if_wpi.c revision 216557
1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 216557 2010-12-19 10:36:06Z bschmidt $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112#define	WPI_DEBUG_SET	(wpi_debug != 0)
113
114enum {
115	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127	WPI_DEBUG_ANY		= 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET	0
138#endif
139
140struct wpi_ident {
141	uint16_t	vendor;
142	uint16_t	device;
143	uint16_t	subdevice;
144	const char	*name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148	/* The below entries support ABG regardless of the subid */
149	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151	/* The below entries only support BG */
152	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160		    const char name[IFNAMSIZ], int unit, int opmode,
161		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void	wpi_vap_delete(struct ieee80211vap *);
164static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165		    void **, bus_size_t, bus_size_t, int);
166static void	wpi_dma_contig_free(struct wpi_dma_info *);
167static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int	wpi_alloc_shared(struct wpi_softc *);
169static void	wpi_free_shared(struct wpi_softc *);
170static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174		    int, int);
175static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static void	wpi_newassoc(struct ieee80211_node *, int);
178static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179static void	wpi_mem_lock(struct wpi_softc *);
180static void	wpi_mem_unlock(struct wpi_softc *);
181static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184		    const uint32_t *, int);
185static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186static int	wpi_alloc_fwmem(struct wpi_softc *);
187static void	wpi_free_fwmem(struct wpi_softc *);
188static int	wpi_load_firmware(struct wpi_softc *);
189static void	wpi_unload_firmware(struct wpi_softc *);
190static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192		    struct wpi_rx_data *);
193static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195static void	wpi_notif_intr(struct wpi_softc *);
196static void	wpi_intr(void *);
197static uint8_t	wpi_plcp_signal(int);
198static void	wpi_watchdog(void *);
199static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200		    struct ieee80211_node *, int);
201static void	wpi_start(struct ifnet *);
202static void	wpi_start_locked(struct ifnet *);
203static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204		    const struct ieee80211_bpf_params *);
205static void	wpi_scan_start(struct ieee80211com *);
206static void	wpi_scan_end(struct ieee80211com *);
207static void	wpi_set_channel(struct ieee80211com *);
208static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211static void	wpi_read_eeprom(struct wpi_softc *,
212		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216static int	wpi_wme_update(struct ieee80211com *);
217static int	wpi_mrr_setup(struct wpi_softc *);
218static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220#if 0
221static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222#endif
223static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225static int	wpi_scan(struct wpi_softc *);
226static int	wpi_config(struct wpi_softc *);
227static void	wpi_stop_master(struct wpi_softc *);
228static int	wpi_power_up(struct wpi_softc *);
229static int	wpi_reset(struct wpi_softc *);
230static void	wpi_hwreset(void *, int);
231static void	wpi_rfreset(void *, int);
232static void	wpi_hw_config(struct wpi_softc *);
233static void	wpi_init(void *);
234static void	wpi_init_locked(struct wpi_softc *, int);
235static void	wpi_stop(struct wpi_softc *);
236static void	wpi_stop_locked(struct wpi_softc *);
237
238static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239		    int);
240static void	wpi_calib_timeout(void *);
241static void	wpi_power_calibration(struct wpi_softc *, int);
242static int	wpi_get_power_index(struct wpi_softc *,
243		    struct wpi_power_group *, struct ieee80211_channel *, int);
244#ifdef WPI_DEBUG
245static const char *wpi_cmd_str(int);
246#endif
247static int wpi_probe(device_t);
248static int wpi_attach(device_t);
249static int wpi_detach(device_t);
250static int wpi_shutdown(device_t);
251static int wpi_suspend(device_t);
252static int wpi_resume(device_t);
253
254
255static device_method_t wpi_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		wpi_probe),
258	DEVMETHOD(device_attach,	wpi_attach),
259	DEVMETHOD(device_detach,	wpi_detach),
260	DEVMETHOD(device_shutdown,	wpi_shutdown),
261	DEVMETHOD(device_suspend,	wpi_suspend),
262	DEVMETHOD(device_resume,	wpi_resume),
263
264	{ 0, 0 }
265};
266
267static driver_t wpi_driver = {
268	"wpi",
269	wpi_methods,
270	sizeof (struct wpi_softc)
271};
272
273static devclass_t wpi_devclass;
274
275DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276
277static const uint8_t wpi_ridx_to_plcp[] = {
278	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279	/* R1-R4 (ral/ural is R4-R1) */
280	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281	/* CCK: device-dependent */
282	10, 20, 55, 110
283};
284static const uint8_t wpi_ridx_to_rate[] = {
285	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286	2, 4, 11, 22 /*CCK */
287};
288
289
290static int
291wpi_probe(device_t dev)
292{
293	const struct wpi_ident *ident;
294
295	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296		if (pci_get_vendor(dev) == ident->vendor &&
297		    pci_get_device(dev) == ident->device) {
298			device_set_desc(dev, ident->name);
299			return 0;
300		}
301	}
302	return ENXIO;
303}
304
305/**
306 * Load the firmare image from disk to the allocated dma buffer.
307 * we also maintain the reference to the firmware pointer as there
308 * is times where we may need to reload the firmware but we are not
309 * in a context that can access the filesystem (ie taskq cause by restart)
310 *
311 * @return 0 on success, an errno on failure
312 */
313static int
314wpi_load_firmware(struct wpi_softc *sc)
315{
316	const struct firmware *fp;
317	struct wpi_dma_info *dma = &sc->fw_dma;
318	const struct wpi_firmware_hdr *hdr;
319	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321	int error;
322
323	DPRINTFN(WPI_DEBUG_FIRMWARE,
324	    ("Attempting Loading Firmware from wpi_fw module\n"));
325
326	WPI_UNLOCK(sc);
327
328	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329		device_printf(sc->sc_dev,
330		    "could not load firmware image 'wpifw'\n");
331		error = ENOENT;
332		WPI_LOCK(sc);
333		goto fail;
334	}
335
336	fp = sc->fw_fp;
337
338	WPI_LOCK(sc);
339
340	/* Validate the firmware is minimum a particular version */
341	if (fp->version < WPI_FW_MINVERSION) {
342	    device_printf(sc->sc_dev,
343			   "firmware version is too old. Need %d, got %d\n",
344			   WPI_FW_MINVERSION,
345			   fp->version);
346	    error = ENXIO;
347	    goto fail;
348	}
349
350	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351		device_printf(sc->sc_dev,
352		    "firmware file too short: %zu bytes\n", fp->datasize);
353		error = ENXIO;
354		goto fail;
355	}
356
357	hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362	rtextsz = le32toh(hdr->rtextsz);
363	rdatasz = le32toh(hdr->rdatasz);
364	itextsz = le32toh(hdr->itextsz);
365	idatasz = le32toh(hdr->idatasz);
366	btextsz = le32toh(hdr->btextsz);
367
368	/* check that all firmware segments are present */
369	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371		device_printf(sc->sc_dev,
372		    "firmware file too short: %zu bytes\n", fp->datasize);
373		error = ENXIO; /* XXX appropriate error code? */
374		goto fail;
375	}
376
377	/* get pointers to firmware segments */
378	rtext = (const uint8_t *)(hdr + 1);
379	rdata = rtext + rtextsz;
380	itext = rdata + rdatasz;
381	idata = itext + itextsz;
382	btext = idata + idatasz;
383
384	DPRINTFN(WPI_DEBUG_FIRMWARE,
385	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387	     (le32toh(hdr->version) & 0xff000000) >> 24,
388	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
389	     (le32toh(hdr->version) & 0x0000ffff),
390	     rtextsz, rdatasz,
391	     itextsz, idatasz, btextsz));
392
393	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399	/* sanity checks */
400	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405	    (btextsz & 3) != 0) {
406		device_printf(sc->sc_dev, "firmware invalid\n");
407		error = EINVAL;
408		goto fail;
409	}
410
411	/* copy initialization images into pre-allocated DMA-safe memory */
412	memcpy(dma->vaddr, idata, idatasz);
413	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417	/* tell adapter where to find initialization images */
418	wpi_mem_lock(sc);
419	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424	wpi_mem_unlock(sc);
425
426	/* load firmware boot code */
427	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428	    device_printf(sc->sc_dev, "Failed to load microcode\n");
429	    goto fail;
430	}
431
432	/* now press "execute" */
433	WPI_WRITE(sc, WPI_RESET, 0);
434
435	/* wait at most one second for the first alive notification */
436	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437		device_printf(sc->sc_dev,
438		    "timeout waiting for adapter to initialize\n");
439		goto fail;
440	}
441
442	/* copy runtime images into pre-allocated DMA-sage memory */
443	memcpy(dma->vaddr, rdata, rdatasz);
444	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447	/* tell adapter where to find runtime images */
448	wpi_mem_lock(sc);
449	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454	wpi_mem_unlock(sc);
455
456	/* wait at most one second for the first alive notification */
457	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458		device_printf(sc->sc_dev,
459		    "timeout waiting for adapter to initialize2\n");
460		goto fail;
461	}
462
463	DPRINTFN(WPI_DEBUG_FIRMWARE,
464	    ("Firmware loaded to driver successfully\n"));
465	return error;
466fail:
467	wpi_unload_firmware(sc);
468	return error;
469}
470
471/**
472 * Free the referenced firmware image
473 */
474static void
475wpi_unload_firmware(struct wpi_softc *sc)
476{
477
478	if (sc->fw_fp) {
479		WPI_UNLOCK(sc);
480		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481		WPI_LOCK(sc);
482		sc->fw_fp = NULL;
483	}
484}
485
486static int
487wpi_attach(device_t dev)
488{
489	struct wpi_softc *sc = device_get_softc(dev);
490	struct ifnet *ifp;
491	struct ieee80211com *ic;
492	int ac, error, supportsa = 1;
493	uint32_t tmp;
494	const struct wpi_ident *ident;
495	uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497	sc->sc_dev = dev;
498
499	if (bootverbose || WPI_DEBUG_SET)
500	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502	/*
503	 * Some card's only support 802.11b/g not a, check to see if
504	 * this is one such card. A 0x0 in the subdevice table indicates
505	 * the entire subdevice range is to be ignored.
506	 */
507	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508		if (ident->subdevice &&
509		    pci_get_subdevice(dev) == ident->subdevice) {
510		    supportsa = 0;
511		    break;
512		}
513	}
514
515	/* Create the tasks that can be queued */
516	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519	WPI_LOCK_INIT(sc);
520
521	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525		device_printf(dev, "chip is in D%d power mode "
526		    "-- setting to D0\n", pci_get_powerstate(dev));
527		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528	}
529
530	/* disable the retry timeout register */
531	pci_write_config(dev, 0x41, 0, 1);
532
533	/* enable bus-mastering */
534	pci_enable_busmaster(dev);
535
536	sc->mem_rid = PCIR_BAR(0);
537	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538	    RF_ACTIVE);
539	if (sc->mem == NULL) {
540		device_printf(dev, "could not allocate memory resource\n");
541		error = ENOMEM;
542		goto fail;
543	}
544
545	sc->sc_st = rman_get_bustag(sc->mem);
546	sc->sc_sh = rman_get_bushandle(sc->mem);
547
548	sc->irq_rid = 0;
549	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550	    RF_ACTIVE | RF_SHAREABLE);
551	if (sc->irq == NULL) {
552		device_printf(dev, "could not allocate interrupt resource\n");
553		error = ENOMEM;
554		goto fail;
555	}
556
557	/*
558	 * Allocate DMA memory for firmware transfers.
559	 */
560	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561		printf(": could not allocate firmware memory\n");
562		error = ENOMEM;
563		goto fail;
564	}
565
566	/*
567	 * Put adapter into a known state.
568	 */
569	if ((error = wpi_reset(sc)) != 0) {
570		device_printf(dev, "could not reset adapter\n");
571		goto fail;
572	}
573
574	wpi_mem_lock(sc);
575	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576	if (bootverbose || WPI_DEBUG_SET)
577	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578
579	wpi_mem_unlock(sc);
580
581	/* Allocate shared page */
582	if ((error = wpi_alloc_shared(sc)) != 0) {
583		device_printf(dev, "could not allocate shared page\n");
584		goto fail;
585	}
586
587	/* tx data queues  - 4 for QoS purposes */
588	for (ac = 0; ac < WME_NUM_AC; ac++) {
589		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590		if (error != 0) {
591		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592		    goto fail;
593		}
594	}
595
596	/* command queue to talk to the card's firmware */
597	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598	if (error != 0) {
599		device_printf(dev, "could not allocate command ring\n");
600		goto fail;
601	}
602
603	/* receive data queue */
604	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605	if (error != 0) {
606		device_printf(dev, "could not allocate Rx ring\n");
607		goto fail;
608	}
609
610	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611	if (ifp == NULL) {
612		device_printf(dev, "can not if_alloc()\n");
613		error = ENOMEM;
614		goto fail;
615	}
616	ic = ifp->if_l2com;
617
618	ic->ic_ifp = ifp;
619	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
620	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
621
622	/* set device capabilities */
623	ic->ic_caps =
624		  IEEE80211_C_STA		/* station mode supported */
625		| IEEE80211_C_MONITOR		/* monitor mode supported */
626		| IEEE80211_C_TXPMGT		/* tx power management */
627		| IEEE80211_C_SHSLOT		/* short slot time supported */
628		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
629		| IEEE80211_C_WPA		/* 802.11i */
630/* XXX looks like WME is partly supported? */
631#if 0
632		| IEEE80211_C_IBSS		/* IBSS mode support */
633		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
634		| IEEE80211_C_WME		/* 802.11e */
635		| IEEE80211_C_HOSTAP		/* Host access point mode */
636#endif
637		;
638
639	/*
640	 * Read in the eeprom and also setup the channels for
641	 * net80211. We don't set the rates as net80211 does this for us
642	 */
643	wpi_read_eeprom(sc, macaddr);
644
645	if (bootverbose || WPI_DEBUG_SET) {
646	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
648			  sc->type > 1 ? 'B': '?');
649	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652			  supportsa ? "does" : "does not");
653
654	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655	       what sc->rev really represents - benjsc 20070615 */
656	}
657
658	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659	ifp->if_softc = sc;
660	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661	ifp->if_init = wpi_init;
662	ifp->if_ioctl = wpi_ioctl;
663	ifp->if_start = wpi_start;
664	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666	IFQ_SET_READY(&ifp->if_snd);
667
668	ieee80211_ifattach(ic, macaddr);
669	/* override default methods */
670	ic->ic_raw_xmit = wpi_raw_xmit;
671	ic->ic_newassoc = wpi_newassoc;
672	ic->ic_wme.wme_update = wpi_wme_update;
673	ic->ic_scan_start = wpi_scan_start;
674	ic->ic_scan_end = wpi_scan_end;
675	ic->ic_set_channel = wpi_set_channel;
676	ic->ic_scan_curchan = wpi_scan_curchan;
677	ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679	ic->ic_vap_create = wpi_vap_create;
680	ic->ic_vap_delete = wpi_vap_delete;
681
682	ieee80211_radiotap_attach(ic,
683	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684		WPI_TX_RADIOTAP_PRESENT,
685	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686		WPI_RX_RADIOTAP_PRESENT);
687
688	/*
689	 * Hook our interrupt after all initialization is complete.
690	 */
691	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692	    NULL, wpi_intr, sc, &sc->sc_ih);
693	if (error != 0) {
694		device_printf(dev, "could not set up interrupt\n");
695		goto fail;
696	}
697
698	if (bootverbose)
699		ieee80211_announce(ic);
700#ifdef XXX_DEBUG
701	ieee80211_announce_channels(ic);
702#endif
703	return 0;
704
705fail:	wpi_detach(dev);
706	return ENXIO;
707}
708
709static int
710wpi_detach(device_t dev)
711{
712	struct wpi_softc *sc = device_get_softc(dev);
713	struct ifnet *ifp = sc->sc_ifp;
714	struct ieee80211com *ic;
715	int ac;
716
717	if (ifp != NULL) {
718		ic = ifp->if_l2com;
719
720		ieee80211_draintask(ic, &sc->sc_restarttask);
721		ieee80211_draintask(ic, &sc->sc_radiotask);
722		wpi_stop(sc);
723		callout_drain(&sc->watchdog_to);
724		callout_drain(&sc->calib_to);
725		ieee80211_ifdetach(ic);
726	}
727
728	WPI_LOCK(sc);
729	if (sc->txq[0].data_dmat) {
730		for (ac = 0; ac < WME_NUM_AC; ac++)
731			wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733		wpi_free_tx_ring(sc, &sc->cmdq);
734		wpi_free_rx_ring(sc, &sc->rxq);
735		wpi_free_shared(sc);
736	}
737
738	if (sc->fw_fp != NULL) {
739		wpi_unload_firmware(sc);
740	}
741
742	if (sc->fw_dma.tag)
743		wpi_free_fwmem(sc);
744	WPI_UNLOCK(sc);
745
746	if (sc->irq != NULL) {
747		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749	}
750
751	if (sc->mem != NULL)
752		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754	if (ifp != NULL)
755		if_free(ifp);
756
757	WPI_LOCK_DESTROY(sc);
758
759	return 0;
760}
761
762static struct ieee80211vap *
763wpi_vap_create(struct ieee80211com *ic,
764	const char name[IFNAMSIZ], int unit, int opmode, int flags,
765	const uint8_t bssid[IEEE80211_ADDR_LEN],
766	const uint8_t mac[IEEE80211_ADDR_LEN])
767{
768	struct wpi_vap *wvp;
769	struct ieee80211vap *vap;
770
771	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772		return NULL;
773	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774	    M_80211_VAP, M_NOWAIT | M_ZERO);
775	if (wvp == NULL)
776		return NULL;
777	vap = &wvp->vap;
778	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779	/* override with driver methods */
780	wvp->newstate = vap->iv_newstate;
781	vap->iv_newstate = wpi_newstate;
782
783	ieee80211_ratectl_init(vap);
784	/* complete setup */
785	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786	ic->ic_opmode = opmode;
787	return vap;
788}
789
790static void
791wpi_vap_delete(struct ieee80211vap *vap)
792{
793	struct wpi_vap *wvp = WPI_VAP(vap);
794
795	ieee80211_ratectl_deinit(vap);
796	ieee80211_vap_detach(vap);
797	free(wvp, M_80211_VAP);
798}
799
800static void
801wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802{
803	if (error != 0)
804		return;
805
806	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808	*(bus_addr_t *)arg = segs[0].ds_addr;
809}
810
811/*
812 * Allocates a contiguous block of dma memory of the requested size and
813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814 * allocations greater than 4096 may fail. Hence if the requested alignment is
815 * greater we allocate 'alignment' size extra memory and shift the vaddr and
816 * paddr after the dma load. This bypasses the problem at the cost of a little
817 * more memory.
818 */
819static int
820wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822{
823	int error;
824	bus_size_t align;
825	bus_size_t reqsize;
826
827	DPRINTFN(WPI_DEBUG_DMA,
828	    ("Size: %zd - alignment %zd\n", size, alignment));
829
830	dma->size = size;
831	dma->tag = NULL;
832
833	if (alignment > 4096) {
834		align = PAGE_SIZE;
835		reqsize = size + alignment;
836	} else {
837		align = alignment;
838		reqsize = size;
839	}
840	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842	    NULL, NULL, reqsize,
843	    1, reqsize, flags,
844	    NULL, NULL, &dma->tag);
845	if (error != 0) {
846		device_printf(sc->sc_dev,
847		    "could not create shared page DMA tag\n");
848		goto fail;
849	}
850	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851	    flags | BUS_DMA_ZERO, &dma->map);
852	if (error != 0) {
853		device_printf(sc->sc_dev,
854		    "could not allocate shared page DMA memory\n");
855		goto fail;
856	}
857
858	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861	/* Save the original pointers so we can free all the memory */
862	dma->paddr = dma->paddr_start;
863	dma->vaddr = dma->vaddr_start;
864
865	/*
866	 * Check the alignment and increment by 4096 until we get the
867	 * requested alignment. Fail if can't obtain the alignment
868	 * we requested.
869	 */
870	if ((dma->paddr & (alignment -1 )) != 0) {
871		int i;
872
873		for (i = 0; i < alignment / 4096; i++) {
874			if ((dma->paddr & (alignment - 1 )) == 0)
875				break;
876			dma->paddr += 4096;
877			dma->vaddr += 4096;
878		}
879		if (i == alignment / 4096) {
880			device_printf(sc->sc_dev,
881			    "alignment requirement was not satisfied\n");
882			goto fail;
883		}
884	}
885
886	if (error != 0) {
887		device_printf(sc->sc_dev,
888		    "could not load shared page DMA map\n");
889		goto fail;
890	}
891
892	if (kvap != NULL)
893		*kvap = dma->vaddr;
894
895	return 0;
896
897fail:
898	wpi_dma_contig_free(dma);
899	return error;
900}
901
902static void
903wpi_dma_contig_free(struct wpi_dma_info *dma)
904{
905	if (dma->tag) {
906		if (dma->map != NULL) {
907			if (dma->paddr_start != 0) {
908				bus_dmamap_sync(dma->tag, dma->map,
909				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910				bus_dmamap_unload(dma->tag, dma->map);
911			}
912			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913		}
914		bus_dma_tag_destroy(dma->tag);
915	}
916}
917
918/*
919 * Allocate a shared page between host and NIC.
920 */
921static int
922wpi_alloc_shared(struct wpi_softc *sc)
923{
924	int error;
925
926	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927	    (void **)&sc->shared, sizeof (struct wpi_shared),
928	    PAGE_SIZE,
929	    BUS_DMA_NOWAIT);
930
931	if (error != 0) {
932		device_printf(sc->sc_dev,
933		    "could not allocate shared area DMA memory\n");
934	}
935
936	return error;
937}
938
939static void
940wpi_free_shared(struct wpi_softc *sc)
941{
942	wpi_dma_contig_free(&sc->shared_dma);
943}
944
945static int
946wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947{
948
949	int i, error;
950
951	ring->cur = 0;
952
953	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957	if (error != 0) {
958		device_printf(sc->sc_dev,
959		    "%s: could not allocate rx ring DMA memory, error %d\n",
960		    __func__, error);
961		goto fail;
962	}
963
964        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965	    BUS_SPACE_MAXADDR_32BIT,
966            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968        if (error != 0) {
969                device_printf(sc->sc_dev,
970		    "%s: bus_dma_tag_create_failed, error %d\n",
971		    __func__, error);
972                goto fail;
973        }
974
975	/*
976	 * Setup Rx buffers.
977	 */
978	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979		struct wpi_rx_data *data = &ring->data[i];
980		struct mbuf *m;
981		bus_addr_t paddr;
982
983		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984		if (error != 0) {
985			device_printf(sc->sc_dev,
986			    "%s: bus_dmamap_create failed, error %d\n",
987			    __func__, error);
988			goto fail;
989		}
990		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991		if (m == NULL) {
992			device_printf(sc->sc_dev,
993			   "%s: could not allocate rx mbuf\n", __func__);
994			error = ENOMEM;
995			goto fail;
996		}
997		/* map page */
998		error = bus_dmamap_load(ring->data_dmat, data->map,
999		    mtod(m, caddr_t), MJUMPAGESIZE,
1000		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001		if (error != 0 && error != EFBIG) {
1002			device_printf(sc->sc_dev,
1003			    "%s: bus_dmamap_load failed, error %d\n",
1004			    __func__, error);
1005			m_freem(m);
1006			error = ENOMEM;	/* XXX unique code */
1007			goto fail;
1008		}
1009		bus_dmamap_sync(ring->data_dmat, data->map,
1010		    BUS_DMASYNC_PREWRITE);
1011
1012		data->m = m;
1013		ring->desc[i] = htole32(paddr);
1014	}
1015	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016	    BUS_DMASYNC_PREWRITE);
1017	return 0;
1018fail:
1019	wpi_free_rx_ring(sc, ring);
1020	return error;
1021}
1022
1023static void
1024wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025{
1026	int ntries;
1027
1028	wpi_mem_lock(sc);
1029
1030	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032	for (ntries = 0; ntries < 100; ntries++) {
1033		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034			break;
1035		DELAY(10);
1036	}
1037
1038	wpi_mem_unlock(sc);
1039
1040#ifdef WPI_DEBUG
1041	if (ntries == 100 && wpi_debug > 0)
1042		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043#endif
1044
1045	ring->cur = 0;
1046}
1047
1048static void
1049wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050{
1051	int i;
1052
1053	wpi_dma_contig_free(&ring->desc_dma);
1054
1055	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056		if (ring->data[i].m != NULL)
1057			m_freem(ring->data[i].m);
1058}
1059
1060static int
1061wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062	int qid)
1063{
1064	struct wpi_tx_data *data;
1065	int i, error;
1066
1067	ring->qid = qid;
1068	ring->count = count;
1069	ring->queued = 0;
1070	ring->cur = 0;
1071	ring->data = NULL;
1072
1073	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076
1077	if (error != 0) {
1078	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079	    goto fail;
1080	}
1081
1082	/* update shared page with ring's base address */
1083	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084
1085	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087		BUS_DMA_NOWAIT);
1088
1089	if (error != 0) {
1090		device_printf(sc->sc_dev,
1091		    "could not allocate tx command DMA memory\n");
1092		goto fail;
1093	}
1094
1095	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096	    M_NOWAIT | M_ZERO);
1097	if (ring->data == NULL) {
1098		device_printf(sc->sc_dev,
1099		    "could not allocate tx data slots\n");
1100		goto fail;
1101	}
1102
1103	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106	    &ring->data_dmat);
1107	if (error != 0) {
1108		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109		goto fail;
1110	}
1111
1112	for (i = 0; i < count; i++) {
1113		data = &ring->data[i];
1114
1115		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116		if (error != 0) {
1117			device_printf(sc->sc_dev,
1118			    "could not create tx buf DMA map\n");
1119			goto fail;
1120		}
1121		bus_dmamap_sync(ring->data_dmat, data->map,
1122		    BUS_DMASYNC_PREWRITE);
1123	}
1124
1125	return 0;
1126
1127fail:
1128	wpi_free_tx_ring(sc, ring);
1129	return error;
1130}
1131
1132static void
1133wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134{
1135	struct wpi_tx_data *data;
1136	int i, ntries;
1137
1138	wpi_mem_lock(sc);
1139
1140	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141	for (ntries = 0; ntries < 100; ntries++) {
1142		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143			break;
1144		DELAY(10);
1145	}
1146#ifdef WPI_DEBUG
1147	if (ntries == 100 && wpi_debug > 0)
1148		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149		    ring->qid);
1150#endif
1151	wpi_mem_unlock(sc);
1152
1153	for (i = 0; i < ring->count; i++) {
1154		data = &ring->data[i];
1155
1156		if (data->m != NULL) {
1157			bus_dmamap_unload(ring->data_dmat, data->map);
1158			m_freem(data->m);
1159			data->m = NULL;
1160		}
1161	}
1162
1163	ring->queued = 0;
1164	ring->cur = 0;
1165}
1166
1167static void
1168wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169{
1170	struct wpi_tx_data *data;
1171	int i;
1172
1173	wpi_dma_contig_free(&ring->desc_dma);
1174	wpi_dma_contig_free(&ring->cmd_dma);
1175
1176	if (ring->data != NULL) {
1177		for (i = 0; i < ring->count; i++) {
1178			data = &ring->data[i];
1179
1180			if (data->m != NULL) {
1181				bus_dmamap_sync(ring->data_dmat, data->map,
1182				    BUS_DMASYNC_POSTWRITE);
1183				bus_dmamap_unload(ring->data_dmat, data->map);
1184				m_freem(data->m);
1185				data->m = NULL;
1186			}
1187		}
1188		free(ring->data, M_DEVBUF);
1189	}
1190
1191	if (ring->data_dmat != NULL)
1192		bus_dma_tag_destroy(ring->data_dmat);
1193}
1194
1195static int
1196wpi_shutdown(device_t dev)
1197{
1198	struct wpi_softc *sc = device_get_softc(dev);
1199
1200	WPI_LOCK(sc);
1201	wpi_stop_locked(sc);
1202	wpi_unload_firmware(sc);
1203	WPI_UNLOCK(sc);
1204
1205	return 0;
1206}
1207
1208static int
1209wpi_suspend(device_t dev)
1210{
1211	struct wpi_softc *sc = device_get_softc(dev);
1212
1213	wpi_stop(sc);
1214	return 0;
1215}
1216
1217static int
1218wpi_resume(device_t dev)
1219{
1220	struct wpi_softc *sc = device_get_softc(dev);
1221	struct ifnet *ifp = sc->sc_ifp;
1222
1223	pci_write_config(dev, 0x41, 0, 1);
1224
1225	if (ifp->if_flags & IFF_UP) {
1226		wpi_init(ifp->if_softc);
1227		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228			wpi_start(ifp);
1229	}
1230	return 0;
1231}
1232
1233/**
1234 * Called by net80211 when ever there is a change to 80211 state machine
1235 */
1236static int
1237wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238{
1239	struct wpi_vap *wvp = WPI_VAP(vap);
1240	struct ieee80211com *ic = vap->iv_ic;
1241	struct ifnet *ifp = ic->ic_ifp;
1242	struct wpi_softc *sc = ifp->if_softc;
1243	int error;
1244
1245	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246		ieee80211_state_name[vap->iv_state],
1247		ieee80211_state_name[nstate], sc->flags));
1248
1249	IEEE80211_UNLOCK(ic);
1250	WPI_LOCK(sc);
1251	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1252		/*
1253		 * On !INIT -> SCAN transitions, we need to clear any possible
1254		 * knowledge about associations.
1255		 */
1256		error = wpi_config(sc);
1257		if (error != 0) {
1258			device_printf(sc->sc_dev,
1259			    "%s: device config failed, error %d\n",
1260			    __func__, error);
1261		}
1262	}
1263	if (nstate == IEEE80211_S_AUTH ||
1264	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1265		/*
1266		 * The node must be registered in the firmware before auth.
1267		 * Also the associd must be cleared on RUN -> ASSOC
1268		 * transitions.
1269		 */
1270		error = wpi_auth(sc, vap);
1271		if (error != 0) {
1272			device_printf(sc->sc_dev,
1273			    "%s: could not move to auth state, error %d\n",
1274			    __func__, error);
1275		}
1276	}
1277	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278		error = wpi_run(sc, vap);
1279		if (error != 0) {
1280			device_printf(sc->sc_dev,
1281			    "%s: could not move to run state, error %d\n",
1282			    __func__, error);
1283		}
1284	}
1285	if (nstate == IEEE80211_S_RUN) {
1286		/* RUN -> RUN transition; just restart the timers */
1287		wpi_calib_timeout(sc);
1288		/* XXX split out rate control timer */
1289	}
1290	WPI_UNLOCK(sc);
1291	IEEE80211_LOCK(ic);
1292	return wvp->newstate(vap, nstate, arg);
1293}
1294
1295/*
1296 * Grab exclusive access to NIC memory.
1297 */
1298static void
1299wpi_mem_lock(struct wpi_softc *sc)
1300{
1301	int ntries;
1302	uint32_t tmp;
1303
1304	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1305	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1306
1307	/* spin until we actually get the lock */
1308	for (ntries = 0; ntries < 100; ntries++) {
1309		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1310			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1311			break;
1312		DELAY(10);
1313	}
1314	if (ntries == 100)
1315		device_printf(sc->sc_dev, "could not lock memory\n");
1316}
1317
1318/*
1319 * Release lock on NIC memory.
1320 */
1321static void
1322wpi_mem_unlock(struct wpi_softc *sc)
1323{
1324	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1325	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1326}
1327
1328static uint32_t
1329wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1330{
1331	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1332	return WPI_READ(sc, WPI_READ_MEM_DATA);
1333}
1334
1335static void
1336wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1337{
1338	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1339	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1340}
1341
1342static void
1343wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1344    const uint32_t *data, int wlen)
1345{
1346	for (; wlen > 0; wlen--, data++, addr+=4)
1347		wpi_mem_write(sc, addr, *data);
1348}
1349
1350/*
1351 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1352 * using the traditional bit-bang method. Data is read up until len bytes have
1353 * been obtained.
1354 */
1355static uint16_t
1356wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1357{
1358	int ntries;
1359	uint32_t val;
1360	uint8_t *out = data;
1361
1362	wpi_mem_lock(sc);
1363
1364	for (; len > 0; len -= 2, addr++) {
1365		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1366
1367		for (ntries = 0; ntries < 10; ntries++) {
1368			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1369				break;
1370			DELAY(5);
1371		}
1372
1373		if (ntries == 10) {
1374			device_printf(sc->sc_dev, "could not read EEPROM\n");
1375			return ETIMEDOUT;
1376		}
1377
1378		*out++= val >> 16;
1379		if (len > 1)
1380			*out ++= val >> 24;
1381	}
1382
1383	wpi_mem_unlock(sc);
1384
1385	return 0;
1386}
1387
1388/*
1389 * The firmware text and data segments are transferred to the NIC using DMA.
1390 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1391 * where to find it.  Once the NIC has copied the firmware into its internal
1392 * memory, we can free our local copy in the driver.
1393 */
1394static int
1395wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1396{
1397	int error, ntries;
1398
1399	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1400
1401	size /= sizeof(uint32_t);
1402
1403	wpi_mem_lock(sc);
1404
1405	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1406	    (const uint32_t *)fw, size);
1407
1408	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1409	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1410	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1411
1412	/* run microcode */
1413	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1414
1415	/* wait while the adapter is busy copying the firmware */
1416	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1417		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1418		DPRINTFN(WPI_DEBUG_HW,
1419		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1420		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1421		if (status & WPI_TX_IDLE(6)) {
1422			DPRINTFN(WPI_DEBUG_HW,
1423			    ("Status Match! - ntries = %d\n", ntries));
1424			break;
1425		}
1426		DELAY(10);
1427	}
1428	if (ntries == 1000) {
1429		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1430		error = ETIMEDOUT;
1431	}
1432
1433	/* start the microcode executing */
1434	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1435
1436	wpi_mem_unlock(sc);
1437
1438	return (error);
1439}
1440
1441static void
1442wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1443	struct wpi_rx_data *data)
1444{
1445	struct ifnet *ifp = sc->sc_ifp;
1446	struct ieee80211com *ic = ifp->if_l2com;
1447	struct wpi_rx_ring *ring = &sc->rxq;
1448	struct wpi_rx_stat *stat;
1449	struct wpi_rx_head *head;
1450	struct wpi_rx_tail *tail;
1451	struct ieee80211_node *ni;
1452	struct mbuf *m, *mnew;
1453	bus_addr_t paddr;
1454	int error;
1455
1456	stat = (struct wpi_rx_stat *)(desc + 1);
1457
1458	if (stat->len > WPI_STAT_MAXLEN) {
1459		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1460		ifp->if_ierrors++;
1461		return;
1462	}
1463
1464	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1465	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1466
1467	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1468	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1469	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1470	    (uintmax_t)le64toh(tail->tstamp)));
1471
1472	/* discard Rx frames with bad CRC early */
1473	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1474		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1475		    le32toh(tail->flags)));
1476		ifp->if_ierrors++;
1477		return;
1478	}
1479	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1480		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1481		    le16toh(head->len)));
1482		ifp->if_ierrors++;
1483		return;
1484	}
1485
1486	/* XXX don't need mbuf, just dma buffer */
1487	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1488	if (mnew == NULL) {
1489		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1490		    __func__));
1491		ifp->if_ierrors++;
1492		return;
1493	}
1494	error = bus_dmamap_load(ring->data_dmat, data->map,
1495	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1496	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1497	if (error != 0 && error != EFBIG) {
1498		device_printf(sc->sc_dev,
1499		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1500		m_freem(mnew);
1501		ifp->if_ierrors++;
1502		return;
1503	}
1504	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505
1506	/* finalize mbuf and swap in new one */
1507	m = data->m;
1508	m->m_pkthdr.rcvif = ifp;
1509	m->m_data = (caddr_t)(head + 1);
1510	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1511
1512	data->m = mnew;
1513	/* update Rx descriptor */
1514	ring->desc[ring->cur] = htole32(paddr);
1515
1516	if (ieee80211_radiotap_active(ic)) {
1517		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1518
1519		tap->wr_flags = 0;
1520		tap->wr_chan_freq =
1521			htole16(ic->ic_channels[head->chan].ic_freq);
1522		tap->wr_chan_flags =
1523			htole16(ic->ic_channels[head->chan].ic_flags);
1524		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1525		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1526		tap->wr_tsft = tail->tstamp;
1527		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1528		switch (head->rate) {
1529		/* CCK rates */
1530		case  10: tap->wr_rate =   2; break;
1531		case  20: tap->wr_rate =   4; break;
1532		case  55: tap->wr_rate =  11; break;
1533		case 110: tap->wr_rate =  22; break;
1534		/* OFDM rates */
1535		case 0xd: tap->wr_rate =  12; break;
1536		case 0xf: tap->wr_rate =  18; break;
1537		case 0x5: tap->wr_rate =  24; break;
1538		case 0x7: tap->wr_rate =  36; break;
1539		case 0x9: tap->wr_rate =  48; break;
1540		case 0xb: tap->wr_rate =  72; break;
1541		case 0x1: tap->wr_rate =  96; break;
1542		case 0x3: tap->wr_rate = 108; break;
1543		/* unknown rate: should not happen */
1544		default:  tap->wr_rate =   0;
1545		}
1546		if (le16toh(head->flags) & 0x4)
1547			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1548	}
1549
1550	WPI_UNLOCK(sc);
1551
1552	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1553	if (ni != NULL) {
1554		(void) ieee80211_input(ni, m, stat->rssi, 0);
1555		ieee80211_free_node(ni);
1556	} else
1557		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1558
1559	WPI_LOCK(sc);
1560}
1561
1562static void
1563wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1564{
1565	struct ifnet *ifp = sc->sc_ifp;
1566	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1567	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1568	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1569	struct ieee80211_node *ni = txdata->ni;
1570	struct ieee80211vap *vap = ni->ni_vap;
1571	int retrycnt = 0;
1572
1573	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1574	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1575	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1576	    le32toh(stat->status)));
1577
1578	/*
1579	 * Update rate control statistics for the node.
1580	 * XXX we should not count mgmt frames since they're always sent at
1581	 * the lowest available bit-rate.
1582	 * XXX frames w/o ACK shouldn't be used either
1583	 */
1584	if (stat->ntries > 0) {
1585		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1586		retrycnt = 1;
1587	}
1588	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1589	    &retrycnt, NULL);
1590
1591	/* XXX oerrors should only count errors !maxtries */
1592	if ((le32toh(stat->status) & 0xff) != 1)
1593		ifp->if_oerrors++;
1594	else
1595		ifp->if_opackets++;
1596
1597	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1598	bus_dmamap_unload(ring->data_dmat, txdata->map);
1599	/* XXX handle M_TXCB? */
1600	m_freem(txdata->m);
1601	txdata->m = NULL;
1602	ieee80211_free_node(txdata->ni);
1603	txdata->ni = NULL;
1604
1605	ring->queued--;
1606
1607	sc->sc_tx_timer = 0;
1608	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1609	wpi_start_locked(ifp);
1610}
1611
1612static void
1613wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1614{
1615	struct wpi_tx_ring *ring = &sc->cmdq;
1616	struct wpi_tx_data *data;
1617
1618	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1619				 "type=%s len=%d\n", desc->qid, desc->idx,
1620				 desc->flags, wpi_cmd_str(desc->type),
1621				 le32toh(desc->len)));
1622
1623	if ((desc->qid & 7) != 4)
1624		return;	/* not a command ack */
1625
1626	data = &ring->data[desc->idx];
1627
1628	/* if the command was mapped in a mbuf, free it */
1629	if (data->m != NULL) {
1630		bus_dmamap_unload(ring->data_dmat, data->map);
1631		m_freem(data->m);
1632		data->m = NULL;
1633	}
1634
1635	sc->flags &= ~WPI_FLAG_BUSY;
1636	wakeup(&ring->cmd[desc->idx]);
1637}
1638
1639static void
1640wpi_notif_intr(struct wpi_softc *sc)
1641{
1642	struct ifnet *ifp = sc->sc_ifp;
1643	struct ieee80211com *ic = ifp->if_l2com;
1644	struct wpi_rx_desc *desc;
1645	struct wpi_rx_data *data;
1646	uint32_t hw;
1647
1648	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1649	    BUS_DMASYNC_POSTREAD);
1650
1651	hw = le32toh(sc->shared->next);
1652	while (sc->rxq.cur != hw) {
1653		data = &sc->rxq.data[sc->rxq.cur];
1654
1655		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1656		    BUS_DMASYNC_POSTREAD);
1657		desc = (void *)data->m->m_ext.ext_buf;
1658
1659		DPRINTFN(WPI_DEBUG_NOTIFY,
1660			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1661			  desc->qid,
1662			  desc->idx,
1663			  desc->flags,
1664			  desc->type,
1665			  le32toh(desc->len)));
1666
1667		if (!(desc->qid & 0x80))	/* reply to a command */
1668			wpi_cmd_intr(sc, desc);
1669
1670		switch (desc->type) {
1671		case WPI_RX_DONE:
1672			/* a 802.11 frame was received */
1673			wpi_rx_intr(sc, desc, data);
1674			break;
1675
1676		case WPI_TX_DONE:
1677			/* a 802.11 frame has been transmitted */
1678			wpi_tx_intr(sc, desc);
1679			break;
1680
1681		case WPI_UC_READY:
1682		{
1683			struct wpi_ucode_info *uc =
1684				(struct wpi_ucode_info *)(desc + 1);
1685
1686			/* the microcontroller is ready */
1687			DPRINTF(("microcode alive notification version %x "
1688				"alive %x\n", le32toh(uc->version),
1689				le32toh(uc->valid)));
1690
1691			if (le32toh(uc->valid) != 1) {
1692				device_printf(sc->sc_dev,
1693				    "microcontroller initialization failed\n");
1694				wpi_stop_locked(sc);
1695			}
1696			break;
1697		}
1698		case WPI_STATE_CHANGED:
1699		{
1700			uint32_t *status = (uint32_t *)(desc + 1);
1701
1702			/* enabled/disabled notification */
1703			DPRINTF(("state changed to %x\n", le32toh(*status)));
1704
1705			if (le32toh(*status) & 1) {
1706				device_printf(sc->sc_dev,
1707				    "Radio transmitter is switched off\n");
1708				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1709				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1710				/* Disable firmware commands */
1711				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1712			}
1713			break;
1714		}
1715		case WPI_START_SCAN:
1716		{
1717#ifdef WPI_DEBUG
1718			struct wpi_start_scan *scan =
1719				(struct wpi_start_scan *)(desc + 1);
1720#endif
1721
1722			DPRINTFN(WPI_DEBUG_SCANNING,
1723				 ("scanning channel %d status %x\n",
1724			    scan->chan, le32toh(scan->status)));
1725			break;
1726		}
1727		case WPI_STOP_SCAN:
1728		{
1729#ifdef WPI_DEBUG
1730			struct wpi_stop_scan *scan =
1731				(struct wpi_stop_scan *)(desc + 1);
1732#endif
1733			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1734
1735			DPRINTFN(WPI_DEBUG_SCANNING,
1736			    ("scan finished nchan=%d status=%d chan=%d\n",
1737			     scan->nchan, scan->status, scan->chan));
1738
1739			sc->sc_scan_timer = 0;
1740			ieee80211_scan_next(vap);
1741			break;
1742		}
1743		case WPI_MISSED_BEACON:
1744		{
1745			struct wpi_missed_beacon *beacon =
1746				(struct wpi_missed_beacon *)(desc + 1);
1747			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1748
1749			if (le32toh(beacon->consecutive) >=
1750			    vap->iv_bmissthreshold) {
1751				DPRINTF(("Beacon miss: %u >= %u\n",
1752					 le32toh(beacon->consecutive),
1753					 vap->iv_bmissthreshold));
1754				ieee80211_beacon_miss(ic);
1755			}
1756			break;
1757		}
1758		}
1759
1760		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1761	}
1762
1763	/* tell the firmware what we have processed */
1764	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1765	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1766}
1767
1768static void
1769wpi_intr(void *arg)
1770{
1771	struct wpi_softc *sc = arg;
1772	uint32_t r;
1773
1774	WPI_LOCK(sc);
1775
1776	r = WPI_READ(sc, WPI_INTR);
1777	if (r == 0 || r == 0xffffffff) {
1778		WPI_UNLOCK(sc);
1779		return;
1780	}
1781
1782	/* disable interrupts */
1783	WPI_WRITE(sc, WPI_MASK, 0);
1784	/* ack interrupts */
1785	WPI_WRITE(sc, WPI_INTR, r);
1786
1787	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1788		struct ifnet *ifp = sc->sc_ifp;
1789		struct ieee80211com *ic = ifp->if_l2com;
1790		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1791
1792		device_printf(sc->sc_dev, "fatal firmware error\n");
1793		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1794				"(Hardware Error)"));
1795		if (vap != NULL)
1796			ieee80211_cancel_scan(vap);
1797		ieee80211_runtask(ic, &sc->sc_restarttask);
1798		sc->flags &= ~WPI_FLAG_BUSY;
1799		WPI_UNLOCK(sc);
1800		return;
1801	}
1802
1803	if (r & WPI_RX_INTR)
1804		wpi_notif_intr(sc);
1805
1806	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1807		wakeup(sc);
1808
1809	/* re-enable interrupts */
1810	if (sc->sc_ifp->if_flags & IFF_UP)
1811		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1812
1813	WPI_UNLOCK(sc);
1814}
1815
1816static uint8_t
1817wpi_plcp_signal(int rate)
1818{
1819	switch (rate) {
1820	/* CCK rates (returned values are device-dependent) */
1821	case 2:		return 10;
1822	case 4:		return 20;
1823	case 11:	return 55;
1824	case 22:	return 110;
1825
1826	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1827	/* R1-R4 (ral/ural is R4-R1) */
1828	case 12:	return 0xd;
1829	case 18:	return 0xf;
1830	case 24:	return 0x5;
1831	case 36:	return 0x7;
1832	case 48:	return 0x9;
1833	case 72:	return 0xb;
1834	case 96:	return 0x1;
1835	case 108:	return 0x3;
1836
1837	/* unsupported rates (should not get there) */
1838	default:	return 0;
1839	}
1840}
1841
1842/* quickly determine if a given rate is CCK or OFDM */
1843#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1844
1845/*
1846 * Construct the data packet for a transmit buffer and acutally put
1847 * the buffer onto the transmit ring, kicking the card to process the
1848 * the buffer.
1849 */
1850static int
1851wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1852	int ac)
1853{
1854	struct ieee80211vap *vap = ni->ni_vap;
1855	struct ifnet *ifp = sc->sc_ifp;
1856	struct ieee80211com *ic = ifp->if_l2com;
1857	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1858	struct wpi_tx_ring *ring = &sc->txq[ac];
1859	struct wpi_tx_desc *desc;
1860	struct wpi_tx_data *data;
1861	struct wpi_tx_cmd *cmd;
1862	struct wpi_cmd_data *tx;
1863	struct ieee80211_frame *wh;
1864	const struct ieee80211_txparam *tp;
1865	struct ieee80211_key *k;
1866	struct mbuf *mnew;
1867	int i, error, nsegs, rate, hdrlen, ismcast;
1868	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1869
1870	desc = &ring->desc[ring->cur];
1871	data = &ring->data[ring->cur];
1872
1873	wh = mtod(m0, struct ieee80211_frame *);
1874
1875	hdrlen = ieee80211_hdrsize(wh);
1876	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1877
1878	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1879		k = ieee80211_crypto_encap(ni, m0);
1880		if (k == NULL) {
1881			m_freem(m0);
1882			return ENOBUFS;
1883		}
1884		/* packet header may have moved, reset our local pointer */
1885		wh = mtod(m0, struct ieee80211_frame *);
1886	}
1887
1888	cmd = &ring->cmd[ring->cur];
1889	cmd->code = WPI_CMD_TX_DATA;
1890	cmd->flags = 0;
1891	cmd->qid = ring->qid;
1892	cmd->idx = ring->cur;
1893
1894	tx = (struct wpi_cmd_data *)cmd->data;
1895	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1896	tx->timeout = htole16(0);
1897	tx->ofdm_mask = 0xff;
1898	tx->cck_mask = 0x0f;
1899	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1900	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1901	tx->len = htole16(m0->m_pkthdr.len);
1902
1903	if (!ismcast) {
1904		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1905		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1906			tx->flags |= htole32(WPI_TX_NEED_ACK);
1907		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1908			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1909			tx->rts_ntries = 7;
1910		}
1911	}
1912	/* pick a rate */
1913	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1914	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1915		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1916		/* tell h/w to set timestamp in probe responses */
1917		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1918			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1919		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1920		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1921			tx->timeout = htole16(3);
1922		else
1923			tx->timeout = htole16(2);
1924		rate = tp->mgmtrate;
1925	} else if (ismcast) {
1926		rate = tp->mcastrate;
1927	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1928		rate = tp->ucastrate;
1929	} else {
1930		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1931		rate = ni->ni_txrate;
1932	}
1933	tx->rate = wpi_plcp_signal(rate);
1934
1935	/* be very persistant at sending frames out */
1936#if 0
1937	tx->data_ntries = tp->maxretry;
1938#else
1939	tx->data_ntries = 15;		/* XXX way too high */
1940#endif
1941
1942	if (ieee80211_radiotap_active_vap(vap)) {
1943		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1944		tap->wt_flags = 0;
1945		tap->wt_rate = rate;
1946		tap->wt_hwqueue = ac;
1947		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1948			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1949
1950		ieee80211_radiotap_tx(vap, m0);
1951	}
1952
1953	/* save and trim IEEE802.11 header */
1954	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1955	m_adj(m0, hdrlen);
1956
1957	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1958	    &nsegs, BUS_DMA_NOWAIT);
1959	if (error != 0 && error != EFBIG) {
1960		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1961		    error);
1962		m_freem(m0);
1963		return error;
1964	}
1965	if (error != 0) {
1966		/* XXX use m_collapse */
1967		mnew = m_defrag(m0, M_DONTWAIT);
1968		if (mnew == NULL) {
1969			device_printf(sc->sc_dev,
1970			    "could not defragment mbuf\n");
1971			m_freem(m0);
1972			return ENOBUFS;
1973		}
1974		m0 = mnew;
1975
1976		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1977		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1978		if (error != 0) {
1979			device_printf(sc->sc_dev,
1980			    "could not map mbuf (error %d)\n", error);
1981			m_freem(m0);
1982			return error;
1983		}
1984	}
1985
1986	data->m = m0;
1987	data->ni = ni;
1988
1989	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1990	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1991
1992	/* first scatter/gather segment is used by the tx data command */
1993	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1994	    (1 + nsegs) << 24);
1995	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1996	    ring->cur * sizeof (struct wpi_tx_cmd));
1997	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1998	for (i = 1; i <= nsegs; i++) {
1999		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2000		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2001	}
2002
2003	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2004	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2005	    BUS_DMASYNC_PREWRITE);
2006
2007	ring->queued++;
2008
2009	/* kick ring */
2010	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2011	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2012
2013	return 0;
2014}
2015
2016/**
2017 * Process data waiting to be sent on the IFNET output queue
2018 */
2019static void
2020wpi_start(struct ifnet *ifp)
2021{
2022	struct wpi_softc *sc = ifp->if_softc;
2023
2024	WPI_LOCK(sc);
2025	wpi_start_locked(ifp);
2026	WPI_UNLOCK(sc);
2027}
2028
2029static void
2030wpi_start_locked(struct ifnet *ifp)
2031{
2032	struct wpi_softc *sc = ifp->if_softc;
2033	struct ieee80211_node *ni;
2034	struct mbuf *m;
2035	int ac;
2036
2037	WPI_LOCK_ASSERT(sc);
2038
2039	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2040		return;
2041
2042	for (;;) {
2043		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2044		if (m == NULL)
2045			break;
2046		ac = M_WME_GETAC(m);
2047		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2048			/* there is no place left in this ring */
2049			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2050			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2051			break;
2052		}
2053		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2054		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055			ieee80211_free_node(ni);
2056			ifp->if_oerrors++;
2057			break;
2058		}
2059		sc->sc_tx_timer = 5;
2060	}
2061}
2062
2063static int
2064wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065	const struct ieee80211_bpf_params *params)
2066{
2067	struct ieee80211com *ic = ni->ni_ic;
2068	struct ifnet *ifp = ic->ic_ifp;
2069	struct wpi_softc *sc = ifp->if_softc;
2070
2071	/* prevent management frames from being sent if we're not ready */
2072	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2073		m_freem(m);
2074		ieee80211_free_node(ni);
2075		return ENETDOWN;
2076	}
2077	WPI_LOCK(sc);
2078
2079	/* management frames go into ring 0 */
2080	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2081		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2082		m_freem(m);
2083		WPI_UNLOCK(sc);
2084		ieee80211_free_node(ni);
2085		return ENOBUFS;		/* XXX */
2086	}
2087
2088	ifp->if_opackets++;
2089	if (wpi_tx_data(sc, m, ni, 0) != 0)
2090		goto bad;
2091	sc->sc_tx_timer = 5;
2092	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2093
2094	WPI_UNLOCK(sc);
2095	return 0;
2096bad:
2097	ifp->if_oerrors++;
2098	WPI_UNLOCK(sc);
2099	ieee80211_free_node(ni);
2100	return EIO;		/* XXX */
2101}
2102
2103static int
2104wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2105{
2106	struct wpi_softc *sc = ifp->if_softc;
2107	struct ieee80211com *ic = ifp->if_l2com;
2108	struct ifreq *ifr = (struct ifreq *) data;
2109	int error = 0, startall = 0;
2110
2111	switch (cmd) {
2112	case SIOCSIFFLAGS:
2113		WPI_LOCK(sc);
2114		if ((ifp->if_flags & IFF_UP)) {
2115			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2116				wpi_init_locked(sc, 0);
2117				startall = 1;
2118			}
2119		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2120			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2121			wpi_stop_locked(sc);
2122		WPI_UNLOCK(sc);
2123		if (startall)
2124			ieee80211_start_all(ic);
2125		break;
2126	case SIOCGIFMEDIA:
2127		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2128		break;
2129	case SIOCGIFADDR:
2130		error = ether_ioctl(ifp, cmd, data);
2131		break;
2132	default:
2133		error = EINVAL;
2134		break;
2135	}
2136	return error;
2137}
2138
2139/*
2140 * Extract various information from EEPROM.
2141 */
2142static void
2143wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2144{
2145	int i;
2146
2147	/* read the hardware capabilities, revision and SKU type */
2148	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2149	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2150	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2151
2152	/* read the regulatory domain */
2153	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2154
2155	/* read in the hw MAC address */
2156	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2157
2158	/* read the list of authorized channels */
2159	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2160		wpi_read_eeprom_channels(sc,i);
2161
2162	/* read the power level calibration info for each group */
2163	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2164		wpi_read_eeprom_group(sc,i);
2165}
2166
2167/*
2168 * Send a command to the firmware.
2169 */
2170static int
2171wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2172{
2173	struct wpi_tx_ring *ring = &sc->cmdq;
2174	struct wpi_tx_desc *desc;
2175	struct wpi_tx_cmd *cmd;
2176
2177#ifdef WPI_DEBUG
2178	if (!async) {
2179		WPI_LOCK_ASSERT(sc);
2180	}
2181#endif
2182
2183	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2184		    async));
2185
2186	if (sc->flags & WPI_FLAG_BUSY) {
2187		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2188		    __func__, code);
2189		return EAGAIN;
2190	}
2191	sc->flags|= WPI_FLAG_BUSY;
2192
2193	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2194	    code, size));
2195
2196	desc = &ring->desc[ring->cur];
2197	cmd = &ring->cmd[ring->cur];
2198
2199	cmd->code = code;
2200	cmd->flags = 0;
2201	cmd->qid = ring->qid;
2202	cmd->idx = ring->cur;
2203	memcpy(cmd->data, buf, size);
2204
2205	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2206	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2207		ring->cur * sizeof (struct wpi_tx_cmd));
2208	desc->segs[0].len  = htole32(4 + size);
2209
2210	/* kick cmd ring */
2211	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2212	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2213
2214	if (async) {
2215		sc->flags &= ~ WPI_FLAG_BUSY;
2216		return 0;
2217	}
2218
2219	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2220}
2221
2222static int
2223wpi_wme_update(struct ieee80211com *ic)
2224{
2225#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2226#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2227	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2228	const struct wmeParams *wmep;
2229	struct wpi_wme_setup wme;
2230	int ac;
2231
2232	/* don't override default WME values if WME is not actually enabled */
2233	if (!(ic->ic_flags & IEEE80211_F_WME))
2234		return 0;
2235
2236	wme.flags = 0;
2237	for (ac = 0; ac < WME_NUM_AC; ac++) {
2238		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2239		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2240		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2241		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2242		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2243
2244		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2245		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2246		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2247	}
2248	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2249#undef WPI_USEC
2250#undef WPI_EXP2
2251}
2252
2253/*
2254 * Configure h/w multi-rate retries.
2255 */
2256static int
2257wpi_mrr_setup(struct wpi_softc *sc)
2258{
2259	struct ifnet *ifp = sc->sc_ifp;
2260	struct ieee80211com *ic = ifp->if_l2com;
2261	struct wpi_mrr_setup mrr;
2262	int i, error;
2263
2264	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2265
2266	/* CCK rates (not used with 802.11a) */
2267	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2268		mrr.rates[i].flags = 0;
2269		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2270		/* fallback to the immediate lower CCK rate (if any) */
2271		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2272		/* try one time at this rate before falling back to "next" */
2273		mrr.rates[i].ntries = 1;
2274	}
2275
2276	/* OFDM rates (not used with 802.11b) */
2277	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2278		mrr.rates[i].flags = 0;
2279		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280		/* fallback to the immediate lower OFDM rate (if any) */
2281		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2282		mrr.rates[i].next = (i == WPI_OFDM6) ?
2283		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2284			WPI_OFDM6 : WPI_CCK2) :
2285		    i - 1;
2286		/* try one time at this rate before falling back to "next" */
2287		mrr.rates[i].ntries = 1;
2288	}
2289
2290	/* setup MRR for control frames */
2291	mrr.which = htole32(WPI_MRR_CTL);
2292	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293	if (error != 0) {
2294		device_printf(sc->sc_dev,
2295		    "could not setup MRR for control frames\n");
2296		return error;
2297	}
2298
2299	/* setup MRR for data frames */
2300	mrr.which = htole32(WPI_MRR_DATA);
2301	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302	if (error != 0) {
2303		device_printf(sc->sc_dev,
2304		    "could not setup MRR for data frames\n");
2305		return error;
2306	}
2307
2308	return 0;
2309}
2310
2311static void
2312wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2313{
2314	struct wpi_cmd_led led;
2315
2316	led.which = which;
2317	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2318	led.off = off;
2319	led.on = on;
2320
2321	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2322}
2323
2324static void
2325wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2326{
2327	struct wpi_cmd_tsf tsf;
2328	uint64_t val, mod;
2329
2330	memset(&tsf, 0, sizeof tsf);
2331	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2332	tsf.bintval = htole16(ni->ni_intval);
2333	tsf.lintval = htole16(10);
2334
2335	/* compute remaining time until next beacon */
2336	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2337	mod = le64toh(tsf.tstamp) % val;
2338	tsf.binitval = htole32((uint32_t)(val - mod));
2339
2340	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341		device_printf(sc->sc_dev, "could not enable TSF\n");
2342}
2343
2344#if 0
2345/*
2346 * Build a beacon frame that the firmware will broadcast periodically in
2347 * IBSS or HostAP modes.
2348 */
2349static int
2350wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2351{
2352	struct ifnet *ifp = sc->sc_ifp;
2353	struct ieee80211com *ic = ifp->if_l2com;
2354	struct wpi_tx_ring *ring = &sc->cmdq;
2355	struct wpi_tx_desc *desc;
2356	struct wpi_tx_data *data;
2357	struct wpi_tx_cmd *cmd;
2358	struct wpi_cmd_beacon *bcn;
2359	struct ieee80211_beacon_offsets bo;
2360	struct mbuf *m0;
2361	bus_addr_t physaddr;
2362	int error;
2363
2364	desc = &ring->desc[ring->cur];
2365	data = &ring->data[ring->cur];
2366
2367	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2368	if (m0 == NULL) {
2369		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2370		return ENOMEM;
2371	}
2372
2373	cmd = &ring->cmd[ring->cur];
2374	cmd->code = WPI_CMD_SET_BEACON;
2375	cmd->flags = 0;
2376	cmd->qid = ring->qid;
2377	cmd->idx = ring->cur;
2378
2379	bcn = (struct wpi_cmd_beacon *)cmd->data;
2380	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2381	bcn->id = WPI_ID_BROADCAST;
2382	bcn->ofdm_mask = 0xff;
2383	bcn->cck_mask = 0x0f;
2384	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2385	bcn->len = htole16(m0->m_pkthdr.len);
2386	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2387		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2388	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2389
2390	/* save and trim IEEE802.11 header */
2391	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2392	m_adj(m0, sizeof (struct ieee80211_frame));
2393
2394	/* assume beacon frame is contiguous */
2395	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2396	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2397	if (error != 0) {
2398		device_printf(sc->sc_dev, "could not map beacon\n");
2399		m_freem(m0);
2400		return error;
2401	}
2402
2403	data->m = m0;
2404
2405	/* first scatter/gather segment is used by the beacon command */
2406	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2407	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2408		ring->cur * sizeof (struct wpi_tx_cmd));
2409	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2410	desc->segs[1].addr = htole32(physaddr);
2411	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2412
2413	/* kick cmd ring */
2414	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416
2417	return 0;
2418}
2419#endif
2420
2421static int
2422wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2423{
2424	struct ieee80211com *ic = vap->iv_ic;
2425	struct ieee80211_node *ni = vap->iv_bss;
2426	struct wpi_node_info node;
2427	int error;
2428
2429
2430	/* update adapter's configuration */
2431	sc->config.associd = 0;
2432	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2433	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2434	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2435	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2436		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2437		    WPI_CONFIG_24GHZ);
2438	} else {
2439		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2440		    WPI_CONFIG_24GHZ);
2441	}
2442	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2443		sc->config.cck_mask  = 0;
2444		sc->config.ofdm_mask = 0x15;
2445	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2446		sc->config.cck_mask  = 0x03;
2447		sc->config.ofdm_mask = 0;
2448	} else {
2449		/* XXX assume 802.11b/g */
2450		sc->config.cck_mask  = 0x0f;
2451		sc->config.ofdm_mask = 0x15;
2452	}
2453
2454	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2455		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2456	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2457		sizeof (struct wpi_config), 1);
2458	if (error != 0) {
2459		device_printf(sc->sc_dev, "could not configure\n");
2460		return error;
2461	}
2462
2463	/* configuration has changed, set Tx power accordingly */
2464	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2465		device_printf(sc->sc_dev, "could not set Tx power\n");
2466		return error;
2467	}
2468
2469	/* add default node */
2470	memset(&node, 0, sizeof node);
2471	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2472	node.id = WPI_ID_BSS;
2473	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2474	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2475	node.action = htole32(WPI_ACTION_SET_RATE);
2476	node.antenna = WPI_ANTENNA_BOTH;
2477	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2478	if (error != 0)
2479		device_printf(sc->sc_dev, "could not add BSS node\n");
2480
2481	return (error);
2482}
2483
2484static int
2485wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2486{
2487	struct ieee80211com *ic = vap->iv_ic;
2488	struct ieee80211_node *ni = vap->iv_bss;
2489	int error;
2490
2491	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2492		/* link LED blinks while monitoring */
2493		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2494		return 0;
2495	}
2496
2497	wpi_enable_tsf(sc, ni);
2498
2499	/* update adapter's configuration */
2500	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2501	/* short preamble/slot time are negotiated when associating */
2502	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2503	    WPI_CONFIG_SHSLOT);
2504	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2505		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2506	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2507		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2508	sc->config.filter |= htole32(WPI_FILTER_BSS);
2509
2510	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2511
2512	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2513		    sc->config.flags));
2514	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2515		    wpi_config), 1);
2516	if (error != 0) {
2517		device_printf(sc->sc_dev, "could not update configuration\n");
2518		return error;
2519	}
2520
2521	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2522	if (error != 0) {
2523		device_printf(sc->sc_dev, "could set txpower\n");
2524		return error;
2525	}
2526
2527	/* link LED always on while associated */
2528	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2529
2530	/* start automatic rate control timer */
2531	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2532
2533	return (error);
2534}
2535
2536/*
2537 * Send a scan request to the firmware.  Since this command is huge, we map it
2538 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2539 * much of this code is similar to that in wpi_cmd but because we must manually
2540 * construct the probe & channels, we duplicate what's needed here. XXX In the
2541 * future, this function should be modified to use wpi_cmd to help cleanup the
2542 * code base.
2543 */
2544static int
2545wpi_scan(struct wpi_softc *sc)
2546{
2547	struct ifnet *ifp = sc->sc_ifp;
2548	struct ieee80211com *ic = ifp->if_l2com;
2549	struct ieee80211_scan_state *ss = ic->ic_scan;
2550	struct wpi_tx_ring *ring = &sc->cmdq;
2551	struct wpi_tx_desc *desc;
2552	struct wpi_tx_data *data;
2553	struct wpi_tx_cmd *cmd;
2554	struct wpi_scan_hdr *hdr;
2555	struct wpi_scan_chan *chan;
2556	struct ieee80211_frame *wh;
2557	struct ieee80211_rateset *rs;
2558	struct ieee80211_channel *c;
2559	enum ieee80211_phymode mode;
2560	uint8_t *frm;
2561	int nrates, pktlen, error, i, nssid;
2562	bus_addr_t physaddr;
2563
2564	desc = &ring->desc[ring->cur];
2565	data = &ring->data[ring->cur];
2566
2567	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2568	if (data->m == NULL) {
2569		device_printf(sc->sc_dev,
2570		    "could not allocate mbuf for scan command\n");
2571		return ENOMEM;
2572	}
2573
2574	cmd = mtod(data->m, struct wpi_tx_cmd *);
2575	cmd->code = WPI_CMD_SCAN;
2576	cmd->flags = 0;
2577	cmd->qid = ring->qid;
2578	cmd->idx = ring->cur;
2579
2580	hdr = (struct wpi_scan_hdr *)cmd->data;
2581	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2582
2583	/*
2584	 * Move to the next channel if no packets are received within 5 msecs
2585	 * after sending the probe request (this helps to reduce the duration
2586	 * of active scans).
2587	 */
2588	hdr->quiet = htole16(5);
2589	hdr->threshold = htole16(1);
2590
2591	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2592		/* send probe requests at 6Mbps */
2593		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2594
2595		/* Enable crc checking */
2596		hdr->promotion = htole16(1);
2597	} else {
2598		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2599		/* send probe requests at 1Mbps */
2600		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2601	}
2602	hdr->tx.id = WPI_ID_BROADCAST;
2603	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2604	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2605
2606	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2607	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2608	for (i = 0; i < nssid; i++) {
2609		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2610		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2611		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2612		    hdr->scan_essids[i].esslen);
2613#ifdef WPI_DEBUG
2614		if (wpi_debug & WPI_DEBUG_SCANNING) {
2615			printf("Scanning Essid: ");
2616			ieee80211_print_essid(hdr->scan_essids[i].essid,
2617			    hdr->scan_essids[i].esslen);
2618			printf("\n");
2619		}
2620#endif
2621	}
2622
2623	/*
2624	 * Build a probe request frame.  Most of the following code is a
2625	 * copy & paste of what is done in net80211.
2626	 */
2627	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2628	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2629		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2630	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2631	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2632	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2633	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2634	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2635	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2636
2637	frm = (uint8_t *)(wh + 1);
2638
2639	/* add essid IE, the hardware will fill this in for us */
2640	*frm++ = IEEE80211_ELEMID_SSID;
2641	*frm++ = 0;
2642
2643	mode = ieee80211_chan2mode(ic->ic_curchan);
2644	rs = &ic->ic_sup_rates[mode];
2645
2646	/* add supported rates IE */
2647	*frm++ = IEEE80211_ELEMID_RATES;
2648	nrates = rs->rs_nrates;
2649	if (nrates > IEEE80211_RATE_SIZE)
2650		nrates = IEEE80211_RATE_SIZE;
2651	*frm++ = nrates;
2652	memcpy(frm, rs->rs_rates, nrates);
2653	frm += nrates;
2654
2655	/* add supported xrates IE */
2656	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2657		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2658		*frm++ = IEEE80211_ELEMID_XRATES;
2659		*frm++ = nrates;
2660		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2661		frm += nrates;
2662	}
2663
2664	/* setup length of probe request */
2665	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2666
2667	/*
2668	 * Construct information about the channel that we
2669	 * want to scan. The firmware expects this to be directly
2670	 * after the scan probe request
2671	 */
2672	c = ic->ic_curchan;
2673	chan = (struct wpi_scan_chan *)frm;
2674	chan->chan = ieee80211_chan2ieee(ic, c);
2675	chan->flags = 0;
2676	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2677		chan->flags |= WPI_CHAN_ACTIVE;
2678		if (nssid != 0)
2679			chan->flags |= WPI_CHAN_DIRECT;
2680	}
2681	chan->gain_dsp = 0x6e; /* Default level */
2682	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2683		chan->active = htole16(10);
2684		chan->passive = htole16(ss->ss_maxdwell);
2685		chan->gain_radio = 0x3b;
2686	} else {
2687		chan->active = htole16(20);
2688		chan->passive = htole16(ss->ss_maxdwell);
2689		chan->gain_radio = 0x28;
2690	}
2691
2692	DPRINTFN(WPI_DEBUG_SCANNING,
2693	    ("Scanning %u Passive: %d\n",
2694	     chan->chan,
2695	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2696
2697	hdr->nchan++;
2698	chan++;
2699
2700	frm += sizeof (struct wpi_scan_chan);
2701#if 0
2702	// XXX All Channels....
2703	for (c  = &ic->ic_channels[1];
2704	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2705		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2706			continue;
2707
2708		chan->chan = ieee80211_chan2ieee(ic, c);
2709		chan->flags = 0;
2710		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2711		    chan->flags |= WPI_CHAN_ACTIVE;
2712		    if (ic->ic_des_ssid[0].len != 0)
2713			chan->flags |= WPI_CHAN_DIRECT;
2714		}
2715		chan->gain_dsp = 0x6e; /* Default level */
2716		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2717			chan->active = htole16(10);
2718			chan->passive = htole16(110);
2719			chan->gain_radio = 0x3b;
2720		} else {
2721			chan->active = htole16(20);
2722			chan->passive = htole16(120);
2723			chan->gain_radio = 0x28;
2724		}
2725
2726		DPRINTFN(WPI_DEBUG_SCANNING,
2727			 ("Scanning %u Passive: %d\n",
2728			  chan->chan,
2729			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2730
2731		hdr->nchan++;
2732		chan++;
2733
2734		frm += sizeof (struct wpi_scan_chan);
2735	}
2736#endif
2737
2738	hdr->len = htole16(frm - (uint8_t *)hdr);
2739	pktlen = frm - (uint8_t *)cmd;
2740
2741	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2742	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2743	if (error != 0) {
2744		device_printf(sc->sc_dev, "could not map scan command\n");
2745		m_freem(data->m);
2746		data->m = NULL;
2747		return error;
2748	}
2749
2750	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2751	desc->segs[0].addr = htole32(physaddr);
2752	desc->segs[0].len  = htole32(pktlen);
2753
2754	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2755	    BUS_DMASYNC_PREWRITE);
2756	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2757
2758	/* kick cmd ring */
2759	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2760	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2761
2762	sc->sc_scan_timer = 5;
2763	return 0;	/* will be notified async. of failure/success */
2764}
2765
2766/**
2767 * Configure the card to listen to a particular channel, this transisions the
2768 * card in to being able to receive frames from remote devices.
2769 */
2770static int
2771wpi_config(struct wpi_softc *sc)
2772{
2773	struct ifnet *ifp = sc->sc_ifp;
2774	struct ieee80211com *ic = ifp->if_l2com;
2775	struct wpi_power power;
2776	struct wpi_bluetooth bluetooth;
2777	struct wpi_node_info node;
2778	int error;
2779
2780	/* set power mode */
2781	memset(&power, 0, sizeof power);
2782	power.flags = htole32(WPI_POWER_CAM|0x8);
2783	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2784	if (error != 0) {
2785		device_printf(sc->sc_dev, "could not set power mode\n");
2786		return error;
2787	}
2788
2789	/* configure bluetooth coexistence */
2790	memset(&bluetooth, 0, sizeof bluetooth);
2791	bluetooth.flags = 3;
2792	bluetooth.lead = 0xaa;
2793	bluetooth.kill = 1;
2794	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2795	    0);
2796	if (error != 0) {
2797		device_printf(sc->sc_dev,
2798		    "could not configure bluetooth coexistence\n");
2799		return error;
2800	}
2801
2802	/* configure adapter */
2803	memset(&sc->config, 0, sizeof (struct wpi_config));
2804	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2805	/*set default channel*/
2806	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2807	sc->config.flags = htole32(WPI_CONFIG_TSF);
2808	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2809		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2810		    WPI_CONFIG_24GHZ);
2811	}
2812	sc->config.filter = 0;
2813	switch (ic->ic_opmode) {
2814	case IEEE80211_M_STA:
2815	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2816		sc->config.mode = WPI_MODE_STA;
2817		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2818		break;
2819	case IEEE80211_M_IBSS:
2820	case IEEE80211_M_AHDEMO:
2821		sc->config.mode = WPI_MODE_IBSS;
2822		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2823					     WPI_FILTER_MULTICAST);
2824		break;
2825	case IEEE80211_M_HOSTAP:
2826		sc->config.mode = WPI_MODE_HOSTAP;
2827		break;
2828	case IEEE80211_M_MONITOR:
2829		sc->config.mode = WPI_MODE_MONITOR;
2830		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2831			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2832		break;
2833	default:
2834		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2835		return EINVAL;
2836	}
2837	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2838	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2839	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2840		sizeof (struct wpi_config), 0);
2841	if (error != 0) {
2842		device_printf(sc->sc_dev, "configure command failed\n");
2843		return error;
2844	}
2845
2846	/* configuration has changed, set Tx power accordingly */
2847	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2848	    device_printf(sc->sc_dev, "could not set Tx power\n");
2849	    return error;
2850	}
2851
2852	/* add broadcast node */
2853	memset(&node, 0, sizeof node);
2854	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2855	node.id = WPI_ID_BROADCAST;
2856	node.rate = wpi_plcp_signal(2);
2857	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2858	if (error != 0) {
2859		device_printf(sc->sc_dev, "could not add broadcast node\n");
2860		return error;
2861	}
2862
2863	/* Setup rate scalling */
2864	error = wpi_mrr_setup(sc);
2865	if (error != 0) {
2866		device_printf(sc->sc_dev, "could not setup MRR\n");
2867		return error;
2868	}
2869
2870	return 0;
2871}
2872
2873static void
2874wpi_stop_master(struct wpi_softc *sc)
2875{
2876	uint32_t tmp;
2877	int ntries;
2878
2879	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2880
2881	tmp = WPI_READ(sc, WPI_RESET);
2882	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2883
2884	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2885	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2886		return;	/* already asleep */
2887
2888	for (ntries = 0; ntries < 100; ntries++) {
2889		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2890			break;
2891		DELAY(10);
2892	}
2893	if (ntries == 100) {
2894		device_printf(sc->sc_dev, "timeout waiting for master\n");
2895	}
2896}
2897
2898static int
2899wpi_power_up(struct wpi_softc *sc)
2900{
2901	uint32_t tmp;
2902	int ntries;
2903
2904	wpi_mem_lock(sc);
2905	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2906	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2907	wpi_mem_unlock(sc);
2908
2909	for (ntries = 0; ntries < 5000; ntries++) {
2910		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2911			break;
2912		DELAY(10);
2913	}
2914	if (ntries == 5000) {
2915		device_printf(sc->sc_dev,
2916		    "timeout waiting for NIC to power up\n");
2917		return ETIMEDOUT;
2918	}
2919	return 0;
2920}
2921
2922static int
2923wpi_reset(struct wpi_softc *sc)
2924{
2925	uint32_t tmp;
2926	int ntries;
2927
2928	DPRINTFN(WPI_DEBUG_HW,
2929	    ("Resetting the card - clearing any uploaded firmware\n"));
2930
2931	/* clear any pending interrupts */
2932	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2933
2934	tmp = WPI_READ(sc, WPI_PLL_CTL);
2935	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2936
2937	tmp = WPI_READ(sc, WPI_CHICKEN);
2938	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2939
2940	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2941	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2942
2943	/* wait for clock stabilization */
2944	for (ntries = 0; ntries < 25000; ntries++) {
2945		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2946			break;
2947		DELAY(10);
2948	}
2949	if (ntries == 25000) {
2950		device_printf(sc->sc_dev,
2951		    "timeout waiting for clock stabilization\n");
2952		return ETIMEDOUT;
2953	}
2954
2955	/* initialize EEPROM */
2956	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2957
2958	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2959		device_printf(sc->sc_dev, "EEPROM not found\n");
2960		return EIO;
2961	}
2962	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2963
2964	return 0;
2965}
2966
2967static void
2968wpi_hw_config(struct wpi_softc *sc)
2969{
2970	uint32_t rev, hw;
2971
2972	/* voodoo from the Linux "driver".. */
2973	hw = WPI_READ(sc, WPI_HWCONFIG);
2974
2975	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2976	if ((rev & 0xc0) == 0x40)
2977		hw |= WPI_HW_ALM_MB;
2978	else if (!(rev & 0x80))
2979		hw |= WPI_HW_ALM_MM;
2980
2981	if (sc->cap == 0x80)
2982		hw |= WPI_HW_SKU_MRC;
2983
2984	hw &= ~WPI_HW_REV_D;
2985	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2986		hw |= WPI_HW_REV_D;
2987
2988	if (sc->type > 1)
2989		hw |= WPI_HW_TYPE_B;
2990
2991	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2992}
2993
2994static void
2995wpi_rfkill_resume(struct wpi_softc *sc)
2996{
2997	struct ifnet *ifp = sc->sc_ifp;
2998	struct ieee80211com *ic = ifp->if_l2com;
2999	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3000	int ntries;
3001
3002	/* enable firmware again */
3003	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3004	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3005
3006	/* wait for thermal sensors to calibrate */
3007	for (ntries = 0; ntries < 1000; ntries++) {
3008		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3009			break;
3010		DELAY(10);
3011	}
3012
3013	if (ntries == 1000) {
3014		device_printf(sc->sc_dev,
3015		    "timeout waiting for thermal calibration\n");
3016		return;
3017	}
3018	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3019
3020	if (wpi_config(sc) != 0) {
3021		device_printf(sc->sc_dev, "device config failed\n");
3022		return;
3023	}
3024
3025	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3026	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3027	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3028
3029	if (vap != NULL) {
3030		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3031			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3032				ieee80211_beacon_miss(ic);
3033				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3034			} else
3035				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3036		} else {
3037			ieee80211_scan_next(vap);
3038			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3039		}
3040	}
3041
3042	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3043}
3044
3045static void
3046wpi_init_locked(struct wpi_softc *sc, int force)
3047{
3048	struct ifnet *ifp = sc->sc_ifp;
3049	uint32_t tmp;
3050	int ntries, qid;
3051
3052	wpi_stop_locked(sc);
3053	(void)wpi_reset(sc);
3054
3055	wpi_mem_lock(sc);
3056	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3057	DELAY(20);
3058	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3059	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3060	wpi_mem_unlock(sc);
3061
3062	(void)wpi_power_up(sc);
3063	wpi_hw_config(sc);
3064
3065	/* init Rx ring */
3066	wpi_mem_lock(sc);
3067	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3068	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3069	    offsetof(struct wpi_shared, next));
3070	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3071	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3072	wpi_mem_unlock(sc);
3073
3074	/* init Tx rings */
3075	wpi_mem_lock(sc);
3076	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3077	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3078	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3079	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3080	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3081	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3082	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3083
3084	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3085	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3086
3087	for (qid = 0; qid < 6; qid++) {
3088		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3089		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3090		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3091	}
3092	wpi_mem_unlock(sc);
3093
3094	/* clear "radio off" and "disable command" bits (reversed logic) */
3095	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3096	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3097	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3098
3099	/* clear any pending interrupts */
3100	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3101
3102	/* enable interrupts */
3103	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3104
3105	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3107
3108	if ((wpi_load_firmware(sc)) != 0) {
3109	    device_printf(sc->sc_dev,
3110		"A problem occurred loading the firmware to the driver\n");
3111	    return;
3112	}
3113
3114	/* At this point the firmware is up and running. If the hardware
3115	 * RF switch is turned off thermal calibration will fail, though
3116	 * the card is still happy to continue to accept commands, catch
3117	 * this case and schedule a task to watch for it to be turned on.
3118	 */
3119	wpi_mem_lock(sc);
3120	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3121	wpi_mem_unlock(sc);
3122
3123	if (!(tmp & 0x1)) {
3124		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3125		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3126		goto out;
3127	}
3128
3129	/* wait for thermal sensors to calibrate */
3130	for (ntries = 0; ntries < 1000; ntries++) {
3131		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3132			break;
3133		DELAY(10);
3134	}
3135
3136	if (ntries == 1000) {
3137		device_printf(sc->sc_dev,
3138		    "timeout waiting for thermal sensors calibration\n");
3139		return;
3140	}
3141	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3142
3143	if (wpi_config(sc) != 0) {
3144		device_printf(sc->sc_dev, "device config failed\n");
3145		return;
3146	}
3147
3148	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3149	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3150out:
3151	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3152}
3153
3154static void
3155wpi_init(void *arg)
3156{
3157	struct wpi_softc *sc = arg;
3158	struct ifnet *ifp = sc->sc_ifp;
3159	struct ieee80211com *ic = ifp->if_l2com;
3160
3161	WPI_LOCK(sc);
3162	wpi_init_locked(sc, 0);
3163	WPI_UNLOCK(sc);
3164
3165	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3166		ieee80211_start_all(ic);		/* start all vaps */
3167}
3168
3169static void
3170wpi_stop_locked(struct wpi_softc *sc)
3171{
3172	struct ifnet *ifp = sc->sc_ifp;
3173	uint32_t tmp;
3174	int ac;
3175
3176	sc->sc_tx_timer = 0;
3177	sc->sc_scan_timer = 0;
3178	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3179	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3180	callout_stop(&sc->watchdog_to);
3181	callout_stop(&sc->calib_to);
3182
3183
3184	/* disable interrupts */
3185	WPI_WRITE(sc, WPI_MASK, 0);
3186	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3187	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3188	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3189
3190	wpi_mem_lock(sc);
3191	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3192	wpi_mem_unlock(sc);
3193
3194	/* reset all Tx rings */
3195	for (ac = 0; ac < 4; ac++)
3196		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3197	wpi_reset_tx_ring(sc, &sc->cmdq);
3198
3199	/* reset Rx ring */
3200	wpi_reset_rx_ring(sc, &sc->rxq);
3201
3202	wpi_mem_lock(sc);
3203	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3204	wpi_mem_unlock(sc);
3205
3206	DELAY(5);
3207
3208	wpi_stop_master(sc);
3209
3210	tmp = WPI_READ(sc, WPI_RESET);
3211	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3212	sc->flags &= ~WPI_FLAG_BUSY;
3213}
3214
3215static void
3216wpi_stop(struct wpi_softc *sc)
3217{
3218	WPI_LOCK(sc);
3219	wpi_stop_locked(sc);
3220	WPI_UNLOCK(sc);
3221}
3222
3223static void
3224wpi_newassoc(struct ieee80211_node *ni, int isnew)
3225{
3226
3227	/* XXX move */
3228	ieee80211_ratectl_node_init(ni);
3229}
3230
3231static void
3232wpi_calib_timeout(void *arg)
3233{
3234	struct wpi_softc *sc = arg;
3235	struct ifnet *ifp = sc->sc_ifp;
3236	struct ieee80211com *ic = ifp->if_l2com;
3237	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3238	int temp;
3239
3240	if (vap->iv_state != IEEE80211_S_RUN)
3241		return;
3242
3243	/* update sensor data */
3244	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3245	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3246
3247	wpi_power_calibration(sc, temp);
3248
3249	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3250}
3251
3252/*
3253 * This function is called periodically (every 60 seconds) to adjust output
3254 * power to temperature changes.
3255 */
3256static void
3257wpi_power_calibration(struct wpi_softc *sc, int temp)
3258{
3259	struct ifnet *ifp = sc->sc_ifp;
3260	struct ieee80211com *ic = ifp->if_l2com;
3261	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3262
3263	/* sanity-check read value */
3264	if (temp < -260 || temp > 25) {
3265		/* this can't be correct, ignore */
3266		DPRINTFN(WPI_DEBUG_TEMP,
3267		    ("out-of-range temperature reported: %d\n", temp));
3268		return;
3269	}
3270
3271	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3272
3273	/* adjust Tx power if need be */
3274	if (abs(temp - sc->temp) <= 6)
3275		return;
3276
3277	sc->temp = temp;
3278
3279	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3280		/* just warn, too bad for the automatic calibration... */
3281		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3282	}
3283}
3284
3285/**
3286 * Read the eeprom to find out what channels are valid for the given
3287 * band and update net80211 with what we find.
3288 */
3289static void
3290wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3291{
3292	struct ifnet *ifp = sc->sc_ifp;
3293	struct ieee80211com *ic = ifp->if_l2com;
3294	const struct wpi_chan_band *band = &wpi_bands[n];
3295	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3296	struct ieee80211_channel *c;
3297	int chan, i, passive;
3298
3299	wpi_read_prom_data(sc, band->addr, channels,
3300	    band->nchan * sizeof (struct wpi_eeprom_chan));
3301
3302	for (i = 0; i < band->nchan; i++) {
3303		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3304			DPRINTFN(WPI_DEBUG_HW,
3305			    ("Channel Not Valid: %d, band %d\n",
3306			     band->chan[i],n));
3307			continue;
3308		}
3309
3310		passive = 0;
3311		chan = band->chan[i];
3312		c = &ic->ic_channels[ic->ic_nchans++];
3313
3314		/* is active scan allowed on this channel? */
3315		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3316			passive = IEEE80211_CHAN_PASSIVE;
3317		}
3318
3319		if (n == 0) {	/* 2GHz band */
3320			c->ic_ieee = chan;
3321			c->ic_freq = ieee80211_ieee2mhz(chan,
3322			    IEEE80211_CHAN_2GHZ);
3323			c->ic_flags = IEEE80211_CHAN_B | passive;
3324
3325			c = &ic->ic_channels[ic->ic_nchans++];
3326			c->ic_ieee = chan;
3327			c->ic_freq = ieee80211_ieee2mhz(chan,
3328			    IEEE80211_CHAN_2GHZ);
3329			c->ic_flags = IEEE80211_CHAN_G | passive;
3330
3331		} else {	/* 5GHz band */
3332			/*
3333			 * Some 3945ABG adapters support channels 7, 8, 11
3334			 * and 12 in the 2GHz *and* 5GHz bands.
3335			 * Because of limitations in our net80211(9) stack,
3336			 * we can't support these channels in 5GHz band.
3337			 * XXX not true; just need to map to proper frequency
3338			 */
3339			if (chan <= 14)
3340				continue;
3341
3342			c->ic_ieee = chan;
3343			c->ic_freq = ieee80211_ieee2mhz(chan,
3344			    IEEE80211_CHAN_5GHZ);
3345			c->ic_flags = IEEE80211_CHAN_A | passive;
3346		}
3347
3348		/* save maximum allowed power for this channel */
3349		sc->maxpwr[chan] = channels[i].maxpwr;
3350
3351#if 0
3352		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3353		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3354		//ic->ic_channels[chan].ic_minpower...
3355		//ic->ic_channels[chan].ic_maxregtxpower...
3356#endif
3357
3358		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3359		    " passive=%d, offset %d\n", chan, c->ic_freq,
3360		    channels[i].flags, sc->maxpwr[chan],
3361		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3362		    ic->ic_nchans));
3363	}
3364}
3365
3366static void
3367wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3368{
3369	struct wpi_power_group *group = &sc->groups[n];
3370	struct wpi_eeprom_group rgroup;
3371	int i;
3372
3373	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3374	    sizeof rgroup);
3375
3376	/* save power group information */
3377	group->chan   = rgroup.chan;
3378	group->maxpwr = rgroup.maxpwr;
3379	/* temperature at which the samples were taken */
3380	group->temp   = (int16_t)le16toh(rgroup.temp);
3381
3382	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3383		    group->chan, group->maxpwr, group->temp));
3384
3385	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3386		group->samples[i].index = rgroup.samples[i].index;
3387		group->samples[i].power = rgroup.samples[i].power;
3388
3389		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3390			    group->samples[i].index, group->samples[i].power));
3391	}
3392}
3393
3394/*
3395 * Update Tx power to match what is defined for channel `c'.
3396 */
3397static int
3398wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3399{
3400	struct ifnet *ifp = sc->sc_ifp;
3401	struct ieee80211com *ic = ifp->if_l2com;
3402	struct wpi_power_group *group;
3403	struct wpi_cmd_txpower txpower;
3404	u_int chan;
3405	int i;
3406
3407	/* get channel number */
3408	chan = ieee80211_chan2ieee(ic, c);
3409
3410	/* find the power group to which this channel belongs */
3411	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3412		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3413			if (chan <= group->chan)
3414				break;
3415	} else
3416		group = &sc->groups[0];
3417
3418	memset(&txpower, 0, sizeof txpower);
3419	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3420	txpower.channel = htole16(chan);
3421
3422	/* set Tx power for all OFDM and CCK rates */
3423	for (i = 0; i <= 11 ; i++) {
3424		/* retrieve Tx power for this channel/rate combination */
3425		int idx = wpi_get_power_index(sc, group, c,
3426		    wpi_ridx_to_rate[i]);
3427
3428		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3429
3430		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3431			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3432			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3433		} else {
3434			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3435			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3436		}
3437		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3438			    chan, wpi_ridx_to_rate[i], idx));
3439	}
3440
3441	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3442}
3443
3444/*
3445 * Determine Tx power index for a given channel/rate combination.
3446 * This takes into account the regulatory information from EEPROM and the
3447 * current temperature.
3448 */
3449static int
3450wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3451    struct ieee80211_channel *c, int rate)
3452{
3453/* fixed-point arithmetic division using a n-bit fractional part */
3454#define fdivround(a, b, n)      \
3455	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3456
3457/* linear interpolation */
3458#define interpolate(x, x1, y1, x2, y2, n)       \
3459	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3460
3461	struct ifnet *ifp = sc->sc_ifp;
3462	struct ieee80211com *ic = ifp->if_l2com;
3463	struct wpi_power_sample *sample;
3464	int pwr, idx;
3465	u_int chan;
3466
3467	/* get channel number */
3468	chan = ieee80211_chan2ieee(ic, c);
3469
3470	/* default power is group's maximum power - 3dB */
3471	pwr = group->maxpwr / 2;
3472
3473	/* decrease power for highest OFDM rates to reduce distortion */
3474	switch (rate) {
3475		case 72:	/* 36Mb/s */
3476			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3477			break;
3478		case 96:	/* 48Mb/s */
3479			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3480			break;
3481		case 108:	/* 54Mb/s */
3482			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3483			break;
3484	}
3485
3486	/* never exceed channel's maximum allowed Tx power */
3487	pwr = min(pwr, sc->maxpwr[chan]);
3488
3489	/* retrieve power index into gain tables from samples */
3490	for (sample = group->samples; sample < &group->samples[3]; sample++)
3491		if (pwr > sample[1].power)
3492			break;
3493	/* fixed-point linear interpolation using a 19-bit fractional part */
3494	idx = interpolate(pwr, sample[0].power, sample[0].index,
3495	    sample[1].power, sample[1].index, 19);
3496
3497	/*
3498	 *  Adjust power index based on current temperature
3499	 *	- if colder than factory-calibrated: decreate output power
3500	 *	- if warmer than factory-calibrated: increase output power
3501	 */
3502	idx -= (sc->temp - group->temp) * 11 / 100;
3503
3504	/* decrease power for CCK rates (-5dB) */
3505	if (!WPI_RATE_IS_OFDM(rate))
3506		idx += 10;
3507
3508	/* keep power index in a valid range */
3509	if (idx < 0)
3510		return 0;
3511	if (idx > WPI_MAX_PWR_INDEX)
3512		return WPI_MAX_PWR_INDEX;
3513	return idx;
3514
3515#undef interpolate
3516#undef fdivround
3517}
3518
3519/**
3520 * Called by net80211 framework to indicate that a scan
3521 * is starting. This function doesn't actually do the scan,
3522 * wpi_scan_curchan starts things off. This function is more
3523 * of an early warning from the framework we should get ready
3524 * for the scan.
3525 */
3526static void
3527wpi_scan_start(struct ieee80211com *ic)
3528{
3529	struct ifnet *ifp = ic->ic_ifp;
3530	struct wpi_softc *sc = ifp->if_softc;
3531
3532	WPI_LOCK(sc);
3533	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3534	WPI_UNLOCK(sc);
3535}
3536
3537/**
3538 * Called by the net80211 framework, indicates that the
3539 * scan has ended. If there is a scan in progress on the card
3540 * then it should be aborted.
3541 */
3542static void
3543wpi_scan_end(struct ieee80211com *ic)
3544{
3545	/* XXX ignore */
3546}
3547
3548/**
3549 * Called by the net80211 framework to indicate to the driver
3550 * that the channel should be changed
3551 */
3552static void
3553wpi_set_channel(struct ieee80211com *ic)
3554{
3555	struct ifnet *ifp = ic->ic_ifp;
3556	struct wpi_softc *sc = ifp->if_softc;
3557	int error;
3558
3559	/*
3560	 * Only need to set the channel in Monitor mode. AP scanning and auth
3561	 * are already taken care of by their respective firmware commands.
3562	 */
3563	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3564		WPI_LOCK(sc);
3565		error = wpi_config(sc);
3566		WPI_UNLOCK(sc);
3567		if (error != 0)
3568			device_printf(sc->sc_dev,
3569			    "error %d settting channel\n", error);
3570	}
3571}
3572
3573/**
3574 * Called by net80211 to indicate that we need to scan the current
3575 * channel. The channel is previously be set via the wpi_set_channel
3576 * callback.
3577 */
3578static void
3579wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3580{
3581	struct ieee80211vap *vap = ss->ss_vap;
3582	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3583	struct wpi_softc *sc = ifp->if_softc;
3584
3585	WPI_LOCK(sc);
3586	if (wpi_scan(sc))
3587		ieee80211_cancel_scan(vap);
3588	WPI_UNLOCK(sc);
3589}
3590
3591/**
3592 * Called by the net80211 framework to indicate
3593 * the minimum dwell time has been met, terminate the scan.
3594 * We don't actually terminate the scan as the firmware will notify
3595 * us when it's finished and we have no way to interrupt it.
3596 */
3597static void
3598wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3599{
3600	/* NB: don't try to abort scan; wait for firmware to finish */
3601}
3602
3603static void
3604wpi_hwreset(void *arg, int pending)
3605{
3606	struct wpi_softc *sc = arg;
3607
3608	WPI_LOCK(sc);
3609	wpi_init_locked(sc, 0);
3610	WPI_UNLOCK(sc);
3611}
3612
3613static void
3614wpi_rfreset(void *arg, int pending)
3615{
3616	struct wpi_softc *sc = arg;
3617
3618	WPI_LOCK(sc);
3619	wpi_rfkill_resume(sc);
3620	WPI_UNLOCK(sc);
3621}
3622
3623/*
3624 * Allocate DMA-safe memory for firmware transfer.
3625 */
3626static int
3627wpi_alloc_fwmem(struct wpi_softc *sc)
3628{
3629	/* allocate enough contiguous space to store text and data */
3630	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3631	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3632	    BUS_DMA_NOWAIT);
3633}
3634
3635static void
3636wpi_free_fwmem(struct wpi_softc *sc)
3637{
3638	wpi_dma_contig_free(&sc->fw_dma);
3639}
3640
3641/**
3642 * Called every second, wpi_watchdog used by the watch dog timer
3643 * to check that the card is still alive
3644 */
3645static void
3646wpi_watchdog(void *arg)
3647{
3648	struct wpi_softc *sc = arg;
3649	struct ifnet *ifp = sc->sc_ifp;
3650	struct ieee80211com *ic = ifp->if_l2com;
3651	uint32_t tmp;
3652
3653	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3654
3655	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3656		/* No need to lock firmware memory */
3657		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3658
3659		if ((tmp & 0x1) == 0) {
3660			/* Radio kill switch is still off */
3661			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3662			return;
3663		}
3664
3665		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3666		ieee80211_runtask(ic, &sc->sc_radiotask);
3667		return;
3668	}
3669
3670	if (sc->sc_tx_timer > 0) {
3671		if (--sc->sc_tx_timer == 0) {
3672			device_printf(sc->sc_dev,"device timeout\n");
3673			ifp->if_oerrors++;
3674			ieee80211_runtask(ic, &sc->sc_restarttask);
3675		}
3676	}
3677	if (sc->sc_scan_timer > 0) {
3678		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3679		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3680			device_printf(sc->sc_dev,"scan timeout\n");
3681			ieee80211_cancel_scan(vap);
3682			ieee80211_runtask(ic, &sc->sc_restarttask);
3683		}
3684	}
3685
3686	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3687		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3688}
3689
3690#ifdef WPI_DEBUG
3691static const char *wpi_cmd_str(int cmd)
3692{
3693	switch (cmd) {
3694	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3695	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3696	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3697	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3698	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3699	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3700	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3701	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3702	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3703	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3704	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3705	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3706	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3707	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3708
3709	default:
3710		KASSERT(1, ("Unknown Command: %d\n", cmd));
3711		return "UNKNOWN CMD";	/* Make the compiler happy */
3712	}
3713}
3714#endif
3715
3716MODULE_DEPEND(wpi, pci,  1, 1, 1);
3717MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3718MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3719