memset(&txpower, 0, sizeof txpower);
3423	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3424	txpower.channel = htole16(chan);
3425
3426	/* set Tx power for all OFDM and CCK rates */
3427	for (i = 0; i <= 11 ; i++) {
3428		/* retrieve Tx power for this channel/rate combination */
3429		int idx = wpi_get_power_index(sc, group, c,
3430		    wpi_ridx_to_rate[i]);
3431
3432		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3433
3434		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3435			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3436			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3437		} else {
3438			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3439			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3440		}
3441		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3442			    chan, wpi_ridx_to_rate[i], idx));
3443	}
3444
3445	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3446}
3447
3448/*
3449 * Determine Tx power index for a given channel/rate combination.
3450 * This takes into account the regulatory information from EEPROM and the
3451 * current temperature.
3452 */
3453static int
3454wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3455    struct ieee80211_channel *c, int rate)
3456{
3457/* fixed-point arithmetic division using a n-bit fractional part */
3458#define fdivround(a, b, n)      \
3459	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3460
3461/* linear interpolation */
3462#define interpolate(x, x1, y1, x2, y2, n)       \
3463	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3464
3465	struct ifnet *ifp = sc->sc_ifp;
3466	struct ieee80211com *ic = ifp->if_l2com;
3467	struct wpi_power_sample *sample;
3468	int pwr, idx;
3469	u_int chan;
3470
3471	/* get channel number */
3472	chan = ieee80211_chan2ieee(ic, c);
3473
3474	/* default power is group's maximum power - 3dB */
3475	pwr = group->maxpwr / 2;
3476
3477	/* decrease power for highest OFDM rates to reduce distortion */
3478	switch (rate) {
3479		case 72:	/* 36Mb/s */
3480			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3481			break;
3482		case 96:	/* 48Mb/s */
3483			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3484			break;
3485		case 108:	/* 54Mb/s */
3486			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3487			break;
3488	}
3489
3490	/* never exceed channel's maximum allowed Tx power */
3491	pwr = min(pwr, sc->maxpwr[chan]);
3492
3493	/* retrieve power index into gain tables from samples */
3494	for (sample = group->samples; sample < &group->samples[3]; sample++)
3495		if (pwr > sample[1].power)
3496			break;
3497	/* fixed-point linear interpolation using a 19-bit fractional part */
3498	idx = interpolate(pwr, sample[0].power, sample[0].index,
3499	    sample[1].power, sample[1].index, 19);
3500
3501	/*
3502	 *  Adjust power index based on current temperature
3503	 *	- if colder than factory-calibrated: decreate output power
3504	 *	- if warmer than factory-calibrated: increase output power
3505	 */
3506	idx -= (sc->temp - group->temp) * 11 / 100;
3507
3508	/* decrease power for CCK rates (-5dB) */
3509	if (!WPI_RATE_IS_OFDM(rate))
3510		idx += 10;
3511
3512	/* keep power index in a valid range */
3513	if (idx < 0)
3514		return 0;
3515	if (idx > WPI_MAX_PWR_INDEX)
3516		return WPI_MAX_PWR_INDEX;
3517	return idx;
3518
3519#undef interpolate
3520#undef fdivround
3521}
3522
3523/**
3524 * Called by net80211 framework to indicate that a scan
3525 * is starting. This function doesn't actually do the scan,
3526 * wpi_scan_curchan starts things off. This function is more
3527 * of an early warning from the framework we should get ready
3528 * for the scan.
3529 */
3530static void
3531wpi_scan_start(struct ieee80211com *ic)
3532{
3533	struct ifnet *ifp = ic->ic_ifp;
3534	struct wpi_softc *sc = ifp->if_softc;
3535
3536	WPI_LOCK(sc);
3537	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3538	WPI_UNLOCK(sc);
3539}
3540
3541/**
3542 * Called by the net80211 framework, indicates that the
3543 * scan has ended. If there is a scan in progress on the card
3544 * then it should be aborted.
3545 */
3546static void
3547wpi_scan_end(struct ieee80211com *ic)
3548{
3549	/* XXX ignore */
3550}
3551
3552/**
3553 * Called by the net80211 framework to indicate to the driver
3554 * that the channel should be changed
3555 */
3556static void
3557wpi_set_channel(struct ieee80211com *ic)
3558{
3559	struct ifnet *ifp = ic->ic_ifp;
3560	struct wpi_softc *sc = ifp->if_softc;
3561	int error;
3562
3563	/*
3564	 * Only need to set the channel in Monitor mode. AP scanning and auth
3565	 * are already taken care of by their respective firmware commands.
3566	 */
3567	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3568		WPI_LOCK(sc);
3569		error = wpi_config(sc);
3570		WPI_UNLOCK(sc);
3571		if (error != 0)
3572			device_printf(sc->sc_dev,
3573			    "error %d settting channel\n", error);
3574	}
3575}
3576
3577/**
3578 * Called by net80211 to indicate that we need to scan the current
3579 * channel. The channel is previously be set via the wpi_set_channel
3580 * callback.
3581 */
3582static void
3583wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3584{
3585	struct ieee80211vap *vap = ss->ss_vap;
3586	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3587	struct wpi_softc *sc = ifp->if_softc;
3588
3589	WPI_LOCK(sc);
3590	if (wpi_scan(sc))
3591		ieee80211_cancel_scan(vap);
3592	WPI_UNLOCK(sc);
3593}
3594
3595/**
3596 * Called by the net80211 framework to indicate
3597 * the minimum dwell time has been met, terminate the scan.
3598 * We don't actually terminate the scan as the firmware will notify
3599 * us when it's finished and we have no way to interrupt it.
3600 */
3601static void
3602wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3603{
3604	/* NB: don't try to abort scan; wait for firmware to finish */
3605}
3606
3607static void
3608wpi_hwreset(void *arg, int pending)
3609{
3610	struct wpi_softc *sc = arg;
3611
3612	WPI_LOCK(sc);
3613	wpi_init_locked(sc, 0);
3614	WPI_UNLOCK(sc);
3615}
3616
3617static void
3618wpi_rfreset(void *arg, int pending)
3619{
3620	struct wpi_softc *sc = arg;
3621
3622	WPI_LOCK(sc);
3623	wpi_rfkill_resume(sc);
3624	WPI_UNLOCK(sc);
3625}
3626
3627/*
3628 * Allocate DMA-safe memory for firmware transfer.
3629 */
3630static int
3631wpi_alloc_fwmem(struct wpi_softc *sc)
3632{
3633	/* allocate enough contiguous space to store text and data */
3634	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3635	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3636	    BUS_DMA_NOWAIT);
3637}
3638
3639static void
3640wpi_free_fwmem(struct wpi_softc *sc)
3641{
3642	wpi_dma_contig_free(&sc->fw_dma);
3643}
3644
3645/**
3646 * Called every second, wpi_watchdog used by the watch dog timer
3647 * to check that the card is still alive
3648 */
3649static void
3650wpi_watchdog(void *arg)
3651{
3652	struct wpi_softc *sc = arg;
3653	struct ifnet *ifp = sc->sc_ifp;
3654	struct ieee80211com *ic = ifp->if_l2com;
3655	uint32_t tmp;
3656
3657	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3658
3659	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3660		/* No need to lock firmware memory */
3661		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3662
3663		if ((tmp & 0x1) == 0) {
3664			/* Radio kill switch is still off */
3665			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3666			return;
3667		}
3668
3669		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3670		ieee80211_runtask(ic, &sc->sc_radiotask);
3671		return;
3672	}
3673
3674	if (sc->sc_tx_timer > 0) {
3675		if (--sc->sc_tx_timer == 0) {
3676			device_printf(sc->sc_dev,"device timeout\n");
3677			ifp->if_oerrors++;
3678			ieee80211_runtask(ic, &sc->sc_restarttask);
3679		}
3680	}
3681	if (sc->sc_scan_timer > 0) {
3682		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3683		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3684			device_printf(sc->sc_dev,"scan timeout\n");
3685			ieee80211_cancel_scan(vap);
3686			ieee80211_runtask(ic, &sc->sc_restarttask);
3687		}
3688	}
3689
3690	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3691		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3692}
3693
3694#ifdef WPI_DEBUG
3695static const char *wpi_cmd_str(int cmd)
3696{
3697	switch (cmd) {
3698	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3699	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3700	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3701	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3702	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3703	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3704	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3705	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3706	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3707	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3708	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3709	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3710	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3711	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3712
3713	default:
3714		KASSERT(1, ("Unknown Command: %d\n", cmd));
3715		return "UNKNOWN CMD";	/* Make the compiler happy */
3716	}
3717}
3718#endif
3719
3720MODULE_DEPEND(wpi, pci,  1, 1, 1);
3721MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3722MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3723