if_wpi.c revision 217511
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 217511 2011-01-17 20:15:15Z bschmidt $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112#define	WPI_DEBUG_SET	(wpi_debug != 0)
113
114enum {
115	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127	WPI_DEBUG_ANY		= 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET	0
138#endif
139
140struct wpi_ident {
141	uint16_t	vendor;
142	uint16_t	device;
143	uint16_t	subdevice;
144	const char	*name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148	/* The below entries support ABG regardless of the subid */
149	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151	/* The below entries only support BG */
152	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160		    const char name[IFNAMSIZ], int unit, int opmode,
161		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void	wpi_vap_delete(struct ieee80211vap *);
164static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165		    void **, bus_size_t, bus_size_t, int);
166static void	wpi_dma_contig_free(struct wpi_dma_info *);
167static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int	wpi_alloc_shared(struct wpi_softc *);
169static void	wpi_free_shared(struct wpi_softc *);
170static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174		    int, int);
175static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_mem_lock(struct wpi_softc *);
179static void	wpi_mem_unlock(struct wpi_softc *);
180static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
181static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183		    const uint32_t *, int);
184static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185static int	wpi_alloc_fwmem(struct wpi_softc *);
186static void	wpi_free_fwmem(struct wpi_softc *);
187static int	wpi_load_firmware(struct wpi_softc *);
188static void	wpi_unload_firmware(struct wpi_softc *);
189static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191		    struct wpi_rx_data *);
192static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_notif_intr(struct wpi_softc *);
195static void	wpi_intr(void *);
196static uint8_t	wpi_plcp_signal(int);
197static void	wpi_watchdog(void *);
198static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
199		    struct ieee80211_node *, int);
200static void	wpi_start(struct ifnet *);
201static void	wpi_start_locked(struct ifnet *);
202static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203		    const struct ieee80211_bpf_params *);
204static void	wpi_scan_start(struct ieee80211com *);
205static void	wpi_scan_end(struct ieee80211com *);
206static void	wpi_set_channel(struct ieee80211com *);
207static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
209static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
210static void	wpi_read_eeprom(struct wpi_softc *,
211		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
212static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
213static void	wpi_read_eeprom_group(struct wpi_softc *, int);
214static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215static int	wpi_wme_update(struct ieee80211com *);
216static int	wpi_mrr_setup(struct wpi_softc *);
217static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219#if 0
220static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221#endif
222static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_scan(struct wpi_softc *);
225static int	wpi_config(struct wpi_softc *);
226static void	wpi_stop_master(struct wpi_softc *);
227static int	wpi_power_up(struct wpi_softc *);
228static int	wpi_reset(struct wpi_softc *);
229static void	wpi_hwreset(void *, int);
230static void	wpi_rfreset(void *, int);
231static void	wpi_hw_config(struct wpi_softc *);
232static void	wpi_init(void *);
233static void	wpi_init_locked(struct wpi_softc *, int);
234static void	wpi_stop(struct wpi_softc *);
235static void	wpi_stop_locked(struct wpi_softc *);
236
237static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238		    int);
239static void	wpi_calib_timeout(void *);
240static void	wpi_power_calibration(struct wpi_softc *, int);
241static int	wpi_get_power_index(struct wpi_softc *,
242		    struct wpi_power_group *, struct ieee80211_channel *, int);
243#ifdef WPI_DEBUG
244static const char *wpi_cmd_str(int);
245#endif
246static int wpi_probe(device_t);
247static int wpi_attach(device_t);
248static int wpi_detach(device_t);
249static int wpi_shutdown(device_t);
250static int wpi_suspend(device_t);
251static int wpi_resume(device_t);
252
253
254static device_method_t wpi_methods[] = {
255	/* Device interface */
256	DEVMETHOD(device_probe,		wpi_probe),
257	DEVMETHOD(device_attach,	wpi_attach),
258	DEVMETHOD(device_detach,	wpi_detach),
259	DEVMETHOD(device_shutdown,	wpi_shutdown),
260	DEVMETHOD(device_suspend,	wpi_suspend),
261	DEVMETHOD(device_resume,	wpi_resume),
262
263	{ 0, 0 }
264};
265
266static driver_t wpi_driver = {
267	"wpi",
268	wpi_methods,
269	sizeof (struct wpi_softc)
270};
271
272static devclass_t wpi_devclass;
273
274DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275
276static const uint8_t wpi_ridx_to_plcp[] = {
277	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
278	/* R1-R4 (ral/ural is R4-R1) */
279	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
280	/* CCK: device-dependent */
281	10, 20, 55, 110
282};
283static const uint8_t wpi_ridx_to_rate[] = {
284	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
285	2, 4, 11, 22 /*CCK */
286};
287
288
289static int
290wpi_probe(device_t dev)
291{
292	const struct wpi_ident *ident;
293
294	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295		if (pci_get_vendor(dev) == ident->vendor &&
296		    pci_get_device(dev) == ident->device) {
297			device_set_desc(dev, ident->name);
298			return 0;
299		}
300	}
301	return ENXIO;
302}
303
304/**
305 * Load the firmare image from disk to the allocated dma buffer.
306 * we also maintain the reference to the firmware pointer as there
307 * is times where we may need to reload the firmware but we are not
308 * in a context that can access the filesystem (ie taskq cause by restart)
309 *
310 * @return 0 on success, an errno on failure
311 */
312static int
313wpi_load_firmware(struct wpi_softc *sc)
314{
315	const struct firmware *fp;
316	struct wpi_dma_info *dma = &sc->fw_dma;
317	const struct wpi_firmware_hdr *hdr;
318	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
319	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
320	int error;
321
322	DPRINTFN(WPI_DEBUG_FIRMWARE,
323	    ("Attempting Loading Firmware from wpi_fw module\n"));
324
325	WPI_UNLOCK(sc);
326
327	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
328		device_printf(sc->sc_dev,
329		    "could not load firmware image 'wpifw'\n");
330		error = ENOENT;
331		WPI_LOCK(sc);
332		goto fail;
333	}
334
335	fp = sc->fw_fp;
336
337	WPI_LOCK(sc);
338
339	/* Validate the firmware is minimum a particular version */
340	if (fp->version < WPI_FW_MINVERSION) {
341	    device_printf(sc->sc_dev,
342			   "firmware version is too old. Need %d, got %d\n",
343			   WPI_FW_MINVERSION,
344			   fp->version);
345	    error = ENXIO;
346	    goto fail;
347	}
348
349	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
350		device_printf(sc->sc_dev,
351		    "firmware file too short: %zu bytes\n", fp->datasize);
352		error = ENXIO;
353		goto fail;
354	}
355
356	hdr = (const struct wpi_firmware_hdr *)fp->data;
357
358	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
359	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
360
361	rtextsz = le32toh(hdr->rtextsz);
362	rdatasz = le32toh(hdr->rdatasz);
363	itextsz = le32toh(hdr->itextsz);
364	idatasz = le32toh(hdr->idatasz);
365	btextsz = le32toh(hdr->btextsz);
366
367	/* check that all firmware segments are present */
368	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
369		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
370		device_printf(sc->sc_dev,
371		    "firmware file too short: %zu bytes\n", fp->datasize);
372		error = ENXIO; /* XXX appropriate error code? */
373		goto fail;
374	}
375
376	/* get pointers to firmware segments */
377	rtext = (const uint8_t *)(hdr + 1);
378	rdata = rtext + rtextsz;
379	itext = rdata + rdatasz;
380	idata = itext + itextsz;
381	btext = idata + idatasz;
382
383	DPRINTFN(WPI_DEBUG_FIRMWARE,
384	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
385	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
386	     (le32toh(hdr->version) & 0xff000000) >> 24,
387	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
388	     (le32toh(hdr->version) & 0x0000ffff),
389	     rtextsz, rdatasz,
390	     itextsz, idatasz, btextsz));
391
392	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
393	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
397
398	/* sanity checks */
399	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
400	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
401	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
402	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
403	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
404	    (btextsz & 3) != 0) {
405		device_printf(sc->sc_dev, "firmware invalid\n");
406		error = EINVAL;
407		goto fail;
408	}
409
410	/* copy initialization images into pre-allocated DMA-safe memory */
411	memcpy(dma->vaddr, idata, idatasz);
412	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
413
414	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
415
416	/* tell adapter where to find initialization images */
417	wpi_mem_lock(sc);
418	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
419	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
420	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
421	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
422	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
423	wpi_mem_unlock(sc);
424
425	/* load firmware boot code */
426	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
427	    device_printf(sc->sc_dev, "Failed to load microcode\n");
428	    goto fail;
429	}
430
431	/* now press "execute" */
432	WPI_WRITE(sc, WPI_RESET, 0);
433
434	/* wait at most one second for the first alive notification */
435	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
436		device_printf(sc->sc_dev,
437		    "timeout waiting for adapter to initialize\n");
438		goto fail;
439	}
440
441	/* copy runtime images into pre-allocated DMA-sage memory */
442	memcpy(dma->vaddr, rdata, rdatasz);
443	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
444	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
445
446	/* tell adapter where to find runtime images */
447	wpi_mem_lock(sc);
448	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
449	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
450	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
451	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
452	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
453	wpi_mem_unlock(sc);
454
455	/* wait at most one second for the first alive notification */
456	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
457		device_printf(sc->sc_dev,
458		    "timeout waiting for adapter to initialize2\n");
459		goto fail;
460	}
461
462	DPRINTFN(WPI_DEBUG_FIRMWARE,
463	    ("Firmware loaded to driver successfully\n"));
464	return error;
465fail:
466	wpi_unload_firmware(sc);
467	return error;
468}
469
470/**
471 * Free the referenced firmware image
472 */
473static void
474wpi_unload_firmware(struct wpi_softc *sc)
475{
476
477	if (sc->fw_fp) {
478		WPI_UNLOCK(sc);
479		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
480		WPI_LOCK(sc);
481		sc->fw_fp = NULL;
482	}
483}
484
485static int
486wpi_attach(device_t dev)
487{
488	struct wpi_softc *sc = device_get_softc(dev);
489	struct ifnet *ifp;
490	struct ieee80211com *ic;
491	int ac, error, supportsa = 1;
492	uint32_t tmp;
493	const struct wpi_ident *ident;
494	uint8_t macaddr[IEEE80211_ADDR_LEN];
495
496	sc->sc_dev = dev;
497
498	if (bootverbose || WPI_DEBUG_SET)
499	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
500
501	/*
502	 * Some card's only support 802.11b/g not a, check to see if
503	 * this is one such card. A 0x0 in the subdevice table indicates
504	 * the entire subdevice range is to be ignored.
505	 */
506	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
507		if (ident->subdevice &&
508		    pci_get_subdevice(dev) == ident->subdevice) {
509		    supportsa = 0;
510		    break;
511		}
512	}
513
514	/* Create the tasks that can be queued */
515	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
516	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
517
518	WPI_LOCK_INIT(sc);
519
520	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
521	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
522
523	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
524		device_printf(dev, "chip is in D%d power mode "
525		    "-- setting to D0\n", pci_get_powerstate(dev));
526		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
527	}
528
529	/* disable the retry timeout register */
530	pci_write_config(dev, 0x41, 0, 1);
531
532	/* enable bus-mastering */
533	pci_enable_busmaster(dev);
534
535	sc->mem_rid = PCIR_BAR(0);
536	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
537	    RF_ACTIVE);
538	if (sc->mem == NULL) {
539		device_printf(dev, "could not allocate memory resource\n");
540		error = ENOMEM;
541		goto fail;
542	}
543
544	sc->sc_st = rman_get_bustag(sc->mem);
545	sc->sc_sh = rman_get_bushandle(sc->mem);
546
547	sc->irq_rid = 0;
548	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
549	    RF_ACTIVE | RF_SHAREABLE);
550	if (sc->irq == NULL) {
551		device_printf(dev, "could not allocate interrupt resource\n");
552		error = ENOMEM;
553		goto fail;
554	}
555
556	/*
557	 * Allocate DMA memory for firmware transfers.
558	 */
559	if ((error = wpi_alloc_fwmem(sc)) != 0) {
560		printf(": could not allocate firmware memory\n");
561		error = ENOMEM;
562		goto fail;
563	}
564
565	/*
566	 * Put adapter into a known state.
567	 */
568	if ((error = wpi_reset(sc)) != 0) {
569		device_printf(dev, "could not reset adapter\n");
570		goto fail;
571	}
572
573	wpi_mem_lock(sc);
574	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
575	if (bootverbose || WPI_DEBUG_SET)
576	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
577
578	wpi_mem_unlock(sc);
579
580	/* Allocate shared page */
581	if ((error = wpi_alloc_shared(sc)) != 0) {
582		device_printf(dev, "could not allocate shared page\n");
583		goto fail;
584	}
585
586	/* tx data queues  - 4 for QoS purposes */
587	for (ac = 0; ac < WME_NUM_AC; ac++) {
588		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
589		if (error != 0) {
590		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
591		    goto fail;
592		}
593	}
594
595	/* command queue to talk to the card's firmware */
596	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
597	if (error != 0) {
598		device_printf(dev, "could not allocate command ring\n");
599		goto fail;
600	}
601
602	/* receive data queue */
603	error = wpi_alloc_rx_ring(sc, &sc->rxq);
604	if (error != 0) {
605		device_printf(dev, "could not allocate Rx ring\n");
606		goto fail;
607	}
608
609	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
610	if (ifp == NULL) {
611		device_printf(dev, "can not if_alloc()\n");
612		error = ENOMEM;
613		goto fail;
614	}
615	ic = ifp->if_l2com;
616
617	ic->ic_ifp = ifp;
618	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
619	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
620
621	/* set device capabilities */
622	ic->ic_caps =
623		  IEEE80211_C_STA		/* station mode supported */
624		| IEEE80211_C_MONITOR		/* monitor mode supported */
625		| IEEE80211_C_TXPMGT		/* tx power management */
626		| IEEE80211_C_SHSLOT		/* short slot time supported */
627		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
628		| IEEE80211_C_WPA		/* 802.11i */
629/* XXX looks like WME is partly supported? */
630#if 0
631		| IEEE80211_C_IBSS		/* IBSS mode support */
632		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
633		| IEEE80211_C_WME		/* 802.11e */
634		| IEEE80211_C_HOSTAP		/* Host access point mode */
635#endif
636		;
637
638	/*
639	 * Read in the eeprom and also setup the channels for
640	 * net80211. We don't set the rates as net80211 does this for us
641	 */
642	wpi_read_eeprom(sc, macaddr);
643
644	if (bootverbose || WPI_DEBUG_SET) {
645	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
647			  sc->type > 1 ? 'B': '?');
648	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651			  supportsa ? "does" : "does not");
652
653	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654	       what sc->rev really represents - benjsc 20070615 */
655	}
656
657	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658	ifp->if_softc = sc;
659	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660	ifp->if_init = wpi_init;
661	ifp->if_ioctl = wpi_ioctl;
662	ifp->if_start = wpi_start;
663	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
664	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
665	IFQ_SET_READY(&ifp->if_snd);
666
667	ieee80211_ifattach(ic, macaddr);
668	/* override default methods */
669	ic->ic_raw_xmit = wpi_raw_xmit;
670	ic->ic_wme.wme_update = wpi_wme_update;
671	ic->ic_scan_start = wpi_scan_start;
672	ic->ic_scan_end = wpi_scan_end;
673	ic->ic_set_channel = wpi_set_channel;
674	ic->ic_scan_curchan = wpi_scan_curchan;
675	ic->ic_scan_mindwell = wpi_scan_mindwell;
676
677	ic->ic_vap_create = wpi_vap_create;
678	ic->ic_vap_delete = wpi_vap_delete;
679
680	ieee80211_radiotap_attach(ic,
681	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
682		WPI_TX_RADIOTAP_PRESENT,
683	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
684		WPI_RX_RADIOTAP_PRESENT);
685
686	/*
687	 * Hook our interrupt after all initialization is complete.
688	 */
689	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
690	    NULL, wpi_intr, sc, &sc->sc_ih);
691	if (error != 0) {
692		device_printf(dev, "could not set up interrupt\n");
693		goto fail;
694	}
695
696	if (bootverbose)
697		ieee80211_announce(ic);
698#ifdef XXX_DEBUG
699	ieee80211_announce_channels(ic);
700#endif
701	return 0;
702
703fail:	wpi_detach(dev);
704	return ENXIO;
705}
706
707static int
708wpi_detach(device_t dev)
709{
710	struct wpi_softc *sc = device_get_softc(dev);
711	struct ifnet *ifp = sc->sc_ifp;
712	struct ieee80211com *ic;
713	int ac;
714
715	if (ifp != NULL) {
716		ic = ifp->if_l2com;
717
718		ieee80211_draintask(ic, &sc->sc_restarttask);
719		ieee80211_draintask(ic, &sc->sc_radiotask);
720		wpi_stop(sc);
721		callout_drain(&sc->watchdog_to);
722		callout_drain(&sc->calib_to);
723		ieee80211_ifdetach(ic);
724	}
725
726	WPI_LOCK(sc);
727	if (sc->txq[0].data_dmat) {
728		for (ac = 0; ac < WME_NUM_AC; ac++)
729			wpi_free_tx_ring(sc, &sc->txq[ac]);
730
731		wpi_free_tx_ring(sc, &sc->cmdq);
732		wpi_free_rx_ring(sc, &sc->rxq);
733		wpi_free_shared(sc);
734	}
735
736	if (sc->fw_fp != NULL) {
737		wpi_unload_firmware(sc);
738	}
739
740	if (sc->fw_dma.tag)
741		wpi_free_fwmem(sc);
742	WPI_UNLOCK(sc);
743
744	if (sc->irq != NULL) {
745		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
746		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
747	}
748
749	if (sc->mem != NULL)
750		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
751
752	if (ifp != NULL)
753		if_free(ifp);
754
755	WPI_LOCK_DESTROY(sc);
756
757	return 0;
758}
759
760static struct ieee80211vap *
761wpi_vap_create(struct ieee80211com *ic,
762	const char name[IFNAMSIZ], int unit, int opmode, int flags,
763	const uint8_t bssid[IEEE80211_ADDR_LEN],
764	const uint8_t mac[IEEE80211_ADDR_LEN])
765{
766	struct wpi_vap *wvp;
767	struct ieee80211vap *vap;
768
769	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
770		return NULL;
771	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
772	    M_80211_VAP, M_NOWAIT | M_ZERO);
773	if (wvp == NULL)
774		return NULL;
775	vap = &wvp->vap;
776	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
777	/* override with driver methods */
778	wvp->newstate = vap->iv_newstate;
779	vap->iv_newstate = wpi_newstate;
780
781	ieee80211_ratectl_init(vap);
782	/* complete setup */
783	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
784	ic->ic_opmode = opmode;
785	return vap;
786}
787
788static void
789wpi_vap_delete(struct ieee80211vap *vap)
790{
791	struct wpi_vap *wvp = WPI_VAP(vap);
792
793	ieee80211_ratectl_deinit(vap);
794	ieee80211_vap_detach(vap);
795	free(wvp, M_80211_VAP);
796}
797
798static void
799wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800{
801	if (error != 0)
802		return;
803
804	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
805
806	*(bus_addr_t *)arg = segs[0].ds_addr;
807}
808
809/*
810 * Allocates a contiguous block of dma memory of the requested size and
811 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
812 * allocations greater than 4096 may fail. Hence if the requested alignment is
813 * greater we allocate 'alignment' size extra memory and shift the vaddr and
814 * paddr after the dma load. This bypasses the problem at the cost of a little
815 * more memory.
816 */
817static int
818wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
819    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
820{
821	int error;
822	bus_size_t align;
823	bus_size_t reqsize;
824
825	DPRINTFN(WPI_DEBUG_DMA,
826	    ("Size: %zd - alignment %zd\n", size, alignment));
827
828	dma->size = size;
829	dma->tag = NULL;
830
831	if (alignment > 4096) {
832		align = PAGE_SIZE;
833		reqsize = size + alignment;
834	} else {
835		align = alignment;
836		reqsize = size;
837	}
838	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
839	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
840	    NULL, NULL, reqsize,
841	    1, reqsize, flags,
842	    NULL, NULL, &dma->tag);
843	if (error != 0) {
844		device_printf(sc->sc_dev,
845		    "could not create shared page DMA tag\n");
846		goto fail;
847	}
848	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
849	    flags | BUS_DMA_ZERO, &dma->map);
850	if (error != 0) {
851		device_printf(sc->sc_dev,
852		    "could not allocate shared page DMA memory\n");
853		goto fail;
854	}
855
856	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
857	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
858
859	/* Save the original pointers so we can free all the memory */
860	dma->paddr = dma->paddr_start;
861	dma->vaddr = dma->vaddr_start;
862
863	/*
864	 * Check the alignment and increment by 4096 until we get the
865	 * requested alignment. Fail if can't obtain the alignment
866	 * we requested.
867	 */
868	if ((dma->paddr & (alignment -1 )) != 0) {
869		int i;
870
871		for (i = 0; i < alignment / 4096; i++) {
872			if ((dma->paddr & (alignment - 1 )) == 0)
873				break;
874			dma->paddr += 4096;
875			dma->vaddr += 4096;
876		}
877		if (i == alignment / 4096) {
878			device_printf(sc->sc_dev,
879			    "alignment requirement was not satisfied\n");
880			goto fail;
881		}
882	}
883
884	if (error != 0) {
885		device_printf(sc->sc_dev,
886		    "could not load shared page DMA map\n");
887		goto fail;
888	}
889
890	if (kvap != NULL)
891		*kvap = dma->vaddr;
892
893	return 0;
894
895fail:
896	wpi_dma_contig_free(dma);
897	return error;
898}
899
900static void
901wpi_dma_contig_free(struct wpi_dma_info *dma)
902{
903	if (dma->tag) {
904		if (dma->map != NULL) {
905			if (dma->paddr_start != 0) {
906				bus_dmamap_sync(dma->tag, dma->map,
907				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
908				bus_dmamap_unload(dma->tag, dma->map);
909			}
910			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
911		}
912		bus_dma_tag_destroy(dma->tag);
913	}
914}
915
916/*
917 * Allocate a shared page between host and NIC.
918 */
919static int
920wpi_alloc_shared(struct wpi_softc *sc)
921{
922	int error;
923
924	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
925	    (void **)&sc->shared, sizeof (struct wpi_shared),
926	    PAGE_SIZE,
927	    BUS_DMA_NOWAIT);
928
929	if (error != 0) {
930		device_printf(sc->sc_dev,
931		    "could not allocate shared area DMA memory\n");
932	}
933
934	return error;
935}
936
937static void
938wpi_free_shared(struct wpi_softc *sc)
939{
940	wpi_dma_contig_free(&sc->shared_dma);
941}
942
943static int
944wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
945{
946
947	int i, error;
948
949	ring->cur = 0;
950
951	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
953	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
954
955	if (error != 0) {
956		device_printf(sc->sc_dev,
957		    "%s: could not allocate rx ring DMA memory, error %d\n",
958		    __func__, error);
959		goto fail;
960	}
961
962        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
963	    BUS_SPACE_MAXADDR_32BIT,
964            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
965            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
966        if (error != 0) {
967                device_printf(sc->sc_dev,
968		    "%s: bus_dma_tag_create_failed, error %d\n",
969		    __func__, error);
970                goto fail;
971        }
972
973	/*
974	 * Setup Rx buffers.
975	 */
976	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
977		struct wpi_rx_data *data = &ring->data[i];
978		struct mbuf *m;
979		bus_addr_t paddr;
980
981		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
982		if (error != 0) {
983			device_printf(sc->sc_dev,
984			    "%s: bus_dmamap_create failed, error %d\n",
985			    __func__, error);
986			goto fail;
987		}
988		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
989		if (m == NULL) {
990			device_printf(sc->sc_dev,
991			   "%s: could not allocate rx mbuf\n", __func__);
992			error = ENOMEM;
993			goto fail;
994		}
995		/* map page */
996		error = bus_dmamap_load(ring->data_dmat, data->map,
997		    mtod(m, caddr_t), MJUMPAGESIZE,
998		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
999		if (error != 0 && error != EFBIG) {
1000			device_printf(sc->sc_dev,
1001			    "%s: bus_dmamap_load failed, error %d\n",
1002			    __func__, error);
1003			m_freem(m);
1004			error = ENOMEM;	/* XXX unique code */
1005			goto fail;
1006		}
1007		bus_dmamap_sync(ring->data_dmat, data->map,
1008		    BUS_DMASYNC_PREWRITE);
1009
1010		data->m = m;
1011		ring->desc[i] = htole32(paddr);
1012	}
1013	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1014	    BUS_DMASYNC_PREWRITE);
1015	return 0;
1016fail:
1017	wpi_free_rx_ring(sc, ring);
1018	return error;
1019}
1020
1021static void
1022wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1023{
1024	int ntries;
1025
1026	wpi_mem_lock(sc);
1027
1028	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1029
1030	for (ntries = 0; ntries < 100; ntries++) {
1031		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1032			break;
1033		DELAY(10);
1034	}
1035
1036	wpi_mem_unlock(sc);
1037
1038#ifdef WPI_DEBUG
1039	if (ntries == 100 && wpi_debug > 0)
1040		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1041#endif
1042
1043	ring->cur = 0;
1044}
1045
1046static void
1047wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1048{
1049	int i;
1050
1051	wpi_dma_contig_free(&ring->desc_dma);
1052
1053	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054		struct wpi_rx_data *data = &ring->data[i];
1055
1056		if (data->m != NULL) {
1057			bus_dmamap_sync(ring->data_dmat, data->map,
1058			    BUS_DMASYNC_POSTREAD);
1059			bus_dmamap_unload(ring->data_dmat, data->map);
1060			m_freem(data->m);
1061		}
1062		if (data->map != NULL)
1063			bus_dmamap_destroy(ring->data_dmat, data->map);
1064	}
1065}
1066
1067static int
1068wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1069	int qid)
1070{
1071	struct wpi_tx_data *data;
1072	int i, error;
1073
1074	ring->qid = qid;
1075	ring->count = count;
1076	ring->queued = 0;
1077	ring->cur = 0;
1078	ring->data = NULL;
1079
1080	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1081		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1082		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1083
1084	if (error != 0) {
1085	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1086	    goto fail;
1087	}
1088
1089	/* update shared page with ring's base address */
1090	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1091
1092	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1093		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1094		BUS_DMA_NOWAIT);
1095
1096	if (error != 0) {
1097		device_printf(sc->sc_dev,
1098		    "could not allocate tx command DMA memory\n");
1099		goto fail;
1100	}
1101
1102	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1103	    M_NOWAIT | M_ZERO);
1104	if (ring->data == NULL) {
1105		device_printf(sc->sc_dev,
1106		    "could not allocate tx data slots\n");
1107		goto fail;
1108	}
1109
1110	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1111	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1112	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1113	    &ring->data_dmat);
1114	if (error != 0) {
1115		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1116		goto fail;
1117	}
1118
1119	for (i = 0; i < count; i++) {
1120		data = &ring->data[i];
1121
1122		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123		if (error != 0) {
1124			device_printf(sc->sc_dev,
1125			    "could not create tx buf DMA map\n");
1126			goto fail;
1127		}
1128		bus_dmamap_sync(ring->data_dmat, data->map,
1129		    BUS_DMASYNC_PREWRITE);
1130	}
1131
1132	return 0;
1133
1134fail:
1135	wpi_free_tx_ring(sc, ring);
1136	return error;
1137}
1138
1139static void
1140wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1141{
1142	struct wpi_tx_data *data;
1143	int i, ntries;
1144
1145	wpi_mem_lock(sc);
1146
1147	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1148	for (ntries = 0; ntries < 100; ntries++) {
1149		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1150			break;
1151		DELAY(10);
1152	}
1153#ifdef WPI_DEBUG
1154	if (ntries == 100 && wpi_debug > 0)
1155		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1156		    ring->qid);
1157#endif
1158	wpi_mem_unlock(sc);
1159
1160	for (i = 0; i < ring->count; i++) {
1161		data = &ring->data[i];
1162
1163		if (data->m != NULL) {
1164			bus_dmamap_unload(ring->data_dmat, data->map);
1165			m_freem(data->m);
1166			data->m = NULL;
1167		}
1168	}
1169
1170	ring->queued = 0;
1171	ring->cur = 0;
1172}
1173
1174static void
1175wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1176{
1177	struct wpi_tx_data *data;
1178	int i;
1179
1180	wpi_dma_contig_free(&ring->desc_dma);
1181	wpi_dma_contig_free(&ring->cmd_dma);
1182
1183	if (ring->data != NULL) {
1184		for (i = 0; i < ring->count; i++) {
1185			data = &ring->data[i];
1186
1187			if (data->m != NULL) {
1188				bus_dmamap_sync(ring->data_dmat, data->map,
1189				    BUS_DMASYNC_POSTWRITE);
1190				bus_dmamap_unload(ring->data_dmat, data->map);
1191				m_freem(data->m);
1192				data->m = NULL;
1193			}
1194		}
1195		free(ring->data, M_DEVBUF);
1196	}
1197
1198	if (ring->data_dmat != NULL)
1199		bus_dma_tag_destroy(ring->data_dmat);
1200}
1201
1202static int
1203wpi_shutdown(device_t dev)
1204{
1205	struct wpi_softc *sc = device_get_softc(dev);
1206
1207	WPI_LOCK(sc);
1208	wpi_stop_locked(sc);
1209	wpi_unload_firmware(sc);
1210	WPI_UNLOCK(sc);
1211
1212	return 0;
1213}
1214
1215static int
1216wpi_suspend(device_t dev)
1217{
1218	struct wpi_softc *sc = device_get_softc(dev);
1219
1220	wpi_stop(sc);
1221	return 0;
1222}
1223
1224static int
1225wpi_resume(device_t dev)
1226{
1227	struct wpi_softc *sc = device_get_softc(dev);
1228	struct ifnet *ifp = sc->sc_ifp;
1229
1230	pci_write_config(dev, 0x41, 0, 1);
1231
1232	if (ifp->if_flags & IFF_UP) {
1233		wpi_init(ifp->if_softc);
1234		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1235			wpi_start(ifp);
1236	}
1237	return 0;
1238}
1239
1240/**
1241 * Called by net80211 when ever there is a change to 80211 state machine
1242 */
1243static int
1244wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1245{
1246	struct wpi_vap *wvp = WPI_VAP(vap);
1247	struct ieee80211com *ic = vap->iv_ic;
1248	struct ifnet *ifp = ic->ic_ifp;
1249	struct wpi_softc *sc = ifp->if_softc;
1250	int error;
1251
1252	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1253		ieee80211_state_name[vap->iv_state],
1254		ieee80211_state_name[nstate], sc->flags));
1255
1256	IEEE80211_UNLOCK(ic);
1257	WPI_LOCK(sc);
1258	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1259		/*
1260		 * On !INIT -> SCAN transitions, we need to clear any possible
1261		 * knowledge about associations.
1262		 */
1263		error = wpi_config(sc);
1264		if (error != 0) {
1265			device_printf(sc->sc_dev,
1266			    "%s: device config failed, error %d\n",
1267			    __func__, error);
1268		}
1269	}
1270	if (nstate == IEEE80211_S_AUTH ||
1271	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1272		/*
1273		 * The node must be registered in the firmware before auth.
1274		 * Also the associd must be cleared on RUN -> ASSOC
1275		 * transitions.
1276		 */
1277		error = wpi_auth(sc, vap);
1278		if (error != 0) {
1279			device_printf(sc->sc_dev,
1280			    "%s: could not move to auth state, error %d\n",
1281			    __func__, error);
1282		}
1283	}
1284	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1285		error = wpi_run(sc, vap);
1286		if (error != 0) {
1287			device_printf(sc->sc_dev,
1288			    "%s: could not move to run state, error %d\n",
1289			    __func__, error);
1290		}
1291	}
1292	if (nstate == IEEE80211_S_RUN) {
1293		/* RUN -> RUN transition; just restart the timers */
1294		wpi_calib_timeout(sc);
1295		/* XXX split out rate control timer */
1296	}
1297	WPI_UNLOCK(sc);
1298	IEEE80211_LOCK(ic);
1299	return wvp->newstate(vap, nstate, arg);
1300}
1301
1302/*
1303 * Grab exclusive access to NIC memory.
1304 */
1305static void
1306wpi_mem_lock(struct wpi_softc *sc)
1307{
1308	int ntries;
1309	uint32_t tmp;
1310
1311	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1312	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1313
1314	/* spin until we actually get the lock */
1315	for (ntries = 0; ntries < 100; ntries++) {
1316		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1317			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1318			break;
1319		DELAY(10);
1320	}
1321	if (ntries == 100)
1322		device_printf(sc->sc_dev, "could not lock memory\n");
1323}
1324
1325/*
1326 * Release lock on NIC memory.
1327 */
1328static void
1329wpi_mem_unlock(struct wpi_softc *sc)
1330{
1331	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1332	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1333}
1334
1335static uint32_t
1336wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1337{
1338	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1339	return WPI_READ(sc, WPI_READ_MEM_DATA);
1340}
1341
1342static void
1343wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1344{
1345	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1346	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1347}
1348
1349static void
1350wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1351    const uint32_t *data, int wlen)
1352{
1353	for (; wlen > 0; wlen--, data++, addr+=4)
1354		wpi_mem_write(sc, addr, *data);
1355}
1356
1357/*
1358 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1359 * using the traditional bit-bang method. Data is read up until len bytes have
1360 * been obtained.
1361 */
1362static uint16_t
1363wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1364{
1365	int ntries;
1366	uint32_t val;
1367	uint8_t *out = data;
1368
1369	wpi_mem_lock(sc);
1370
1371	for (; len > 0; len -= 2, addr++) {
1372		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1373
1374		for (ntries = 0; ntries < 10; ntries++) {
1375			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1376				break;
1377			DELAY(5);
1378		}
1379
1380		if (ntries == 10) {
1381			device_printf(sc->sc_dev, "could not read EEPROM\n");
1382			return ETIMEDOUT;
1383		}
1384
1385		*out++= val >> 16;
1386		if (len > 1)
1387			*out ++= val >> 24;
1388	}
1389
1390	wpi_mem_unlock(sc);
1391
1392	return 0;
1393}
1394
1395/*
1396 * The firmware text and data segments are transferred to the NIC using DMA.
1397 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398 * where to find it.  Once the NIC has copied the firmware into its internal
1399 * memory, we can free our local copy in the driver.
1400 */
1401static int
1402wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1403{
1404	int error, ntries;
1405
1406	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1407
1408	size /= sizeof(uint32_t);
1409
1410	wpi_mem_lock(sc);
1411
1412	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1413	    (const uint32_t *)fw, size);
1414
1415	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1416	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1417	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1418
1419	/* run microcode */
1420	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1421
1422	/* wait while the adapter is busy copying the firmware */
1423	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1424		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1425		DPRINTFN(WPI_DEBUG_HW,
1426		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1427		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1428		if (status & WPI_TX_IDLE(6)) {
1429			DPRINTFN(WPI_DEBUG_HW,
1430			    ("Status Match! - ntries = %d\n", ntries));
1431			break;
1432		}
1433		DELAY(10);
1434	}
1435	if (ntries == 1000) {
1436		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1437		error = ETIMEDOUT;
1438	}
1439
1440	/* start the microcode executing */
1441	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1442
1443	wpi_mem_unlock(sc);
1444
1445	return (error);
1446}
1447
1448static void
1449wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1450	struct wpi_rx_data *data)
1451{
1452	struct ifnet *ifp = sc->sc_ifp;
1453	struct ieee80211com *ic = ifp->if_l2com;
1454	struct wpi_rx_ring *ring = &sc->rxq;
1455	struct wpi_rx_stat *stat;
1456	struct wpi_rx_head *head;
1457	struct wpi_rx_tail *tail;
1458	struct ieee80211_node *ni;
1459	struct mbuf *m, *mnew;
1460	bus_addr_t paddr;
1461	int error;
1462
1463	stat = (struct wpi_rx_stat *)(desc + 1);
1464
1465	if (stat->len > WPI_STAT_MAXLEN) {
1466		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1467		ifp->if_ierrors++;
1468		return;
1469	}
1470
1471	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1472	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1473	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1474
1475	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1476	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1477	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1478	    (uintmax_t)le64toh(tail->tstamp)));
1479
1480	/* discard Rx frames with bad CRC early */
1481	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1482		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1483		    le32toh(tail->flags)));
1484		ifp->if_ierrors++;
1485		return;
1486	}
1487	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1488		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1489		    le16toh(head->len)));
1490		ifp->if_ierrors++;
1491		return;
1492	}
1493
1494	/* XXX don't need mbuf, just dma buffer */
1495	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1496	if (mnew == NULL) {
1497		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1498		    __func__));
1499		ifp->if_ierrors++;
1500		return;
1501	}
1502	bus_dmamap_unload(ring->data_dmat, data->map);
1503
1504	error = bus_dmamap_load(ring->data_dmat, data->map,
1505	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1506	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1507	if (error != 0 && error != EFBIG) {
1508		device_printf(sc->sc_dev,
1509		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1510		m_freem(mnew);
1511		ifp->if_ierrors++;
1512		return;
1513	}
1514	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1515
1516	/* finalize mbuf and swap in new one */
1517	m = data->m;
1518	m->m_pkthdr.rcvif = ifp;
1519	m->m_data = (caddr_t)(head + 1);
1520	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521
1522	data->m = mnew;
1523	/* update Rx descriptor */
1524	ring->desc[ring->cur] = htole32(paddr);
1525
1526	if (ieee80211_radiotap_active(ic)) {
1527		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528
1529		tap->wr_flags = 0;
1530		tap->wr_chan_freq =
1531			htole16(ic->ic_channels[head->chan].ic_freq);
1532		tap->wr_chan_flags =
1533			htole16(ic->ic_channels[head->chan].ic_flags);
1534		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1535		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1536		tap->wr_tsft = tail->tstamp;
1537		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1538		switch (head->rate) {
1539		/* CCK rates */
1540		case  10: tap->wr_rate =   2; break;
1541		case  20: tap->wr_rate =   4; break;
1542		case  55: tap->wr_rate =  11; break;
1543		case 110: tap->wr_rate =  22; break;
1544		/* OFDM rates */
1545		case 0xd: tap->wr_rate =  12; break;
1546		case 0xf: tap->wr_rate =  18; break;
1547		case 0x5: tap->wr_rate =  24; break;
1548		case 0x7: tap->wr_rate =  36; break;
1549		case 0x9: tap->wr_rate =  48; break;
1550		case 0xb: tap->wr_rate =  72; break;
1551		case 0x1: tap->wr_rate =  96; break;
1552		case 0x3: tap->wr_rate = 108; break;
1553		/* unknown rate: should not happen */
1554		default:  tap->wr_rate =   0;
1555		}
1556		if (le16toh(head->flags) & 0x4)
1557			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1558	}
1559
1560	WPI_UNLOCK(sc);
1561
1562	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1563	if (ni != NULL) {
1564		(void) ieee80211_input(ni, m, stat->rssi, 0);
1565		ieee80211_free_node(ni);
1566	} else
1567		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1568
1569	WPI_LOCK(sc);
1570}
1571
1572static void
1573wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1574{
1575	struct ifnet *ifp = sc->sc_ifp;
1576	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1577	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1578	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1579	struct ieee80211_node *ni = txdata->ni;
1580	struct ieee80211vap *vap = ni->ni_vap;
1581	int retrycnt = 0;
1582
1583	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1584	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1585	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1586	    le32toh(stat->status)));
1587
1588	/*
1589	 * Update rate control statistics for the node.
1590	 * XXX we should not count mgmt frames since they're always sent at
1591	 * the lowest available bit-rate.
1592	 * XXX frames w/o ACK shouldn't be used either
1593	 */
1594	if (stat->ntries > 0) {
1595		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1596		retrycnt = 1;
1597	}
1598	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1599	    &retrycnt, NULL);
1600
1601	/* XXX oerrors should only count errors !maxtries */
1602	if ((le32toh(stat->status) & 0xff) != 1)
1603		ifp->if_oerrors++;
1604	else
1605		ifp->if_opackets++;
1606
1607	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1608	bus_dmamap_unload(ring->data_dmat, txdata->map);
1609	/* XXX handle M_TXCB? */
1610	m_freem(txdata->m);
1611	txdata->m = NULL;
1612	ieee80211_free_node(txdata->ni);
1613	txdata->ni = NULL;
1614
1615	ring->queued--;
1616
1617	sc->sc_tx_timer = 0;
1618	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1619	wpi_start_locked(ifp);
1620}
1621
1622static void
1623wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1624{
1625	struct wpi_tx_ring *ring = &sc->cmdq;
1626	struct wpi_tx_data *data;
1627
1628	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1629				 "type=%s len=%d\n", desc->qid, desc->idx,
1630				 desc->flags, wpi_cmd_str(desc->type),
1631				 le32toh(desc->len)));
1632
1633	if ((desc->qid & 7) != 4)
1634		return;	/* not a command ack */
1635
1636	data = &ring->data[desc->idx];
1637
1638	/* if the command was mapped in a mbuf, free it */
1639	if (data->m != NULL) {
1640		bus_dmamap_unload(ring->data_dmat, data->map);
1641		m_freem(data->m);
1642		data->m = NULL;
1643	}
1644
1645	sc->flags &= ~WPI_FLAG_BUSY;
1646	wakeup(&ring->cmd[desc->idx]);
1647}
1648
1649static void
1650wpi_notif_intr(struct wpi_softc *sc)
1651{
1652	struct ifnet *ifp = sc->sc_ifp;
1653	struct ieee80211com *ic = ifp->if_l2com;
1654	struct wpi_rx_desc *desc;
1655	struct wpi_rx_data *data;
1656	uint32_t hw;
1657
1658	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1659	    BUS_DMASYNC_POSTREAD);
1660
1661	hw = le32toh(sc->shared->next);
1662	while (sc->rxq.cur != hw) {
1663		data = &sc->rxq.data[sc->rxq.cur];
1664
1665		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1666		    BUS_DMASYNC_POSTREAD);
1667		desc = (void *)data->m->m_ext.ext_buf;
1668
1669		DPRINTFN(WPI_DEBUG_NOTIFY,
1670			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1671			  desc->qid,
1672			  desc->idx,
1673			  desc->flags,
1674			  desc->type,
1675			  le32toh(desc->len)));
1676
1677		if (!(desc->qid & 0x80))	/* reply to a command */
1678			wpi_cmd_intr(sc, desc);
1679
1680		switch (desc->type) {
1681		case WPI_RX_DONE:
1682			/* a 802.11 frame was received */
1683			wpi_rx_intr(sc, desc, data);
1684			break;
1685
1686		case WPI_TX_DONE:
1687			/* a 802.11 frame has been transmitted */
1688			wpi_tx_intr(sc, desc);
1689			break;
1690
1691		case WPI_UC_READY:
1692		{
1693			struct wpi_ucode_info *uc =
1694				(struct wpi_ucode_info *)(desc + 1);
1695
1696			/* the microcontroller is ready */
1697			DPRINTF(("microcode alive notification version %x "
1698				"alive %x\n", le32toh(uc->version),
1699				le32toh(uc->valid)));
1700
1701			if (le32toh(uc->valid) != 1) {
1702				device_printf(sc->sc_dev,
1703				    "microcontroller initialization failed\n");
1704				wpi_stop_locked(sc);
1705			}
1706			break;
1707		}
1708		case WPI_STATE_CHANGED:
1709		{
1710			uint32_t *status = (uint32_t *)(desc + 1);
1711
1712			/* enabled/disabled notification */
1713			DPRINTF(("state changed to %x\n", le32toh(*status)));
1714
1715			if (le32toh(*status) & 1) {
1716				device_printf(sc->sc_dev,
1717				    "Radio transmitter is switched off\n");
1718				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1719				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1720				/* Disable firmware commands */
1721				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1722			}
1723			break;
1724		}
1725		case WPI_START_SCAN:
1726		{
1727#ifdef WPI_DEBUG
1728			struct wpi_start_scan *scan =
1729				(struct wpi_start_scan *)(desc + 1);
1730#endif
1731
1732			DPRINTFN(WPI_DEBUG_SCANNING,
1733				 ("scanning channel %d status %x\n",
1734			    scan->chan, le32toh(scan->status)));
1735			break;
1736		}
1737		case WPI_STOP_SCAN:
1738		{
1739#ifdef WPI_DEBUG
1740			struct wpi_stop_scan *scan =
1741				(struct wpi_stop_scan *)(desc + 1);
1742#endif
1743			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1744
1745			DPRINTFN(WPI_DEBUG_SCANNING,
1746			    ("scan finished nchan=%d status=%d chan=%d\n",
1747			     scan->nchan, scan->status, scan->chan));
1748
1749			sc->sc_scan_timer = 0;
1750			ieee80211_scan_next(vap);
1751			break;
1752		}
1753		case WPI_MISSED_BEACON:
1754		{
1755			struct wpi_missed_beacon *beacon =
1756				(struct wpi_missed_beacon *)(desc + 1);
1757			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1758
1759			if (le32toh(beacon->consecutive) >=
1760			    vap->iv_bmissthreshold) {
1761				DPRINTF(("Beacon miss: %u >= %u\n",
1762					 le32toh(beacon->consecutive),
1763					 vap->iv_bmissthreshold));
1764				ieee80211_beacon_miss(ic);
1765			}
1766			break;
1767		}
1768		}
1769
1770		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1771	}
1772
1773	/* tell the firmware what we have processed */
1774	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1775	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1776}
1777
1778static void
1779wpi_intr(void *arg)
1780{
1781	struct wpi_softc *sc = arg;
1782	uint32_t r;
1783
1784	WPI_LOCK(sc);
1785
1786	r = WPI_READ(sc, WPI_INTR);
1787	if (r == 0 || r == 0xffffffff) {
1788		WPI_UNLOCK(sc);
1789		return;
1790	}
1791
1792	/* disable interrupts */
1793	WPI_WRITE(sc, WPI_MASK, 0);
1794	/* ack interrupts */
1795	WPI_WRITE(sc, WPI_INTR, r);
1796
1797	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1798		struct ifnet *ifp = sc->sc_ifp;
1799		struct ieee80211com *ic = ifp->if_l2com;
1800		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1801
1802		device_printf(sc->sc_dev, "fatal firmware error\n");
1803		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1804				"(Hardware Error)"));
1805		if (vap != NULL)
1806			ieee80211_cancel_scan(vap);
1807		ieee80211_runtask(ic, &sc->sc_restarttask);
1808		sc->flags &= ~WPI_FLAG_BUSY;
1809		WPI_UNLOCK(sc);
1810		return;
1811	}
1812
1813	if (r & WPI_RX_INTR)
1814		wpi_notif_intr(sc);
1815
1816	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1817		wakeup(sc);
1818
1819	/* re-enable interrupts */
1820	if (sc->sc_ifp->if_flags & IFF_UP)
1821		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1822
1823	WPI_UNLOCK(sc);
1824}
1825
1826static uint8_t
1827wpi_plcp_signal(int rate)
1828{
1829	switch (rate) {
1830	/* CCK rates (returned values are device-dependent) */
1831	case 2:		return 10;
1832	case 4:		return 20;
1833	case 11:	return 55;
1834	case 22:	return 110;
1835
1836	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1837	/* R1-R4 (ral/ural is R4-R1) */
1838	case 12:	return 0xd;
1839	case 18:	return 0xf;
1840	case 24:	return 0x5;
1841	case 36:	return 0x7;
1842	case 48:	return 0x9;
1843	case 72:	return 0xb;
1844	case 96:	return 0x1;
1845	case 108:	return 0x3;
1846
1847	/* unsupported rates (should not get there) */
1848	default:	return 0;
1849	}
1850}
1851
1852/* quickly determine if a given rate is CCK or OFDM */
1853#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1854
1855/*
1856 * Construct the data packet for a transmit buffer and acutally put
1857 * the buffer onto the transmit ring, kicking the card to process the
1858 * the buffer.
1859 */
1860static int
1861wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1862	int ac)
1863{
1864	struct ieee80211vap *vap = ni->ni_vap;
1865	struct ifnet *ifp = sc->sc_ifp;
1866	struct ieee80211com *ic = ifp->if_l2com;
1867	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1868	struct wpi_tx_ring *ring = &sc->txq[ac];
1869	struct wpi_tx_desc *desc;
1870	struct wpi_tx_data *data;
1871	struct wpi_tx_cmd *cmd;
1872	struct wpi_cmd_data *tx;
1873	struct ieee80211_frame *wh;
1874	const struct ieee80211_txparam *tp;
1875	struct ieee80211_key *k;
1876	struct mbuf *mnew;
1877	int i, error, nsegs, rate, hdrlen, ismcast;
1878	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1879
1880	desc = &ring->desc[ring->cur];
1881	data = &ring->data[ring->cur];
1882
1883	wh = mtod(m0, struct ieee80211_frame *);
1884
1885	hdrlen = ieee80211_hdrsize(wh);
1886	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1887
1888	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1889		k = ieee80211_crypto_encap(ni, m0);
1890		if (k == NULL) {
1891			m_freem(m0);
1892			return ENOBUFS;
1893		}
1894		/* packet header may have moved, reset our local pointer */
1895		wh = mtod(m0, struct ieee80211_frame *);
1896	}
1897
1898	cmd = &ring->cmd[ring->cur];
1899	cmd->code = WPI_CMD_TX_DATA;
1900	cmd->flags = 0;
1901	cmd->qid = ring->qid;
1902	cmd->idx = ring->cur;
1903
1904	tx = (struct wpi_cmd_data *)cmd->data;
1905	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1906	tx->timeout = htole16(0);
1907	tx->ofdm_mask = 0xff;
1908	tx->cck_mask = 0x0f;
1909	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1910	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1911	tx->len = htole16(m0->m_pkthdr.len);
1912
1913	if (!ismcast) {
1914		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1915		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1916			tx->flags |= htole32(WPI_TX_NEED_ACK);
1917		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1918			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1919			tx->rts_ntries = 7;
1920		}
1921	}
1922	/* pick a rate */
1923	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1924	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1925		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1926		/* tell h/w to set timestamp in probe responses */
1927		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1928			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1929		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1930		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1931			tx->timeout = htole16(3);
1932		else
1933			tx->timeout = htole16(2);
1934		rate = tp->mgmtrate;
1935	} else if (ismcast) {
1936		rate = tp->mcastrate;
1937	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1938		rate = tp->ucastrate;
1939	} else {
1940		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1941		rate = ni->ni_txrate;
1942	}
1943	tx->rate = wpi_plcp_signal(rate);
1944
1945	/* be very persistant at sending frames out */
1946#if 0
1947	tx->data_ntries = tp->maxretry;
1948#else
1949	tx->data_ntries = 15;		/* XXX way too high */
1950#endif
1951
1952	if (ieee80211_radiotap_active_vap(vap)) {
1953		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1954		tap->wt_flags = 0;
1955		tap->wt_rate = rate;
1956		tap->wt_hwqueue = ac;
1957		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1958			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1959
1960		ieee80211_radiotap_tx(vap, m0);
1961	}
1962
1963	/* save and trim IEEE802.11 header */
1964	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1965	m_adj(m0, hdrlen);
1966
1967	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1968	    &nsegs, BUS_DMA_NOWAIT);
1969	if (error != 0 && error != EFBIG) {
1970		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1971		    error);
1972		m_freem(m0);
1973		return error;
1974	}
1975	if (error != 0) {
1976		/* XXX use m_collapse */
1977		mnew = m_defrag(m0, M_DONTWAIT);
1978		if (mnew == NULL) {
1979			device_printf(sc->sc_dev,
1980			    "could not defragment mbuf\n");
1981			m_freem(m0);
1982			return ENOBUFS;
1983		}
1984		m0 = mnew;
1985
1986		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1987		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1988		if (error != 0) {
1989			device_printf(sc->sc_dev,
1990			    "could not map mbuf (error %d)\n", error);
1991			m_freem(m0);
1992			return error;
1993		}
1994	}
1995
1996	data->m = m0;
1997	data->ni = ni;
1998
1999	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2000	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2001
2002	/* first scatter/gather segment is used by the tx data command */
2003	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2004	    (1 + nsegs) << 24);
2005	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2006	    ring->cur * sizeof (struct wpi_tx_cmd));
2007	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2008	for (i = 1; i <= nsegs; i++) {
2009		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2010		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2011	}
2012
2013	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2014	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2015	    BUS_DMASYNC_PREWRITE);
2016
2017	ring->queued++;
2018
2019	/* kick ring */
2020	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2021	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2022
2023	return 0;
2024}
2025
2026/**
2027 * Process data waiting to be sent on the IFNET output queue
2028 */
2029static void
2030wpi_start(struct ifnet *ifp)
2031{
2032	struct wpi_softc *sc = ifp->if_softc;
2033
2034	WPI_LOCK(sc);
2035	wpi_start_locked(ifp);
2036	WPI_UNLOCK(sc);
2037}
2038
2039static void
2040wpi_start_locked(struct ifnet *ifp)
2041{
2042	struct wpi_softc *sc = ifp->if_softc;
2043	struct ieee80211_node *ni;
2044	struct mbuf *m;
2045	int ac;
2046
2047	WPI_LOCK_ASSERT(sc);
2048
2049	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2050		return;
2051
2052	for (;;) {
2053		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2054		if (m == NULL)
2055			break;
2056		ac = M_WME_GETAC(m);
2057		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2058			/* there is no place left in this ring */
2059			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2060			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2061			break;
2062		}
2063		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2064		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2065			ieee80211_free_node(ni);
2066			ifp->if_oerrors++;
2067			break;
2068		}
2069		sc->sc_tx_timer = 5;
2070	}
2071}
2072
2073static int
2074wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2075	const struct ieee80211_bpf_params *params)
2076{
2077	struct ieee80211com *ic = ni->ni_ic;
2078	struct ifnet *ifp = ic->ic_ifp;
2079	struct wpi_softc *sc = ifp->if_softc;
2080
2081	/* prevent management frames from being sent if we're not ready */
2082	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2083		m_freem(m);
2084		ieee80211_free_node(ni);
2085		return ENETDOWN;
2086	}
2087	WPI_LOCK(sc);
2088
2089	/* management frames go into ring 0 */
2090	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2091		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2092		m_freem(m);
2093		WPI_UNLOCK(sc);
2094		ieee80211_free_node(ni);
2095		return ENOBUFS;		/* XXX */
2096	}
2097
2098	ifp->if_opackets++;
2099	if (wpi_tx_data(sc, m, ni, 0) != 0)
2100		goto bad;
2101	sc->sc_tx_timer = 5;
2102	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2103
2104	WPI_UNLOCK(sc);
2105	return 0;
2106bad:
2107	ifp->if_oerrors++;
2108	WPI_UNLOCK(sc);
2109	ieee80211_free_node(ni);
2110	return EIO;		/* XXX */
2111}
2112
2113static int
2114wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2115{
2116	struct wpi_softc *sc = ifp->if_softc;
2117	struct ieee80211com *ic = ifp->if_l2com;
2118	struct ifreq *ifr = (struct ifreq *) data;
2119	int error = 0, startall = 0;
2120
2121	switch (cmd) {
2122	case SIOCSIFFLAGS:
2123		WPI_LOCK(sc);
2124		if ((ifp->if_flags & IFF_UP)) {
2125			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2126				wpi_init_locked(sc, 0);
2127				startall = 1;
2128			}
2129		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2130			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2131			wpi_stop_locked(sc);
2132		WPI_UNLOCK(sc);
2133		if (startall)
2134			ieee80211_start_all(ic);
2135		break;
2136	case SIOCGIFMEDIA:
2137		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2138		break;
2139	case SIOCGIFADDR:
2140		error = ether_ioctl(ifp, cmd, data);
2141		break;
2142	default:
2143		error = EINVAL;
2144		break;
2145	}
2146	return error;
2147}
2148
2149/*
2150 * Extract various information from EEPROM.
2151 */
2152static void
2153wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2154{
2155	int i;
2156
2157	/* read the hardware capabilities, revision and SKU type */
2158	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2159	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2160	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2161
2162	/* read the regulatory domain */
2163	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2164
2165	/* read in the hw MAC address */
2166	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2167
2168	/* read the list of authorized channels */
2169	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2170		wpi_read_eeprom_channels(sc,i);
2171
2172	/* read the power level calibration info for each group */
2173	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2174		wpi_read_eeprom_group(sc,i);
2175}
2176
2177/*
2178 * Send a command to the firmware.
2179 */
2180static int
2181wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2182{
2183	struct wpi_tx_ring *ring = &sc->cmdq;
2184	struct wpi_tx_desc *desc;
2185	struct wpi_tx_cmd *cmd;
2186
2187#ifdef WPI_DEBUG
2188	if (!async) {
2189		WPI_LOCK_ASSERT(sc);
2190	}
2191#endif
2192
2193	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2194		    async));
2195
2196	if (sc->flags & WPI_FLAG_BUSY) {
2197		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2198		    __func__, code);
2199		return EAGAIN;
2200	}
2201	sc->flags|= WPI_FLAG_BUSY;
2202
2203	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2204	    code, size));
2205
2206	desc = &ring->desc[ring->cur];
2207	cmd = &ring->cmd[ring->cur];
2208
2209	cmd->code = code;
2210	cmd->flags = 0;
2211	cmd->qid = ring->qid;
2212	cmd->idx = ring->cur;
2213	memcpy(cmd->data, buf, size);
2214
2215	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2216	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2217		ring->cur * sizeof (struct wpi_tx_cmd));
2218	desc->segs[0].len  = htole32(4 + size);
2219
2220	/* kick cmd ring */
2221	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2222	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2223
2224	if (async) {
2225		sc->flags &= ~ WPI_FLAG_BUSY;
2226		return 0;
2227	}
2228
2229	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2230}
2231
2232static int
2233wpi_wme_update(struct ieee80211com *ic)
2234{
2235#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2236#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2237	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2238	const struct wmeParams *wmep;
2239	struct wpi_wme_setup wme;
2240	int ac;
2241
2242	/* don't override default WME values if WME is not actually enabled */
2243	if (!(ic->ic_flags & IEEE80211_F_WME))
2244		return 0;
2245
2246	wme.flags = 0;
2247	for (ac = 0; ac < WME_NUM_AC; ac++) {
2248		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2249		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2250		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2251		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2252		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2253
2254		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2255		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2256		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2257	}
2258	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2259#undef WPI_USEC
2260#undef WPI_EXP2
2261}
2262
2263/*
2264 * Configure h/w multi-rate retries.
2265 */
2266static int
2267wpi_mrr_setup(struct wpi_softc *sc)
2268{
2269	struct ifnet *ifp = sc->sc_ifp;
2270	struct ieee80211com *ic = ifp->if_l2com;
2271	struct wpi_mrr_setup mrr;
2272	int i, error;
2273
2274	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2275
2276	/* CCK rates (not used with 802.11a) */
2277	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2278		mrr.rates[i].flags = 0;
2279		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280		/* fallback to the immediate lower CCK rate (if any) */
2281		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2282		/* try one time at this rate before falling back to "next" */
2283		mrr.rates[i].ntries = 1;
2284	}
2285
2286	/* OFDM rates (not used with 802.11b) */
2287	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2288		mrr.rates[i].flags = 0;
2289		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2290		/* fallback to the immediate lower OFDM rate (if any) */
2291		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2292		mrr.rates[i].next = (i == WPI_OFDM6) ?
2293		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2294			WPI_OFDM6 : WPI_CCK2) :
2295		    i - 1;
2296		/* try one time at this rate before falling back to "next" */
2297		mrr.rates[i].ntries = 1;
2298	}
2299
2300	/* setup MRR for control frames */
2301	mrr.which = htole32(WPI_MRR_CTL);
2302	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2303	if (error != 0) {
2304		device_printf(sc->sc_dev,
2305		    "could not setup MRR for control frames\n");
2306		return error;
2307	}
2308
2309	/* setup MRR for data frames */
2310	mrr.which = htole32(WPI_MRR_DATA);
2311	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2312	if (error != 0) {
2313		device_printf(sc->sc_dev,
2314		    "could not setup MRR for data frames\n");
2315		return error;
2316	}
2317
2318	return 0;
2319}
2320
2321static void
2322wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2323{
2324	struct wpi_cmd_led led;
2325
2326	led.which = which;
2327	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2328	led.off = off;
2329	led.on = on;
2330
2331	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2332}
2333
2334static void
2335wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2336{
2337	struct wpi_cmd_tsf tsf;
2338	uint64_t val, mod;
2339
2340	memset(&tsf, 0, sizeof tsf);
2341	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2342	tsf.bintval = htole16(ni->ni_intval);
2343	tsf.lintval = htole16(10);
2344
2345	/* compute remaining time until next beacon */
2346	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2347	mod = le64toh(tsf.tstamp) % val;
2348	tsf.binitval = htole32((uint32_t)(val - mod));
2349
2350	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2351		device_printf(sc->sc_dev, "could not enable TSF\n");
2352}
2353
2354#if 0
2355/*
2356 * Build a beacon frame that the firmware will broadcast periodically in
2357 * IBSS or HostAP modes.
2358 */
2359static int
2360wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2361{
2362	struct ifnet *ifp = sc->sc_ifp;
2363	struct ieee80211com *ic = ifp->if_l2com;
2364	struct wpi_tx_ring *ring = &sc->cmdq;
2365	struct wpi_tx_desc *desc;
2366	struct wpi_tx_data *data;
2367	struct wpi_tx_cmd *cmd;
2368	struct wpi_cmd_beacon *bcn;
2369	struct ieee80211_beacon_offsets bo;
2370	struct mbuf *m0;
2371	bus_addr_t physaddr;
2372	int error;
2373
2374	desc = &ring->desc[ring->cur];
2375	data = &ring->data[ring->cur];
2376
2377	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2378	if (m0 == NULL) {
2379		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2380		return ENOMEM;
2381	}
2382
2383	cmd = &ring->cmd[ring->cur];
2384	cmd->code = WPI_CMD_SET_BEACON;
2385	cmd->flags = 0;
2386	cmd->qid = ring->qid;
2387	cmd->idx = ring->cur;
2388
2389	bcn = (struct wpi_cmd_beacon *)cmd->data;
2390	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2391	bcn->id = WPI_ID_BROADCAST;
2392	bcn->ofdm_mask = 0xff;
2393	bcn->cck_mask = 0x0f;
2394	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2395	bcn->len = htole16(m0->m_pkthdr.len);
2396	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2397		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2398	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2399
2400	/* save and trim IEEE802.11 header */
2401	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2402	m_adj(m0, sizeof (struct ieee80211_frame));
2403
2404	/* assume beacon frame is contiguous */
2405	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2406	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2407	if (error != 0) {
2408		device_printf(sc->sc_dev, "could not map beacon\n");
2409		m_freem(m0);
2410		return error;
2411	}
2412
2413	data->m = m0;
2414
2415	/* first scatter/gather segment is used by the beacon command */
2416	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2417	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2418		ring->cur * sizeof (struct wpi_tx_cmd));
2419	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2420	desc->segs[1].addr = htole32(physaddr);
2421	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2422
2423	/* kick cmd ring */
2424	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2425	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2426
2427	return 0;
2428}
2429#endif
2430
2431static int
2432wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2433{
2434	struct ieee80211com *ic = vap->iv_ic;
2435	struct ieee80211_node *ni = vap->iv_bss;
2436	struct wpi_node_info node;
2437	int error;
2438
2439
2440	/* update adapter's configuration */
2441	sc->config.associd = 0;
2442	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2443	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2444	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2445	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2446		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2447		    WPI_CONFIG_24GHZ);
2448	} else {
2449		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2450		    WPI_CONFIG_24GHZ);
2451	}
2452	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2453		sc->config.cck_mask  = 0;
2454		sc->config.ofdm_mask = 0x15;
2455	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2456		sc->config.cck_mask  = 0x03;
2457		sc->config.ofdm_mask = 0;
2458	} else {
2459		/* XXX assume 802.11b/g */
2460		sc->config.cck_mask  = 0x0f;
2461		sc->config.ofdm_mask = 0x15;
2462	}
2463
2464	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2465		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2466	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2467		sizeof (struct wpi_config), 1);
2468	if (error != 0) {
2469		device_printf(sc->sc_dev, "could not configure\n");
2470		return error;
2471	}
2472
2473	/* configuration has changed, set Tx power accordingly */
2474	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2475		device_printf(sc->sc_dev, "could not set Tx power\n");
2476		return error;
2477	}
2478
2479	/* add default node */
2480	memset(&node, 0, sizeof node);
2481	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2482	node.id = WPI_ID_BSS;
2483	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2484	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2485	node.action = htole32(WPI_ACTION_SET_RATE);
2486	node.antenna = WPI_ANTENNA_BOTH;
2487	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2488	if (error != 0)
2489		device_printf(sc->sc_dev, "could not add BSS node\n");
2490
2491	return (error);
2492}
2493
2494static int
2495wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2496{
2497	struct ieee80211com *ic = vap->iv_ic;
2498	struct ieee80211_node *ni = vap->iv_bss;
2499	int error;
2500
2501	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2502		/* link LED blinks while monitoring */
2503		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2504		return 0;
2505	}
2506
2507	wpi_enable_tsf(sc, ni);
2508
2509	/* update adapter's configuration */
2510	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2511	/* short preamble/slot time are negotiated when associating */
2512	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2513	    WPI_CONFIG_SHSLOT);
2514	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2515		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2516	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2517		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2518	sc->config.filter |= htole32(WPI_FILTER_BSS);
2519
2520	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2521
2522	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2523		    sc->config.flags));
2524	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2525		    wpi_config), 1);
2526	if (error != 0) {
2527		device_printf(sc->sc_dev, "could not update configuration\n");
2528		return error;
2529	}
2530
2531	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2532	if (error != 0) {
2533		device_printf(sc->sc_dev, "could set txpower\n");
2534		return error;
2535	}
2536
2537	/* link LED always on while associated */
2538	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2539
2540	/* start automatic rate control timer */
2541	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2542
2543	return (error);
2544}
2545
2546/*
2547 * Send a scan request to the firmware.  Since this command is huge, we map it
2548 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2549 * much of this code is similar to that in wpi_cmd but because we must manually
2550 * construct the probe & channels, we duplicate what's needed here. XXX In the
2551 * future, this function should be modified to use wpi_cmd to help cleanup the
2552 * code base.
2553 */
2554static int
2555wpi_scan(struct wpi_softc *sc)
2556{
2557	struct ifnet *ifp = sc->sc_ifp;
2558	struct ieee80211com *ic = ifp->if_l2com;
2559	struct ieee80211_scan_state *ss = ic->ic_scan;
2560	struct wpi_tx_ring *ring = &sc->cmdq;
2561	struct wpi_tx_desc *desc;
2562	struct wpi_tx_data *data;
2563	struct wpi_tx_cmd *cmd;
2564	struct wpi_scan_hdr *hdr;
2565	struct wpi_scan_chan *chan;
2566	struct ieee80211_frame *wh;
2567	struct ieee80211_rateset *rs;
2568	struct ieee80211_channel *c;
2569	enum ieee80211_phymode mode;
2570	uint8_t *frm;
2571	int nrates, pktlen, error, i, nssid;
2572	bus_addr_t physaddr;
2573
2574	desc = &ring->desc[ring->cur];
2575	data = &ring->data[ring->cur];
2576
2577	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2578	if (data->m == NULL) {
2579		device_printf(sc->sc_dev,
2580		    "could not allocate mbuf for scan command\n");
2581		return ENOMEM;
2582	}
2583
2584	cmd = mtod(data->m, struct wpi_tx_cmd *);
2585	cmd->code = WPI_CMD_SCAN;
2586	cmd->flags = 0;
2587	cmd->qid = ring->qid;
2588	cmd->idx = ring->cur;
2589
2590	hdr = (struct wpi_scan_hdr *)cmd->data;
2591	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2592
2593	/*
2594	 * Move to the next channel if no packets are received within 5 msecs
2595	 * after sending the probe request (this helps to reduce the duration
2596	 * of active scans).
2597	 */
2598	hdr->quiet = htole16(5);
2599	hdr->threshold = htole16(1);
2600
2601	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2602		/* send probe requests at 6Mbps */
2603		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2604
2605		/* Enable crc checking */
2606		hdr->promotion = htole16(1);
2607	} else {
2608		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2609		/* send probe requests at 1Mbps */
2610		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2611	}
2612	hdr->tx.id = WPI_ID_BROADCAST;
2613	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2614	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2615
2616	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2617	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2618	for (i = 0; i < nssid; i++) {
2619		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2620		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2621		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2622		    hdr->scan_essids[i].esslen);
2623#ifdef WPI_DEBUG
2624		if (wpi_debug & WPI_DEBUG_SCANNING) {
2625			printf("Scanning Essid: ");
2626			ieee80211_print_essid(hdr->scan_essids[i].essid,
2627			    hdr->scan_essids[i].esslen);
2628			printf("\n");
2629		}
2630#endif
2631	}
2632
2633	/*
2634	 * Build a probe request frame.  Most of the following code is a
2635	 * copy & paste of what is done in net80211.
2636	 */
2637	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2638	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2639		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2640	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2641	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2642	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2643	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2644	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2645	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2646
2647	frm = (uint8_t *)(wh + 1);
2648
2649	/* add essid IE, the hardware will fill this in for us */
2650	*frm++ = IEEE80211_ELEMID_SSID;
2651	*frm++ = 0;
2652
2653	mode = ieee80211_chan2mode(ic->ic_curchan);
2654	rs = &ic->ic_sup_rates[mode];
2655
2656	/* add supported rates IE */
2657	*frm++ = IEEE80211_ELEMID_RATES;
2658	nrates = rs->rs_nrates;
2659	if (nrates > IEEE80211_RATE_SIZE)
2660		nrates = IEEE80211_RATE_SIZE;
2661	*frm++ = nrates;
2662	memcpy(frm, rs->rs_rates, nrates);
2663	frm += nrates;
2664
2665	/* add supported xrates IE */
2666	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2667		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2668		*frm++ = IEEE80211_ELEMID_XRATES;
2669		*frm++ = nrates;
2670		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2671		frm += nrates;
2672	}
2673
2674	/* setup length of probe request */
2675	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2676
2677	/*
2678	 * Construct information about the channel that we
2679	 * want to scan. The firmware expects this to be directly
2680	 * after the scan probe request
2681	 */
2682	c = ic->ic_curchan;
2683	chan = (struct wpi_scan_chan *)frm;
2684	chan->chan = ieee80211_chan2ieee(ic, c);
2685	chan->flags = 0;
2686	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687		chan->flags |= WPI_CHAN_ACTIVE;
2688		if (nssid != 0)
2689			chan->flags |= WPI_CHAN_DIRECT;
2690	}
2691	chan->gain_dsp = 0x6e; /* Default level */
2692	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693		chan->active = htole16(10);
2694		chan->passive = htole16(ss->ss_maxdwell);
2695		chan->gain_radio = 0x3b;
2696	} else {
2697		chan->active = htole16(20);
2698		chan->passive = htole16(ss->ss_maxdwell);
2699		chan->gain_radio = 0x28;
2700	}
2701
2702	DPRINTFN(WPI_DEBUG_SCANNING,
2703	    ("Scanning %u Passive: %d\n",
2704	     chan->chan,
2705	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706
2707	hdr->nchan++;
2708	chan++;
2709
2710	frm += sizeof (struct wpi_scan_chan);
2711#if 0
2712	// XXX All Channels....
2713	for (c  = &ic->ic_channels[1];
2714	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2715		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2716			continue;
2717
2718		chan->chan = ieee80211_chan2ieee(ic, c);
2719		chan->flags = 0;
2720		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2721		    chan->flags |= WPI_CHAN_ACTIVE;
2722		    if (ic->ic_des_ssid[0].len != 0)
2723			chan->flags |= WPI_CHAN_DIRECT;
2724		}
2725		chan->gain_dsp = 0x6e; /* Default level */
2726		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2727			chan->active = htole16(10);
2728			chan->passive = htole16(110);
2729			chan->gain_radio = 0x3b;
2730		} else {
2731			chan->active = htole16(20);
2732			chan->passive = htole16(120);
2733			chan->gain_radio = 0x28;
2734		}
2735
2736		DPRINTFN(WPI_DEBUG_SCANNING,
2737			 ("Scanning %u Passive: %d\n",
2738			  chan->chan,
2739			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2740
2741		hdr->nchan++;
2742		chan++;
2743
2744		frm += sizeof (struct wpi_scan_chan);
2745	}
2746#endif
2747
2748	hdr->len = htole16(frm - (uint8_t *)hdr);
2749	pktlen = frm - (uint8_t *)cmd;
2750
2751	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2752	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2753	if (error != 0) {
2754		device_printf(sc->sc_dev, "could not map scan command\n");
2755		m_freem(data->m);
2756		data->m = NULL;
2757		return error;
2758	}
2759
2760	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2761	desc->segs[0].addr = htole32(physaddr);
2762	desc->segs[0].len  = htole32(pktlen);
2763
2764	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765	    BUS_DMASYNC_PREWRITE);
2766	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2767
2768	/* kick cmd ring */
2769	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2770	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2771
2772	sc->sc_scan_timer = 5;
2773	return 0;	/* will be notified async. of failure/success */
2774}
2775
2776/**
2777 * Configure the card to listen to a particular channel, this transisions the
2778 * card in to being able to receive frames from remote devices.
2779 */
2780static int
2781wpi_config(struct wpi_softc *sc)
2782{
2783	struct ifnet *ifp = sc->sc_ifp;
2784	struct ieee80211com *ic = ifp->if_l2com;
2785	struct wpi_power power;
2786	struct wpi_bluetooth bluetooth;
2787	struct wpi_node_info node;
2788	int error;
2789
2790	/* set power mode */
2791	memset(&power, 0, sizeof power);
2792	power.flags = htole32(WPI_POWER_CAM|0x8);
2793	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2794	if (error != 0) {
2795		device_printf(sc->sc_dev, "could not set power mode\n");
2796		return error;
2797	}
2798
2799	/* configure bluetooth coexistence */
2800	memset(&bluetooth, 0, sizeof bluetooth);
2801	bluetooth.flags = 3;
2802	bluetooth.lead = 0xaa;
2803	bluetooth.kill = 1;
2804	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2805	    0);
2806	if (error != 0) {
2807		device_printf(sc->sc_dev,
2808		    "could not configure bluetooth coexistence\n");
2809		return error;
2810	}
2811
2812	/* configure adapter */
2813	memset(&sc->config, 0, sizeof (struct wpi_config));
2814	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2815	/*set default channel*/
2816	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2817	sc->config.flags = htole32(WPI_CONFIG_TSF);
2818	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2819		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2820		    WPI_CONFIG_24GHZ);
2821	}
2822	sc->config.filter = 0;
2823	switch (ic->ic_opmode) {
2824	case IEEE80211_M_STA:
2825	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2826		sc->config.mode = WPI_MODE_STA;
2827		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2828		break;
2829	case IEEE80211_M_IBSS:
2830	case IEEE80211_M_AHDEMO:
2831		sc->config.mode = WPI_MODE_IBSS;
2832		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2833					     WPI_FILTER_MULTICAST);
2834		break;
2835	case IEEE80211_M_HOSTAP:
2836		sc->config.mode = WPI_MODE_HOSTAP;
2837		break;
2838	case IEEE80211_M_MONITOR:
2839		sc->config.mode = WPI_MODE_MONITOR;
2840		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2841			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2842		break;
2843	default:
2844		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2845		return EINVAL;
2846	}
2847	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2848	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2849	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2850		sizeof (struct wpi_config), 0);
2851	if (error != 0) {
2852		device_printf(sc->sc_dev, "configure command failed\n");
2853		return error;
2854	}
2855
2856	/* configuration has changed, set Tx power accordingly */
2857	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2858	    device_printf(sc->sc_dev, "could not set Tx power\n");
2859	    return error;
2860	}
2861
2862	/* add broadcast node */
2863	memset(&node, 0, sizeof node);
2864	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2865	node.id = WPI_ID_BROADCAST;
2866	node.rate = wpi_plcp_signal(2);
2867	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2868	if (error != 0) {
2869		device_printf(sc->sc_dev, "could not add broadcast node\n");
2870		return error;
2871	}
2872
2873	/* Setup rate scalling */
2874	error = wpi_mrr_setup(sc);
2875	if (error != 0) {
2876		device_printf(sc->sc_dev, "could not setup MRR\n");
2877		return error;
2878	}
2879
2880	return 0;
2881}
2882
2883static void
2884wpi_stop_master(struct wpi_softc *sc)
2885{
2886	uint32_t tmp;
2887	int ntries;
2888
2889	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2890
2891	tmp = WPI_READ(sc, WPI_RESET);
2892	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2893
2894	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2895	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2896		return;	/* already asleep */
2897
2898	for (ntries = 0; ntries < 100; ntries++) {
2899		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2900			break;
2901		DELAY(10);
2902	}
2903	if (ntries == 100) {
2904		device_printf(sc->sc_dev, "timeout waiting for master\n");
2905	}
2906}
2907
2908static int
2909wpi_power_up(struct wpi_softc *sc)
2910{
2911	uint32_t tmp;
2912	int ntries;
2913
2914	wpi_mem_lock(sc);
2915	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2916	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2917	wpi_mem_unlock(sc);
2918
2919	for (ntries = 0; ntries < 5000; ntries++) {
2920		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2921			break;
2922		DELAY(10);
2923	}
2924	if (ntries == 5000) {
2925		device_printf(sc->sc_dev,
2926		    "timeout waiting for NIC to power up\n");
2927		return ETIMEDOUT;
2928	}
2929	return 0;
2930}
2931
2932static int
2933wpi_reset(struct wpi_softc *sc)
2934{
2935	uint32_t tmp;
2936	int ntries;
2937
2938	DPRINTFN(WPI_DEBUG_HW,
2939	    ("Resetting the card - clearing any uploaded firmware\n"));
2940
2941	/* clear any pending interrupts */
2942	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2943
2944	tmp = WPI_READ(sc, WPI_PLL_CTL);
2945	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2946
2947	tmp = WPI_READ(sc, WPI_CHICKEN);
2948	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2949
2950	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2951	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2952
2953	/* wait for clock stabilization */
2954	for (ntries = 0; ntries < 25000; ntries++) {
2955		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2956			break;
2957		DELAY(10);
2958	}
2959	if (ntries == 25000) {
2960		device_printf(sc->sc_dev,
2961		    "timeout waiting for clock stabilization\n");
2962		return ETIMEDOUT;
2963	}
2964
2965	/* initialize EEPROM */
2966	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2967
2968	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2969		device_printf(sc->sc_dev, "EEPROM not found\n");
2970		return EIO;
2971	}
2972	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2973
2974	return 0;
2975}
2976
2977static void
2978wpi_hw_config(struct wpi_softc *sc)
2979{
2980	uint32_t rev, hw;
2981
2982	/* voodoo from the Linux "driver".. */
2983	hw = WPI_READ(sc, WPI_HWCONFIG);
2984
2985	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2986	if ((rev & 0xc0) == 0x40)
2987		hw |= WPI_HW_ALM_MB;
2988	else if (!(rev & 0x80))
2989		hw |= WPI_HW_ALM_MM;
2990
2991	if (sc->cap == 0x80)
2992		hw |= WPI_HW_SKU_MRC;
2993
2994	hw &= ~WPI_HW_REV_D;
2995	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2996		hw |= WPI_HW_REV_D;
2997
2998	if (sc->type > 1)
2999		hw |= WPI_HW_TYPE_B;
3000
3001	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3002}
3003
3004static void
3005wpi_rfkill_resume(struct wpi_softc *sc)
3006{
3007	struct ifnet *ifp = sc->sc_ifp;
3008	struct ieee80211com *ic = ifp->if_l2com;
3009	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3010	int ntries;
3011
3012	/* enable firmware again */
3013	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3014	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3015
3016	/* wait for thermal sensors to calibrate */
3017	for (ntries = 0; ntries < 1000; ntries++) {
3018		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3019			break;
3020		DELAY(10);
3021	}
3022
3023	if (ntries == 1000) {
3024		device_printf(sc->sc_dev,
3025		    "timeout waiting for thermal calibration\n");
3026		return;
3027	}
3028	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3029
3030	if (wpi_config(sc) != 0) {
3031		device_printf(sc->sc_dev, "device config failed\n");
3032		return;
3033	}
3034
3035	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3036	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3037	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3038
3039	if (vap != NULL) {
3040		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3041			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3042				ieee80211_beacon_miss(ic);
3043				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3044			} else
3045				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3046		} else {
3047			ieee80211_scan_next(vap);
3048			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3049		}
3050	}
3051
3052	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3053}
3054
3055static void
3056wpi_init_locked(struct wpi_softc *sc, int force)
3057{
3058	struct ifnet *ifp = sc->sc_ifp;
3059	uint32_t tmp;
3060	int ntries, qid;
3061
3062	wpi_stop_locked(sc);
3063	(void)wpi_reset(sc);
3064
3065	wpi_mem_lock(sc);
3066	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3067	DELAY(20);
3068	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3069	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3070	wpi_mem_unlock(sc);
3071
3072	(void)wpi_power_up(sc);
3073	wpi_hw_config(sc);
3074
3075	/* init Rx ring */
3076	wpi_mem_lock(sc);
3077	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3078	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3079	    offsetof(struct wpi_shared, next));
3080	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3081	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3082	wpi_mem_unlock(sc);
3083
3084	/* init Tx rings */
3085	wpi_mem_lock(sc);
3086	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3087	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3088	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3089	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3090	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3091	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3092	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3093
3094	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3095	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3096
3097	for (qid = 0; qid < 6; qid++) {
3098		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3099		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3100		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3101	}
3102	wpi_mem_unlock(sc);
3103
3104	/* clear "radio off" and "disable command" bits (reversed logic) */
3105	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3107	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3108
3109	/* clear any pending interrupts */
3110	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3111
3112	/* enable interrupts */
3113	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3114
3115	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117
3118	if ((wpi_load_firmware(sc)) != 0) {
3119	    device_printf(sc->sc_dev,
3120		"A problem occurred loading the firmware to the driver\n");
3121	    return;
3122	}
3123
3124	/* At this point the firmware is up and running. If the hardware
3125	 * RF switch is turned off thermal calibration will fail, though
3126	 * the card is still happy to continue to accept commands, catch
3127	 * this case and schedule a task to watch for it to be turned on.
3128	 */
3129	wpi_mem_lock(sc);
3130	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3131	wpi_mem_unlock(sc);
3132
3133	if (!(tmp & 0x1)) {
3134		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3135		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3136		goto out;
3137	}
3138
3139	/* wait for thermal sensors to calibrate */
3140	for (ntries = 0; ntries < 1000; ntries++) {
3141		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3142			break;
3143		DELAY(10);
3144	}
3145
3146	if (ntries == 1000) {
3147		device_printf(sc->sc_dev,
3148		    "timeout waiting for thermal sensors calibration\n");
3149		return;
3150	}
3151	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3152
3153	if (wpi_config(sc) != 0) {
3154		device_printf(sc->sc_dev, "device config failed\n");
3155		return;
3156	}
3157
3158	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160out:
3161	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3162}
3163
3164static void
3165wpi_init(void *arg)
3166{
3167	struct wpi_softc *sc = arg;
3168	struct ifnet *ifp = sc->sc_ifp;
3169	struct ieee80211com *ic = ifp->if_l2com;
3170
3171	WPI_LOCK(sc);
3172	wpi_init_locked(sc, 0);
3173	WPI_UNLOCK(sc);
3174
3175	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3176		ieee80211_start_all(ic);		/* start all vaps */
3177}
3178
3179static void
3180wpi_stop_locked(struct wpi_softc *sc)
3181{
3182	struct ifnet *ifp = sc->sc_ifp;
3183	uint32_t tmp;
3184	int ac;
3185
3186	sc->sc_tx_timer = 0;
3187	sc->sc_scan_timer = 0;
3188	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3189	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3190	callout_stop(&sc->watchdog_to);
3191	callout_stop(&sc->calib_to);
3192
3193
3194	/* disable interrupts */
3195	WPI_WRITE(sc, WPI_MASK, 0);
3196	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3197	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3198	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3199
3200	wpi_mem_lock(sc);
3201	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3202	wpi_mem_unlock(sc);
3203
3204	/* reset all Tx rings */
3205	for (ac = 0; ac < 4; ac++)
3206		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3207	wpi_reset_tx_ring(sc, &sc->cmdq);
3208
3209	/* reset Rx ring */
3210	wpi_reset_rx_ring(sc, &sc->rxq);
3211
3212	wpi_mem_lock(sc);
3213	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3214	wpi_mem_unlock(sc);
3215
3216	DELAY(5);
3217
3218	wpi_stop_master(sc);
3219
3220	tmp = WPI_READ(sc, WPI_RESET);
3221	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3222	sc->flags &= ~WPI_FLAG_BUSY;
3223}
3224
3225static void
3226wpi_stop(struct wpi_softc *sc)
3227{
3228	WPI_LOCK(sc);
3229	wpi_stop_locked(sc);
3230	WPI_UNLOCK(sc);
3231}
3232
3233static void
3234wpi_calib_timeout(void *arg)
3235{
3236	struct wpi_softc *sc = arg;
3237	struct ifnet *ifp = sc->sc_ifp;
3238	struct ieee80211com *ic = ifp->if_l2com;
3239	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3240	int temp;
3241
3242	if (vap->iv_state != IEEE80211_S_RUN)
3243		return;
3244
3245	/* update sensor data */
3246	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3247	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3248
3249	wpi_power_calibration(sc, temp);
3250
3251	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3252}
3253
3254/*
3255 * This function is called periodically (every 60 seconds) to adjust output
3256 * power to temperature changes.
3257 */
3258static void
3259wpi_power_calibration(struct wpi_softc *sc, int temp)
3260{
3261	struct ifnet *ifp = sc->sc_ifp;
3262	struct ieee80211com *ic = ifp->if_l2com;
3263	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3264
3265	/* sanity-check read value */
3266	if (temp < -260 || temp > 25) {
3267		/* this can't be correct, ignore */
3268		DPRINTFN(WPI_DEBUG_TEMP,
3269		    ("out-of-range temperature reported: %d\n", temp));
3270		return;
3271	}
3272
3273	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3274
3275	/* adjust Tx power if need be */
3276	if (abs(temp - sc->temp) <= 6)
3277		return;
3278
3279	sc->temp = temp;
3280
3281	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3282		/* just warn, too bad for the automatic calibration... */
3283		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3284	}
3285}
3286
3287/**
3288 * Read the eeprom to find out what channels are valid for the given
3289 * band and update net80211 with what we find.
3290 */
3291static void
3292wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3293{
3294	struct ifnet *ifp = sc->sc_ifp;
3295	struct ieee80211com *ic = ifp->if_l2com;
3296	const struct wpi_chan_band *band = &wpi_bands[n];
3297	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3298	struct ieee80211_channel *c;
3299	int chan, i, passive;
3300
3301	wpi_read_prom_data(sc, band->addr, channels,
3302	    band->nchan * sizeof (struct wpi_eeprom_chan));
3303
3304	for (i = 0; i < band->nchan; i++) {
3305		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3306			DPRINTFN(WPI_DEBUG_HW,
3307			    ("Channel Not Valid: %d, band %d\n",
3308			     band->chan[i],n));
3309			continue;
3310		}
3311
3312		passive = 0;
3313		chan = band->chan[i];
3314		c = &ic->ic_channels[ic->ic_nchans++];
3315
3316		/* is active scan allowed on this channel? */
3317		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3318			passive = IEEE80211_CHAN_PASSIVE;
3319		}
3320
3321		if (n == 0) {	/* 2GHz band */
3322			c->ic_ieee = chan;
3323			c->ic_freq = ieee80211_ieee2mhz(chan,
3324			    IEEE80211_CHAN_2GHZ);
3325			c->ic_flags = IEEE80211_CHAN_B | passive;
3326
3327			c = &ic->ic_channels[ic->ic_nchans++];
3328			c->ic_ieee = chan;
3329			c->ic_freq = ieee80211_ieee2mhz(chan,
3330			    IEEE80211_CHAN_2GHZ);
3331			c->ic_flags = IEEE80211_CHAN_G | passive;
3332
3333		} else {	/* 5GHz band */
3334			/*
3335			 * Some 3945ABG adapters support channels 7, 8, 11
3336			 * and 12 in the 2GHz *and* 5GHz bands.
3337			 * Because of limitations in our net80211(9) stack,
3338			 * we can't support these channels in 5GHz band.
3339			 * XXX not true; just need to map to proper frequency
3340			 */
3341			if (chan <= 14)
3342				continue;
3343
3344			c->ic_ieee = chan;
3345			c->ic_freq = ieee80211_ieee2mhz(chan,
3346			    IEEE80211_CHAN_5GHZ);
3347			c->ic_flags = IEEE80211_CHAN_A | passive;
3348		}
3349
3350		/* save maximum allowed power for this channel */
3351		sc->maxpwr[chan] = channels[i].maxpwr;
3352
3353#if 0
3354		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3355		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3356		//ic->ic_channels[chan].ic_minpower...
3357		//ic->ic_channels[chan].ic_maxregtxpower...
3358#endif
3359
3360		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3361		    " passive=%d, offset %d\n", chan, c->ic_freq,
3362		    channels[i].flags, sc->maxpwr[chan],
3363		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3364		    ic->ic_nchans));
3365	}
3366}
3367
3368static void
3369wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3370{
3371	struct wpi_power_group *group = &sc->groups[n];
3372	struct wpi_eeprom_group rgroup;
3373	int i;
3374
3375	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3376	    sizeof rgroup);
3377
3378	/* save power group information */
3379	group->chan   = rgroup.chan;
3380	group->maxpwr = rgroup.maxpwr;
3381	/* temperature at which the samples were taken */
3382	group->temp   = (int16_t)le16toh(rgroup.temp);
3383
3384	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3385		    group->chan, group->maxpwr, group->temp));
3386
3387	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3388		group->samples[i].index = rgroup.samples[i].index;
3389		group->samples[i].power = rgroup.samples[i].power;
3390
3391		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3392			    group->samples[i].index, group->samples[i].power));
3393	}
3394}
3395
3396/*
3397 * Update Tx power to match what is defined for channel `c'.
3398 */
3399static int
3400wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3401{
3402	struct ifnet *ifp = sc->sc_ifp;
3403	struct ieee80211com *ic = ifp->if_l2com;
3404	struct wpi_power_group *group;
3405	struct wpi_cmd_txpower txpower;
3406	u_int chan;
3407	int i;
3408
3409	/* get channel number */
3410	chan = ieee80211_chan2ieee(ic, c);
3411
3412	/* find the power group to which this channel belongs */
3413	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3414		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3415			if (chan <= group->chan)
3416				break;
3417	} else
3418		group = &sc->groups[0];
3419
3420	memset(&txpower, 0, sizeof txpower);
3421	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3422	txpower.channel = htole16(chan);
3423
3424	/* set Tx power for all OFDM and CCK rates */
3425	for (i = 0; i <= 11 ; i++) {
3426		/* retrieve Tx power for this channel/rate combination */
3427		int idx = wpi_get_power_index(sc, group, c,
3428		    wpi_ridx_to_rate[i]);
3429
3430		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3431
3432		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3433			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3434			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3435		} else {
3436			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3437			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3438		}
3439		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3440			    chan, wpi_ridx_to_rate[i], idx));
3441	}
3442
3443	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3444}
3445
3446/*
3447 * Determine Tx power index for a given channel/rate combination.
3448 * This takes into account the regulatory information from EEPROM and the
3449 * current temperature.
3450 */
3451static int
3452wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3453    struct ieee80211_channel *c, int rate)
3454{
3455/* fixed-point arithmetic division using a n-bit fractional part */
3456#define fdivround(a, b, n)      \
3457	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3458
3459/* linear interpolation */
3460#define interpolate(x, x1, y1, x2, y2, n)       \
3461	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3462
3463	struct ifnet *ifp = sc->sc_ifp;
3464	struct ieee80211com *ic = ifp->if_l2com;
3465	struct wpi_power_sample *sample;
3466	int pwr, idx;
3467	u_int chan;
3468
3469	/* get channel number */
3470	chan = ieee80211_chan2ieee(ic, c);
3471
3472	/* default power is group's maximum power - 3dB */
3473	pwr = group->maxpwr / 2;
3474
3475	/* decrease power for highest OFDM rates to reduce distortion */
3476	switch (rate) {
3477		case 72:	/* 36Mb/s */
3478			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3479			break;
3480		case 96:	/* 48Mb/s */
3481			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3482			break;
3483		case 108:	/* 54Mb/s */
3484			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3485			break;
3486	}
3487
3488	/* never exceed channel's maximum allowed Tx power */
3489	pwr = min(pwr, sc->maxpwr[chan]);
3490
3491	/* retrieve power index into gain tables from samples */
3492	for (sample = group->samples; sample < &group->samples[3]; sample++)
3493		if (pwr > sample[1].power)
3494			break;
3495	/* fixed-point linear interpolation using a 19-bit fractional part */
3496	idx = interpolate(pwr, sample[0].power, sample[0].index,
3497	    sample[1].power, sample[1].index, 19);
3498
3499	/*
3500	 *  Adjust power index based on current temperature
3501	 *	- if colder than factory-calibrated: decreate output power
3502	 *	- if warmer than factory-calibrated: increase output power
3503	 */
3504	idx -= (sc->temp - group->temp) * 11 / 100;
3505
3506	/* decrease power for CCK rates (-5dB) */
3507	if (!WPI_RATE_IS_OFDM(rate))
3508		idx += 10;
3509
3510	/* keep power index in a valid range */
3511	if (idx < 0)
3512		return 0;
3513	if (idx > WPI_MAX_PWR_INDEX)
3514		return WPI_MAX_PWR_INDEX;
3515	return idx;
3516
3517#undef interpolate
3518#undef fdivround
3519}
3520
3521/**
3522 * Called by net80211 framework to indicate that a scan
3523 * is starting. This function doesn't actually do the scan,
3524 * wpi_scan_curchan starts things off. This function is more
3525 * of an early warning from the framework we should get ready
3526 * for the scan.
3527 */
3528static void
3529wpi_scan_start(struct ieee80211com *ic)
3530{
3531	struct ifnet *ifp = ic->ic_ifp;
3532	struct wpi_softc *sc = ifp->if_softc;
3533
3534	WPI_LOCK(sc);
3535	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3536	WPI_UNLOCK(sc);
3537}
3538
3539/**
3540 * Called by the net80211 framework, indicates that the
3541 * scan has ended. If there is a scan in progress on the card
3542 * then it should be aborted.
3543 */
3544static void
3545wpi_scan_end(struct ieee80211com *ic)
3546{
3547	/* XXX ignore */
3548}
3549
3550/**
3551 * Called by the net80211 framework to indicate to the driver
3552 * that the channel should be changed
3553 */
3554static void
3555wpi_set_channel(struct ieee80211com *ic)
3556{
3557	struct ifnet *ifp = ic->ic_ifp;
3558	struct wpi_softc *sc = ifp->if_softc;
3559	int error;
3560
3561	/*
3562	 * Only need to set the channel in Monitor mode. AP scanning and auth
3563	 * are already taken care of by their respective firmware commands.
3564	 */
3565	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3566		WPI_LOCK(sc);
3567		error = wpi_config(sc);
3568		WPI_UNLOCK(sc);
3569		if (error != 0)
3570			device_printf(sc->sc_dev,
3571			    "error %d settting channel\n", error);
3572	}
3573}
3574
3575/**
3576 * Called by net80211 to indicate that we need to scan the current
3577 * channel. The channel is previously be set via the wpi_set_channel
3578 * callback.
3579 */
3580static void
3581wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3582{
3583	struct ieee80211vap *vap = ss->ss_vap;
3584	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3585	struct wpi_softc *sc = ifp->if_softc;
3586
3587	WPI_LOCK(sc);
3588	if (wpi_scan(sc))
3589		ieee80211_cancel_scan(vap);
3590	WPI_UNLOCK(sc);
3591}
3592
3593/**
3594 * Called by the net80211 framework to indicate
3595 * the minimum dwell time has been met, terminate the scan.
3596 * We don't actually terminate the scan as the firmware will notify
3597 * us when it's finished and we have no way to interrupt it.
3598 */
3599static void
3600wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3601{
3602	/* NB: don't try to abort scan; wait for firmware to finish */
3603}
3604
3605static void
3606wpi_hwreset(void *arg, int pending)
3607{
3608	struct wpi_softc *sc = arg;
3609
3610	WPI_LOCK(sc);
3611	wpi_init_locked(sc, 0);
3612	WPI_UNLOCK(sc);
3613}
3614
3615static void
3616wpi_rfreset(void *arg, int pending)
3617{
3618	struct wpi_softc *sc = arg;
3619
3620	WPI_LOCK(sc);
3621	wpi_rfkill_resume(sc);
3622	WPI_UNLOCK(sc);
3623}
3624
3625/*
3626 * Allocate DMA-safe memory for firmware transfer.
3627 */
3628static int
3629wpi_alloc_fwmem(struct wpi_softc *sc)
3630{
3631	/* allocate enough contiguous space to store text and data */
3632	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3633	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3634	    BUS_DMA_NOWAIT);
3635}
3636
3637static void
3638wpi_free_fwmem(struct wpi_softc *sc)
3639{
3640	wpi_dma_contig_free(&sc->fw_dma);
3641}
3642
3643/**
3644 * Called every second, wpi_watchdog used by the watch dog timer
3645 * to check that the card is still alive
3646 */
3647static void
3648wpi_watchdog(void *arg)
3649{
3650	struct wpi_softc *sc = arg;
3651	struct ifnet *ifp = sc->sc_ifp;
3652	struct ieee80211com *ic = ifp->if_l2com;
3653	uint32_t tmp;
3654
3655	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3656
3657	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3658		/* No need to lock firmware memory */
3659		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3660
3661		if ((tmp & 0x1) == 0) {
3662			/* Radio kill switch is still off */
3663			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3664			return;
3665		}
3666
3667		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3668		ieee80211_runtask(ic, &sc->sc_radiotask);
3669		return;
3670	}
3671
3672	if (sc->sc_tx_timer > 0) {
3673		if (--sc->sc_tx_timer == 0) {
3674			device_printf(sc->sc_dev,"device timeout\n");
3675			ifp->if_oerrors++;
3676			ieee80211_runtask(ic, &sc->sc_restarttask);
3677		}
3678	}
3679	if (sc->sc_scan_timer > 0) {
3680		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3681		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3682			device_printf(sc->sc_dev,"scan timeout\n");
3683			ieee80211_cancel_scan(vap);
3684			ieee80211_runtask(ic, &sc->sc_restarttask);
3685		}
3686	}
3687
3688	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3689		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3690}
3691
3692#ifdef WPI_DEBUG
3693static const char *wpi_cmd_str(int cmd)
3694{
3695	switch (cmd) {
3696	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3697	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3698	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3699	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3700	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3701	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3702	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3703	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3704	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3705	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3706	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3707	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3708	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3709	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3710
3711	default:
3712		KASSERT(1, ("Unknown Command: %d\n", cmd));
3713		return "UNKNOWN CMD";	/* Make the compiler happy */
3714	}
3715}
3716#endif
3717
3718MODULE_DEPEND(wpi, pci,  1, 1, 1);
3719MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3720MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3721